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In this paper we present some independence results from the 
Zermelo-Frankel axioms of set theory with the axiom of choice (ZFC) 
which differ from earlier such independence results in three major respects. 

Firstly, these new propositions that are shown to be independent of ZFC 
(i.e., neither provable nor refutable from ZFC) form mathematically natural 
assertions about Bore1 functions of several variables from the Hilbert cube I” 
into the unit interval, or back into the Hilbert cube. As such, they are of a 
level of abstraction significantly below that of the earlier independence 
results. 

Secondly, these propositions are not only independent of ZFC, but also of 
ZFC together with the axiom of constructibility (V = L). The only earlier 
examples of intelligible statements independent of ZFC + V= L either 
express properties of formal systems such as ZFC (e.g., the consistency of 
ZFC), or assert the existence of very large cardinalities (e.g., inaccessible 
cardinals). The great bulk of independence results from ZFCLthe ones that 
involve standard mathematical concepts and constructions-are about sets of 
limited cardinality (most commonly, that of at most the continuum), and are 
obtained using the forcing method introduced by Paul J. Cohen (see [2]). It 
is now known in virtually every such case, that these independence results 
are eliminated if V= L is added to ZFC. 

Finally, some of our propositions can be proved in the theory of classes, 
as formalized by the Morse-Kelley class theory with the axiom of choice for 
sets (MKC), but not in ZFC. MKC still formalizes only commonly accepted 
principles of mathematical reasoning. Thus these propositions provide 
examples of interesting theorems whose proofs necessarily involve the outer 
limits of what is commonly accepted as valid principles of mathematical 
reasoning. 

The starting point for the development of these new propositions was our 
consideration, in 1976, of certain aspects of Cantor’s basic theorem that the 
set of all real numbers is not countable. Thus given any sequence of real 
numbers, there is a real number which is not a term of the sequence. By 
using nested sequence of closed intervals with rational endpoints, it is easy to 
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construct a Bore1 function F: R” --t R such that for all x E R“‘, F(x) is not a 
coordinate of x. 

Observe that the way such an F is constructed, the value of F at an 
infinite sequence x E R” depends very much on the order in which x is 
given. 

Let - be the equivalence relation on R” given by x - y if and only if y is 
obtained from x by permuting finitely many coordinates of x. We also 
consider the weaker equivalence relation z given by x %y if and only if 
w(x) = rw(y). 

In 1976 we proved what we call the basic Bore1 diagonalization theorem, 
which says that if F: R“+ R is any Bore1 function such that 
x - y + F(x) = F(y), then there is an x such that F(x) is a coordinate of x. 
The remarkable feature of the proof of this theorem (Theorem 3.1 in the text) 
is that it relies on essential use of the uncountable. This remark can be made 
precise in the following two ways. 

Firstly, there is a standard set theory for dealing with countable sets only. 
This “countable set theory” is obtained from ZFC by deleting the power set 
axiom, and is written as ZFC - 9’. In ZFC - 3 we cannot, of course, prove 
the existence of R, but since any Bore1 function can be built up in a coun- 
tably transtinite construction by means of sequential limit processes, there is 
no trouble treating Bore1 functions in ZFC - 9 by means of what are called 
Bore1 codes. The main point is that the basic Bore1 diagonalization theorem, 
when suitably formalized in ZFC - 9, cannot be proved in ZFC - 9, even 
if we use = instead of -. The basic Bore1 diagonalization theorem can, 
however, be proved well within ZFC; e.g., in ZFC - 9 + “IR exists.” 

The other way to make this precise is to develop a formal system in which 
all of the usual constructions on complete separable metric spaces can be 
made directly. Such a formal system is presented in the Appendix (EC&“), 
and is strong enough to carry out the great preponderance of mathematics in 
a natural and direct way. Yet the basic Bore1 diagonalization theorem is 
given in the Appendix in standard mathematical terminology, using a Baire 
category argument on the space (p)“, where B is the discrete topology on 
the reals, following a suggestion of Donald A. Martin. Note that use of the 
(non-separable) discrete topology on R is necessary in light of the 
unprovability from ECST. 

Let Q be the Hilbert cube ZU, which is the countably infinite product of 
the unit interval Z, where Z is given the usual topology and I” is given the 
infinite product topology. We can obviously transfer the basic Bore1 
diagonalization theorem over to Bore1 functions from Q into I: for all Bore1 
functions F: Q + Z such that x -y+ F(x) =F(y), we have (3x)(F(x) is a 
coordinate of x). 

In this form, the basic Bore1 diagonalization theorem appears closely 
related to the Hewitt-Savage theorem: for all measurable functions F: Q + Z 
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such that x -y + F(x) = F(y), F is constant almost everywhere (see [8]). 
However, the Hewitt-Savage theorem is proved by a rather standard 
measure theoretic argument, which can be proved well within separable 
mathematics (e.g., as formalized by ECST). Observe that since almost no 
elements of Q have any given a E I as one of its coordinates, the following is 
an immediate consequence of the Hewitt-Savage theorem: for all Bore1 (in 
fact, measurable) functions F: Q + I such that x - y + F(x) = F(y), we have 
(3x)(F(x) is not a coordinate of x). 

The new propositions independent of ZFC which are presented in 
Section 5, are far reaching extensions of the basic Bore1 diagonalization 
theorem, and can be motivated from basic Bore1 diagonalization by a few 
simple steps as follows. 

First of all, there is the parameter form of Bore1 diagonalization which 
asserts the following. Let F: Q x Q + I be a Bore1 function such that y - z + 
F(x, y) = F(x, z). Then for each x there is a y such that F(x, y) is a coor- 
dinate of y. This is an immediate consequence of the basic Bore1 
diagonalization theorem. 

We next consider an iterated form of the above. Let F: Q x Q + I be a 
Bore1 function such that y - z -+ F(x, y) = F(x, z). Then there exists an 
infinite sequence {xk} from Q such that F(xk, xk+,) is a coordinate of xktl. 
This can also be proved straightforwardly from basic Bore1 diagonalization. 

Now consider the following variant of the iterated form. Let F: Q X Q + I 
be a Bore1 function such that y - z + F(x, y) = F(x, z). Then there exists an 
infinite sequence {xk} from Q such that for s < t, F(x,, xt) is a coordinate of 

x,t1* 
Now consider a multivariable form of the above. For y, z E Q” let y -z 

mean that there is a permutation p of w  which is the identity almost 
everywhere, such that each z[ = yi o p. Thus we are using the diagonal action 
of the group of finite permutations of w  on Q”. Let F: Q x Q” + I be a Bore1 
function such that y - z + F(x, y) = F(x, z). Then there exists an infinite 
sequence {xk} from Q such that for s < t, < ..a < t, , F(x,, x1, ,..., xtn) is a 
coordinate of x, + i . ’ 

This is almost our independent Proposition P. In Proposition P, we specify 
the coordinates as follows: let F: Q X Q ‘--t I be a Bore1 function such that 
y - z --t F(x, JJ) = F(x, I). Then there exists an infinite sequence {xk} from Q 
such that for s ( t, < . . . < t,, F(x,, xt, ,..., x1,) is the first coordinate of x,+ , . 

We call Proposition P a Bore1 Ramsey theorem because for each fixed s, 
F(x,, xtl,..., x,J is independent of the choice of s < t, < . . . < t,. This is 
similar to the situation in the usual Ramsey theorem for o, which can be 
formulated as follows: Let G: o” -+ [0, k]. Then there is an infinite sequence 

’ It is necessary and suffkient to use w + w iterations of the power set operation to prove 
this. This result will appear elsewhere. 
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{a,) such that for t, < . . . < I,, t, ( . . . < rn, we have G(u,, ,.,., a,“) = 
W ,,,..., urn) (see [ 131). 

The first example of a Bore1 Ramsey theorem is due to Galvin. The 
following weak form of his theorem fits into the present exposition. Let J be 
a finite set, and let F: IR*+J be a Bore1 function. Then there is an infinite 
sequence {x,} from IR such that for p < q, s < t, we have F(xP, xs) = 
F(x,, x,). This result was extended to all finite exponents in an interesting 
way in [ 11. These results are proved in separable mathematics, well within 
ZFC. 

Propositions Q, R are variants of Proposition P. To prove P, Q, R we 
must go beyond ZFC and use Mahlo cardinals of arbitrarily high finite 
order. The Mahlo cardinals of order 0 are just the inaccessible cardinals, and 
these already go beyond ZFC. The Mahlo cardinals of order n + 1 are those 
cardinals every closed and unbounded subset of which contains a Mahlo 
cardinal of order n. As shown in Section 5, Propositions P-R can be proved 
in ZFC + (Vn)(%) (K is a Mahlo cardinal of order n), but cannot be proved 
in ZFC + (3~) (K is a Mahlo cardinal of order rI), for any specific n. For a 
more penetrating discussion of what it means to “require Mahlo cardinals of 
arbitrarily high finite order,” see the discussion in Section 1. 

We now return to the beginning of this Introduction where we listed three 
ways these independence results differ from earlier ones. 

With regard to the first point, we take the point of view that non-set- 
theoretic mathematics is characterized by the use of sequential limit 
processes to construct objects. Set theoretic mathematics is characterized by 
the use of other means for constructing objects such as quantification over 
an uncountable domain (as in the construction of .analytic sets), or by the 
consideration of arbitrary subsets of an uncountable set regardless of how 
they are constructed. 

From this point of view, probably the construction of arbitrary Bore1 sets 
of reals would be regarded as on the set theoretic side, but Bore1 sets of reals 
offinite rank are definitely on the non-set-theoretic side. (The Bore1 sets of 
rank <O are the open and closed sets. The Bore1 sets of rank <n + 1 are the 
countable unions and countable intersections of Bore1 sets of rank <n.) 
Similarly, arbitrary Bore1 functions on IR would probably be regarded as on 
the set theoretic side, but functions on IR obtained at ajhite level of the 
Baire hierarchy are definitely on the non-set-theoretic side. (The functions in 
Baire class 0 are the continuous functions. The functions in Baire class n + 1 
consist of the pointwise limits of pointwise convergent sequences of functions 
in Baire class n.) We mostly consider Bore1 sets and Bore1 functions on 
spaces other than IR such as Q = I”, but this discussion carries over to such 
spaces without change. We use “finitely Bore1 set” and “finitely Bore1 
function” for restrictions to the finite levels of the Bore1 hierarchy of sets and 
the Baire hierarchy of functions. 
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Propositions P-R provide examples of propositions from non-set-theoretic 
mathematics (provided they are restricted to finitely Bore1 functions) whose 
proofs require not only use of set theoretic mathematics, but substantial 
extensions of ZFC by means of Mahlo cardinals of finite order. 

Even the first example of a mathematically interesting proposition from 
non-set-theoretic mathematics whose proof requires use of some set theoretic 
mathematics, is relatively recent. This example is from intinite game theory, 
and is referred to as Bore1 determinacy. In 1967, Martin [9] proved Bore1 
determinacy using some “large cardinals” going well beyond ZFC, and in 
fact well beyond the Mahlo cardinals that we use here (he used what are 
called Ramsey cardinals). In 1968, we [ 31 showed that any proof of Bore1 
determinacy requires use of uncountably many iterations of the power set 
operation. (V(0) = 0, V(a + 1) = Y(V(a)), V(J) = UaCA V(a). V(a) is ath 
iterate of the power set operation.) In 1974, Martin [lo] proved Bore1 deter- 
minacy using exactly uncountably many iterations of the power set 
operation. In Section 1, there is a detailed discussion of the meaning of 
“necessary use of w, iterations of the power set operation.” 

In light of our emphasis on finitely Bore1 sets, we state that Martin proved 
finitely Bore1 determinacy using exactly w  + o iterations of the power set 
operation, and we proved that w  + o iterations are necessary. 

In Section 2 we obtain these same results for some new propositions that 
are closely related to Bore1 determinacy, but whose formulation does not 
involve game theory. The statements are entirely natural and straightforward 
(e.g., every symmetric Bore1 set in I x I contains or is disjoint from the 
graph of a Bore1 function.) 

In Section 3 we prove the Bore1 diagonalization theorem for arbitrary 
Bore1 equivalence relations using w, iterations of the power set operation, as 
an application of both Bore1 determinacy and the methods of [3]. We also 
show that -0, iterations are necessary. If everything is restricted to the 
finitely Borel, then it is necessary and sufficient to use o + w  iterations of 
the power set operation. Thus the Bore1 diagonalization theorem for Bore1 
equivalence relations shares the same basic metamathematical properties as 
the earlier Bore1 determinacy. One difference is that Bore1 diagonalization for 
Bore1 equivalence relations is wi, whereas Bore1 determinacy is rri. 

In Section 4 we present some more non-set-theoretic propositions which 
share the same basic metamathematical properties as the above. These 
propositions are certain fixed point type theorems for Bore1 functions defined 
on a Bore1 quasi order. Again these are proved as an application of Bore1 
determinacy and the methods in [3]. 

The use of (finitely) Bore1 sets and (finitely) Bore1 functions as a working 
model for non-set-theoretic mathematics has interesting consequences for 
many of the existing set theoretic independence results. We consider two 
examples : the continuum hypothesis, and Souslin’s hypothesis. 
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The continuum hypothesis asserts that every set of real numbers either can 
be mapped into the natural numbers or mapped one-one onto the set of all 
real numbers. The use of arbitrary sets of real numbers regardless of how 
they are constructed, and also the use of arbitrary one-one mappings onto 
the set of all real numbers, regardless of how they are constructed, are 
characteristic of set theoretic statements. Now we can put the continuum 
hypothesis into the Bore1 world as follows: Every Bore1 set of real numbers 
either can be mapped into the natural numbers by a Bore1 function, or can be 
mapped one-one onto the set of all real numbers by a Bore1 function. 
However, this new form of the continuum hypothesis obtained by relativizing 
to the Bore1 world, is a classical theorem of descriptive set theory proved 
well within ZFC (it follows from the theorem that every uncountable Bore1 
set of reals contains a perfect subset). Furthermore, this is true if “finitely 
Borel” is used throughout. 

The Souslin hypothesis asserts that for every dense linear ordering, either 
there is a countable dense subset or there is an uncountable set of points no 
element of which is a limit point of the remaining elements. We put Souslin’s 
hypothesis into the Bore1 world as follows. A Bore1 linear ordering is a 
linear ordering whose field of points is R and whose relation is a Bore1 
subset of R x R. The new form of Souslin’s hypothesis asserts that for every 
dense Bore1 linear ordering, either there is a countable dense subset or there 
is an uncountable Bore1 set of reals (in fact, a perfect set of reals) no element 
of which is a limit point (under the ordering) of the remaining elements. This 
is a joint result with S. Shelah (see [4]), and is proved using a technique of 
L. Harrington introduced in [61. 

With regard to the second point, we regard V= L not so much as an 
axiom, but rather as coming out of a specialization of the set concept. L 
consists of the class of all sets which can be built up in a transtinite 
hierarchy in which at any stage, only those sets which can be explicitly 
defined over the class of sets introduced at earlier stages, are introduced. 
Specialization of the set concept to L is attractive for several reasons. 

Firstly, all of the usual axioms of set theory (i.e., ZFC) can be proved to 
hold in L. So nothing really is lost in terms of ordinary mathematical 
activity. Even the axiom of choice can be proved to hold in L, just using ZF. 

Secondly, the specialization to L is based on a natural and coherent idea, 
and is not simply some ad hoc or artificial restriction. 

Thirdly, there has been no convincing proof of the existence of a set that is 
not constructible (i.e., not in L). The only proposals involve hypotheses like 
the existence of measurable cardinals, which certainly are not evident. The 
consistency of ZFC with the existence of a measurable cardinal is perhaps 
more compelling, but this does not suffice to prove the existence of non- 
constructible sets. 

Fourthly, it now appears that all of the independence results from ZFC 
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obtained through forcing are eliminated if one specializes to L. For example, 
the continuum hypothesis becomes a theorem of ZFC when relativized to L, 
and the Souslin hypothesis becomes refutable in ZFC when relativized to L. 
As far as the earlier independence results are concerned, specialization to L 
leaves only statements about formal systems of set theory (such as the 
consistency of ZFC), or the existence of large cardinals such as inaccessible 
or Mahlo cardinals (but not the much larger ones such as measurable 
cardinals), or artificial statements, as independent of ZFC. 

Since our Bore1 Ramsey propositions remain independent of ZFC even 
when relativized to L, the advantages of specializing to L are thus weakened. 

There is a further specialization of the set concept which also makes sense. 
The idea is to restrict to those sets which are “forced to exist by the axioms 
of ZFC.” This is the so called minimum model of ZFC, and is defined as the 
least transitive class satisfying the axioms of ZFC. The corresponding axiom 
would assert that the universe, V, is the minimum model of ZFC. Let us 
denote the minimum model by L*. 

Strictly speaking, the stated definition of L* cannot be given in ZFC. We 
modify it for use in ZFC as follows. L* is the least transitive set satisfying 
ZFC if there is one; L otherwise. (This is appropriate since L is the least 
transitive class containing all ordinals and satisfying ZFC.) 

If we specialize to L*, then the fourth point above can be strengthened: 
Even the existence of large cardinals such as inaccessible or Mahlo 
cardinals, when relativized to L*, do not remain independent of ZFC (they 
become refutable). However, the independence results in Section 5 remain in 
force when specialized to L*, or even other more severe specializations. 

With regard to the third point made at the beginning of this Introduction, 
Proposition R for )2 = 4, m < w  can be proved in MKC but not in ZFC (or 
even ZFC + V= L). We do not know if Proposition P for n = 3 or 4, m < w, 
has this property, or whether any natural restriction of Proposition P or Q 
has this property. 

This result has an advantage over the independence results for unrestricted 
P, Q, and R. We can prove in MKC that Proposition R for n = 4, m < w  is 
independent of ZFC. However, in order to prove that Propositions P, Q, R 
are independent of ZFC, we need to assume that ZFC + (Vn)(Sc) (K is n- 
Mahlo) is consistent (in order to show nonrefutability of P, Q, R in ZFC; for 
non-provability, we need only Con(ZFC)). 

There have been earlier results which give natural mathematical examples 
where it is necessary and sufficient to use large cardinals to give a proof. The 
most concrete example of such is analytic determinacy, which is proved from 
Ramsey cardinals in [9]. In [ 71 analytic determinacy is shown to be 
equivalent to (Vx c w)(x” exists), which establishes the necessity of using 
substantial large cardinals to prove it. Note that analytic determinacy differs 
from our Bore1 Ramsey theorems in that (a) it is on the set theoretic side of 
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mathematics because of its use of analytic sets, (b) it is refutable when 
specialized to L, and (c) unlike Proposition R for n = 4, m < w, we cannot 
prove it to be true or prove it to be nonrefutable in ZFC using the commonly 
accepted principles of mathematical reasoning. 

The major shortcoming of this work is that, despite the elegance and 
simplicity of our Bore1 Ramsey propositions, they had not actually existed in 
the mathematical literature up to now. It would, of course, be more striking 
to have examples of this new incompleteness phenomena come from the 
existing mathematical literature. The well known examples of set theoretic 
independence results did come from the existing mathematical literature. 

However, there are many reasons to believe that the situation with regard 
to non-set-theoretic independence results is quite different from the situation 
with regard to set theoretic independence results. For example, one of the 
very first questions raised in abstract set theory-the continuum 
hypothesis-turns out to be independent of ZFC. Also, there were many set 
theoretic candidates for independence results, where the obstacles to settling 
them seemed similar or related. In addition, for some time before the 
invention of forcing by P. J. Cohen in 1962, there was some conceptual basis 
for approaching set theoretic independence results. Specifically, it was 
recognized that one should start with a countable transitive model of 
ZFC + V= L (or a fragment of ZFC + I’= L) and add new objects in such 
a manner as to keep the same ordinals and preserve the axioms of ZFC. 
Thus even without knowing how to add the new elements, one could concep- 
tualize having thrown in many new real numbers so that the continuum 
hypothesis might fail in the extension. No remotely similar conceptual basis 
seems to exist for nonset-theoretic independence results, partly because the 
ordinals cannot be preserved. One seems forced to consider non-standard 
models (one must if the independent statement is, like ours, rri). In addition, 
no one to my knowledge has suggested that they have any intuition which 
would point to a candidate for a non-set-theoretic independence result from 
the existing literature. 

Nevertheless, we feel that the examples given here are of sufficient 
simplicity and are based on such fundamental theorems as the uncountability 
of the reals and Ramsey’s theorem, that they suggest the probability of a 
diverse collection of further non-set-theoretic independence results, some of 
which should be at least very closely tied to the existing mathematical 
literature. 

In 1977, Jeffrey Paris and Leo Harrington gave an example of a 
mathematical statement in finite set theory which cannot be proved in finite 
set theory. Their example is a new finite form of the usual infinite Ramsey 
theorem. The finite form is rr”, and the infinite form is Z: (see [12]). By 
building on their work, we have constructed rri statements which bear the 
same relationship to Propositions C and P as their Z: statements have to the 
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infinite Ramsey theorem. This provides mathematical 7rt statements 
equivalent, respectively, to the l-consistency of Z,, and of ZFC + { (3~) (K is 
5Mahlo)},. These statements are somewhat more complicated than those of 
[ 121. This work will appear elsewhere. 

1. SOME BASIC FORMAL SYSTEMS 

The axiom system ZFC is the usual formulation of the commonly 
accepted principles of mathematical reasoning in terms of set theory. It is the 
one-sorted theory based on E, = among sets, whose nonlogical axioms are: 

a. Extensionality. (Va)(a E x t+ a E y) + x = y. 

b. Pairing. {a, b} exists. 

c. Union. {a : (31 E x)(u E b)} exists. 

d. Infinity. There is a set w  such that 0 E w  & (Vx E w) 
(XU {x} E 0). 

e. Power set. {a: a cx} exists. 

f. Separation. {a E x: q(a)} exists for any formula cp with possibly 
additional free variables. 

g. Foundation. Every nonempty set has an E-minimal element. 

h. Replacement. (Vu E x)(j!b)(rp(u, b)) + (3f)(J is a function & 
(Va E x)(&uJ(u)))), where v, is any formula in which f is not free. (Here 
functions are treated as being reduced to sets.) 

i. Choice. Every set of nonempty sets has a choice function. 

The fragment consisting of axioms a-f is referred to as the Zermelo set 
theory, written Z. ZF consists of a-h. ZC is Z with choice. 

The constructible hierarchy of sets is defined by transfinite recursion on 
ordinals as follows: L(0) = 0; L(a + 1) = {xc,%(a): x is definable over 
L(a) by a formula of set theory with parameters allowed from L(a)}; and for 
limit ordinals A, L(1) = Ua,l L(a). L is the class of constructible sets; i.e., 
L = U, L(a). V is the class of all sets. V= L is the so called axiom of 
constructibility, which asserts that every set is constructible. 

We also consider the axiom system MKC (the Morse-Kelley theory of 
classes with choice for sets) which is the usual formulation of the commonly 
accepted principles of mathematical reasoning in terms of class theory. This 
is the one-sorted theory, with variables ranging over classes (of sets), E, = 
between classes, and the special unary predicated symbol S(x) meaning “x is 
a set.” Every object is a class. 

