Mammalian mitochondrial nitric oxide synthase: Characterization of a novel candidate

Tomasz Zemojtela,b,*, Mateusz Kolanczykb,c,*, Nadezina Kosslerc, Sigmar Strickerc, Rudi Lurzd, Ivan Mikulae, Marlena Duchniewiczb, Markus Schuelkef, Pedram Ghaforifare, Pavel Martaseke, Martin Vingrona, Stefan Mundlose

a Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
b In silico Miners, Chopina 13/10, 81-782 Sopot, Poland
c Department of Development and Disease, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
d Microscopy Group, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
e Department of Pediatrics, Center of Applied Genomics, First School of Medicine, Charles University, 121 09 Prague, Czech Republic
f Department of Neuropediatrics, Charite, University Medical Center, Berlin, Germany
g Department of Pharmacology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA

Received 24 October 2005; revised 5 December 2005; accepted 13 December 2005
Available online 20 December 2005

Edited by Robert Barouki

Abstract Recently a novel family of putative nitric oxide synthases, with AtNOS1, the plant member implicated in NO production, has been described. Here we present experimental evidence that a mammalian ortholog of AtNOS1 protein functions in the cellular context of mitochondria. The expression data suggest that a candidate for mammalian mitochondrial nitric oxide synthase contributes to multiple physiological processes during embryogenesis, which may include roles in liver hematopoiesis and bone development.

© 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Keywords: Mitochondrial nitric oxide synthase; AtNOS1 ortholog

1. Introduction

In mammals, three highly homologous isoforms of nitric oxide synthase (NOS) catalyze oxidation of L-arginine to nitric oxide and L-citrulline. NOS enzyme is composed of a catalytic heme-containing oxygenase domain (NOSoxy) [1] and a sulfite reductase flavoprotein-like domain (NOSred) [2,3]. Both domains are linked via a helical CaM-binding peptide [4,5]. Interestingly, a gene homologous to the NOSoxy domain was identified in a number of prokaryotes[3,6]. Yet a homologue of the mammalian NOS gene is absent from up-to-date sequencing genomes of plants and single cellular eukaryotes[7]. Curiously, these proteins display no homology to already known animal NOSs and contain a centrally positioned GTP-binding domain.

As the first steps in our ongoing effort to functionally characterize mammalian members of this peculiar protein family, we cloned the mouse AtNOS1 ortholog, mAtNOS1, and analysed its subcellular localization and expression domain.

2. Materials and methods

2.1. Protein constructs
mAtNOS1 coding sequence (693 a.a.) was RT-PCR derived on a template of RZPD cDNA clone (GI:16877844) and subcloned into pcDNA3.1 vector.

Primer sequences used for cloning a full length ORF, At(1–26)mAtNOS1-V5 and At(1–56)mAtNOS1-V5 N-terminus deletion mutants of mAtNOS1, and (1–60)mAtNOS1-EGFP fusion protein are listed in the method section of Supplementary Information.

2.2. Cell lines and cell transfection

COS-1 and NIH3T3 cells were grown on Dulbecco’s modified Eagle’s high glucose medium (DMEM) supplemented with 5% fetal calf serum (FCS), penicillin (100 U/ml) and streptomycin (100 μg/ml). Transfection was done using PolyFect (Qiagen).

2.3. Immunofluorescence and microscopy

COS-1 and NIH3T3 cells were grown on coverslips and fixed 48 h after transfection with 4% paraformaldehyde for 10 min at room temperature. The cells were permeabilized with 0.2% Triton X-100 in PBS and incubated with primary antibody diluted in PBS, 10% FCS and 0.05% NaN3 for 1 h at room temperature. The samples were processed using deconvolution algorithm using Axio Vision 4.3 software.
For electron microscopy, the cells were fixed with 4% formaldehyde and 0.2% glutaraldehyde for 1 h, dehydrated in an ethanol series and embedded in LR-White or LR-Gold (London Resin Company). For embedding in LR-Gold Resin, cells were grown on poly-lysine-coated Thermaxx coverslips (13 mm diameter; Nunc, Naperville, IL). For embedding in LR-White Resin, cells grown in 10 cm culture dish were fixed and harvested with cell scraper. Post-embedded immunogold labelling was performed using the rabbit-anti-V5 antibody (1:50) followed by secondary antibody conjugated with 10 nm gold (1:100; British Bio Cell). The samples were viewed in a Philips CM 100 electron microscope.