The nonlogical axioms are as follows. 

a. Extensionality. 
b. Every element of a class is a set, every subset of a set is a set. 
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c. Pairing for sets. {a, b} exists as a set for sets a, b. 

d. Union for sets. {a: (3b E x)(a E b)} exists as a set for sets X. 

e. Infinity. There is a set w as in axiom d of ZFC. 

f. Power set for sets. {a: a c x} exists as a set for sets x. 

g. Class separation. {a: S(u) 4% o(u)} exists as a class, for any formula 
v, with possibly additional free variables. 

h. Foundation for sets. Every nonempty set has an E-minimal 
element. 

i. Replacement for classes. Every class function (i.e., a class of 
ordered pairs of sets) whose domain is a set, has the property that its range 
is a set. 

j. Choice for sets. Every set of nonempty sets has a choice function. 

This system MKC is stronger than another theory of classes called I/BC, 
(the Von Neumann-Bernays theory of classes with choice for sets), where in 
class separation, all quantifiers ocurring in v, must be restricted to sets. 

At various points in the paper, we wish to consider systems such as the 
above with the power set axiom, 9, removed; e.g., we write ZF - 9 for ZF 
without the power set axiom. 

By weak Z we mean the system which is the same as Z except that in the 
separation axiom scheme, all quantifiers in the formula v, must be bounded 
to sets. These are the so called d,-formulas, and are defined inductively by 
(a) all atomic formulas are d,, (b) d,-formulas are closed under 
propositional combinations, and (c) if 9 is d, then so are (Vx)(x E y --t cp), 
(3x)(x E Y & VI- 

One way of classifying fragments of ZF is according to how much of the 
cumulative hierarchy of sets can be proved to exist. The cumulative 
hierarchy of sets is defined by transfinite recursion on ordinals as follows: 
V(0) = 0, V(a + 1) = Y(v(a)), L’(n) = UocA L’(a), for limit ordinals 1. 
V(a) is also called the ath iteration of the power set operation. 

On this criterion, Z proves that for all n, V(w + n) exists. However, weak 
Z proves only that each specific V(w + n) exists, but not (Vn)(v(w + n) 
exists). 

One way of classifying the inherent set theoretic content of theorems of 
ZFC is according to how much of the cumulative hierarchy of sets is needed 
in order to prove them. There are several difficulties involved in making this 
precise, which we address now. 

First of all, the ordinal a such that all of the V(J), p < a, are needed to 
prove the theorem, may not be definable. Even if it is, whether or not the 
VW), /I < a, are sufficient to prove the theorem may depend on the choice of 
definition of a. 
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Even if this first problem is solved, because of a canonical definition of a, 
how can we ever say that the VW), /3 < a, are needed to prove the theorem? 
There may be some other axiomatization which contains principles not 
directly connected with lengths of iterations of the power set operation, 
which prove the theorem, yet does not prove the existence of many iterations 
of the power set operation. 

There are two cases that come up here for theorems of ZFC. When is it 
necessary and sufficient to use o + w  iterations of the power set operation? 
And when is it necessary and sufficient to use o1 iterations of the power set 
operation? For our purposes, we will assume that the theorem, cp, is about 
Bore1 sets and Bore1 functions (so that it can be formalized in the language 
of second order arithmetic). 

Clearly if v, is provable in ZC then it is sufficient to use o + o iterations 
of the power set operation. We say that o + w  iterations of the power set 
operation are necessary to prove o,, if weak Z can be translated into 
ZFC-9++. 

The point of this condition on v, is that any “reasonable” system which 
proves a, will have any specified w  + n iterations of the power set operation 
present, disguised in a translation. Thus even though the “reasonable” formal 
system which proves o may not directly have these iterations of the power 
set operation, it must have them indirectly. 

The case of o1 iterations of the power set operation is more delicate. For 
sufficiency, we use the following countable rank axiom, CRA : Let (0, R) be 
a well ordering. Then there is a function f on w  such that f(n) = 
(x: (Vy E x)(3m)(R(m, n) & y E f(m))}. Thus we say that o, iterations of the 
power set operation are sufficient to prove v, if rp is provable in ZC + CRA. 

However, since obviously only countable many countable ordinals can be 
defined in any way, there is a new problem in making sense out of saying 
that wi iterations of the power set operation are necessary. 

It is tempting to weaken the CRA to the scheme which asserts that for 
each explicitly set theoretically definable well ordering (0, R), the 
cumulation function f exists. The diffmulty with this is that this “weakened” 
CRA is actually equivalent to CR,4 over V= L (take the first well ordering 
in the constructible hierarchy on which there is no cumulation function). 
Because of the absoluteness properties of the examples given here, the ones 
which are provable using CRA are also provable using this weakened form 
of CRA. 

Instead we weaken CRA to assert the existence of cumulation functions 
only for (w, R) which are definable in certain restricted ways. Actually, it 
turns out that sharp formulations require use of rules of inference rather than 
axiom schemes. 

In the first rule of inference that we use, if (3!R)((o, R) is a well ordering 
and y(R)) has been derived, where w  is a Xi formula with no other free 
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variables, then derive (3l) (f is a cumulation function on (w, R)). Call this 
rule 9i. 

9i is more than enough to cover natural descriptions of countable 
ordinals in our context. However, in the case of Section 2 we can be yet 
more general. Rule 9z is the same as 9, except that we allow ,?Y: formulas. 
For set theories T, T + 9?i and T + 9z represent the closure of T under the 
rules 9i, .5Pz. 

Finally, necessity of use of wi iterations of the power set operation will 
mean the following for our purposes: that there is a translation of ZC + 9, 
(or ZC + .53’*) into ZFC - 9 + 9. 

To verify this condition for our examples, we use T,-models, Q < 0,. A 
T,-model is a transitive set A in V(a + 1) such that for any formula cp with 
parameters in A and ordinal j3 < a, (x E V(J): A b v)(x)} EA. It is easily 
verified that any TW+; model satisfies Z. Obviously, we can define TR- 
models in an entirely analogous manner for well orderings (w, R). This must 
be done in systems which do not prove that every countable well ordering is 
isomorphic to an ordinal (such as ZC). 

A T,-model is called well founded absolute if every linear ordering on w  
that is satisfied to be a well ordering, really is a well ordering. 

THEOREM 1. The following is provable in ZF - 9’. (a) v for every 
a < o, there is a T,-model, then ZC + V = L + 9, is consistent (in fact, has 
an w-model); (b) iff or every a < co, there is a well founded absolute T,- 
model, then ZC + V = L + 92 is consistent (in fact, has an w-model). 

Proof. We argue inside L, using ZF - 9. Let x be the complete E: set of 
integers, and let a be the union of all d: ordinals. 

For (a), let M be a T, +w -model. By developing L within M, we pass to 
another T, + w- model A, which satisfies ZC + V= L. It is clear that x E A. 
We show by induction on the number of applications of 9, that every 
theorem of ZC + 9, holds in A. Assume that ZC + V = L + Sl E 
(3!R)((o, R) is a well ordering & w(R)), where w  is C:. Rewrite this as 
ZC + V = L + 9, E (!I!R)(Iy)@(R, y)), where p is nf , and also assume that 
A + (3!R)@y)@(R,y)). Now @!R)@y)@(R,y)) is true. By the choice of X, 
there are (R, y) &x such that p(R, y). Since the length of R is below a, 
A k “a cumulation hierarchy exists on R.” 

For (b), let M be a well founded absolute T,+,-model. By developing L 
within M, we pass to another well founded absolute T,, ,-model A, which 
satisfies ZC + V= L. The remainder of the argument is the same as for (a), 
except p is zi. So we must invoke well founded absoluteness to obtain 
A != p(R, y). This completes the proof of the theorem. 
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This also completes our discussion of “necessary and sufficient use of o1 
iterations of the power set operation.” 

In Section 5 we present the Bore1 Ramsey theorems, which are 
independent of ZFC + V = L. We say that “it is necessary to go beyond 
ZFC in order to prove CD,” for these propositions p. This is made precise as 
follows: there is a translation from ZFC into ZFC - 9 + cp, yet no tran- 
slation exists from ZFC - 9 + (p into ZFC. 

We use so called Mahlo cardinals of finite order (n-Mahlo) to prove some 
of the Bore1 Ramsey theorems. We say that “it is necessary and sufficient to 
use Mahlo cardinals of arbitrarily high finite order to prove I” if cp can be 
proved in ZFC + (Vn)@c) (K is n-M&lo), yet for all n, ZFC + (3~) (K is ii- 
Mahlo) can be translated into ZFC - 9 + rp. 

Another system that frequently arises is that of second order arithmetic, 
written Z,. This is the two-sorted theory with numerical variables and set (of 
natural number) variables, with = among numerical variables, as well as 0, 
1, +, -3 and with E between numerical and set variables. The axioms consist 
of the usual axioms for 0, 1, +, ., the induction scheme for all formulas in 
the language, and the comprehension scheme (3x)(Vn)(n E x--t q), for all 
formulas (p in the language without x free. Z, is intertranslatable with 
ZF - 9, and any xi sentence provable in ZF - 9 (in fact even in 
ZFC + V = L - 9) is provable in Z,. 

We now come to the formal treatment of Bore1 functions F: Q + I, where I 
is the closed unit interval and Q is the Hilbert cube I”. The other cases that 
come up here (F: p + I, F: Q” --t Q) are obviously reducible to this case. In 
systems containing at least Z, we can use the most set theoretic treatment: 
Define the Bore1 subsets of Q as comprising the least o-algebra of subsets of 
Q generated by the open subsets of Q (under the separable product topology 
of P’). The Bore1 functions F: Q +I are those functions where inverse 
images of open sets in I are Borel. Alternatively, we can adopt the Baire 
approach and define the Bore1 functions F: Q + I as comprising the least set 
Y of functions from Q into I which include all continuous functions, and 
which are closed under pointwise limits of sequences of such functions (i.e., 
if lim, F,, = F and each F, E Y, then FE Y). These definitions come out to 
be the same. 

In order to prove standard facts about Bore1 functions and Bore1 sets 
defined in this manner, some form of axiom of choice must be used. 
Otherwise, it is known that one may have a decomposition of I? into coun- 
tably many countable sets, in which case every set and every function would 
be Borel. However, the choice needed to make sense out of the set theoretic 
definition of Bore1 is very weak and natural, and is just what is needed in 
certain other contexts. Namely, the countable axiom of choice, which asserts 
that any countable set of nonempty sets has a choice function, and is written 
AC,. For instance, AC, is good enough to prove the Lebesgue 
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measurability of Bore1 functions. It is also good enough to prove the 
equivalence of the set theoretic definition with the less set theoretic definition 
given in the Appendix in terms of Bore1 codes. 

In systems which do not discuss or fully discuss sets of sets of reals, such 
as the system ECST of the Appendix, we cannot use the above definitions of 
Bore1 sets and Bore1 functions. Furthermore, in systems as ZF - 9, we do 
not even have R as an object, and so even more care has to be taken. 

In the case of ZF - 9, we identify Bore1 sets (in Q) with their recipes for 
membership which, as discussed in the Appendix, are given by labelled well 
found trees of finite sequences of natural numbers. Actually in ZF - 9 it is 
somewhat cumbersome to define Bore1 functions from Bore1 sets, and so we 
develop codes for Bore1 functions directly, again by means of labelled well 
founded trees of finite sequences of natural numbers. We require that 
topmost nodes be labelled with the restriction of a continuous function from 
Q to a countable dense set, and that any node which is not topmost has 
infinitely many immediate successors. 

Given such a labelled well founded tree T, we must indicate how we use it 
to define a function from Q into I; i.e., how to produce a value in I given 
x E Q. Naturally, this is done by transfinite recursion on T. To the topmost 
nodes of T, assign the value of the unique uniformly continuous extension of 
the label at x. At other nodes of T, assign the lim sup of the numbers 
assigned to the immediate successors (arranged from left to right). Finally, 
the value that we want is the value assigned to the root of T. 

Such labelled well founded trees are called Bore1 codes, and are used 
extensively here. Under this treatment, no use of the axiom of choice is 
needed to argue about Bore1 sets and Bore1 functions. 

A Bore1 set of rank <a is a Bore1 set with a Bore1 code whose ordinal is 
<a. A Bore1 function of rank <a is a Bore1 function with a Bore1 code of 
ordinal <a. The rank of a Bore1 set of Bore1 function is the least a such that 
it is of rank <a. 

We use the phrase finitely Bore1 whenever the Bore1 rank is finite. The 
finitely Bore1 functions under this definition are the same as those present in 
the Baire classes n, n < w, as given in the Introduction. 

2. BOREL SELECTION THEOREMS 

In 1967 Martin proved Bore1 determinacy (in fact, analytic determinacy) 
from certain large cardinal hypotheses (see [9]). In 1968 we proved that 
uncountably many iterations of the power set operation are needed in order 
to prove Bore1 determinacy (see [3]). In 1974 Martin proved Bore1 deter- 
minacy using exactly uncountably many iterations of the power set operation 
(see [IO]). 
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In this section we present selection theorems which are consequences of 
Bore1 determinacy, and which are significantly closer to ordinary analysis. 

Here are four forms of these selection theorems, in two propositions. 
A set E of ordered pairs is symmetric if (x, y) E E if and only if 

(y, x) E E. Let I be the unit interval [0, 11. Let K be the Cantor set (as a 
subset of r). 

PROPOSITION A. Every symmetric Bore1 subset of I x I contains or is 
disjoint from the graph of a Bore1 function on I (left continuous function on 
I; closed set which meets every vertical line in I x I). 

PROPOSITION B. Every symmetric Bore1 subset of K X K contains or is 
disjoint from the graph of a continuous function. 

Proposition B is an immediate consequence of Bore1 determinacy as 
follows. We can assume that K is represented as the space of infinite 
sequences of O’s and 1’s. If E c K x K is a symmetric Bore1 set then play the 
infinite game where player II wins if and only if the ordered pair of 
completed plays is in E. If player II has a winning strategy then that strategy 
defines a continuous function F such that (Vx E K)((x, F(x)) E E). If player 
I has a winning strategy then that strategy defines a continuous function G 
such that (Vy E K)((G( y), y) 65 E), and so (Vx E K)((x, G(x)) & E). 

For Proposition A, let E c I x I be a symmetric Bore1 set. It is immediate 
from Proposition B, using a Bore1 correspondence between I and K, that E 
contains or is disjoint from the graph of a Bore1 function. To obtain the two 
stronger conclusions of Proposition A, we actually show that E contains or 
is disjoint from the topological closure of the graph of a left continuous 
function whose right limits exist. 

We apply Bore1 determinacy as follows. Players I and II alternately play 
O’s and l’s, and their infinite sequences of plays are viewed as infinite 
decimal expansions in base 2 notation. Player II wins if and only if the 
resulting pair of points in I is in E. If player II has the winning strategy then 
let F: I+ Z be defined by taking F(x) to be the result of II’s strategy if I 
plays the base 2 expansion of x for x not of the form ~/2~; otherwise use the 
base 2 expansion ending in an infinite sequence of l’s (for x = 0 use b). It is 
easy to see that lim,,- F(x) = F(a), and lim,,, F(x) is the result of II’s 
strategy if I plays the base 2 expansion of a for a not of the form ~/2~; 
otherwise use the base 2 expansion ending in an infinite sequence of O’s (for 
a = 1 use i). Since F is left continuous and right limits exist, the topological 
closure of the graph of F is {(a, f(a)): a E I} U {(a, limxha+ f(x)): a E I}, 
which is included in E. Argue analogously if player I has the winning 
strategy. 

601/41/3-2 
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We now wish to prove that these propositions require uncountably many 
iterations of the power set operation to prove, in the sense of Section 1. 

We first work in ZF - 9 and show that for each countable limit ordinal 
I, if every symmetric Bore1 subset of I x I of Bore1 rank < L contains or is 
disjoint from the graph of a Bore1 function, then there is a countable T,- 
model for every a < ,l. The proof is a modification of the proof given in [3] 
that for each countable limit ordinal 1, if all Bore1 sets of rank < Iz are deter- 
mined, then there is a countable T,-model for every a < 1. (Actually, the 
proof is given in detail for only the case a = o + o in [3].) It is like Martin’s 
modification of [3] where he proves the independence of Zt-determinacy 
from second order arithmetic (improving on our Ci) by applying deter- 
minacy directly to models, instead of using Turing degree determinacy as in 
[31 (see PI). 

Within ZF - 9 build the hierarchy of constructible sets L(O) = 0, 
L(a + 1) = {x CL(~): x is first order definable over (L(a), E) with 
parameters}, L(A) = lJaCl L(a). We can also build the cumulative hierarchy 
V(0) = 0, V(a + 1) = 9( V(a)), V(n) = lJuCl V(a), but we cannot even 
prove that V(w + 1) exists in ZF - 9, We say that /? is a-small if and only 
if for all y Q p, L(y + 1) n V(a) #L(y) n V(a). Note that we cannot even 
prove the existence of a non-(w + l)-small ordinal, since the least such p 
would immediately give rise to a T,+,-model. 

Actually, we will use the following relativized form: an ordinal /I is 
a-small relative to u c w  if for all y </I, L(y + 1, u)n V(a) # 
L(y, u) n V(a). (Here L(y, u) is the (y + 1)st level of the constructible 
hierarchy relative to u.) 

Let wttul be the first ordinal which is uncountable according to L[u]. 
Note that even 4 may be a proper class in ZF - 9. 

Until further notice, fix ,4 < w1 and assume that every symmetric Bore1 
subset of I x I of rank < i contains or is disjoint from the graph of a Bore1 
function. Fix a < 1, and a code u c w  for a. We wish to prove (in ZF - 9) 
that there is a countable T,-model. Since the existence of a non&small 
ordinal relative to u implies the existence of a countable TD-model within 
ZF - 9, without loss of generality we may assume that all ordinals are 
(w + a + I)-small relative to 24. 

LEMMA 1. If p < wfrul then there is a /3 < y < wit“’ such that y is a u- 
admissible limit of u-admissible& and L(y, u) has every element definable 
from u. 

Proof. Suppose this is false and let /I be the sup of all u-admissible limits 
of u-admissibles y < wtt’l such that L(y, u) has every element definable from 
u. By hypothesis, /3 < wit’l. Note that /3 is d, in L(wftul, u) relative to u. Let 
y be the sup of all ordinals A, in L(wtrul, u) relative to u. Then it is easily 
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seen that y is a u-admissible limit of u-admissibles, and every element of 
L(y, u) is definable from u, which is a contradiction. 

LEMMA 2. If p < o.$“] then there is a /3 < 6 < o$“’ such that 6 is a 
successor u-admissible, and L(6, u) has every element definable from u. 

Proof. Choose y as in Lemma 1. Observe that y is definable in L(6, u) 
relative to u, where S is the next u-admissible after y, as the largest u- 
admissible ordinal. By a Skolem hull argument, every element of L(6, u) is 
definable over L(6, u) from y and elements of L(y, u). Hence L(6, u) has 
every element definable from u. 

We now define the class K of all models (w, R) of KP + Y = L [u] whose 
well founded part has ordinal >o + a, and which satisfies “every ordinal is 
(0 + a + I)-small relative to u.” Let @,R), (w, S) E K. We wish to 
compare them. Consider the set of all pairs (a, b) such that a is an ordinal 
(w, R), b is an ordinal in (0, S), and every element of the L(a, u)n 
V(o + a + 1) of (0, R) is (equivalent to) an element of the L(b, u)n 
V(o + a + 1) of (w, S), and vice versa. We can cross identify objects of rank 
<o + a because w  + a is standard. 

It is easily seen that this set of ordered pairs is a partial order preserving 
function f from the ordinals of (w, R) into the ordinals of (w, S). Let g be 
the largest restriction off which maps an initial segment of the ordinals of 
(0, R) onto an initial segment of the ordinals of (0, S). 

We say that (0, S) is longer than (0, R) if and only if the above g maps 
all of the ordinals of (w, R) onto an initial segment of the ordinals of (w, S) 
determined by an ordinal of (w, S), or the domain of g is a proper initial 
segment of the ordinals of (w,R) that is not determined by an ordinal of 
(w, R) and the range of g is either all of the ordinals of (w, S) or is an initial 
segment of the ordinals determined by an ordinal of (0, S). 

We are now prepared to apply the weak form of Proposition A for 
symmetric Bore1 subsets of I x I of rank < A. 

LEMMA 3. If E c I x I is a Bore1 set of rank < A then either there is a 
Bore1 function on I whose graph is contained in E or there is a Bore1 
function on I whose graph is disjoint from the converse of E. 

Proof Let E c I x I be given. We define a symmetric subset 
E*c([0,1]U[2,3])2 as follows. Let E*={(x,y+2):(x,y)~E}U 
{(x+2,y): (y,x)EE}U([2,3] x [2,3]). We know that E* either contains 
or is disjoint from the graph of a Bore1 function on [0, l] U [2,3]. In the 
first case E must contain the graph of a Bore1 function on [0, 11. In the 
second case the converse of E must be disjoint from the graph of a Bore1 
function. The identification of [0, l] U [2,3] with Z costs at most one level in 
the Bore1 hierarchy. 
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We now let Y = {((w, R), (w, S)): if (0, R) E K and (w, R) l= “there are 
arbitrarily large u-admissible ordinals,” then (w, S) E K, (w, S) K “there is a 
largest u-admissible ordinal,” and (w, S) is longer than (w, R)}. We view Y 
as a subset of the square of the Cantor space .9(0 x w). There is no 
difficulty for us in identifying this square with the unit square, since they are 
in one-one correspondence by a Bore1 function of finite rank. Note that Y is 
a Bore1 set of rank < 1 which has a code in L[u]. (An exception is the case 
I = w. In this case, use a suitably large finite fragment of the axioms of KP, 
so that it will be true.) 

LEMMA 4. Either there is a u-constructibly coded Bore1 function 
F: 9(w x w) -+ 9(0 x w) whose graph is included in Y, or there is a u- 
constructibly coded Bore1 function G: .9(w x w) + 9(w x w) whose graph is 
disjoint from Y. 

Proof. By Lemma 3, there is such an F or G which is Borel. By 
absoluteness, there is a u-constructibly coded Bore1 F or G. 

LEMMA 5. Y contains no u-constructibly coded Bore1 function F, and the 
converse of Y is not disjoint from any u-constructibly coded Bore1 function G. 

Proof In the first case, suppose v is a u-constructible code for the F in 
Lemma 4 and v E L(p, u), where p < oftU1. Then by Lemma 1, let y be a u- 
admissible limit of u-admissibles, p < y ( w41U1, a < y, and L(y, u) has every 
element definable from u. Let (0, R) z (L(y, u), E) be such that R is 
arithmetic in the theory of (L(y, u), u, E). Then (w, R) E K and 
(w, R) + “there are arbitrarily large u-admissible ordinals.” Hence 
F((o, R)) E K, and F((w, R)) is longer than (w, R). From this it follows that 
the ordinal of the standard part of F((w, R)) = (w, S) is at least y + 1, and 
hence at least the next u-admissible y+ after y. Therefore every element of 
w+, u>ny’( w  is arithmetic in S. Note that the theory of (L(y, u), u, E) is > 
in L(Y+, u), and hence R E L(y+, u). Since F is coded by v, 
F((co, R)) E L(y+, u). Hence the oth jump of F((o, R)) = the 0th jump of 
(w, S), is arithmetic in S. This is a contradiction. 

In the second case, suppose v is a u-constructible code for the G in 
Lemma 4 and v E L(p, u). By Lemma 2, let y be a successor u-admissible, 
p < y < op, a < y. and L(y, u) has every element definable from u. Let 
((u, S) z (L(y, u), E) be such that S is arithmetic in the theory of 
(L(y, u), u, E). Then (w, S) E K and (w, S) l= “there is a largest u-admissible 
ordinal.” Then G((w, S)) E K, G((o, S)) + “there are arbitrarily large u- 
admissible ordinals,” and (w, S) is not longer than G((w, S)). It is clear that 
G((o, S)) is not isomorphic to (LO+ u), E), and so that the ordinal of the 
standard part of G((w, S)) is at least y + 1, and hence at least the next u- 
admissible yt after y. As above, this is a contradiction. 
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Observe that in the proof of Lemma 5, which contradicts Lemma 4, we 
needed our hypothesis that ail ordinals are (w + a + l)-small relative to u, 
in order to conclude that (w, R) E K (or (0, S) E K). 

Recall that a T,-model is a transitive set A E V(a + 1) such that 
{x E V(/3): A C p(x)} E A, where rp is a first order formula which may 
contain parameters from A, and p < a. Thus we have proved the following. 

LEMMA 6. There is an ordinal which is not (w + a + l)-small relative to 
u. Hence there is a T,+,+ ,-model containing u. 

We summarize what we have proved. 

LEMMA 7. The following is provable in ZF - 9. Let 1 be a countable 
limit ordinal. Suppose that every symmetric Bore1 subset of I x I of rank < L 
contains or is disjoint from the graph of a Bore1 function. Then for all 
a < w  + 1 and u c co, there is a T,-model containing u.as an element. 

In order to obtain the sharpest result, namely, the existence of well 
founded absolute T,-models, we need a few lemmas. 

LEMMA 8. Let 1 be a limit ordinal. Then for all n E w, (L(12 + n + 1) - 
L(J + n)) n Lp(L(d)) # 0. Zf x E LO, + 1) -L(A) then there is a subjective 
map F: TC(X)‘~ + L(n) which is in L(1+ 1). 

Proof From the standard theory of the constructible hierarchy. 

LEMMA 9. Let 1 be a limit ordinal, and suppose that o < a < L and 1 is 
(a + 1)-small. Th en there is a subjective function G: L(k) n V(a) + L(J) 
which is in L(n + 1). 

Proof. Let x E (L@ + 1) -L(A)) n V(a t 1). By Lemma 8, let 
F: TC(X)‘~ + L(A) be surjective and in L(Z, + 1). Note that TC(x) c V(a). 
Code finite sequences from L(J) n V(a) as elements of L(J) n V(a) to 
obtain G. 

LEMMA 10. Let /3 be the least non-(a t I)-small ordinal, w  < a. Then p 
is a limit ordinal. 

Proof Suppose /? = L t n t 1, n E w. Then since Iz is (a t l)-small, let 
G: L(A)n V(a)+ L(J) be surjective and in L(J t 1). By Lemma 1, let 
yEL(Atnt2)-L(Atntl),ycL(A). Then obviously G-‘[y]E 
L(IZ+n+2). If G-'[y]EL(Atn+l) then G[G-‘[y]] is first order 
definable over L(L + n). So G[G-‘[ y]] = y E L(J t n t 1). Hence G-‘[ y] E 
L(,Itnt2)-L(Atntl), and G-'[y]E V(at1). This contradicts the 
assumption that A t n t 1 is not (a t l)-small. 
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LEMMA 11. Let J. be the least non-(a + l)-small ordinal, w Q a. Then 
L (1) + “ V(a) exists.” Furthermore, L(n) + “every set can be injectively 
mapped into V(a).” 

Proof. Observe that L(J) n V(a) E L(rZ + 1) n V(a + l), and so 
L(1) n V(a) E L(A). Hence L(1) + “V(a) =x,” where x = L(d) n V(a). For 
the second claim it is enough to prove that L(A) != “every ordinal can be 
injectively mapped into V(a).” Let /3 < A be a limit ordinal. Since p is 
(a + I)-small, there is a surjective G: L(J) n V(a) + L(J) in L(A). This 
provides the required injection of L(B) into V(a) within L(1). 

LEMMA 12. Let ,4 be the least non-(a + l)-small ordinal, o < a. Then 
L(A) + ZF - 9. 

Proof. Let L(A) != V(a) =A. To verify replacement in L(A) it suffices to 
consider the case of (Vx E A)@y)(L@) + (o(x, y)) + (3z)(Vx E A)(3y E z) 
(L(1) b ~(x, y)), where parameters are allowed (by Lemma 4). Assume the 
hypotheses. For each x E A let f, be the least constructed function from A 
onto L(y,)n V(a + l), where 1: is the least ordinal such that 
(3y E L(y,))(L(A) k 9(x, y)). Let f be given by f(x, y) =f,(y). Observe that 
f~ L(3, + 1). Using a pairing function on A in L(A), we can view f as an 
element of V(a + 1). Since 1 is not (a + 1)-small, we see that fE L(A). Let 
fE L(B), a + 1 < /3 < A. If the y,, x E A, are unbounded in 1, then 
L(A)n V(a + 1) c L($? + I). Since /I + 1 is (a + 1)-small, this is a 
contradiction. Hence the yx, x E A, are bounded in 1. The conclusion of the 
given instance of replacement now follows. 

THEOREM 2.1. The following is provable in ZF - 9. Let A be a coun- 
table limit ordinal. Then every symmetric Bore1 subset of I x I of rank < 13. 
contains or is disjoint from the graph of a Bore1 function if and only if for 
every x c o and a < w + I there is a well founded absolute T,-model 
containing x as an element. 

Proof. For the forward direction, use Lemma 7, Lemma 12, and the fact 
that every transitive set satisfying ZF - 9 is well founded absolute. 

For the converse, the proof in [lo] establishes that for any Bore1 set E of 
rank a < 1~ o, with code x c o, if M is a T, +,+,-model containing x, then 
M satisfies that E is determined (here c < u is a constant independent of a, 
A). Hence if M is also well founded absolute then E is really determined. 
Therefore every symmetric Bore1 subset of I x Z of rank < A contains or is 
disjoint from the graph of a Bore1 function. 

The following are from Theorem 2.1, Theorem 1 of Section 1, and the 
general discussion in Section 1. 
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COROLLARY 2.2. All four forms of Propositions A, B can be proved in 
Z+AC,+CRA, but none of them can beproved in ZCt V=L 4-L@*. If 
we restrict these forms to Jinitely Bore1 sets E then they can be proved in 
ZtAC,, but none in weakZCt V=L. 

COROLLARY 2.3. For any one of the four forms of Propositions A, B, it 
is necessary and s@cient to use uncountably many iterations of the power 
set operation to give a proof. If we restrict to symmetric sets of finite Bore1 
rank then it is necessary and sflcient to use w  t w iterations of the power 
set operation to give a proof: 

3. BOREL DIAGONALJZATION THEOREMS 

Cantor proved that given any sequence of reals there is always a real 
outside the sequence. In fact, by using nested rational intervals one easily 
sees that there is a Bore1 function F: IRN -+ IR (of finite rank) such that for all 
x E IF?“, F(x) is not a coordinate of x. 

Observe that the value of F at x E IRN depends not only on the set of coor- 
dinates of x but also on the order in which they are given. Can one pass 
from a sequence of reals to a real outside the sequence independently of the- 
order in which the reals are given, in a Borelian way? 

The answer is no, and this is the most basic of the Bore1 diagonalization 
theorems. 

More precisely, let IRN be given the usual infinite product topology (where 
IR is given the usual topology). Note that the group of permutations of N 
that leave all but at most finitely many numbers fixed, acts on lRN by 
permutation of coordinates. Write x-y if x and y are in the same orbit under 
this group action. Write x N y if x and y have the same image (i.e., 
Rng(x) = Rng( y)). We give a proof of the following proposition using a 
forcing argument. However in the Appendix we give a proof using the Baire 
category theorem applied to EN, where p is the reals with discrete topology. 
The two proofs are essentially equivalent. 

PROPOSITION C. There is no Borel function F: IRN + IR such that (a) if 
or all x, F(x) is not a coordinate zf;y (if x z y) then F(x) = F( y), and (b) f 

THEOREM 3.1. Proposition C is provable in MK t AC, - 9, but not in 
ZFC t V = L - 9, even for finitely Bore1 functions F. Proposition C is also 
provable in ZF + AC, - 9 t “9(w) exists.” 

We first give a proof of Proposition C in MK + AC, - 9’. Let F: RN-+ IR 
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be a Bore1 function such that x-y implies F(x) = F(y). Let A be a coun- 
table admissible set which contains a code u for F. By a Skolem hull 
argument, we can produce a countable elementary substructure of L[u] with 
respect to YA, which can be isomorphically collapsed onto some L,[u]. It is 
clear that L,[u] satisfies PA - ZFC without power set. We then consider 
functions fi N+ lR n L,[u] which are generic over L,[u], using conditions 
which are finite sequences from R n L,[u] and are ordered by extension. We 
claim that for each rational q, ( decides F(f) < q, where f is a symbol for 
the generic object. (Here we view this statement as a formula in 9’.) To see 
this, suppose that p, forces F(f) < q and pz forces F(f) > q. Let p1 cg be 
generic. Then F(g) < q, and there is an n E w  such that 
(Vi E dom(p,))(p,(i) = g(i + n)). I-I ence there is an h -g such that p2 c h. 
Now such an h must also be generic and hence F(h) > q. This contradicts 
the fact that F(h) = F(g). 

We now know that 4 decides F(f) < q for all rationals q. Fix g to be 
generic. Observe that forcing over L,[u] for formulas in gA is definable over 
L,[u] by a formula in YA. Hence by -$separation, {q: 4 forces F(j) < q} is 
in L,[u]. Hence F(g) E L,[u], which immediately implies that I;(g) is a 
coordinate of g. 

The proof from ZF + AC, - 9 + “.9(w) exists” is similar and a little 
simpler. 

The idea of using forcing rather than Bore1 determinacy to prove 
Proposition C goes back to L. Harrington. We had an earlier version of 
Proposition C involving Bore1 functions on Turing degrees, which we proved 
using Bore1 determinacy. Harrington later gave a forcing argument. 

We now wish to prove that neither form of Proposition C can be proved in 
ZFC + V= L - 9. (We obviously need only consider the formulation of 
Proposition C in terms of Bore1 codes.) We will do this by constructing an 
w-model of Z, (second order arithmetic) in the theory Z, + Proposition C. 
Thus if Z, proves Proposition C then Z, proves the existence of an w-model 
of Z,, which contradicts the second incompleteness theorem. Hence this will 
establish that Proposition C cannot be proved in Z,. This is enough by the 
following lemma : 

LEMMA 3.1.1. If ZFC + V = L - 9 proves Proposition C Gformulated in 
terms of Bore1 codes and using z) then Z, proves Proposition C. 

ProoJ Observe that Proposition C can be put in 7ri form. It is well 
known that ZFC + V = L - 9 is conservative over Z, for ni sentences. 

Let pZ, (parameterless Z,) consist of the usual axioms for 0, ‘, +, a, 
induction for all formulas, and the axioms (3x)(Vn)(n E x ++ cp), where (p has 
no free variables other than “n.” 
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LEMMA 3.1.2. Z, t Proposition C Gformulated in terms of Bore1 codes 
and using z) proves the existence of a countable w-model of pZ,. 

Proof Argue in Z, t Proposition C. Let F: I?‘+ R be the following 
Bore1 function. Let x E iRN. In viewing real numbers as sets of natural 
numbers, the range of x yields a countable o-structure--namely, (0, 0, ‘, t, 
., E, rng(x)). If this cc-structure does not satisfy pZ, then let p(n) be the 
formula with the least GGdel number with only “n” free such that 
@y)(Vn)(n Ey tt q(n)) fails in this structure. Set F(x) = 
{n: (w, 0, ‘, t, q9 E, w(x)) b v(n)}, as a real number. If this o-structure 
does satisfy pZ, then set F(x) = 0. It is clear that x z y implies F(x) = F(y), 
and that for x such that F(x) is a coordinate of x, (w, 0, ‘, t, e, E, rng(x)) is 
an w-model of pZ,. This proof takes place in a weak fragment of ZF - 9. 

LEMMA 3.1.3. There are formulas qI(x) ‘and qp2(x, y), with only the free 
variables shown, such that (a) pZ, proves that, q+(x, y) defines a linear 
ordering on the x with qI(x), and (3x)(qp,(x)), (b) for arithmetic formulas 
w(x 1,..., x,, k) with no other free set variables, pZ, proves (qI(x,) & . . . & 
&J) -+ (~Y)@A(Y) & (VW E Y ++ v4xl 9-.y x., W (~1 for formulas v(x) 
and p(x) with no other free set variables, pZ, proves [(3!x)(&x) & u,,(x)) & 
WMX) & %(X1 & (3Y)@(Y) CfJc %(Y,X)))l + (JXMX) 6% Q)I(X) & 
FY)@(Y) 8~ v~(Y, x> & +z)@(z) 8~ Pj(z,Y)))), (d)pZ,proves “there exists 
an o-model of Zz)’ or (Vn)(l!x)(rp,(x) & ty(n, x)) + (3y)(q,(y) & 
(Vn)(Ix)(Im)(x = (y), 8z w(n, x))), where w  is any formula with no free set 
variables other than x. 

Proof. Let AC4 (arithmetic comprehension axiom schema) consist of 
axioms for 0, ‘, t, a; induction for all formulas; extensionality; and 
comprehension for all arithmetic formulas (with parameters). Let K be the 
theory of second order arithmetic obtained from AC4 by adding the two 
binary relation symbols <, - among sets of natural numbers, together with 
the axioms: (a) - is an equivalence relation on all sets, (b) < forms a linear 
ordering on the equivalence classes under -, such that every point has an 
immediate successor, and there is a iirst element, (c) each {z: z < x} is coun- 
table, and each (w, 0, ‘, t, ., E, -, <, {z: z XX}) has a satisfaction relation, 
(d) x -y if and only if y is first order definable over (0, 0, ‘, t, ., E, -, <, 
{z: z XX}) with parameters allowed for elements, and not y < x. In the next 
paragraph, we will be considering models of K of the form 
(w, 0, ‘, +, ., E, R, S, y), where the number variables range over w, the set 
variables range over the elements of y c w, E interprets E, R interprets - 
and S interprets <. 

Within pZ, , we make the following defmitions. We let (x), = 
{k: 2”3& E x}, if it exists. A K-structure consists of x, R, S, where x is a 
subset of w, and R, S are binary relations on o, such that (1) each (x), 
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exists, E(n, m) * n E (x), exists, and (co, 0, ‘, +, -, E, R, S, 0) = lx, R, SI 
exists and has a satisfaction predicate, and satisfies K, (2) every element in 
Jx, R, SI is definable, and (3) for all m the initial segment of Ix, R, S I up till 
the level of m, 

(CO, 0, I, +, -, E r w  . {w . {n: S(n, m)}*, R 1 (n: S(n, m)}‘, 

S r {n: S(n, m)}‘, {n: WI, m)}), 

exists, its satisfaction predicate exists, and has every element definable. 
A well founded K-structure is a K-structure (x, R, S) such that for any y 

with (1) each (y), exists, and (2) (%)(Vn)(Vm)(( y), = (x), + S(m, k)), there 
is a k which is S-least such that (2) holds. (Intuitively, this asserts that any 
subset of the reals internal to Ix, R, S( that is S-bounded, has an S-least 
upper bound.) 

A strong K-structure is a well founded K-structure (x, R, S) such that for 
any other well founded K-structure (x*, R*, S*), (x, R, S) and (x*, R*, S*) 
are comparable; i.e., either 

(1) Vn)(3m)((x), = (x*),,A and 

(2) (W(W((4, = @*)A and 
(3) (Vn)(Vm)(V~)(Vs)(((x), = (x*L,, 8~ (4, = (x*),> -+ ((RIP) ++ 

R*(m, 4)) & (W,P) ++ S*(m q)))), 

or for some k, 

(1) (Vn)(3m)(S*(m, k) & (x), = (x*),,J, and 

(2) W)(S*(m, k) + (3n)((x), = (x*>,>), and 

(3) same as above, 

or for some k, 

(1) (Vm)(3n)(S(n, k) 8~ (x), = @*),,A and 

(2) WOW9 k) -, (WW, = (x*)A and 

(3) same as above. 

We now define pi(x) if and only if for some strong K-structure (y, R, S), 
we have (3n)(( y), = x). We define v)~(x, y) if and only if there is a strong K- 
structure (z, R, S) and some n, m such that (z), =x, (z), = y, and either (i) 
S(n, m), or (ii) R(n, m), and in the initial segment of Iz, R, SI given by going 
up through the level of n, m, the least G&de1 number of a definition of n (as a 
set) is smaller than the least Godel number of a definition of m (as a set). 

Conclusions (a) and (b) of the lemma are obvious, except for (3x)(cp,(x)). 
Here, we merely need to show the existence of a strong K-structure. The 
usual K-structure of height o can be proved to exist, using induction and 
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parameterless comprehension. By using induction, it can be shown to be well 
founded. Also using induction, we can prove that the first n levels of any K- 
structure, well founded or not, agree with the first n levels of the usual K- 
structure of height w. Therefore the usual K-structure of height w  is 
comparable with any well founded K-structure. 

For conclusion (c), let x be a definable set with vi(x), and let p2(y, x) be 
such that p(y). Let (z, R, S) be a strong K-structure, where x = (z)~. By 
using the definability of x and the fact that the initial segment of Iz, R, SJ 
given by going up through the level of k has every element definable, and its 
set of true sentences is independent of the choice of (z, R, S), we can 
construct a definable set u such that (Vn)(q,((u),,x)) & (Vy)(&y,x) + 
(3n)(y = (u),)). By using u and the well foundedness of (z, R, S), we can 
find a q2-least y such that p(y). 

For (d), assume (Vn)@!x)(cp,(x) & I&,X)). Then there is a set z such that 
each (z), is the (unique) set of true sentences of the initial segment of some 
strong K-structure given by going up through the level of the unique x such 
that q,(x) & w(n, x). We can assume without loss of generality that there is 
no cp,-greatest x with (3n)(~p,(x) & I&Z, x)). 

We can piece the (z), together into a limit, since z is definable. This will 
result in a structure 1 U, R, S 1 which obviously obeys all conditions for being 
a K-structure except possibly that every element of Iu, R, S I is definable. We 
now wish to show this. 

By using the construction of Iu, R, S I, the definability of a, R, S, and 
conclusion (c) of the lemma, we see that the definable elements in Iu, R, S I 
form an elementary substructure of I u, R, S I. Similar considerations also 
show that the definable elements in 1 u, R, S I either include all elements, or 
are the initial segment determined by an element. If the latter holds, then that 
determining element is definable over the initial segment with parameters. 
Hence the determining element is definable over I u, R, S I with parameters 
from the initial segment. But then the determining element is in the initial 
segment it determines, which is a contradiction. 

We have thus shown that (u, R, S) is a K-structure. It is easily seen by 
construction that (a, R, S) is a well founded K-structure. 

To see that (u, R, S) is a strong K-structure, let (u*, R*, S*) be another 
well founded K-structure. Since (u*, R*, S*) is comparable with every initial 
segment of (u, R, S) determined by an element, the only case we have to 
handle is if (u, R, S) is a proper initial segment of (u*, R*, S*). In this case, 
we must show that it is determined by an element. But this follows from the 
well foundedness of (I(*, R*, S*). 

To complete the proof of conclusion (d), we argue by cases. If (u, R, S) is 
not the greatest strong K-structure, then using a strong K-structure greater 
than (u, R, S), we can find the desired upper bound. 

If (u, R, S) is the greatest strong K-structure, then we claim that (u, R, S) 



234 HARVEYFRIEDMAN 

satisfies the full comprehension axiom. If this were not the case we could 
extend (u, R, S) by o steps to obtain a larger strong K-structure (here we 
again use the definability of U, R, S). 

LEMMA 3.1.4. Every w-model of pZz contains an w-model of Z,. 

Proof. Let GZ be an w-model of pZ,. If 62 + “there exists an w-model of 
Z, 3” then we obviously can find an w-submodel of a which satisfies Z,. We 
assume not. 

Let 9 be the w-model of CPI consisting of all x such that Q + q,(x), and x 
is definable in GPI. 

We claim that for every formula ~(x, n) there is a formula 9*(x, n) with 
the same free variables, such that for x in 9, n in w, 9 l= cp(x, II) if and only 
if O’+ p*(x, n). This is proved by induction on the complexity of q. The 
nontrivial case is the existential quantifier, (3y)(q( y, x, n)). But note that 
9 k (3y)(rp(y, x, n)) if and only if Q! + (~Y)(~P,(Y) SC v*(Y, x, n) & 
-(32)(~,,(2) & rp*(z, x, n) SC cpz(z, y))), using (c) of Lemma 3.1.3. 

Next, note that an axiomatization which yields Z, is given by the axioms 
of AC4 together with the scheme tVnW)tylh x9 m Y)) + 
t~z)tVn)W)t~m)tx = (z), 8~ wt n, x, m, y)). We know that 9 k AC4 by (b) 
of Lemma 3.1.3. Suppose (Vn)(gx)(v(n,x, m,y)) holds in 9. Then 
~2 + tVn)t3!x)ta,l(x) & w*t n, x, m, Y) & +w)((~~(w) 8~ w*tn, w  m, Y) & 
v)*(w, x))). Now we can replace each of y by their definitions in CY. By (c) 
and (d) of Lemma 3.1.3, we can find a z in 9 such that for all n there is an 
x in 9 such that for some m, U/ F x = (z), & 11/*(n, x, m, y). We are done, 
since Gsll=x= (z), & v*(n,x, m,y) if and only’ if 9!=x= (z),,, & 
w(n, x, m, y). This completes the proof of the lemma. 

The following is evident from the proof of Lemma 3.1.4. 

LEMMA 3.1.5. Z, proves that every countable w-model of pZ, contains 
an w-submodel of Z,. 

We are now prepared to complete the proof of Theorem 3.1. By 
Lemma 3.1.1 it suffices to show that Z, does not prove Proposition C 
(formulated in terms of Bore1 codes and using z). If Z, does prove 
Proposition C then by Lemmas 3.1.2 and 3.1.5, Z, proves the existence of a 
countable w-model of Z,. This contradicts the Gijdel second incompleteness 
theorem. 

We indicate the modifications necessary to show that the restriction of 
Proposition C to finitely Bore1 functions cannot be proved in 
ZFC+ V=L-9. 

*We can find such a Z in 9 since the second disjunct in Lemma 3.1.3(d), can be 
strengthened to assert that y is (ox-least with (Vn) (3x) (3m) (x = (y), & I&, x)). Our proof 
of Lemma 3.1.3 establishes this. 
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LEMMA 3.1.6. Z, + Proposition C restricted to ftnitely Bore1 functions 
cformulated in terms of Bore1 codes and using z) proves the existence of a 
countable model of pZ, . 

Proof The proof of Lemma 3.1.2 shows that we can obtain w-models of 
any given finite fragment of pZ,. Then apply the compactness theorem. 

LEMMA 3.1.7. Z, proves that every countable model of pZ, contains a 
submodel of Z, with the same an’thmetic part. 

Proof Minor modifications of the proof of Lemma 3.1.4 are needed. 
Firstly, note that pZ, proves comprehension for all formulas with no set 
parameters (number parameters are allowed). So in Lemma 3.1.3, number 
parameters can be used. Instead of taking 9 to be the submodel of definable 
elements, take 9 to be submodel of elements definable from finitely many 
number parameters. The reaxiomatization of Z, used there works in the 
context of arbitrary models if we add the axiom that every nonempty set has 
a least element. This is obviously true in 9. 

‘This completes the proof of Theorem 3.1 by the second incompleteness 
theorem. 