2.4. Cell fractionation and Western blotting

Citrate synthase (CS) and lactate dehydrogenase (LDH) activities in the cytosolic as well as in the mitochondrial fraction were measured as previously described [10,11]. Subcellular fractionation of COS-1 cells was performed using cytosol/mitochondria fractionation kit (Oncogene) according to the following protocol. Cells were grown as adherent cultures in 75 cm² tissue culture bottles with DMEM supplemented with 10% FCS. At near confluence the cells were harvested by trypsinization and washed twice with ice-cold extraction buffer (10 mM HEPES, pH 7.5, 200 mM mannitol, 70 mM sucrose, 1 mM EGTA). This yielded approximately 10⁷ cells. From here all steps were performed at 4°C. The cell pellet was re-suspended in 2 ml extraction buffer supplemented with 2 mg/ml albumin and the cells were disrupted by eight slow up- and down strokes through a tightly fitting Teflon pestle rotating in a Potter-EleVhjem homogenizer at 500 rpm. The homogenate was transferred into 2 ml Eppendorf tubes and centrifuged at 600 × g for 5 min to remove the cell nuclei. The supernatant was then transferred into a new tube and centrifuged at 11000 × g for 10 min. The supernatant was carefully removed and collected as the cytosolic fraction and the remaining mitochondrial pellet was re-suspended in storage buffer (10 mM HEPES, pH 7.4, 250 mM sucrose, 1 mM ATP, 0.08 mM ADP, 5 mM sodium succinate, 2 mM K₂HPO₄, 1 mM DT/T).

Finally, the protein content of the cytosolic and of the mitochondrial fraction were measured with a standard BCA assay. Proteins in cytosolic and mitochondrial fractions were solubilized in Laemmli buffer, resolved on 10% polyacrylamide gel and transferred onto PVDF (Amersham). Immunoblots were developed using ECL detection system (Amersham).

The following antibodies were used in immunofluorescence and/or WB analyses: mouse anti-V5 IgG2a (Invitrogen); goat anti-mouse IgG Peroxidase Conjugated (Calbiochem); goat anti-rabbit IgG Peroxidase Conjugated (Oncogene); rabbit anti-Prohibitin IgG polyclonal (Abcam); mouse anti cytochrome C IgG clone 7H8.2C12 (Pharmingen); goat anti-mouse IgG Alexa Flour-546 (Molecular Probes); goat anti-mouse IgG Alexa Flour-488 (Molecular Probes); rabbit anti-Actin A2066 (Sigma).

2.5. In situ hybridization

Section in situ hybridization on frozen E12.5 embryos was done with digoxigenin labelled rRNA probe according to protocols of the GenePaint system (Tecan) [12]. Section in situ hybridization on E14.5 embryos was performed on paraffin embedded tissue using ³²P labelled cRNA-probes as described previously [13].
2.6. Northern blotting analysis
Total RNA was isolated from fresh homogenized tissue samples using Total RNA isolation kit (AABiot, Gdynia, Poland) and electrophoresed (10 µg/lane) through 1% formaldehyde gel. RNA was transferred to Hybond N+ membrane (Amersham) and UV cross-linked with UV-Stratalinker (Stratagene). The mAtNOS1 probe comprising the PCR-derived full coding sequence region was labelled with [32P]dCTP using Megaprime DNA labelling system (Amersham Biosciences).

3. Results and discussion

3.1. N-terminal signalling peptide
Initial analyses of the putative NOS family showed that eukaryotic sequences, when compared to bacterial, are longer in their N-terminus [9]. Our closer examination of the N-terminal regions of mammalian sequences revealed enrichment in charged residues, particularly arginines (Fig. 1). The latter is a common feature of leader peptides [14]. To investigate this matter further, we employed a tool, Target-P, that predicts the subcellular location of eukaryotic proteins [15]. Strikingly, all mammalian N-terminal peptides were classified, with a high probability (i.e., for the human sequence: Target-P score >0.9, RC = 1), as the mitochondrial targeting peptides. With those matters settled, we aimed for experimental validation of the generated predictions.

3.2. Subcellular localization of mAtNOS1
First, we constructed a fusion gene, mAtNOS1-V5, in which His-V5 tag was attached at the C-terminus of mAtNOS1 coding sequence (693 a.a.). This allowed us to examine the subcellular localization of mAtNOS1-V5 in transiently transfected COS-1 and NIH3T3 cells. Immunolabelling with anti V5 antibody revealed a mitochondrial pattern of distribution, subsequently confirmed by co-immunodetection with anti-Prohibitin antibody and staining with a mitochondrial marker MitoTracker® (Fig. 2). Having established that, we further explored the localization of mAtNOS-V5 by immune-gold electron microscopy. Fig. 3 clearly shows that the protein localizes to the inner-mitochondria compartment. Since colloidal gold particles were frequently found within the mitochondria cristae (Fig. 3B and C), we find it highly plausible that the inner mitochondria membrane is the primary site of mAtNOS1 localization.