We now wish to consider a more general form of Bore1 diagonalization. 
Let 9 be a topological space, and let E be an equivalence relation on 9. 
We use [ ] in connection with E. For sets A c ] Sp] we write [A] = 
{[x]:xEA}. 

We say that the Bore1 diagonalization theorem holds for (9, E) if there is 
no Bore1 function F: YN + 9 such that (a) if [rng(x)] = [rng(y)] then 
VW1 = PIN and W PWI g b&41. 

PROPOSITION D. The Bore1 diagonalization theorem holds for all Bore1 
equivalence relations. That is, for all Bore1 equivalence relations E on R, 
there is no Bore1 function F: lRN-t R such that (a) g [rng(x)] = [rng( y)] 
then VW1 = [I;(v)l, and (b) for all x, [F(x) & [rng(x)]. 

THEOREM 3.2. The following is provable in ZF - 9’. Let A < w, be a 
limit ordinal. Then Proposition D holds for all Bore1 equivalence relations of 
rank ( 1 if and only iffor all a < o + 1, x c o, there is a T,-model in which 
x is present. 

We now wish to prove the Bore1 diagonalization theorem for all Bore1 
equivalence relations (in fact, the reverse direction of Theorem 3.2). This 
proof uses Bore1 determinacy. In Section 4 we extend this technique to prove 
certain Bore1 fixed point theorems, and in [ 51 we extend this technique to 
prove the Bore1 diagonalization theorem for analytic equivalence relations. 
Kechris and the author have independently seen how Bore1 determinacy can 
be eliminated in favor of some recent work of Jacques Stern in the case of 
Bore1 diagonalization for Bore1 equivalence relations. However, it remains 
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unclear how Stern’s work can be used for our other applications of Bore1 
determinacy, 

Fix a limit ordinal ;1 < wr, and let E be a Bore1 equivalence relation of 
rank < A with Bore1 code u c w. Let F: IRN --) iR be a Bore1 diagonalizer for E 
(i.e., (a), (b) above hold for F). Let u be a Bore1 code for F. 

Let Y be the set of all structures (cc), R) satisfying KP + V= 
L[u, u] + “every set is countable +F is a diagonalizer for E,” where (w, R) is 
an w-model in which U, v are internal and E, F are described in terms 
of u, v. 

We wish to compare pairs (0, R), (w, S) of elements of Y. Within any 
(0, R) E Y, make the following definition by transfinite recursion on the 
ordinals of (w, R). Firstly, define GR(0) = 0. For a > 0, let g be the first 
surjective mapping from o onto a in the constructible hierarchy relative to 
(u, v), and define G,(a) = F(G, o g). Observe that in (0, R) the various 
G,(a) are inequivalent according to E. By absoluteness, the various G,(a) 
really are inequivalent according to E. 

Let H’ be the set of ordered pairs (a, b) of ordinals a from (w, R) and 
ordinals b from (w, 5’) such that E(G,(a), G,(b)). Note that 29’ is a partial 
function. Finally, let H be the largest restriction of H’ which maps an initial 
segment of the ordinals of (w, R) in an order preserving way onto an initial 
segment of the ordinals of (0, S). 

We say that (w, S) is longer than (0, R) if and only if the above H maps 
all of the ordinals of (w, R) onto an initial segment of the ordinals of (w, S), 
determined by an ordinal of (0, S), or the domain of H is a proper initial 
segment of the ordinals of (0, R) that is not determined by any ordinal of 
(LO, R) and the range of H is either all of the ordinals of (w, S) or is an 
initial segment of the ordinals determined by an ordinal of (w, S). 

LEMMA 3.2.1. (((co, R), (co, S)): (0, R), (w, S) E Y and (co, S) is longer 
than (w, R)} is a Bore1 set of rank < Iz. (If 1= o then we use a suitably 
large finite fragment of KP). 

Proof. Observe that Y is a Bore1 set of low rank. In comparing (w, R), 
(0, S), note that E is responsible for the entire Bore1 complexity. 

LEMMA 3.2.2. For any ordinal a < o$“*” there is an ordinal 
a<y<o, LIU*vl such that L,,[u, v] F KP + “every set is countable” + F is a 
diagonalizer for E + “there are arbitrarily large (u, v)-admissible ordinals,” 
and such that every element of L,[u, v] is definable over L,[u, v] relative to 
2.4, v. 

Proof. Suppose that the lemma is false and let /I < c$U*“l be the 
supremum of all the ordinals in question. Then /3 is A, relative to (u, v) in 
L,,[u, v]. Let y be the first ordinal that is not A2 relative to (u, v) in 
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LJu, v]. Then L,[u, V] t= KP + “every set is countable” + “there are 
arbitrarily large (u, v)-admissible ordinals,” and every element of L,[u, v] is 
defmable over L,[u, u] relative to u, u. Since “F is a diagonalizer for E” is a 
true n: sentence, it also holds in L,[u, t)]. Thus y is one of the ordinals in 
question, which is a contradiction. (The w1 in the subscripts, which occurs 
twice , refers to wLtu*“l 1 -1 

LEMMA 3.2.3. For any ordinal a < c#““~ there is an ordinal 
a < y < a&[“*V1 such that L,[u, 01 C KP + V= L[u, u] + “euely set is 
countable” + F is a diagonalizer for E + “there is a largest (u, v)-admissible 
ordinal,” and such that every element of L,[u, v] is definable over L,[u, v] 
relative to u, 0. 

Proof. Let f be given as in Lemma 3.2.2, and let y be the next (u, u> 
admissible after y’. We have merely to show that every element of L,[u, u] is 
definable over L,,[u, v] relative to u, o. By a Skolem hull argument, it is easy 
to see that every element of L,[u, V] is definable in L,[u, V] from u, u and 
elements of Ly,[u, u]. Since v is definable in L,[u, u] from (u, v), we see that 
every element of L,[u, V] is definable over L,[u, v] relative to u, o. 

Now let 2 = {((a, R), (w, S)): if (0, R) E Y and (0, R) != “there are 
arbitrarily large (u, u)-admissible ordinals,” then (0, S) E Y, (0, S) t “there 
is a largest (u, u>admissible ordinal,” and (0, S) is longer than (0, R)}. We 
can view Z as a subset of the Cantor square, and we can play the game 
where II wins iff the pair of plays is in Z. 

By absoluteness, the game has a winning strategy J in L [u, y]. (Observe 
that Z is a Bore1 set of rank < 1, and we are using determinacy for Bore1 sets 
of rank < A. In the case I = o, use a suitably large finite fragment of KP.) 

LEMMA 3.2.4. J is not a winning strategy for II. J is not a winning 
strategy for I. 

Proof: Let a < 4 [‘*“l be such that J has a Bore1 code in L,[u, u]. First 
suppose that J is a winning strategy for II. Let y be chosen as in 
Lemma 3.2.2. Let (w, R) be isomorphic to L,[u, u], where R is arithmetic in 
the theory of L,[u, V] relative to (u, v). Observe that (w, R) E Y and 
(0, R) I= “there are arbitrarily large (u, v)-admissible ordinals.” Let (0, S) be 
J applied to (w, R). Then (w, S) E Y and (w, S) is longer than (0, R). Hence 
the ordinal of the standard part of (0, S) is at least I + 1, and therefore at 
least the next (u, v)-admissible ,u after y. Hence the 0th jump of S is internal 
to (w, S). This is a contradiction. 

Now suppose that J is a winning strategy for player I. Let ,u be chosen as 
in Lemma 3.2.3. Let (w, S) be isomorphic to Lr[u, u], where S is arithmetic 
in the theory of Lr [u, u], relative to (u, Y). Observe that (0, S) E Y and 
(w, S) I= “there is a largest (u, o)-admissible ordinal.” Let (w, R) be J applied 
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to (w, S). Then (w, R) E Y, (w, R) k “there are arbitrarily large (u, u)- 
admissible ordinals,” and (0, S) is not longer than (w, R). 

Let H be as given in the definition of “(w, S) is longer than (w, R).” By 
the invariance property of F, we see that either dam(H) has no sup, or 
rng(H) has no sup. First assume that rng(H) has no sup. Then H is onto, 
since (w, S) is well founded. Since (0, S) is not longer than (0, R) and not 
isomorphic to (w, R), we see that the ordinal of the standard part of (w, R) is 
at least ,n + 1, and hence at least the next (u, u)-admissible after P. This 
results in a contradiction as above. 

Secondly assume that dam(H) has no sup. Then it is easy to see that H is 
total. But then (w, R) z (w, S), which is impossible. 

The above argument can be formalized in Z,, and thus we have the 
following. 

LEMMA 3.2.5. There is a constant c < o such that the following is 
provable in Z,. For all a < wl, if all Bore1 sets of rank < a + c are deter- 
mined then the Bore1 diagonalization theorem holds for all Bore1 equivalence 
relations of rank < a. 

LEMMA 3.2.6. The following is provable in ZF - 9. Let k < o, be a 
limit ordinal. If for all a < II and x c o, there is a T,+,-model containing x, 
then the Bore1 diagonalization theorem holds for all Bore1 equivalence 
relations of rank < A. 

Proof. Let a < I, and let E be a Bore1 equivalence relation of rank a. Let 
F be a Bore1 diagonalizer for E. Choose n E ~1) so that from [lo], we see that 
any T, + 4 + ,-model satisfies “all Bore1 sets of rank < a + c are determined.” 
Under the hypothesis of this lemma, there is a T,+,+ ,-model containing 
Bore1 codes for E and F. By Lemma 3.2.5, this model satisfies the Bore1 
diagonalization theorem for E. This is a contradiction. 

This completes the “if’ part of Theorem 3.2. For the “only if” part, let 
1 < wr be a limit ordinal. Let B be the set of all pairs (x, R), where xc o, 
R c x . x. We define the function H,((x, R)) = 0 if x = 0 or (x, R) is not 
isomorphic to any (A, E) for transitive A E V(a + 1); otherwise, 
H,((x, R)) = the unique transitive A E V(a + 1) with (x, R) % (A, E). Let E, 
be the equivalence relation on B given by E,(s, t) c) H,(s) = H,(t). It is 
easily seen that E, is a Bore1 equivalence relation on B of rank < 1, for 
a<w+l. 

Proof of Theorem 3.2. Arguing in ZF - 9, assume that the Bore1 
diagonalization theorem holds for all E,, a < o + J, (where B has been iden- 
tified with R), and fix a < w  +A. We define the Bore1 function G: B”‘+B as 
follows. Let x E BN be given. Let A be the union of all H,(x(n)), n < w. 
Then A E V(a + 1) and A is transitive. Let A* be A together with all sets in 
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V(a) which are first order definable with parameters over (A, E). Finally, let 
G(x) be a canonically chosen code for A*; i.e., H,(G(x)) = A*. Obviously G 
is a Bore1 function which has the invariance property for Bore1 
diagonalization. By hypothesis let E&(n), G(x)). Then H,(x(n)) = 
H,(G(x)) = A*. Hence A* c A, and so A is a T,-model. This completes the 
proof. 

The following are from Theorem 3.2 and the discussion in Section 1. 

COROLLARY 3.3. Proposition D can be proved in Z + AC, + CBA, but 
not in ZC + V = L + 9,. If we restrict Proposition D to jinitely Bore1 
relations E, then it is provable in Z + AC,, but not in weak ZC + V = L. 

COROLLARY 3.4. It is necessary and suflcient to use o, iterations of the 
power set operation to prove Proposition D. It is necessary and su$%ient to 
use w  + w  iterations’of the power set operation to prove Proposition D for 
finitely Bore1 relations E. The latter holds even if everything involved is 
restricted to the jinitely Borel. 

We now consider the Baire space NN under the equivalence relation of 
conjugation. 

PROPOSITION E. The Bore1 diagonalization theorem holds for NN under 
conjugation. 

THEOREM 3.5. The following is provable in ZF - 9. Proposition E is 
equivalent to “for all a < co1 and x c w, there is a T,-model containing x.” 

We first prove the backwards direction of Theorem 3.5. Actually, NN 
under conjugation is a special case of a wider situation. Looked at model 
theoretically, NN under conjugation is the same as the structures with domain 
o with one unary function under isomorphism. 

More generally, let c be any at most countably infinite relational type. Let 
Y(u) be the space of all structures with domain o of relational type Q, with 
the usual Baire topology (the basic open sets are given by finite pieces of 
information about the structures). We wish to prove the Bore1 
diagonalization theorem for P(u) under isomorphism. This theorem follows 
from Bore1 diagonalization for analytic equivalence relations proved in [5]. 
However, the proof given here is of independent interest. 

Assume that for all a < oI and x c w, there is a T,-model. 
We first review some concepts used in the construction of “Scott 

sentences.” Let 9 be a structure. The O-type of a finite (possibly empty) 
sequence of elements from 9 is the set of all formulas of ordinary first order 
predicate calculus with equality, (p(x, ,..., x,,), which are true of the sequence 
(of length n). The (a + 1)-type of a finite sequence is the set of all a-types of 
extensions of that finite sequence. The I-type of a finite sequence is the 
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function f with domain 1 such that f(a) is the a-type of the sequence. The a- 
type of 9 is the a-type of the empty sequence. 

Without referring to any structure, we can define possible a-types as 
follows. A possible O-type of a finite sequence is any set of formulas 
v(x , ,..., x,) in Ya, with =, where n is the length of the sequence. A possible 
(a + 1)-type of a finite sequence is any set of possible a-types of longer finite 
sequences. A possible A-type of a finite sequence is any function f with 
domain I such that f(a) is a possible a-type. A possible a-type (of a 
structure) is a possible a-type of ( ). 

There is a canonical way to associate to each possible a-type, an intinitary 
sentence of rank < a + o whose models are exactly the structures with the 
given possible a-type. Now a given possible a-type may or may not be 
realizable, in the sense that there may or may not be a structure with that 
possible a-type. The possible a-type is realizable if and only if the 
corresponding infinitary sentence is consistent. We thus often identify a 
possible a-type with its corresponding sentence. 

Let F: Y(a)” + -i”(a) be Borel, and assume that [Rng(@)] = [Rng(S)] + 
[F(a)] = [(F(g)], where [ ] refers to isomorphism. 

LEMMA 3.5.1. For every x c w there is a countable power admissible set 
E with x E E, and hence a countable non-standard power admissible set with 
standard part E. 

Proof. Let x c w, x E A, where A is a countable admissible set. Let c be 
a constant symbol, and consider the axioms in the infinitary language U: 
which assert that c is an ordinal greater than each a E A, transfinite 
induction holds up to c, and that the universe is isomorphic to a T,+,-model 
which contains x. Then every A-finite subset of these axioms is consistent, 
since for all a E A, there is a T,-model containing x. Hence the theory is 
consistent. The standard part of any countable model of the theory is a coun- 
table power admissible set containing x. 

Now let A be a countable power admissible set such that the rank of F is 
in A, (T E A, and some code for F is in A. Let (B, R) be a countable non- 
standard power admissible set whose standard part is A. Let /3 be any non- 
standard ordinal in B. In (B, R), let K be the set of all possible /?-types which 
according to (B, R), are consistent (with the axioms “there are infinitely 
many”) in the sense of Ym,. We collapse K to w  by forcing over (B, R) with 
finite conditions. Let $ be any such generic collapse, where f: o + K is one- 
one onto, and let B[.f] be the resulting structure, with a predicate symbol 
added for B. Then B[f] will remain a power admissible structure.3 

’ In the definition of K, consistency in PWu refers to all proof figures coded as well founded 

trees. The completeness theorem for countable admissible fragments is used for fragments 
which are coded by well founded relations (or trees). 
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Observe that in B[f], I’@)” is countable. Hence by the completeness 
theorem for countable admissible fragments, we see that every Q, in K has a 
model in B[f] with domain w. 

Let r(J) be a forcing term which is forced by 4 to produce a function with 
domain K such that rCf)(p) is a model of 9, with domain w. 

LEMMA 3.5.2. Suppose that g: w  --) K is generic over B. Then 7(f) and 
7(g) are termwise isomorphic, 7(J) of, r(g) o g represent the same 
isomorphism types up to a permutation, and F(r(g) o g), F(7df) of) are 
isomorphic. 

Proof The last two claims follow immediately from the first. Let Q E K. 
It suffices to show that any model of p in B[ f ] is externally isomorphic to 
any model of 9 in B[ g 1. This follows by a standard back and forth 
argument, since these models must have the same y-type for all y EA. 

LEMMA 35.3. Let yE A. Then the y-type of F(rdf) o f) lies in A. 
Furthermore, it is forced by + to be some particular element of A. 

Proof By transfinite induction on y. Assume that for all a < y, the cz- 
type of every finite sequence in F(7df) of) is in A. Then the y-type of every 
finite sequence in F(r(f) of) is a bounded subset of A, that is present in 
B[f 1. Now the set of all y-types of finite sequences in F(7df) of) is 
independent of the choice of the generic object f, by Lemma 3.5.2. Thus all 
of these y-types for F(7df) of) are present in every generic extension B[ g], 
and so they must be in B. Hence they are in A. The Lemma then follows by 
another use of genericity. 

LEMMA 3.5.4. There is a greatest non-standard ordinal /?* <fi such that 
for some q~ E B, 4 forces the /3*-type of F(r(f) of) to be q. 

Proof. By Lemma 3.5.3, there is such a non-standard ordinal /3* <p. To 
see that there is a largest, let L < /3 be such that for all a < rZ there is a 
oa E B such that 4 forces the a-type of F(rdf) of) to be rp,. Then these q, 
can be put together to produce a p such that # forces the I-type of 
F(7df) of) to be I. 

We now observe that we have passed from any non-standard ordinal /I to 
a non-standard ordinal /3* G/3 in a manner which is definable in (B, R). By 
the axiom of foundation in (B, R), we can assume without loss of generality 
that /I* = /I. 

LEMMA 3.5.5. The /&type q~ of F(r(f) 0 f) is in K (according to B[f I). 
F(7df) of) is isomorphic to r(j)(p). 

Proof. The first part is immediate from /3 =/I*. The second part follows 
from the fact that t(f)(p) and F(7df) of) have the same y-types for y E A, 
and both sit in B[ f 1. 
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This completes the proof of the reverse direction of Theorem 3.5. We now 
prove the forward direction of Theorem 3.5. Assume that the Bore1 
diagonalization theorem holds for NN under conjugation. 

A full well founded tree is a partial ordering < with field N such that (a) 
there is a least element, (b) the set of predecessors of any number is linearly 
ordered and finite, and (c) there is no infinite strictly increasing sequence. 
We associate hereditarily countable sets to full well founded trees by I<, n] = 
{]<,ml:n<m};]<]=]<,tl,wheretistherootof<. 

Let F: N + N. We say that F is setlike if (1) there is a unique n such that 
F(n) = n, (2) for every m there is a k > 0 such that F(‘)(m) = n, (3) there is 
no infinite sequence n = n,, n, , n2 ,..., such that each F(n,+ ,) = ni. For setlike 
F, we let Tree(F) be the full well founded tree with root n given by m GF r +-+ 
(3k > O)(flk’(r) = m). 

The following is left to the reader. 

LEMMA 3.5.6. For setlike F, G, F and G are conjugate If and only if 
Tree(F) and Tree(G) are isomorphic. Every full well founded tree is Tree(F) 
for some unique setlike F. There is a Bore1 function which sends setlike F to 
Tree(F). For each a < w, , W(a) = {<: ] < I is a transitive element of 
V(a + l)} is Borel. There is a Borelfunction II: W(a)“+ W(a) such that (a) 
III(x)] is the set of all subsets of (UN x(n)) in V(a) which are j?rst order 
deJnable over UN x(n) with parameters, and (b) if [rng(x)] = [rng(y)] then 
[H(x)] = [II(y)], where [ ] refers to tree isomorphism. 

Now let a < o, , and define the Bore1 function @: (NN)N + NN as follows. 
Let F: N+ NN be given. Let x E W(a)” be such that Rng(x) = 
{Tree(F(n)) E W(a): n E N}. Let Q(F) be such that Tree(@(F)) = H(x). 

The hypothesis of Bore1 diagonalization for NN under conjugation hold for 
@ by Lemma 3.5.6. Hence let @(F) be conjugate to F(n). Then H(x) is 
isomorphic to Tree (F(n)), and so H(x) is isomorphic to a term of x. 
Therefore IH( is a T,-model. 

This completes the proof of Theorem 3.5. 
The following is from Theorem 3.5. and the discussion in Section 1. 

COROLLARY 3.6. Proposition E can be proved in Z + AC, + CRA, but 
not in ZC + V = L + 9,. It is necessary and sflcient to use w, iterations of 
the power set operation in order to prove Proposition E. 

Observe that we considered two forms of the basic Bore1 diagonalization 
theorem (Proposition C), and one form involved finite invariance (-). The 
following theorem shows that there is no such form of general Bore1 
diagonalization. 

THEOREM 3.7. There is a Bore1 equivalence relation E on IR of finite 
rank and a Bore1 function F: IRN+ IR such that (a) tf x and y are coor- 
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dinatewise equivalent, or tfx N y, then F(x) = F(y), and (b)jbr all x, F(x) is 
not equivalent to any coordinate of x. 

To prove this, we actually construct a Bore1 function F: (HC,+,)” --f 
HC,+2 by cases, such that F is invariant under finite permutations of the 
arguments, yet F(x) & Rng(x). 

Let x E (HC,+$“, and set A = lJ Rng(x). Let GZ be the structure 
(A U Rng(x), E). 

1. GZ does not satisfy the scheme (3x)(Vy)( y E x t) (y E NC, & 
p(y))), where v, may have parameters. Choose o( y, zi ,..., ZJ to be the least 
formula such that the scheme fails for some z~,..., z, E It’ll, and set F(x) = 
{{ y E HC,: 67 + p( y, z1 ,..., z,,)}: z1 ,..., z, E 1 al}. Obviously F(x) 6$ Rng(x). 

2. a does satisfy the above scheme, yet GZ does not satisfy the scheme 
(3x)(Vy)(y E x CI (y c HC, dc rp( y))), where this time (p does not have any 
parameters. Then choose q to be the least formula such that the scheme fails, 
and set F(x) = {y c HC,: a I= (p(y)}. Then F(x) & Rng(x). 

3. In this case, cases 1 and 2 fail, and another condition holds, which 
we give after making the following definitions. An ordinal of @ is a y E I aI 
such that for some z c HC, in I GZ I, a + “z is a well ordering on a subset of 
HC, and y is the set of all well orderings on subsets of HC, which are 
isomorphic to z.” By using the two schemes in a, it is easily seen that in a, 
every well ordering of HC, is in some (unique) ordinal. 

Let Y(X)= {( 9 >- ( 1 d ( 1 n m * x n an x m are ordinals of @, and the elements of 
x(n) are shorter than the elements of x(m)}. Let G be the set of all 
permutations of o which are the identity almost everywhere. 

In this case, we assume {y(x of):fE G} 67! Rng(x). Then set F(x) = 
{y(x of):fE G}. Again F(x) 66 Rng(x). 

4. Cases 1, 2 and 3 fail, and y(x) is not a prewell ordering in GZ. Then 
no y(x of) is a well ordering in GK Let S = {z c HC,: (3n)(n is in the non- 
well-founded part of y(x) according to 0, and z E x(n))}. Observe that S 
remains the same if in its definition, x is replaced by x of, fE G. Now if 
S E 167 1, then S is a nonempty set of well orderings on subsets of HC, with 
no shortest element, which contradicts the first scheme in a. Hence S & Ial. 
Set F(x) = S, and so F(x) 66 Rng(x). 

5. In this case, cases l-4 fail, and another condition holds. Note that 
each y(x of) is a well ordering in a. For each n such that x(n) is an ordinal 
in 62, let y(x), be the initial segment of y(x) up to but not including n. In this 
case, we assume that the following fails: for every fE G and n such that 
x(f(n)) is an ordinal in a, y(x of), E xv(n)). 

Fix fE G such that otf) = (n: (x of)(n) is an ordinal in @, yet 
Y(X d,@ (x of)(n)} is nonempty. Then a(J) is a nonempty subset of 
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Fld(y(x 01)) with no y(x of)-least element. Hence adf) e I@[. Since each 
o(f) c w, we can set F(x) = {adf):fE G}. Again F(x) & Rng(x). 

6. Cases l-5 fail. But this case is impossible. For, we know that every 
x(n) that is an ordinal, is the ordinal of y(x),. But there must be a k such 
that x(k) is the ordinal of the well ordering y(x). Hence the ordinal of Ye is 
the same as the ordinal of y(x), which is a contradiction. 

This completes the proof of Theorem 3.7. By using bounded complexities 
in the argument, we can even arrange for F to be finitely Borel. 

4. BOREL FIXED POINT THEOREMS 

We say that (IF?, <) is a quasi order if < is transitive and reflexive (i.e., 
(a<b&b<c)-+a<c, a<~). We let u-b mean (u<b&b<u), a<b 
mean (a < b & not b < a). We say that (IR, <) is w-closed if every strictly 
increasing sequence has a (unique up to N) least upper bound, and w- 
complete if every at most countable set has a least upper bound. F: (R -+ IR is 
invariant if a N b + F(u) N F(b). A fixed point for F is an x such that 
F(x) = x. 

PROPOSITION F. Let (R, <) be an o-closed (w-complete) Bore1 quasi 
order. Let I;: R --t iR be an invariant Bore1 function such that for all x, 
F(x) > x. Then F has a fixed point. 

This follows immediately from (and is in fact equivalent to) 
Proposition G. 

PROPOSITION G. Let (IR, <) be an w-closed (w-complete) Bore1 quasi 
order. Then there is no invariant Bore1 function such that for all x, F(x) > x. 

PROPOSITION H. Let (R, <) be an w-complete Bore1 quasi order. Let 
F: iR -+ R be an invariant Bore1 function. Then for some x, F(x) < x. 

THEOREM 4.1. The following is provable in ZF - 9. Let A < w1 be a 
limit ordinal. If (Va < w + A)(V(a) exists) then Propositions F-H (all jive 
forms) hold for all Bore1 quasi orders of rank <A. If any one of the Jive 
forms of Propositions F-H holds for all Bore1 quasi orders of rank 4, then 
for all a < L and x c w there is a T, +,-model containing x. 

We now prove the first part of Theorem 4.1. Let Iz < wl, and assume that 
(Va < w  + A)(V(a) exists). Let (IF?, <) be an w-closed Bore1 quasi order of 
rank a, where a < w  + 1. 

The proof is closely related to the proof of Bore1 diagonalization for Bore1 
equivalence relations, but is more delicate. Let F: m + [R be an invariant 
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Bore1 function such that for all x, F(x) > x. We will obtain a contradiction, 
thus establishing Proposition G. Let u c cu be a Bore1 code for Q, and u c w  
be a Bore1 code for F. 

Let Y be the set of all structures (w, R) satisfying KP + V = L [u, v] + 
“every set is countable” + “there are arbitrarily large (u, v) - admissible 
ordinals” + “(iR, 9) is an cc-closed quasi order” + “F is an invariant function 
with F(x) > x,” where (0, R) is an w-model in which u, v are internal and Q, 
F are described in terms of u, tr. 

We wish to compare pairs (w, R), (0, S) of elements of Y. Within any 
(w, R) E Y, make the following definition by transtinite recursion on the 
ordinals of (w, R). Firstly define G,(O) = 0. Define G,(a + 1) = F(G,(a)), 
and CR(A) to be the least upper bound which occurs first in the constructible 
hierarchy relative to (u, v). Observe that according to (w, R), the range of G, 
forms a strictly increasing sequence of length wl. By absoluteness, the range 
of GR is really strictly increasing. However, at limits G, may not give a real 
least upper bound. 

Let H’ be the set of ordered pairs (a, b) of ordinals a from (w, R) and 
ordinals b from (0, S) such that G,(a) = G,(b). Note that 29’ is an order 
preserving partial function. Finally, let H be the largest restriction of Z-I’ 
which maps an initial segment of the ordinals of (w, R) onto an initial 
segment of the ordinals of (0, S). 

We say that (0, S) is longer than (w, R) if and only if one of the following 
holds: (i) H maps all of the ordinals of (w, R) onto an initial segment of the 
ordinals of (w, S) determined by an ordinal of (0, S), (ii) the domain of iY is 
a proper initial segment of the ordinals of (w, R) that is not determined by 
any ordinal of (w, R) and the range of H is either all of the ordinals of 
(w, S) or is an initial segment of the ordinals determined by an ordinal of 
(w, S), (iii) the domain and range of H have, respectively, sups (I, b which 
are limit ordinals, and G,(b) < G,(a). 

LEMMA 4.1.1. {((co, R), (co, S)): (co, R), (CO, S) E Y and (co, S) is longer 
than (co, R)} is a Bore1 set of rank <A. (In cuse L = w, we use a suitably 
large finite fragment of the axioms of KP.) 

Proof Like Lemma 3.2.1. 

LEMMA 4.1.2. For any ordinal a < c#“‘“~ there is an ordinal u < p < 
CJ$“*“~ such that L,(u, v] I= KP + “every set is countable” + “there are 
arbitrarily large (u, v)-admissible limits of (u, v)-admissible ordinals” + 
“(IR, 9) is an w-closed quasi order” + “F is an invariant function with 
F(x) > x,)) and such that every element of L,,[u, u] is d@u.zbZe ouer L,[u, u] 
relative to u, v. 

Proof Suppose that the lemma is false and let /3 < CI$~*“~ be the 
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supremum of all the ordinals in question. Observe that p is definable over 
L,, [ U, u] relative to U, u. Let p be the first ordinal that is not definable over 
L,,[u, u] relative to U, u. Then L,[u, u] <L,,[u, u]. Since “(IR, <) is an w- 
closed quasi order” is zi relative to U, it holds in L,,[u, u], and therefore in 
L, [u, u]. Hence L, [ U, u] k= KP + “every set is countable” + “there are 
arbitrarily large (u, u)-admissible limits of (u, u)-admissible ordinals” + 
“(IF?, <) is an w-closed quasi order” + “F is an invariant function with 
F(x) > x.” It is also clear that every element of L,[u, u] is definable over 
L,[u, u] relative to U, u. This is one of the ordinals in question, which is a 
contradiction. 

LEMMA 4.1.3. For any ordinal a < co~lu’“l there is an ordinal a < p ( 
w~~~*“’ such that L,[u, u] k KP t “every set is countable” t “(IR, 9) is an w- 
closed quasi order” t “F is an invariant function with F(x) > x” + “there is 
a largest (u, u)-admissible limit of (u, u)-admissible ordinals,” and such that 
every element of L,[u, u] is definable over Lr[u, u] relative to u, u. 

Proof See the proof of Lemma 3.2.3 from Lemma 3.2.2. 

LEMMA 4.1.4. Let (co, R) be a well founded element of Y of ordinal ,a, 
and let (w, S) E Y. If (w, S) is longer than (co, R) then the ordinal of the 
standard part of (o, S) is at least p t 1. 

Proof. Assume hypotheses. If the comparison map H is totally defined 
then we are done. Otherwise let a be the (order type of the) first ordinal at 
which H is undefined. Then a is obviously a limit ordinal. Since (0, S) is 
longer than (w, R), there must be an ordinal of (w, S) of type a, and 
G,(a) < G,(a). But since (w, R) is well founded absolute we see that G,(a) 
is a least upper bound for {GR(j?): /3 < a}, and hence for {G,(P):P < a}. This 
contradicts G,(a) < GR(a), since G,(a) is also an upper bound for 
{G&VP < al. 

LEMMA 4.1.5. Let (co, S) be a well founded element of Y of ordinal p, 
and let (co, R) E Y. If the ordinal of the standard part of (w, R) is Qp and 
(co, R) is not isomorphic to (co, S), then (w, S) is longer than (co, R). 

Proof. Assume hypotheses. Firstly, suppose that the comparison map H 
is defined at all the standard ordinals of (w, R). Then obviously (cc, S) is 
longer than (0, R). Secondly, suppose that the comparison map H is not 
defined at all the standard ordinals of (w, R). Let a < ~1 be the (order type of 
the) first standard ordinal of (0, R) at which H is not defined. Then a is a 
limit ordinal. Observe that since (w, S) is well founded absolute, G,(a) is 
really a least upper bound for {G,(P): j3 < a}. Because H is not defined at 
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Gfi(a), GR(a) must not be a least upper bound for {G&3):/3 < a}. Hence 
G,(a) < G,(a), and so (cc, S) is longer than (w, R). 

Now let Z = {((a, R), (0, S)): if (cc, R) E Y and (0, R) I= “there are 
arbitrarily large (a, o)-admissible limits of (u, o)-admissible ordinals,” then 
(0, S) E Y, (0, S) + “there is a largest (u, v)-admissible limit of (u, u)- 
admissible ordinals,” and (w, S) is longer than (0, R)}. We can view Z as a 
subset of the Cantor square, and we can play the game where II wins if and 
only if the pair of plays is in Z. Observe that Z is a Bore1 set of rank (1, 
and we can use determinacy for such Bore1 sets (by 
(Va < w f  A)(v(a) exists)). 

By absoluteness, the game has a winning strategy J in L[u, Y]. 

LEMMA 41.6. J is not a winning strategy for II. J is not a winning 
strategy for I. 

ProoJ: Let a < w~lU9”l be such that J has a Bore1 code in L,[u, u]. 
Firstly, suppose that J is a winning strategy for II. Choose p according to 
Lemma 4.1.2. Let (w, R) be isomorphic to L,[u, u], where R is arithmetic in 
the theory of Ly [I(, u] relative to (u, v). Observe that (0, R) E Y and 
(w, R) C “there are arbitrarily large (a, v)-admissible limits of (u, u)- 
admissible ordinals.” Let (cc, S) be J applied to (w, R). Then (0, S) E Y and 
(w, S) is longer than (w, R). By Lemma 4.1.4, the ordinal of the standard 
part of (0, S) is at least ,u + 1. Hence the ordinal of the standard part of 
(0, S) is at least the next (a, v)-admissible afterp. This is a contradiction by 
recursion theoretic considerations. 

Secondly, suppose that J is a winning strategy for I. Choose p according 
to Lemma 4.1.3. Let (w, S) be isomorphic to L, [u, 01, where S is arithmetic 
in the theory of L,[u, u] relative to (u, u). Observe that (w, S) E Y and 
(w, S) b “there is a largest (u, u)-admissible limit of (a, u)-admissible 
ordinals.” Let (w, R) be J applied to (0, S). Then (w, R) E Y, (0, R) + “there 
are arbitrarily large (u, v)-admissibIe limits of (u, b)-admissible ordinals,” 
and (cc, S) is not longer than (w, R). By Lemma 4.1.5, the ordinal of the 
standard part of (w, R) is at least p + 1. Hence the ordinal of the standard 
part of (w, R) is at least the next (u, v)-admissible afterp. This is a 
contradiction for recursion theoretic reasons. 

This completes our proof of Proposition G for w-closed Bore1 quasi 
orders. The proof of Proposition H is virtually identical, and we omit it. 
Thus the proof of the first half of Theorem 4.1 is complete. For the second 
half, the following is sufficient by Theorem 3.2. 

LEMMA 4.1.7. The following is provable in ZF - 9. Let A < w1 be a 
limit ordinal. If any one of Propositions F-H holds for all Bore1 quasi orders 
of rank <A, then Proposition D holds for all Bore1 equivalence relations of 
rank ~1. 
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Proof Observe that the weakest of the five forms is Proposition F (or G) 
with w-completeness. Let E be a Bore1 equivalence relation on R of rank <A. 
Consider the Bore1 quasi order (lRN, 4) given by: x & y if and only if every 
coordinate of x is equivalent to some coordinate of y (under E). We can 
obviously view (IR“‘, <) as a Bore1 quasi order on R of rank <A. It is clear 
that < is w-complete. 

Suppose F: RN+ R is a counterexample to the Bore1 diagonalization 
theorem for E. Let G: RN-+ RN be given by: G(x)(l) =F(x); G(x)@ + 1) = 
x(n). Then clearly G is invariant and G(x) > x for all x. However, clearly G 
has no fixed point. This completes the proof of the lemma, and hence of 
Theorem 4.1. 

The following are from Theorem 4.1 and the discussion in Section 1. 

COROLLARY 4.2. Propositions F-H (allfive forms) can be proved in Z + 
AC, + CRA, but not in ZC + V = L + 9,. If we restrict to finitely Bore1 
quasi orders, then they are provable in Z + AC,, but not in weak 
zc+ V=L. 

COROLLARY 4.3. For any one of the jive forms of Propositions F-H, it is 
necessary and s&Gent to use w, iterations of the power set operation in 
order to give a proof. If we restrict to finitely Bore1 quasi orders, then it is 
necessary and s@cient to use w + w iterations of the power set operation in 
order to give a proof. The later also holds true tf everything involved is 
restricted to the finitely Borel. 

Notice that in the hypotheses on the quasi orders in Propositions F-H, the 
least upper bounds that are hypothesized may not be given explicitly. It is 
natural to ask whether the logical strength of these propositions is due to this 
lack of explicitness in the hypotheses. The answer is no by the following. 

Let (IF?, <) be a quasi order. We say that it is explicitly o-closed if there is 
a Bore1 function H: RN -+ I?? such that for all strictly increasing x E RN, H(x) 
is a least upper bound for rng(x). We say that (IR, <) is explicitly w-complete 
if there is a Bore1 function H: RN + R such that for all x E RN, H(x) is a 
least upper bound for rng(x). 

We rephrase Propositions F-H using these stronger hypotheses. 

PROPOSITION I. Let (IF?, <) be an explicitly o-closed (explicitly w- 
complete) Bore1 quasi order. Let F: IR + IR be an invariant Bore1 function 
such that for all x, F(x) > x. Then F has a fixed point. 

PROPOSITION J. Let (IR, ,<) be an explicitly w-closed (explicitly o- 
complete) Bore1 quasi order. Then there is no invariant Bore1 function such 
that for all x, F(x) > x. 
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PROPOSITION K. Let (R, <) be an explicitly w-complete Bore1 quasi 
order. Let I;: R + iFI be an invariant Bore1 function. Then for some x, 
F(x) < x. 

THEOREM 4.4. The following is provable in ZF - 9. Let A < w, , be a 
limit ordinal. Then each one of the five forms of Propositions I-K for Bore1 
quasi orders of rank (1 is equivalent to “‘for every a < w  + 1 and x c w  
there is a T,-model containing x.” 

Proof. The forward direction is immediate from the proof of 
Lemma 4.1.7; the Bore1 quasi orders constructed there are explicitly w- 
complete. For the reverse, let a < Iz and assume that for all /3 < w  + 1, x c w, 
there is a Tb-model containing x. It follows from the proof of Theorem 4.1 
that for some p < L, every To-model satisfies Propositions F-H for Bore1 
quasi orders of rank a, and hence Propositions I-K for Bore1 quasi orders of 
rank a. Now observe that Propositions I-K for Bore1 quasi orders of rank a 
are z: (in a code for a). Since we are assuming that there are T,,-models 
containing any given real, we see that Propositions I-K hold for Bore1 quasi 
orders of rank a. 

We now consider Bore1 partial orders. A Bore1 partial order is a Bore1 
quasi order (IF?, <) in which a 1: b -+ a = b. 

PROPOSITION L. Every w-closed (w-complete) Bore1 partial order has a 
maximal element. 

PROPOSITION M. Every w-complete Bore1 partial order has a maximum 
element. 

THEOREM 4.5. Propositions L, M (au three forms) are provable in Z $ 
AC, + CM. 

The proof of this theorem is closely related to that of Propositions F-H. 
Let (R, <) be an w-closed Bore1 partial order with no maximal element. Let 
u c w  be a Bore1 code for Q. 

Let Y be the set of all structures (w, R) satisfying KP + V= L[u] + “every 
set is countable” + “there are arbitrarily large u-admissible ordinals” + 
“(II?, 4) is an w-closed partial order with no maximal element,” where (w, R) 
is an w-model in which u is internal and (R, <) is described using u. 

We wish to compare pairs (w,R), (w, S) of elements of Y. Within any 
(w, R) E Y, make the following definition by transfinite recursion on the 
ordinals of (w, R). Firstly define CR(O) = 0. Define G&) for limit ordinals 1 
as the least upper bound of {G=(a): a < A}. Define G,(a + 1) as follows. In 
(w, R) let x be the hyperjump of (G,(a), u); i.e., the set of all indices e of 
(G,(a), u)-recursive well orderings on w. Take G,(a + 1) to be the real 
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number y recursive in x with least recursive index such that G,(a) < y. Of 
course, the hyperjump according to (w, R) may not be the actual hyperjump, 
and in the limit case, the least upper bound according to (w, R) may not be 
the actual least upper bound. 

Let H’ be the set of ordered pairs (a, b) of ordinals a from (0, R) and 
ordinals b from (0, S) such that G,(a) = G,(b). Note that H’ is an order 
preserving partial function. Finally, let H be the largest restriction of H’ 
which maps an initial segment of the ordinals of (0, R) onto an initial 
segment of the ordinals of (w, S). 

We say that (co, S) is longer than (CU, R) if and only if one of the following 
holds: (i) H maps all of the ordinals of (w, R) onto an initial segment of the 
ordinals of (0, S) determined by an ordinal of (cc, S), (ii) the domain of H is 
a proper initial segment of the ordinals of (0, R) that is not determined by 
any ordinal of (w, R) and the range of H is either all of the ordinals of 
(0, S) or is an initial segment of the ordinals determined by an ordinal of 
(q S), (iii) the domain and range of H have, respectively, sups a, b which 
are limit ordinals and G,(b) < G,(a), (iv) the domain and range of H have, 
respectively, largest elements a, b, and the hyperjump of G,(b) in (w, S) is 
properly included in the hyperjump of G,(u) in (w, R). 

LEMMA 4.5.1. {((co, R), (w, S)): (w, R), (0, S) E Y and (w, S) is longer 
than (CO, R)} is u Bore1 set. 

Proof. Left to the reader. 

LEMMA 4.5.2. For any ordinal a < CO~“‘~ there is an ordinal a < A < 
o~f[“~ such that LA[u] I= KP + “every set is countable” + “there are 
arbitrarily large u-admissible limits of u-admissible ordinals” i- “(IA, <) is an 
w-closed partial order with no maximal element,” and such that every 
element of L,[u] is definable over L,[u] relative to u. Furthermore, this is 
true if “there are arbitrarily large” is replaced by “there is a largest.” 

Proof. See the proofs of Lemmas 4.1.2 and 4.1.3. 

LEMMA 4.5.3. Let (w, R) be a well founded element of Y of ordinal A, 
and let (w, S) E Y. If (co, S) is longer than (co, R) then the ordinal of the 
standard part of (CO, S) is at least A + 1. 

Proof. Assume hypotheses. If the comparison map H is defined at all of 
the ordinals of (0, R) then we are done. Otherwise let a be the (order type of 
the) first ordinal at which H is undefined. Let us first suppose that a is a 
limit ordinal. Since (w, S) is longer then (w, R), there must be an ordinal of 
(w, S) of type a, and G,(a) < G,(a). But since (w, R) is well founded 
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absolute, G,(a) is really the appropriate least upper bound, and hence we 
have a contradiction. Now suppose that a = /3 + 1. Then the hyperjump in 
(0, S) of G,(p) is properly included in the hyperjump in (w, R) of 
G&3) = G&3). But the hyperjump in (CO, R) of G&3) = G,(P) is the actual 
hyperjump. This is a contradiction. 

LEMMA 45.4. Let (0, S) be a well founded element of Y of ordinal A, 
and let (w, R) E Y. If the ordinal of the standard part of (w, R) is a and 
(w, R) is not isomorphic to (w, S), then (w, S) is longer than (w, R). 

Proof: Assume hypotheses. If the comparison map His defined at all the 
standard ordinals of (w, R), then obviously (w, S) is longer than (w, R). 
Now suppose that H is not defined at all the standard ordinals of (w, R). Let 
a < 1 be the (order type of the) first standard ordinal of (w, R) at which H is 
not defined. Firstly, suppose that a is a limit ordinal. Since (w, S) is well 
founded absolute, G,(a) is really the least upper bound for {G,(p): /I < a}. 
Since G,(a) # G,(a), we have G,(a) < G,(a), and so (w, S) is longer than 
(w, R). Secondly, suppose that a = p + 1. Since H is not defined at a, clearly 
the hyperjump of G,(p) in (w, R) is not the same as the hyperjump of 
G,(P) = G,@) in (w, S). By the well founded absoluteness of (w, S), the 
hyperjump in (w, S) is properly included in the hyperjump in (w, R). Hence 
(w, S) is longer than (w, R). 

Now let Z= {((w, R), (w, S)): if (w, R) E Y and (w,R) k “there are 
arbitrarily large u-admissible limits of u-admissible ordinals” then 
(w, S) E Y, (w, S) I= “there is a largest u-admissible limit of u-admissible 
ordinals,” and (w, S) is longer than (w, R)}. We can view Z as a Bore1 
subset of the Cantor square, and we can play the game where II wins if and 
only if the pair of plays is in Z. By Bore1 determinacy, this game has a 
winning strategy. By absoluteness, this game has a winning strategy J in 

L[Ul- 

LEMMA 4.55. J is not a winning strategy for II. J is not a winning 
strategy for J. 

Proof. See the proof of Lemma 4.1.6. 
This completes our proof of Proposition L. Proposition M follows 

immediately from Proposition L. This completes the proof of Theorem 4.5. If 
we just want L, M for finitely Bore1 partial orders, then Z + AC, suffices. 

We now give proofs of the explicit forms of Propositions L, M. Here we 
use substantially less set theory. 

PROPOSITION N. Every explicitly w-closed Bore1 partial order has a 
maximal element. 
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PROPOSITION 0. Every explicitly w-complete Bore1 partial order has a 
maximum element. 

THEOREM 4.6. Propositions N, 0 are provable in MK + AC, - 9, and 
ZF + AC, - 9 + “Y(o) exists.” 

Proof. It is easy to see that these two systems prove the same ni 
sentences. We now prove Proposition N in ZF + AC, - 9 + “9(w) exists.” 

Let (IR, <) be a Bore1 partial order, and let H: lR“‘+ R be a Bore1 function 
such that for strictly increasing x E R “‘, H(x) is the least upper bound of 
rng(x). Let u c o code < and v c o code H. By a Skolem hull argument, we 
can produce a countable Z,-elementary substructure of L[u, v], which can be 
isomorphically collapsed onto some L,[u, v]. It is then clear that L,[u, v] 
satisfies Z,-replacement + “wi exists,” and A < w,. 

Inside L,[u, v] we can define a partial function G: On + R by G(0) = 0, 
G(a + 1) = the first element in the constructible hierarchy relative to (u, v) 
which is greater than G(a), and G(A) = the least upper bound of 
{G(a): (x < A}. This definition is made as far as possible. 