Fig. 3. mAtNOS1 exhibits intramitochondrial localization. COS1 cells, transiently transfected with V5-His-tagged mAtNOS1, cultured for 48 h and processed for EM-immunostaining with LR white resin (A) or LR gold resin (B,C) – see Section 2 for a detailed protocol. Cells were immunostained with mouse anti-V5 antibody as described in Section 2. Colloidal gold particles are frequently associated with the cristae membranes of mitochondria (B,C; arrows). Only very few particles, corresponding to the background, are present outside mitochondria (A). M – mitochondria; RER – raw endoplasmic reticulum.
3.3. The amino terminus of mAtNOS1 contains a mitochondrial targeting signal

In order to test if the N-terminal sequence encodes a mitochondrial targeting peptide, we constructed deletion mutants devoid of 26 and 56 amino acids at the N-terminus, Δ(1–26)mAtNOS1-V5 and Δ(1–56)mAtNOS1-V5, respectively. Both mutant proteins no longer co-localized with MitoTracker™ Red CM-H2Xros (A–I). (A–C) Green fluorescence from immunostaining with mouse anti-V5 antibody (Invitrogen) and anti mouse-IgG Alexa Fluor 488. (D–I) Green fluorescence from EGFP. This notion is further supported by a fractionation experiment, in which a significant enrichment of Δ(1–26)mAtNOS1-V5 and Δ(1–56)mAtNOS1-V5 mutants was observed in the cytosolic fractions, as compared to the mitochondrial fractions of COS1 cells (Fig. 5, results for Δ(1–26)mAtNOS1-V5 not shown).

In order to further study the involvement of N-terminus in the subcellular localization of the protein, we transfected COS-1 cells with a construct encoding a fusion between amino acids 1–60 of mAtNOS1 and enhanced green fluorescent protein (EGFP). Markedly, (1–60)mAtNOS1-EGFP fusion gene co-localized with MitoTracker™ in COS1 and NIH3T3 cells (Fig. 4, Fig. S1). Thus, our results indicate that the first 60 amino acids of mAtNOS1 contain a mitochondrial targeting signal that is necessary and sufficient for import into mitochondria.

Fig. 4. The N-terminus of mAtNOS1 contains a mitochondrial targeting signal. COS1 cells, transiently transfected with Δ(1–26)mAtNOS1-V5 (A–C), (1–60)mAtNOS1-EGFP (D–F) and EGFP (G–I), cultured for 48 h and stained with mitochondria specific marker MitoTracker™ Red CM-H2Xros (A–I). (A–C) Green fluorescence from immunostaining with mouse anti-V5 antibody (Invitrogen) and anti mouse-IgG Alexa Fluor 488. (D–I) Green fluorescence from EGFP.

Fig. 5. N-terminus dependent enrichment of mAtNOS1 in mitochondria. Cytosolic (lanes 1 and 2) and mitochondrial (lanes 3 and 4) distribution of the V5-His-tagged mAtNOS1 protein was analyzed by Western blotting. COS1 cells were transiently transfected with mAtNOS1 (lanes 1 and 3), and Δ(1–56)mAtNOS1-V5 (lanes 2 and 4) constructs and fractionated into mitochondria-enriched and cytosolic fractions using cytosol/mitochondria fractionation kit (Oncogene Research Products). Western blots were followed by immunodetection with antibodies against V5 epitope, prohibitin, cytochrome C and actin. Activity (in U/g of protein) of cytosolic LDH and mitochondrial CS in each fraction is presented as mean ± S.D.
3.4. Expression pattern of mouse AtNOS1 ortholog

Next, we analysed the embryonic expression pattern of mAtNOS1 gene. Whole-mount in situ hybridization experiments at E10.5 revealed a weak, but widespread expression of mAtNOS1 (data not shown). In situ hybridization on frozen mouse embryonic sections at later stage of gestation, E12.5, showed prominent expression of mAtNOS1 in the liver (Fig. 6). The latter may be indicative of its function in embryonic liver haematopoesis. In addition, mAtNOS1 was detected in the developing CNS and dorsal root ganglia. Interestingly, at E14.5 mAtNOS1 expression was intensified in the bone (Fig. 7). On the coronary sections of E14.5 mouse embryo, expression was detected in the ossified parts of the ribs, whereas no expression could be seen in the cartilaginous parts. Also at the longitudinal sections through E14.5 embryo humerus, mAtNOS1 expression was observed in the ossification zone but not in the cartilage, supporting the notion that bone cells and not chondrocytes express mAtNOS1 (Supp. Fig. 2). In summary, in situ hybridization data is suggestive of a role for mAtNOS1 in development of neural, haematopoietic and bone organ systems.