Observe that by the axioms of &-replacement + “wi exists,” we see that 
in L,[u, u], G must not be total. We now assume that (IF?, <) has no 
maximal element. Then this also holds in L,[u, v]. Hence the range of G is 
an unbounded countable strictly increasing transfinite sequence. Let x be its 
least upper bound. Using H, observe that x must be present in every generic 
extension of L,[u, v] obtained by collapsing o, to o (because the range of G 
has cardinality at most o1 in L,[u, v]). Hence x E L,[u, v], which 
contradicts the fact that G is defined as far as possible. 

We prove Proposition 0 in it4K + AC, - 9 as follows. 
Let (IR, <) be a Bore1 partial order with code u c w, and let H: RN+ R be 

a Bore1 function with code v c w  such that for x E R”, H(x) is the least 
upper bound of rng(x). Let A be a countable admissible set which contains 
u, v. By a Skolem hull argument, we can produce a countable elementary 
substructure of L[u, v] with respect to gA, which can be isomorphically 
collapsed onto some L,[u, v]. It is then clear that L,[u, v] satisfies 
PA - ZFC without power set. 

If j: w  --) L,[u, v] is any generic enumeration of L,[u, v], we can define 
the least upper bound x of L,[u, v] n R by a formula in YA over 
(Ln[u, v], E, j). The definition used is uniform, and so x is defined by a 
formula in PA over L,[u, v]. By YA-replacement, x E L,[u, v]. Therefore 
L,[u, v] b “x is the maximum element of (IR, <).” Hence x really is the 
maximum element of (IF?, 4). 

Of course, Proposition 0 immediately follows from Proposition N, but the 
above proof of Proposition 0 uses a weaker fragment of MK + AC, - 9 
than does the above proof of Proposition N. In particular, as is the case with 
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Proposition C, Proposition 0 is proved in VB + AC, - 9 + “transfinite 
class recursion on countable well orderings.” And if we restrict everything to 
any fixed finite level of the Bore1 hierarchy, then Propositions C, 0 are 
provable in second order arithmetic (or ZF + AC, - 9). 

5. BOREL RAMSEY THEORY 

We let Q = IN be the space of infinite sequences from 1, with the infinite 
product topology (Hilbert Cube). The group H of all permutations of N 
which fix all but finitely many natural numbers acts on Q by permuting 
coordinates. This group also acts diagonally on any Q” by g . (x1,..., XJ = 
(g . x1 ,..., g . xJ. For x, y E Q” we use x - y to indicate that x and y are in 
the same orbit under this diagonal action. 

In this language, the basic Bore1 diagonahzation theorem asserts the 
following: if F: Q --f I is a Bore1 function such that x - y --t F(x) = F(y), then 
for some x, F(x) is the first coordinate of x. 

An immediate consequence of the above is: if F: Q x Q + I is a Bore1 
function such that y - z + F(x, y) = F(x, I), then for some x, y, F(x, y) is the 
first coordinate of y. 

An extension of the above is: if F: Q X Q + I is a Bore1 function such that 
y - z -+ F(x, y) = F(x, z), then there exists an infinite sequence {xk} from Q 
such that for all indices S, F(x,, x,+ I) is the first coordinate of x, + 1. 

A further extension of the above is: if F: Q x Q --t I is a Bore1 function 
such that y - z + F(x, y) = F(x, z), then there exists an infinite sequence {xk} 
from Q such that for all indices s < t, F(x,, xI) is the first coordinate of x,+ 1. 

Finally, we come to an even further extension of the above. 

PROPOSITION P. Let F:QxQ + I be a Bore1 function such that if 
x E Q, y, z E Q”, and y - z, then F(x, y) = F(x, z). Then there is a sequence 
{xk} from Q of length m < w  such that for all indices s < t, < .a. < t, < m, 
F(x, , x I, ,..., xI,) is the first coordinate of x, + 1. 

A 0-Mahlo cardinal is a strongly inaccessible cardinal. An (n + l)-Mahlo 
cardinal is a cardinal in which every closed and unbounded subset contains 
an n-Mahlo cardinal. A Mahlo cardinal is a 1-Mahlo cardinal. 

THEOREM 5.1. ZFC + (Vn)@c)(tc is nXahZo) proves Proposition P. 
However for every n, ZFC + (~K)(K is ii-Mahlo) + V= L does not prove 
Proposition P. 

We first prove Proposition P in ZFC + (Vn)(Ebc)(K is n-Mahlo). Actually 
for expositional purposes, it is convenient to first prove the following weaker 
form of Proposition P-the forcing lemmas needed are much easier in this 
case. For x, y E Q let x z y mean that x, y have the same range. For 
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x, y E Q”, let x z y mean that for all 1 < i & n, x(i) z y(i). The weakened 
form of Proposition P that we prove first is the same as Proposition P except 
that - is replaced by z. 

We begin by fixing n > 1 and a Bore1 function F: Q X p -+ I such that 
y z z + F(x, JJ) = F(x, z). Let u c w  be a Bore1 code for F. By a Skolem hull 
argument, we can fix a countable transitive set A4 satisfying ZFC + (~K)(K is 
(n)-Mahlo), h w  ere u E M. We fix K to be an (n - 1)-Mahlo cardinal 
in M. 

It will of course be more convenient to switch to a more set theoretic 
mode, and identify I with 9(w) and Q with So. 

In M, we use the following notion of forcing. The set C of conditions 
consists of all finite partial functions f: K x w  -+ V(K)~ such that f(a, m) E 
V(a)“. The partial ordering < on C is of course inclusion. Let C, be the set 
of conditions whose domain is included in a X w. 

Observe that C is the standard notion of forcing for adding a system 
Kl,<. of mutually generic enumerations f,: 0 + V(a)“. 

Let G c C be a generic set of conditions over M. Define G: K X w + V(K)~ 
by @a, n) = x if and only if (3fE G)(f(a, n) = x). For x E M let E(G, x) = 
(k: (3fE G)((k, f) E x)}. Here E stands for “evaluation.” 

For limit ordinals A < K we define T(G, A) E So by T(G, n)(m) = 
E(G, @, ml). 

For f, g E C we define g 1 f by (g 1 f)(a, m) = f(a, m) if f(a, m) and 
g(a, m) are defined; g(a, m) if g(a, m) is defined and f(a, m) is undefined; 
undefined if g(a, m) is undefined. Forf E C, we define G 1 f = (g 1 f: g E G}. 
Note that G 1 f is also generic. 

LEMMA 5.1.1. Let G c C be generic over h4, A ( K be a limit ordinal, 
and f E C. Then T(G, A) =: T(G 1 f, A). 

Proof. By symmetry, it is enough to prove that rng(T(G, A)) c 
rng(T(G 1 f, A)). Let m E w, and consider T(G, A)(m) = E(G, G((n, m)). Let 
x = {(k, g 1 f): g E C n e((n, m)}. Then x E V(A)” and E(G 1 f, x) = 
E(G, G(A, m)). Obviously by genericity, there are infinitely many r E w such 
that G(;1, r) = x, and hence there is an r such that G I f (A, r) = x. Therefore 
T(G, A)(m) = T(G If, l)(r). 

LEMMA 5.1.2. Let A < 1, < -a- ( A,, < K be limit ordinals, and let f E C. 
Then for all k, f IF k E F(T(G, A), T(G, A,) ,..., T(G,I,)) if and only iff r 
((A + 1) x o) I/-k E F(T(G, A), T(G, AA.., T(G, A,)). 

Proof. By way of contradiction, assume f 11 k E F(T(G, A), 
T(G, A,) ,..., T(G, A,)), and g IF k @ F(T(G, A), T(G, A,> ,... , T(G, &)), where 

f r ((A + 1) x w) < g. Let G c C be generic over AZ, where g E G. Obviously 
T(G, A) = T(G 1 f, A). By Lemma 5.1.1, each T(G, A,) M T(G If, A,). Hence by 
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the symmetry condition on F, F(T(G,A), T(G, A,) ,..., T(G, A,)) = 
F(T(G ] f, A), T(G ] f, Iz-i),..., T(G ( f, A,)). This is a contradiction since g E G, 
EGlJ: 

We are now prepared ‘to apply the combinatorics in [ 141. The following 
definitions are talcen from there. 

DEFINITION 1. A partition C of the set X is a collection of pairwise 
disjoint sets, the union of which is X. Two elements in the same set of C are 
called C-equivalent. The set of subsets of X of cardinality n is denoted by 
[Xl”. If C is a partition of [Xl”, then Y c X is C-homogeneous if and only if 
every two elements of [Y]” are C-equivalent. 

DEFINITION 2. (i) C is an f-partition system of [a]” if and only iffis a 
cardinal-valued function with domain including a such that for each v < a, 
C, is a partition of [a]” and card(C,) <f(v). 

(ii) C is a partition system of [aIn if and only if for somef: a + a, C 
is an f-partition system of [a]‘. 

(iii) If C is anf-partition system of [a]” then Xc a is C-homogeneous 
if and only if for each v E X, the set X - (v + 1) is C,-homogeneous. 

(iv) P(k, a) is the class of all cardinals p such that for any partition 
system C of [,u]” there is a C-homogeneous set of length a. 

The following is from Theorem 3.1 of [ 141. 

LEMMA 51.3. The following is provable in ZFC. For all k, ifp is a k- 
Mahlo cardinal, then for all a < ,a, ,u E P(k + 1, a). 

It is convenient to give a slightly altered form of the above partition 
relation. Let P(k,p, o) assert the following: k > 1, p is a cardinal, and for 
every function H:p’+’ + I+) such that each H[{a} x ~“1 E V(P), a < ~1, 
there is an infinite strictly increasing sequence of limit ordinals {A,} such 
that for any s < t, < ... < t,, s < rl < e.a < rk, H(As,lll,...,AtJ= 
w, 9 4, v-9 Jr,>. 

LEMMA 5.1.4. The following is provable in ZFC. If p > w is a strongly 
inaccessible cardinal, and 1 Q k, then p E P(k, co) if and only if P’(k, p, w). 

ProoJ Left to the reader. 

LEMMA 5.1.5. In M, Pl(n, K, co). 

Proof. By Lemmas 5.1.3 and 5.1.4. 
We now define a specific H: K”+ ’ + V(K)~ as follows. For limit ordinals 

607/41/3-4 
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A <A, < *** < A,, < K, we let H(& 1, ,..., A,) = {(k, f): f E CA+, & f It k E 
WTG, A), T(G, Ah..., T(G, A,))}. Define H to be 4 at other inputs. 

LEMMA 5.1.6. Let G c C be generic over 44, and let L < 1, < -- - < 
A,, ( K be limit ordinals. Then F(T(G, A), T(G, A,) ,..., T(G, A,)) = 
{k: (3f E G)((k, f) E H(A,&,..., A,))} =E(G H(k A,, . . . . A,)). 

Proof. Let kE F(T(G,A), T(G,I,) ,..., T(G, A,)). Let gE G be such that 
g 11 k E F(T(G, A), T(G, A,) ,..., T(G, A,)). By Lemma 5.1.2, g r ((A + 1) x w) 
II- k E F(T(G, 0 T(G &),..., T(G &,b and so (k g r ((A+ 1) x 4) E 
H(5 4 ,***, A,,). The converse is evident. 

Now we apply Lemma 5.1.5 to H to obtain a strictly increasing sequence 
(A,} of length w  of limit ordinals below K such that for all s < t, < .a. < t,, 
s<r,< -.- < r,, H(A,, A I,,...,~I,)=H(~S,~r,,..., A,“). Fix G c C to be generic 
over M. 

For each m < w  let f, be the condition with domain {(II,+ i, 0)} and value 
W,,, , A,,,+ , ,..., A, + J. Recursively define G, = G 1 f. , G, + 1 = G, I f, + 1. 
Note that each G, is generic. 

LEMMA 5.1.7. For each s < t, ( . . . ( t, < t, F(T(G,, A,), T(G,, A,,) ,..., 

T(Gt, 4)) = T(Gv &+,>W 

Proof: W(G,, A,), T(G,, A&..., T(G,, Q) = E(G,, H@,, Izs+l,..., &+,)) 
by Lemma 5.1.6 and the indiscernibility of {A,,}. On the other hand, 
T(G,,~,+,)(O)=E(G,,f,(~,+,,O))=E(G,,H(~,,~,+,,...,1,+.)). 

LEMMA 5.1.8. For each s < t, < -.- < t,, F(T(G,, A,), T(G,,, A,“) ,..., 
Wtn 7 Q> = T(G, + I 9 4 + I)(O). 

Proof. Observe that T(G,, A,) = T(G,, A,) for i < t. 
This completes the proof of Proposition P with - replaced by z, since 

we may take { T(G,, A,)} as our sequence from 9(w)“. 
We now only assume that y - z + F(x, v) = F(x, z), and elaborate on the 

above argument to obtain the same conclusion. 
Let G c C be generic over M. Define the all important map G*: {A < K: L 

is a limit ordinal} x w + V(K)” as follows. 
We first make the convention that for ordered pairs (a, b), (a, b)(l) = a 

and (a, b)(2) = b. 
If G(‘(n, 0) E CA x V(A)“, let G*(A, 0) = (?(A, 0); otherwise let G*(A, 0) = 

($,$). If @,m+ l)EC,X V(A>” and the domain of e(A, m + l)(l) 
includes the domain of G*(A, m)(l), let G*(A, m + 1) = @A, m + 1); 
otherwise let G*(A, m + 1) = (p, 6), wherep is constantly 4 and has the same 
domain as G*(A, m)( 1). 

Observe that each dom(G*(A, m)(l)) c dom(G*(A, m + l)( 1)). 
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Similarly, for conditions f E C we define the partial function f*: {A < K: L 
is a limit ordinal} x w + V(K)M as follows. If f(A, 0) E CA x V(A)“, let 
f*(A, 0) = f(A, 0); otherwise letf*(A, 0) = (0, 4). Iff(A, m t 1) E C, x V(A)“’ 
and the domain of f(A, m t l)(l) includes the domain of f*(I2, m)(l), let 
f*& m t 1) = f(A, m t 1); otherwise let f*(A, m t 1) = (p, O), where p is 
constantly ( and has the same domain as f*(A, m)(l). We intend that 
domdf*) = {(A, i): A < K is a limit ordinal and {A} . [0, i] c domdf)}. 

Let 1 < K be a limit ordinal. Instead of using T(G, A), we use the more 
sophisticated J(G, A) E S(w)O defined by J(G, A)(m) = E(G 1 G*(A, m)(l), 
G*(A m)(2)). 

Until further notice, we fix limit ordinals I, < e-e < 1, < K, and G c C 
generic over M. We essentially prove that (J(G, IZi),...,J(G, A,)) - 
W I f, Al),..., J(G I f, A,,)) f or any f E C (this follows from Lemma X1.13). 

We say that f E C is (m, r)-saturated if (a) r E [0, n], domdf) = x - 
[O, m) U (1 1 ,..., A,} - [O, 2m) U {A r+ i ,..., A,,} . [0, m), for some x c K disjoint 
from {A ,,..., A,}, (b) if f (&,j) is defined then dom(J*(A.,,j)(l)) c domdf), 
and (c)if i E [ 1, r], j E [m, 2m), then domu*(A1,j)(l)) = domdf) n 
(4 x 0). 

Let f, g E C be (m, r-)-saturated. We say that f, g are dual if domu) = 
dam(g), and for all 1 Q i < r, 0 <j < m, f If *(&j)(l), g I g*(At, m t j)(l) 
agree on 1, X 0, f I f *(AI, m t j)(l), g I it*&, j)(l) agree on 4 X w  
f *&J)(2) = g*(& m + j)(2), and f *(At, m t j)(2) = f *(& f)(2). 

LEMMA 5.1.9. Let f, g E C, a < A,, and f, g agree on a x o. Then there 
is an m and conditions f’ and g’ such that f’, g’ agree on a x co, f < f ‘, 
g < g’, dom(f’) = dom(g’), andf’, g’ are both (m, 0)-saturated. 

Proof. Left to the reader. 

LEMMA 5.1.10. Let f’, g’ E C be (m, O>saturated, with domCf’) = 
dom( g’). Then there are (m, n)-saturated dual $, g such that f’ Q f, g < 6, 
andf’,fagree off of {A ,,.. ., A,}, g’, I agree ofl of {A,..., A,}. 

Proof We construct (m, r-)-saturated dual conditions f,, g, by induction. 
Take f0 = f’, g, = g’. We extend fr to fr, I by deftning fr, ,(A,, m t j) = (g, r 
(4 x 0) I g,*(W)(l), g,*@,,j)(2)h and extend g, to g,+l by defining 
gr+l(Lm + A= df, r (4 x 0)If~(~,,j)(l),f~(lZ,,j)(2)),jE [O,m). 

LEMMA 5.1.11. Let f, g be (m, n>saturated, and dual. Let G c C be 
generic ouer M. Then for all 1 <i< n, 0 <j < m, (a) (G ] f)) 
(G I f )*(& j)(l) and (G I g) I (G I g>*(h m t j)(l) agree on CA,, (b) 
(G I g) I (G I g)*&J)(l) and (G I f) I (G I f )*(4, m + j)(l) agree on CA,, 
6) (G I f )*(&f)(2) = (G I g)*(L m + A(2), and (4 (G I d*&,N4 = 
(G ) f)*(&, m t j)(2). For all 1 Q i 4 n,j > 2m, (e) (G I f) I (G I f )*(A,, j)(l) 
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and (G I g) I (G I g)*(hA(l) agree on CA,, and (f> (G I f)*(L.W) = 
(G I g)*(‘i, A(2). 

Proof First observe that for all k E [0,2m), (G 1 f)*(&, k) = f*&, k), 
(G 1 g>*(ki, k) = g*(li, k)* 

Let 1 < i < n, 0 < j < m. By duality, f*(Ai, j)(2) = g*()li, m + j)(2), 
g*(&, j)(2) = f*(A,, m + j)(2). Hence we have shown (c), (d). 

Observe that (G I f> I f*(ki, k)(l) = G I (f I f*(ni, k)(l)h (G I g) I 
g*(li,k)(l)=GI (g I g*(~i,k)(l))* F or a i suffices to prove that G 1 ( ) t 
(f I f*&, j)(l)> and Gl(gl g*(&,m+j)(l)) agree on CA,. Since 
dam(f) = dom( g) and f ) f*(Ai, j)(l), g I g*(Ai, m + j)(l) agree on li X W, 
we are done. 

For (e), (f), let 1 < i< n, j > 2m. Then obviously (G 1 f)*&, j) = 
(G I g)* (‘i 9 .G since dom(f*(Ii, j)(2m - 1)) = dom( g*(;l,, j)(2m - 1)). 
Hence we have (f). Since the domains of (G ( f)*(&, j)(l) = (G ( g)*(&, j)(l) 
include dam(f) n (ni x w), (e) follows. 

LEMMA 5.1.12. Let f, f be (m, n)-saturated, and dual. Let G c C be 
generic over M. Then for all 1 <i< n, 0 <j <m, J(G I f,&)(j)= 
J(G / 6, &)(m + j), J(G 1 f, At)(j) = J(G 1 x A,)(m + j). For all 1 < i < n, 
j > 2m, J(G I A n,)(j) = J(G I A 2J(j>. 

Proof. This follows formally from Lemma 51.11. 

LEMMA 5.1.13. Let f, g E C, a < A,, and f, g agree on a X w. Then 
there are f < 3, g < 8 such that x d agree on a X w, and (J(G 13, A&..., 
J(G I f, A,,)) - (J(G I $3 Al),..., J(G ( t, A,)). 

ProoJ By Lemmas5.1.9, 5.1.10, and 5.1.12. 

LEMMA 5.1.14. Let A <A, ( . . . < 1, < K be limit ordinals, and let 
f E C. Then for all k, f IF k E F(J(G, A), J(G, A,) ,..., J(G, A,)) if and only if 
f r ((1 + 1) x 4 Ii-k E F(J(G, 4, J(G, u.., J(G, A,)). 

Proof. By way of contradiction, assume f Ik k E F(J(G, A), J(G, Al),..., 
J(G A,)), and g I/-k CZ F(J(G, A), J(G, AA..., J(G, A,)), where f r 
((A + 1) X o) < g. By extending f, we can assume that f, g agree on 
(I + 1) x o. So by Lemma 5.1.13 there are f < 3, g < & such that!, 2 agree 
on (A + 1) x w, and (J(G 13, U,..., J(G 13, A,>> - (J(G 1 8, A,) ,..., J(G )A L)). 
Since J(G 13, A) = J(G I 8, A), we see that F(J(G 13, A.), J(G 13, A,) ,..., 
J(G 13, A,,)) = F(J(G I d, A), J(G I 2, ,I,) ,..., J(G I g, A,)). This is a con- 
tradiction. 

As before, we now define a specific W: K”+’ -t V(K)” as follows. For limit 
ordinals /z < A, < ..m <A,<Ic, we let W(k1, ,..., A,,)={(k, f):f EC*+,& 
f 11 k E F(J(G, A), J(G, I,) ,..., J(G, ,I,))}. Define W to be 4 at other inputs. 
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LEMMA 51.15. Let GcC be generic over M, and let I <A, < ... < 
I, ( K be limit ordinals. Then F(J(G, A), J(G, A,) ,..., J(G, I,)) = 
{k: (3fE G)((k f) E WA, A, ,..., &t))) = E(G, V, 1, ,..., 0). 

ProoJ: See the proof of Lemma 51.6. 
As before, we apply Lemma 5.1.5 to W obtain a strictly increasing 

sequence {A,} of length o of limit ordinals below K such that for all s < 
t1 < *-a <t,, s<r,<.w.<r,, w, 9 4, Y..., A,“) = W(A,, A, ,,..., A,“). Fix 
G c C to be generic over M. 

As before, for each m < o let f, be the condition with domain {(I,,,+ r, 0)} 
and value (4, W@,, A,,,, ,,..., A,,,,,)). Recursively define G, = G 1 fO, G, + 1 = 

Gm/fm+~. 

LEMMA 5.1.16. For each s < t, ( . . . ( t,, F(J(G,, A,), J(GI,, A,,) ,..., 

J(GtI,v &,,I> = J(G, + 1, A,+ r)(O)- 

Proof: See the proof of Lemma 5.1.8. 
This completes the proof of Proposition P, by taking {J(G,, A,,,)} as our 

infinite sequence. 
We now begin the proof of the second part of Theorem 5.1. 
We define the Z, formulas of set theory as those prenex formulas with 

k - 1 alterations of like quantifiers, starting with existential quantifiers. Thus 
&, formulas have no quantifiers, and Z, formulas have only existential quan- 
tifiers. It is understood that the matrix of a prenex formula is allowed to have 
bounded quantifiers, which are not counted. 

Let n, k > 1. An (n, k)-special sequence of ordinals of length m is a strictly 
increasing sequence of infinite ordinals ai < a2 < .. . < a, such that for all 
s<t,< . ..<t.<m, s<r,<...<r,<m, p<as, and Z, formulas 
V(X i,..., x,+& of set theory with only the free variables shown, we have 
L&J + d/A a,, a,, ,..., a,J w  p(P, a,, arl ,..., a,). 

We now fix n > 2, k) 6, m > n + 4, and assume that there is an (n, k)- 
special sequence of ordinals of length m. We fix a, < . .. < a,,, to be the 
(n, k)-special sequence of ordinals of length ,rn such that the m-tuple 
(a m ,..., a,) is lexicographically least. We wish to establish that 
L(a,) + ZFkm6, and if n > 3 then L(a,) t a, is an inaccessible cardinal, for 
all i < m. Here ZF, is ZF based on Z, ‘formulas in the replacement scheme, 
and &-separation. 

LEMMA 5.1.17. Let lgp<n, l<t,<...<t,<m, l<r,<.=.< 
rp < m, and let v, be z,. Then for all /I < a,, L(a,) != qQ, a,, a, ,,..., alp) tt 
(P(P, al, a,, ,..., a,). 

Proof: The case p = n is immediate. We argue by backwards induction. 
Suppose this is true for p, 1 < p < n. By using a,-, as a dummy variable, if 
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1 < t, < *** < $-I < m - 1, 1 < r, < a** (r,-,<m-1, /?<a,, then 
L(a,) b rp(p, a,, afl ,... , alp-,) * co(P, a,, a,! ,..., arp-J. Now assume $- 1 = 
m - 1. Since there are at least p numbers m (1, m - l), there is a numberj E 
(1, m - 1) and distinct numbers r, ,..., rP in (1, m - 1) such that 
0 ,,..., rp-l,j) and (rl,..., rP) have the same order pattern. Thus we can apply 
the induction hypothesis with dummy variables a,, arp, to obtain for all 
P<a,, L(a,) + rp(P, a,, al,,..., alp-,) * dP, al, a,,,..., arD-,). Thus we have 
reduced the case tp-, = a,-, to tp-, < a,- r, and we are done. 

LEMMA 51.18. Let l<p<n, 2<t,<..s<t,<m, 2<r,<.a.< 
rp ( m, and let rp be Z,. Then for all p < a2, L(a,) + q@, a2, aI ,,..., al,) t+ 
GNP, a2, a*, ,..., arp). 

Prooj Use the same argument as that for Lemma 5.1.17, except that 
(1, m - 1) is replaced by (2, m - 1). 

LEMMA 5.1.19. Each ai, 1 ( i < m, is a limit ordinal. 

Proof: If a,,, is a successor ordinal then let a, = A + a, where d is a limit 
ordinal and a < o. If a,-1 > 1 then a,- i is the unique solution to a R, 
predicate over L(a,), which is a contradiction. Hence a,-, < Iz. Since L(A) 
is the unique solution to a rri predicate over L(a,), we see that ai ,..., a,-, ,1 
is (n, k)-special. This is a contradiction. 

If some ai, 1 < i < m, is a successor ordinal then they all are. Also, if 
a2 - 1 < ai then a3 - 1 < a,, which is impossible. Hence in this case we can 
see that a,, a2 - l,..., a,-i - 1, a, is (n, k)-special. This is also -a con- 
tradiction. 

LEMMA 5.1.20. L(a,) k ai is a cardinal, for all 1 < i < m. 

Proof: Let [a,[,..., 1 a,,- i ) be the respective cardinals of a, ,..., a,,-, from 
the point of view of L(a,) (i.e., the smallest ordinals in one-one correspon- 
dence with them in L(a,)). If any Iall = oi, 1 < i < m, then all Ia,1 = a, and 
we are done. So we may assume that each ]a,[ < aI, 1 < i < m. 

In the first case suppose that the la,l, 1 < i < m, are not identical. Then 
they strictly increase. 

If Ia21 <ai then /a,[ =/?efIa31=P holds, where /3=la,l. This is a 
contradiction. Hence I a,1 > aI. Observe that a,, la, I,..., 1 a,- 1 I, a,,, is (n, k)- 
special since Ia21 ,..., la,...,/ are uniformly defined from a2 ,..., a,,,-, by a Z, 
formula. This is a contradiction. 

In the second case suppose that the la,), 1 < i < m, are identical. Let 
Ia21 =P < a2. For each 1 < i < m let fi: a, + p be the first constructed such 
one-one surjective map in L(a,). Let y <p be f5(a,). Now f5(a3) = y* 
f,(a,) = y. This is a contradiction. 
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LEMMA 51.21. L(a,) sati#?es the power set axiom. 

Proof. If not, then L(a,) satisfies that there is a largest cardinal, 8. If 
a,-1 <B then al,..., amel, /3 is (n, k)-special (since /I is the unique solution 
to a n2 predicate in L(a,)). Hence /3 < a,-i. Therefore by Lemma 51.20, 
8= a,-,. But “a,,+ i is the largest cardinal” t) “a,- 2 is the largest 
cardinal.” This is a contradiction. 

LEMMA 5.1.22. Suppose that for all t,+4 formulas cp(x, y) with o&y the 
free variables shown, and ordinals j3 which are the unique solution to a Z,+4 
formula in L&J, we have Ua,,,) I= 09 < /W~(P(Y, 6)) --t 
@WY < 8P < Co@& 6)). Then Lb,,,) + ZF,. 

Proof Left to the reader. Use least counterexamples to kill parameters. 

LEMMA 51.23. L(a,) satisfies ZF,-,. 

Proof. By Lemma 5.1.22, it suffices to assume the following, and 
obtain a contradiction: L&J b (VY < B)WMY, 4), L(a,) t= 
-(FW < 8)W < r> (PO+ 49 where rp is a EC,-, formula with all free 
variables shown, and fi is the unique solution to a Zkm2 predicate in L(a,). If 
fl> a, then /3 > a,-, , and so a, ,..., a,-, , /3 is (n, k)-special. Hence /3 < a,. 
For each y < /I let A, = (&(6p(y, 6)). 

We claim that for all y </I, A,, < a3 or A,, > a,,,-i. To see this, suppose 
A,)a,. Then AY)a3t,Ay)a,-,. Hence A,)a,-,. Also Ay=a,-,w 
Ay=a3. HenceA,#a,,,-,. 

Fix y to be the least ordinal such that A, > a,,,-, . Then for each 
3 Q i < m, y is the least ordinal such that A, > a,. Thus there is a C, formula 
~(x, y) with only the free variables shown, such that for all 3 Q i < m, y is 
the unique solution to t&a,, y) over L(a,). 

We now claim that a, ,..., a,-,, A, is (n, k>special. To see this, let s < 
4 < -a- < t, < m, s < r, < . . . < rn < m, p < a,. We must verify that L(AJ != 
NA a, 9 a t ,,..., at,) tlp(j3, a,, a, ,,..., a,.), where p is Z,. Now L(A,,) I= 
p(B, a,, atI,..., a,J if and only if Lh,,) b WW+ Y) & L@J I= 
p(B, a,, a t,,...r a,)), and L(A,) +p(B, a,, a,19...9 a,,) if ami only if L(a,,,) I= 
(3y)(W(a,“,~)&L(A,)~p~,a,,a,,,..., a,“)). This completes the proof that 
a,,..., amml, A, is (n, k)-special, which is the desired contradiction. 

Before assuming that n > 3 in order to obtain stronger conclusions, we 
state the following. 

LEMMA 5.1.24. The following is provable in ZF - 9. If there is a 
(2, k + 6)special sequence of ordinals of length 6, then there is an 
L(A) + ZF,. 

Now assume that n ) 3. 
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LEMMA 5.1.25. L(a,) F ai is an inaccessible cardinal, for 1 < i ( m. 

ProojI It suffices to assume that none of (x2,..., a,-, are inaccessible in 
L(a,). Suppose that at least one of them is a successor cardinal. Then all of 
them are. If a,=a: then a3 =a:, which is a contradiction, Hence 

- - 
aI, a2 ,..., a,-, , a, is (n, k)-special, where a,- is the cardinal preceding ai. 

Thus the ai, 1 < i < m, are limit cardinals. We assume that they are not 
regular. In the first case, suppose that their cofinalities are not identical. 
Then cf(a*),..., cf(a,-,) is either strictly increasing or strictly decreasing. If 
cf(a,) < a, then cf(a,) = cf(aJ, which is a contradiction. Hence if 
cf(q),*.., cf(a,-,) are strictly increasing, then a,, cf(a&., cf(a,-i), a, is 
(n, k)-special, which is a contradiction. Finally, if cf(c&.., cf(a,- ,) is 
strictly decreasing then cf(a,) < az, and hence cf(a,) = cf(a,J, which is again 
a contradiction. 

Thus let cf(a,) = /I, for all 1 < i < m. Then /? < a*. For each 1 < i < m, let 
hi:P+ (OL19 aJ be the first constructed such strictly increasing cotinal map in 
L(a,). For each 1 < i < m - 1 let yi be the least ordinal such that 
hi+ i(ri) > ai. Observe that since each yi < /I < a*, we see that all the yi, 2 < 
i < m - 1, are identical. Since yz = y3 t+ y3 = y4 (using n > 3), we see that all 
they,, l<i<m-l,areidenticallysomey<P<a,. 

It is immediate that for all 1 < i < m - 1, ai < hi(y) < ai, and 
hi+,(y) > ai. We now claim that al, h2(y) ,..., h,-,(y), a, is (n, k)-special, 
which will complete the proof by contradiction. 

Let 2 < j < i < m. Since y < /I < az, we see that “y is the least ordinal 
such that h,(y) > ai- i” ++ “y is the least ordinal such that hi(y) > CZ~.” Since 
the left hand side is true, the right hand side is true. 

Let s < t, < ... < t, < m, s < rl < e-e < r, < m, j3 < h,(y), where for 
convenience we define h, to be constantly a,. We must show L(a,) k 
co(b MY), ~JY),-.~ h$9) * dPy MY), k,(~%.., 4,,(r)), where o is C,. The 
left hand side is equivalent to L(a,) i= (3y)(y is the least ordinal such that 
htn(y) > a,“-, & p(P, h,(y), h,,(r),..., h,Jy)), and the right hand side is 
equivalent to the corresponding statement involving s, ri ,..., r,. This 
completes the proof of the lemma. 

In order to relate the case n > 3 to Mahlo cardinals, we use the work in 
[141* 

The following definition is from [ 141. 

DEFINITION 3. (i) A function8 K -+ K is m-normal if and only if f is a 
continuous, strictly increasing function such that whenever v < K, thenf(v) is 
a strong limit carinal which is not m-Mahlo. 

(ii) S(m, n, r) if and only if for every inaccessible K and every m- 
normal function f: K -P K, there is an f-partition system C of [K]" such that 
each C-homogeneous set has length <r. 
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The following lemma is from [ 14, p. 2891. 

LEMMA 51.26. The following is provable in ZFC: S(n - 1, n + 2, n + 5). 

LEMMA 51.27. The following is provable in ZFC + GCH. Let n > 1, 
and rc be an inaccessible cardinal. Let f: K + K be the function f(a) = w,. a. 
if every f-partition system C of [ uln+ * has a C-homogeneous set of length 
n + 5 then there is an (n - 1)Mahlo cardinal below tc. 

Proof Immediate from Lemma 5.1.26. 
We will be concerned with the following partition relation P*(K, n, b). Let 

H: lcn+l + Q(K). Then there are inaccessible cardinals a I < . . . < ab < K such 
that for all s<t,<...<t,<b, s<r,<...<r,<b, we have 
H(a,, a,, , . . . . at,) n a, = H(a,, a,* , . . . . a,) n a,. 

LEMMA 5.1.28. The following is provable in ZFC + GCH. Let n > 1, 
and let K be an inaccessible cardinal. If P*(rc, n + 2, n + 5) then there is an 
(n - I)-Mahlo cardinal below K. 

Proof: By Lemma 5.1.27, it suffices to prove that every f-partition 
system C of [K] n+2 has a C-homogeneous set of length n + 5, where 

Observe that for each y ( K, C,: [K]“+* + o,.~. Set 
an+*) = Cs({a,,..., a,,,}), for B < ai < .a. < a,+*; 0 elsewhere. If 

then H(/3, ai,..., an+*) c/3. Hence any H-homogeneous 
sequence of inaccessible cardinals is C-homogeneous. 

LEMMA 5.1.29. Let n > 3, and assume that for each k there is an (n, k)- 
special sequence of length n + 4. Then for each k there is an ordinal 1 such 
that L(A) t= ZFC, + GCH + (3tc)(tc is an inaccessible cardinal such that 
P*(K, n - 1, n + 2)). 

Proof Let ai,..., a.+4 be the (n, k)-special sequence of length n + 4 such 
that (a, +* ,..., a,) is lexicographically least, k > 7. Set A= a, +4. Then by 
Lemmas 5.1.23 and 51.25, L(A) + ZF,-, + “al is an inaccessible cardinal,” 
for 1 < i < n + 4. Working within L(A), we want to prove that 
P*(an+3, n - 1, n + 2). Suppose that P*(a,+,, n - 1, n + 2) fails in L(A). In 
L(A), let H:al+, + .P(a,+,) be the first constructed counterexample. For 
s<t,< . ..<t._,<n+3,s<r,<... <r,-,<n+3, andp<a,, we have 
P E H(a,, at ,,... , atn-,) *P E H(a,, arl ,..., a,“-,), because al, . . . . a,+4 is (n, k)- 
special and H is suitably defined from a,+ 3. This is a contradiction. 

LEMMA 5.1.30. The following is provable in ZF - 9. Let n > 4, and 
assume that for all k there is an (n, k)-special sequence of length n + 4. Then 
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for all k there is an ordinal 1 such that L(A) k ZF, + “there is an (n - 4)- 
Mahlo cardinal.” 

Proof From Lemmas 51.28 and 51.29. 
We will need a refinement of Lemmas 5.1.24 and 5.1.30 involving possibly 

non-standard models as follows. 
Let T be the formal system of set theory with the following axioms: (i) ex- 

tensionality, (ii) pairing, (iii) union, (iv) transitive closures, (v) &separation, 
(vi) there is no largest ordinal, (vii) for every ordinal a, L(a) exists, 
(viii) (Vx)(3a)(x E L(a)), and (ix) transfinite induction on E for all formulas. 
An w-model of T is a model of T whose natural numbers are isomorphic 
to co. 

LEMMA 5.1.31. The following is provable in ZF - 9. (1) Suppose that 
for all k there is an w-model (w, R) + T and five “ordinals” w <a, < 

iTa’** 

( a5 in (co, R) such that for all s < t, < t, < 6, s < rI < r2 < 6, 
$, and Z, formulas p, (o-r, R) + (P(B, a,, a,,, a,$* v(P, a,, aI,, aJ 

Then for all k there is an w-model of ZF,. (2) Let n > 4 and suppose that for 
all k there is an w-model (w, R) + T and n + 3 “ordinals” w Q 

al < a-. < a,,, suchthatforalls<t,<...<t,<n+4,s<r,<..*<r,< 
n + 4, P & as, and z, formulas p, (o, R) b @j3, as, a, ,,..., a,“) * 
(P(P, a,, a,, ,..., a,“). Then for all k there is an o-model of ZFC, + “there is 
an (n - 4)Mahlo cardinal.” 

Proof. Because of axiom (ix), we can push down to least special 
sequences as in the proofs of Lemmas 5.1.24 and 5.1.30. 

We now show how to construct models (w, R) as in Lemma 5.1.31 from 
what we call critical sequences of subsets of w, which are closer to 
Proposition P. We then produce these critical sequences directly from 
Proposition P. 

For xc w, let 1x1= {{m: 2”3” E x}: n E co}. 
Let 9 be the language of second order arithmetic augmented with 

variables a, for subsets of Y(o), in addition to variables x, for subsets of w  
and variables a,, for elements of o. We do not have quantifiers ranging over 
subsets of Y(w). We view any A c Y(o) as an interpretation of 9, where 
third order variables may be assigned any subset of Y(o), and second order 
variables may be assigned any element of Y(o). The E symbol has two 
roles: t E x,, and x, E a,, for numerical terms t. The second order set quan- 
tifiers range over A. 

A formula v, in 4p is C:, k > 0, if it is in prenex form with k - 1 
alterations of quantifiers, beginning with an existential quantifier, followed 
by only bounded numerical quantifiers. Thus we make no distinction here 
between numerical and set quantifiers. (Z, formulas have only bounded 
numerical quantifiers, and we allow primitive recursive function symbols.) 
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We say that x, ,..., x, E 9(o) is an (n, k)-critical sequence of sets ,of 
Zength m if and only if for all 0 <q Q n, the following hold: (i) for all s < 

. . . <t <t&m and Z: formulas bp, we 
:(:,x,,lx ‘1 

have {aEw:Ix,lk 
IxI I)} EIxS+,I, and (ii)for all s <t < .*a Ct,CtQm, s< 

rl < -*a < ‘;,‘-(‘r $m, and C: formulas I, we have Ix:1 t= cp(x,, Ixt,l,..., Ix,,l) if 
and only if 1 x,1 k (p(x,, Ix,, I,..., 1 xJ). In particular, note that each JxI 1 c 
Ix~+~I, and each x,E Ix,+~I. 

We now fix an (n, 2k)-critical sequence of sets x, ,..., x,, where n > 2. At 
various points in the argument, we need to assume that m, k are sufficiently 
large. We will not pay much attention here as to how large m and k must be. 

LEMMA 51.32. Let l<p<m. Then every set of integers 
hyperarithmetic in xr is in Ixr, + 1 1. 

Proof Let 1 Q p < m, and assume by way of contradiction that there is 
an index e of an x,-recursive well ordering such that not every set recursive 
in H,(x,) exists in IxP+ i I. Choose e with this property such that the length of 
{e}(x,) is minimized. Using xP as a parameter, we can in lx,,+, I, put together 
the H,(x,) for initial segments k in {e}(xJ, so as to be able to define H,(x,) 
over (xP+ i I. In fact, we can define any set recursive in H,(x,) over IxP+ I 1 
with x,, as a parameter. From clause (i), we see hat any set recursive in 
H,(x,) is present in IxP+ 1 I. 

Let (x, R) I= T. An initial segment of (x, R) is any y c x such that for 
n E y, m E x, if (x, R) k= (Va)(n E L(a) + m E L(a)), then m E y. A regular 
segment is any y c x of the form {n: (x, R) I= n E L(a)}, where a is a limit 
ordinal in (x, R), or x itself. A proper regular segment is a regular segment 
which is not x. 

For each 1 < p < m, let K, be the set of all (x, R) k= T which are coded in 
lx,,1 such that (x, R) is satisfied to be well founded in IxP+, I. 

LEMMA 5.1.33. For 1 < p < m, every element of K, is well founded with 
respect to all sets 9k in any finite number of elements of 1x,1. 

Proof Fix j > 1. We prove this for any j elements of 1 x, I. By indiscer- 
nibility, it is enough to prove this for p < 2. Let (x, R) E K,,. Then by 
indiscernibility, (x, R) is satisfied to be well founded in 1x,(. Since all sets 
arithmetic in j elements of lxjl are in 1x,1, we have IxjJ C “(x, R) is well 
founded with respect to all sets Pk in j sets.” Hence this is also satisfied in 
I&III* 

LEMMA 5.1.34. For 1 Q p < m, any two isomorphisms in Ix,,,1 from an 
initial segment of one element of Kp onto an initial segment of another, 
cohere. Furthermore, their domains and ranges are either total or given by 
an L(a). For (x, R), (y, S) E Kp, either (a) there is an isomorphism fern 
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(x,R) onto (Y, S) in lxptl 1, (b) there is an isomorphism from (x, R) onto a 
proper regular segment of (y, S) in Ixp+, 1, or (c) there is an isomorphism 
from a proper regular segment of (x, R) onto (y, S) in Ixp+ 1 I. (Such an 
isomorphism is called a comparison map.) 

ProoJ: The first two sentences follow straightforwardly from 
Lemma 51.33. Now let p < 2. Let (x, R), (y, S) E Kp, and consider all 
isomorphisms from regular segments of (x, R) onto regular segments of 
( y, S), which are present in IxP+ I I. These isomorphisms cohere into a single 
such isomorphism, h. Observe that h E Ixp+, I. 

Now assume that h is neither total nor surjective, and let dam(h) = L(a), 
rng(h) = L(b). Then clearly there is a longer isomorphism than h from a 
regular segment of (x, R) onto a regular segment of (y, S), which is 
hyperarithmetic in xP+ i. By Lemma 5.1.32, this longer isomorphism is in 

Ixp+*l~ 
We now consider all isomorphisms from regular segments of (x, R) onto 

regular segments of ( y, S) which are present in (xP+ 2 1. These again cohere 
into a single such isomorphism h* E Ix,+~[. By the above, h* is longer than 
h. But for every j, j E dom(h*) c) j E dam(h), by indiscernibility. This is a 
contradiction. 

We have established that (a), (b), or (c) holds for p < 2. It then holds for 
all 1 < p ( m by indiscernibility. This completes the proof. 

LEMMA 51.35. For 1 < p < m - 1, there is a proper regular initial 
segment of an element of K,, , which of longer (in the sense of Ix,]) than any 
element of K, . 

Proof. By indiscernibility, it suffices to prove this for p < 2. All of the 
elements of K, cohere in the sense of lx,,+il by Lemma 5.1.34. They can be 
put together using the comparison maps in Ix,, + i I to form a limit structure 
which is in IxP+il. N ow we replace it by the next largest structure obtained 
by adding w new levels of the constructible hierarchy on top. The resulting 
structure is hyperarithmetic in xP+ i, and so is in Ix*+ 2 I. And this structure is 
obviously longer than all elements of Kp. Furthermore, it is clear by its 
construction that it is satisfied to be well founded in Ix,,,1 (if not, then there 
would be a non-well foundedness in an element of K, which is Zi in finitely 
many elements of Ix, I). Hence Ix, 1 I= “there is a proper regular initial 
segment of an element of K,, z which is longer than all elements of K,,.” 
Therefore Ix,1 k “there is a proper regular initial segment of an element of 
K P+ 1 which is longer than all elements of K,,.” This completes the proof. 

We now make K,-, into a relational structure GY as follows. The domain 
of @ consists of all pairs ((x, R), i), where (x, R) E K,,-, and i E x. The 
equality relation of GZ’ is given by ((x, R), i) E ((y, S),j) if and only if (x, R) 
and (y, S) are isomorphic in lx,,, 1, and the isomorphism sends i to j. The E- 
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relation of CY is given by ((x, R), i) E ((y, S),j) if and only if for the 
comparison map h from (x, R) to (y, S) in 1x,1, we have S(h(i),j). 

Observe that the whole structure G? can be coded up into one subset of w  
in Ix,- I I, in the sense that it codes an enumeration of all elements of a, the 
E, E on C?, and all of the relevant comparison mappings. The complete 
diagram of 0, as well as all sets hyperarithmetic in this coding up of f2, is 
therefore present in (x,1. From this it follows that 02 satisfies axiom (ix) of 
T, and hence fl+ T (with = interpreted as z). 

Let 1 < p < m - 3. Let Q, be the set of all ((x, R), i) E K,-, such that 
(x, R) + “i is a limit ordinal,” and the regular initial segment determined by i 
in (x, R) is of the least length greater than or equal to the lengths of elements 
ofK,. 

The following is left to the reader. 

LEMMA 51.36. For 1 Q p < m - 3, Q, is nonempty. All elements of Qp 
are=.Foreach 1<p<m-4,uEQ,,,vEQ,+,,wehave6Yl=“u,vare 
infinite ordinals and u < v.” Q,, as a 3-sty relation on 1x,1, is definable by a 
ziformula @,R, i, Ixpl, Ix,,-~]) over Ix,,,l, which is independent of p. 

Recall that we allowed bounded set quantifiers in the matrix of Z, 
formulas of set theory. If we do not allow bounded quantifiers, then we speak 
of Zt formulas. In the theory T we can produce appropriate universal Zk 
formulas in order to show the following: for every b there is a k such that 
every C, formula is provably equivalent, in T, to a Zz formula. 