We also explored the question of whether the gene is expressed in established bone cell lines. Interestingly, Northern blot detected mAtNOS1 mRNA in primary calvaria osteoblasts, as well as established stroma (ST-2), pre-osteoblastic (MC3T3-E1), osteocyte (MLOY4) and multipotent mesenchymal (C3H10T1/2) cell lines (Fig. 8). Lastly, we probed total RNA from adult mouse organs for mAtNOS1 expression. Northern blot revealed that the gene was expressed in the organs associated with high mitochondria content, like testes, heart, liver, brain and thymus (Fig. 8).

4. Summary and outlook

We showed that mouse AtNOS1 ortholog, mAtNOS1, localizes to mitochondria. It can be expected, on the bases of a high sequence similarity in the regions corresponding to the N-terminal targeting peptide (Fig. 1), that all of mammalian AtNOS1 orthologs are mitochondrial proteins. Moreover, according to Target-P predictions, Arabidopsis sequence, AtNOS1, is also a mitochondrial protein (Target-P score of ~0.8), suggesting a conservation of the subcellular localization among eukaryota. Indeed, while the present study was in review, Guo et al. reported that Arabidopsis AtNOS1 protein, a like its mammalian ortholog, mAtNOS1, is also targeted to mitochondria [16]. Moreover, the mitochondria isolated from the AtNOS1 mutant plant (AtNOS1 −/−) were defective in L-Arg based NO production. Elevated levels of hydrogen peroxide, superoxide anion, oxidized lipid, and oxidized proteins were detected in the AtNOS1 −/− plant.

This set of findings is especially interesting in the light of the ongoing debate on existence of a mammalian mitochondrial NOS (mtNOS) [17–19]. mtNOS has been described as an L-arginine and Ca2+ dependent enzyme that is associated with the mitochondrial inner membrane and regulates mitochondrial respiration via produced NO [20–23]. It is note worthy that NO has been shown to stimulate biogenesis of respiratory functional and metabolically active mitochondria [24]. Subsequently, multiple groups, by utilizing antibodies raised against the nicotinamide adenine dinucleotide (NADPH)-binding C-terminus of classical NOSs, identified eNOS [21,25,26], iNOS [27] and nNOS [28–30] as mitochondrial NOS (for a detailed discussion see reviews [17–19]). Still, others did not detect nNOS nor iNOS in the mitochondria,
and also excluded eNOS as a source of NO in this organelle [31].

Are mammalian AtNOS1 orthologs the long-sought mtNOS? To date, the NOS activity has been documented for *Arabidopsis* AtNOS1 protein [8]. However, for the latter, a catalytic mechanism of NO production is still not known. Interestingly, sequences belonging to the novel, putative NOS family, including AtNOS1 member, contain within their N-terminus a treble clef finger-like motif CxxC–x(26–34)–CxxC [9] known to be involved in metal binding [32]. The latter may constitute an active site or electron acceptor site. The study on Arabidopsis AtNOS1 protein revealed that NOS activity was dependent on NADPH [8]. Intriguingly, the NADPH-binding site appears to be absent in AtNOS1 sequence. A pos-

Fig. 7. Expression of mAtNOS1 at E14.5. In situ hybridization on coronary and parasagittal paraffin sections of E14.5 wild-type embryos. Left panel shows the bright field image, right panel the dark field. mAtNOS1 expression is seen in the ossification zone within the shaft of the humerus (A–A’), the primordium of basioccipital bone (B–B’), the rib primordia (C–C’) and in primordia of incisor teeth (D–D’).
Fig. 8. Northern blot analysis of mAtNOS1 in adult mouse organs and mesenchymal, stromal, osteoblastic and osteocytic cell lines. The 28S and 18S rRNAs are indicated on the right side. Upper panel – hybridization with mAtNOS1 specific probe. Samples are in the following order: placenta (1), liver (2), kidney (3), lungs (4), testes (5), heart (6), brain (7), thymus (8), spleen (9) and stomach (10), primary calvaria osteoblasts (11), ST2 – stroma cell line (12), MC3T3 pre-osteoblastic cell line (13), C3H10T1/2 multipotent mesenchymal cell line (14), MLOY4 osteocytic cell line (15). Lower panel – loading control: ethidium bromide stained membrane.

Appendix A. Supplementary data

References