LEMMA 5.1.37. For each 1 < p < m - 3, let ap E Q,. Assume n = 3. 
Thenforall l<s<t,<t,<m-3, l<s<r,<r,<m-3,uEa,,andz’,* 
formulas rp, we have @ k (P(u, as, a,,, a,,)- q&a,,a,,, a,$ 

Proof Since z&as, u is equivalent, in a, to an ((x, R), i) E IOIl, where 
(x, R) E Ix,). Then the left side of this equivalence can be viewed as a 
statement in Ix,1 about x,, lxtlI, 1~~~1, and Ix,,-~I. The right side can be 
viewed as the corresponding statement in Ix,1 about x,, Ix,, I, IxT21, and 

I&n-*I* 

LEMMA 5.1.38. The following is provable in ZF - 9. If for every k, m 
there is a (3, k)-critical sequence of sets of length m, then for all k there is an 
o-model of ZF, . 

Proof: By Lemmas 51.31 and 5.1.37. 
The same argument also shows the following. 

LEMMA 5.1.39. The following is provable in ZF - 9. Let n > 4. If for 



268 HARVEYFRIEDMAN 

every k, m there is a (n + 1, k)-critical sequence of sets of length m, then for 
all k there is an w-model of ZFC, + “there is an (n - 4)-Mahlo cardinal.” 

LEMMA 51.40. The following is provable in ZF - 9. If Proposition P 
holds for n = 4, m < w, and for all Jnitely Bore1 functions F, then for every 
k, m there is a (3, k)-critical sequence of sets of length m. If Proposition P 
holds for alljlnitely Bore1 functions F, even for only m < w, then for every n, 
k, there is an (n, k)-critical sequence of sets of length m. 

Proof Let k, m be given. We define a finitely Bore1 function F: So X 
(Y(w)“)~ -+ Y(w) as follows. Let x1 ,..., xg E So. For x E S(w)O, let 
X= {2”3m: m E x(n)}. We define F(x~,..., x5) by cases as follows. 

Case 1. It is not the case that Rng(x,) c Rng(x,). Then set F(x, ,..., x5) 
to be the first term of x, not in Rng(x,). 

Case 2. Case 1 does not apply, and there is a Z: formula 9 such that 
{a E w: Rng(x,) I= cp(a, f, , Rng(x,), Rng(x,), Rng(x,))} & Rng(x,). Then let 
9 be the .ZL formula with least GGdel number with this property, and set 
W , ,..., x5) = {a E co: Rng(x,) + @(a, 5 Rng(x,), Rng(x,), Rn&,))}. 

Case 3. Cases 1, 2 do not apply. Set F(x,,..., x5) = {#(p): (p is CL and 
Rw(x,) + P(-% 9 b&d3 RwW9 Rw(x4))b 

Now apply Proposition P to produce an appropriate sequence {x,} from 
S(w)O of length m + 8. Let s < m + 4. Then obviously Case 1 cannot apply 
in the definition of F(x,, x,+ i, x,+ *, x,+ 3, x,+ 4) since it is x,+ i(0). This 
establishes that Rng(x,) c Rng(x,+ ,) for s < m + 4. 

Now let s < t, < t, < t, < t Q m + 4, s < rl < r2 < r3 < r < m + 4. Then 
Case 1 does not apply to F(x,, xt,, xt2, q,, x,), F(q, xr1,xr2, x,,, x,). Now 
since Rng(x,+ J c Rng(x,,), Rng(x,+ J c Rng(x,,), we see that since these 
two values of F are both x,+ i(O), Case 2 never applies. So Case 3 applies, 
and hence for all Zi formulas 9, Rng(x,) k 9(fs, Rng(x,,), Rng(x,,), Rng(x,,)) 
if and only if Rng(x,) t= 9(&, Rng(x,,), Rng(xJ, Rng(x,,)). Since Case 2 
does not apply, for all Z: formulas 9, {a E co: Rng(x,) b &a, fS,, Rng(x,,), 
Rn&,J, Rw(x,,))l = la E ~0: Rw(x,) + da, fsI,, Rn&,+ A, Rw(x,+2)9 
Rng(x,+ &)} E Rng(x,+ i). Through the use of dummy variables, this is 
enough to show that {Z,},,, is a (3, k)-critical sequence of sets of length m. 

The remainder of the lemma is proved analogously. 

LEMMA 5.1.41. The following is provable in ZF - 9. If Proposition P 
holds for n = 4 and m < co, even for just finitely Bore1 functions F, then ZF 
is consistent. If Proposition P holds for all n, m < w, even for just finitely 
Bore1 functions F, then each ZFC + (~K)(K is KMahlo) has an w-model. 
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Proof: By Lemmas 5.1.38-5.1.40. 
The proof of Theorem 5.1 is now complete by the second incompleteness 

theorem. Actually, we have proved the following sharper version of 
Theorem 5.1. 

THEOREM 5.2. ZFC + (Vn)(i%)( K is n-Mahlo) proves Proposition P. 
However, for no n does ZFC + (SC)& is n-Mahlo) + V = L prove 
Proposition P even if we restrict to m < o and to Jnitely Bore1 functions F. 
ZFC + V = L does not prove Proposition P for n = 4, m < W, and finitely 
Bore1 functions F. 

We also have the following, using the discussion in Section 1. 

COROLLARY 5.3. It is necessary and s@kient to use Mahlo cardinals of 
arbitrarily high finite order in order to prove Proposition P, even for m < w 
and finitely Bore1 F. It is necessary to go beyond ZFC in order to prove 
Proposition P for n = 4, m < o, andfmitely Bore1 functions F. 

In Theorem 5.2., we have attempted to isolate the weakest form of 
Proposition P which is independent of ZFC, as precisely as possible. Unfor- 
tunately we have been only partially successful. In particular, we do not 
know if Proposition P can be proved in ZFC for n = 3 (even if we restrict to 
m < o and finitely Bore1 functions). 

We now wish to give a proof of Proposition P for n = 3, m < w 
within MKC. 

As in the proof of Proposition P, we fix a Bore1 function F: Q x Q3 + Z 
with the invariance condition. We let A be a countable admissible set which 
contains a Bore1 code for F. Thus in the appropriate sense, F is given by a 
formula in 9”. In MKC we can fix a countable transitive set M satisfying 
VBC together with the replacement scheme for all formulas in YA, and such 
that A is countable in M. 

We define the same notion of forcing over M as before, except that we 
view ourselves as adding a system {f,} of mutually generic enumerations 
f,: w + V(ay for every ordinal a of M. Thus the forcing conditions consist 
of all finite functions in M whose domain is included in On x w. 

Let (*) be the following proposition in class theory. Suppose H is a 
function of four variables on On defined by a formula Q, of set theory in 9” 
in the following way: H(A, A,, A,, A,) = {x E V(A,): V(A,) C q(x, A, A,, A,)} 
for limit ordinals 1 < I, < 1, < 1, ; 0 otherwise. Then there are arbitrarily 
long finite increasing sequences of limit ordinals {A,},<, such that for any 
s<t,<t,<t,Qm, s < rl < r2 < r3 Q m, we have H(A,, A,,, At2, At3) n 
W, + a) = W, 9 A,,, Jr23 &J n V(a, + ~1. 
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LEMMA 5.4.1. If (*) holds in M then Proposition P holds for n = 4 and 
m < w. 

ProoJ: It is clear from the proof of Proposition P that it suffices to verify 
that the crucial function H(A, A,, A,, A,) = {(k, f): f E C,, i & f /- k E 
F(J(G, A), J(G, A,), J(G, A,), J(G, A,))} is of the form {x E I’(&): V(A,) F 
~(x, A, A,, A,)}, for v, in PA. It is standard that in this context, we can replace 
IF with II-A,, 1) which is the restriction of I/- to only conditions in CA1+, . The 
forcing term F(J(G, A), J(G, A,), J(G, A,), J(G, A,)) can be viewed as an 
infinitary forcing term with constants for every element of V(A,) U {A,} (in 
the ground model M), which as a set is in LM[ I+,)], where p E A, is of 
ordinal rank in A, and is definable over L, [ V(AJ)] by a formula in 9’ from 
1, A,, A,, A, which does not depend on A, A,, AZ, &. The construction of a y 
in PA such that H(& Ai, A,, A,) = {x E I’(&): L,[ V(A,)] + ~(x, A, A,, A,)} is 
done by recursion on the infinitary forcing term using /k+,+,. Since 
H(A, A,, A,, A,) c V(A + w), we can obtain the desired p by interpreting 
L, [ I’(&)] within I’(&). 

Now let (**) be the following proposition in class theory. Let H be a 
function of three variables on On, and assume that for each ordinal a, 
{H(a, a,, a2): a < a, < az} is a set. Then there are arbitrarily long finite 
increasing sequences of ordinals {ak}k(m such that for any s < t, < t, & m, 
s < r, < r2 & m, we have H(a,, aI,, aI,> = H(a,, a,., , a,*). 

LEMMA 5.4.2. If (**) holds in M then (*) holds in M. 

Proof: In M, let H(a, a,, a2, as) = (x E V(a,): V(a,) + rp(a, al, a,)}, 
where v, E PA. Let {p,} be an increasing transfinite sequence of infinite 
cardinals of length On, in M, such that each I+,) is an elementary 
substructure of each later I+,) for all subformulas of rp. Now let 
H’b al, a21 = H(P~~P,,~+,~P~~+J n VCU, + ~1. tit m 2 1. APPLY (**) 
to H’ to obtain an appropriate { akJkGm. Since the value of H(y, yl, y2, yj) n 
W + ~1 depends only on Y, yl, y2 for Y, Y,, y2, y3 E {P,}, we see that 
Was&,‘Pa,* Pi,,) n V@,, + 4 = H’(as9 afl9 af2) n Gas + 4 = 
H’(q, a,,, 4 n Vhs + 4 = ffkSp pmr, T pm,, 9 &J n VCU,, + 4. Hence 
~Pcxklk<m satisfies the conclusion of (*) in M. 

The following is from Theorem 3.2 of [ 141. 

LEMMA 5.4.3. Let K be an inaccessible cardinal. Let H: x3 + V(K), and 
assume that for each ordinal a, {H(a, a,, a&: a < a, < a2 < K} is an element 
of V(K). Then there are arbitrarily long finite increasing sequences of 
ordinals {ak}kGm such that for any s ( t, < t, < m, s < r, < r2 < m, we have 
H@, 9 af, T a,J = Was 9 arly aJ 

LEMMA 5.4.4. VBC proves (**). 
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Proof: Imitate the proof of Lemma 5.4.3 by replacing the inaccessible 
cardinal K by On. 

LEMMA 5.4.5. Proposition P holds for F and any m < o in M. 

Proof: By Lemmas 5.3.1-5.3.4. 

THEOREM 5.4. MKC proves Proposition P for n = 3, m ( cc). 

Proof The choice of F was arbitrary, and so this follows from 
Lemma 5.4.5. Replacement for formulas in YA is needed for the proof of 
Lemma 5.4.2. 

Here is a slight variant of Proposition P. 

PROPOSITION Q. Let F: Q x Q” + Z be a Bore1 function such that x E Q, 
y, z E Qn, y N z implies F(x, y) = F(x, z). Then there is a sequence {xk} of 
length m < o from Q such that the value of F at subsequences of length 
n + 1 depends only on the first term of the subsequence, and is always a 
coordinate of the second term of the subsequence. 

It is easily verified that Theorems 5.1-5.4 hold for Proposition Q. 
We now wish to consider a more substantial variant of Propositions P, Q 

where we can pinpoint an instance which is provable in MKC but not in 
ZFC+ V=L. 

First consider the following invariant of the most elementary Bore1 
diagonalization theorem. Let H be the group of all permutations c of N 
which are the identity map except at finitely many places. Let F: Q + Q be a 
Bore1 function such that for all c E H, F(x o a) = F(x) o 6. Then for some x, 
F(x) is a subsequence of x. This can be proved in the same way as basic 
Bore1 diagonalization, and has precisely the same metamathematical 
properties. Now we combine it with Ramsey’s theorem. 

PROPOSITION R. Let F: Q x Q* + Q be a Bore1 function such that for all 
ol,..., 6, E H, F(x, y, o u1 ,..., y, o u,,) = F(x, y, ,..., y,) 0 ul. Then there is a 
sequence {xk} of length m Q w such that the value of F at subsequences of 
{xk} of length n + 1 d epends only on the first two terms of the subsequence, 
and is always an infkite subsequence of the second term of the subsequence 

of {-%I’ 

THEOREM 5.5. Proposition R is provable in ZFC + (Vn)(%)(K is n- 
Mahlo), but not in any ZFC + (%)(K is ii-Mahlo) + V= L, for any n, even 
for m < co and finitely Bore1 functions. In particular, Proposition R for n = 4 
andfinite m is provable in MKC but not in ZFC + V = L. 

We sketch a proof of Proposition R for n + 1, n > 1. Let F: Q X Q”’ ’ + Q 
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be given as in the hypothesis of Proposition R, and let M, K be as in the 
proof of Proposition P. Define forcing, G, G*, f *, g 1 f, G 1 f, E, and J as in 
the proof of Proposition P. 

LEMMA 5.5.1. Let p>O and let A <A, < .-. <I,,+, < IC be limit 
ordinals. Let f E C be such that f is defined on {A,} x [0, p]. Let a be the 
rank in the cumulative hierarchy of the range off on {A,} x [0, p]. Then for 
all j E [O, ~1, k E w,f II-k E f’(J(G, A>, J(G &),..., J(G A,,+ d(j) if and 0nl.v 
iff r (((A + 1) x w) U (a x w) U {A,} x [O,p]) It- k E F(J(G, A), J(G, A,),..., 

JG 4 + I N(j). 

Proof. Similar to the proof of Lemma 5.1.14, as follows. By way of 
contradiction, let f It- k E F(J(G, A), J(G, A&.., J(G, I,+,))(j), and g IF k & 
F(J(G, A), J(G, &),..., J(G, I,+ l))(j), where f r (((A + 1) x o) U (a x w) U 
{A,} x [0, p]) < g. By extending f, we can assume that f, g agree on 
(A + 1) x w, a x O.A and {A,} x [O, PI, and are both defined on {A,} X [0, p]. 
We can extend f, g to?, 2 so that they still agree on (A + 1) x w, a X w, and 
(,I,} x [0, p], and such that the following holds: Let G c C be generic over 
M. Then for 1 <i<n+ 1, J(GIf,l,)-J(GIg,&), and there is a aEH 
which is the identity on [0, p] such that J(G 1 g,A,) = J(G Ij: A,) 0 u, 
and also J(G IA A) = J(G 1 f, A). We then have for all j E [0, p], 
F(J(G I j: A), J(G Ij: A,),..., J(G Ix A,,+ l))(j) = F(J(G I & A), J(G I g, 4),.-, 
J(G 1 g, A,,+ ,))(j). This is the desired contradiction since f E G Ij: g E G I d. 

As in the proof of Proposition P, we define a specific function Y: K”” -+ 
WY as follows. For limit ordinals J < )Lr < ... < In+, < K, we let 
Y(A 1, ,***, A,,) = Wdf):f E CA,+, 8~ f 11 k E F(J(G, A), J(G, A,),..., 
J(G, i,+,))(j)}. Define Y to be 0 at other inputs. 

The following corresponds to Lemma 5.1.15. 

LEMMA 5.5.2. Let G c C be generic over M, and let A <A, < --- < 
A “+ 1 < K be limit ordinals. Then F(J(G, A), J(G, Al),..., J(G, A,,, l))(j) = {k: 
(3f E G)((k, j, f > E W, 1, ,..., A,+,))} =E(G Nkf): f E C,& OUf*) 
E Y(1, A, )...) A,,,)}), where a is the maximum of I + 1 and the rank of the 
range of G on {A,} x [0, j], and f * is the union off with the j?nite function 
G r {&I x PA .A. 

As before, we apply Lemma 5.1.5 to Y to obtain a strictly increasing 
sequence {,I,} of length w  of limit ordinals below IC such that the value of Y 
at subsequences of length n + 2 depends on only the first two terms. Then 
evidently {J(G, ,I,)} obeys the conclusion of Proposition R, for any generic 
G c C. 

The proof that Proposition R is provable in MKC for n = 4, m < co, is 
entirely analogous to the proof in MKC of Proposition P for n = 3, m < o. 

We now prove the remainder of Theorem 5.5. 
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We say that x , ,,.., x, is an (n, k>fundamental sequence of sets of length m 
if x r ,..., x, is an (n, k)-critical sequence of sets and (iii) for all JYi formulas 
9, 1 i s < t < m, and x E [x,1, {a E co: Ix,] I= p(a, x,, x)} E )x11. 

We fix x, ,..., x, to be a (2,3k)-fundamental sequence of sets of length m, 
where k, m are sufficiently large. 

LEMMA 5.5.3. Let s < t < m, x E IxJ, and assume that y, ,..., yb are 27: 
&@table over Jx,I from x,, x. Then every set hyperarithmetic in (x,, x, y) is 
in /x,1. 

Proof Let e be an index of a well ordering of least length, recursive in 
(x,, x, y) such that H&c,, x, y) does not exist in [x,1. Then by (iii), 
H,(x,, x, y) does exist in [x,1. Thus every appropriate H,(x,, x, y) exists in 
1x,1. The lemma follows by another application of (iii). 

We now let W be the set of all (x, R) C T such that (a) for every y E [x,1, 
(x, R, Y) E Ix,,, 0 and @I (x9 RI is well founded with respect to all sets ,?$’ in 
any finite number of elements of Ix, I. 

LEMMA 5.54. There is a unique comparison map in (x,1 between any 
two elements of W. If aI ,..., a,, E W, 8, ,..., & are the comparison maps in 
(x,( between various of the a,, and x E (x,1, then every set hyperarithmetic 
in (a, ,..., a,, PI ,..., A, x) is in Ix, I. 

Proof For the first part, use (a) to join the two elements of W. Use (b) 
to show that partial comparison maps cohere. Use (iii) to obtain a largest 
partial comparison map. And use Lemma 5.5.3 to extend this largest map if 
it is not a comparison map. For the second part, from (a) we see that 
(ai ,..., a,, x) E 1x,1. Now /3, ,..., /3b are suitably definable from (a, ,..., a,). 
Apply Lemma 5.5.3. 

LEMMA 5.5.5. K,,,-* c W. 

Proof Let (x,R)EK,,,-~. By Lemmas5.1.33 and (iii), (x,R)E W. 
We now make W into a relational structure 9 as follows. The domain of 

9 consists of all pairs ((x, R), n), where (x, R) E W and n E x. The equality 
relation of 9 is given by ((x, R), n) E ((y, S), m) if and only if the 
comparison map from (x, R) to (y, S) sends n to m. The E-relation of 3 is 
given by ((x, R), n) 8(( y, S), m) if and only if for the comparison map h 
from (x, R) to (y, S) in 1x,1, we have S(h(n), m). 

LEMMA 5.5.6. 9 I= T with axiom (ix) for all C,* formulas. 

Proof Lemma 5.5.4 provides us with enough flexibility to argue about 
9. Clearly 3 I= T except for (ix). To verify (ix) for J$ formulas, choose 
representatives for the parameters in the C,* formula q, and assume that cp 
has a solution but no E-least solution in 9. Choose a representative for a 
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solution. Then we get a non-well foundedness in the solution in 1x,1, which is 
a contradiction. 

Recall the definition of Qp, 1 < p < m - 3. As before, we have the 
following. 

LEMMA 5.51. All elements of each Qt,, 1 < p < m - 3, are =. For each 
1 =cpcm--4, uEQ,, vEQ,+,, we have 9 k “u, v are inJinite ordinals 
and u < v.” Qp, as a 3-ary relation on 1x,1, is deJinable by a Ei formula 
~(x, R, n, Ixp I) over Ix, 1, which is independent of p. 

LEMMA 5.58. Foreach1<p<m-3,1eta,EQ,.Thenfora111<s< 
t, < t, c m - 3, 1 < s < r, < r2 < m - 3, uEa,, and E: formulas p, we have 
9 k du, a,, a,, , a,*) ++ v(u, a,, a,, , a,J 

Proof The left side of this equivalence can be viewed as a statement in 
Ix, ) about x,, IxI, 1, Ixt,I. The right side can be viewed as the corresponding 
statement about x, , 1 x,, 1, / xIz I. Note that we do not need 1 x, _ 2 I to define 9, 
as we did to define 6Z. 

LEMMA 5.5.9. The following is provable in ZF - 9. If for every k, m 
there is a (2, k)-fundamental sequence of sets of length m, then for all k there 
is an w-model of ZE;, . 

Proof By Lemmas 5.5.8 and 5.1.31. We need to remark that in 
Lemma 5.1.31, we need axiom (ix) of T for all Z$ formulas only. 

LEMMA 5.5.10. The following is provable in ZF - 9. If Proposition R 
holds for n = 4, m < w, for allJinitely Bore1 functions F, then for every k, m 
there is a (2, k)-fundamental sequence of sets of length m. 

Proof Let k, m be given. We define a finitely Bore1 function F: So X 
(Y(w)~)~ + So as follows. Let xi ,..., x5 E S(o)“‘. We define F(xl ,..., x5) 
by cases as follows. 

Case 1. It is not the case that Rng(x,) c Rng(x,). Then set F(x, ,..., x5) 
to be constantly the first term of xi not in Rng(x,). 

Case 2. Case 1 does not apply, and there is a Xi formula q such that for 
some j, {a E 0: Rw(x,) + da, fl, x,(j), Rw(xJ, Rng(x,), Rw(x,))J @ 
Rng(x,). Then let @ be the Z: formula with least Godel number with this 
property, and set F(x, ,..., x&j) = {a E 0: Rw(x,) k @(a, f,, x,(j), Rw(x,), 
b&x,), Rng(x,))}, for all j. 

Case 3. Cases 1, 2 do not apply. Set F(x, ,..., x,) to be constantly {#(p): 
rp is 2: and Rw(x,) + p(f,, Rng(x,), Rw(x,))}. 

Now apply Proposition R to produce an appropriate sequence {Xj} from 
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So of length 2m + 8. Let s Q 2m + 4. Then obviously Case 1 cannot 
apply in the definition of F(x s) s+l~Xs+2,Xs+3~Xs+4 x ) since it is a subse- 
quence of x,+ , . This establishes that Rng(x,) c Rng(x,+ r) for s Q 2m + 4. 

Let s < t, < t2 < t < 2m + 4, s < pi < r2 < t < 2m + 4, where all of these 
numbers are even. Then Cases 1 and 2 do not apply to 
F(x,, x,+ , , xI,, x1*, XJ since this is a subsequence of x,+ , . Hence for all Z: 
formlas P, {a E 0: Rng(x,) k da, fs9 Rng(x,,), Rng(x,,))l E Rng(x,+ J = 
Rng(x,+,). Now by Case 3, for all Z: formulas (p, Rng(x,) + 
d-fs, Rwdx,,), Rw(x,,)) if and only if Rw(x,) k co(%~ Rw(x,J Rw(x,,)). 
Hence we have shown that {n,}, 1 < j < m, is (2, k)-critical. Since Case 2 
never applies, we also see that {xv}, 1 < j < m, is (2, k)-fundamental. 

The same argument shows the following. 

LEMMA 5.511. The following is provable in ZF - 9. If Proposition R 
holds for n, m < 0, for all finitely Bore1 functions F, then for every k, n, m 
there is an (n, kkfundamental sequence of sets of length m. 

This completes the proof of Theorem 5.5. 
The following is obtained using the discussion in Section 1. 

COROLLARY 5.6. It is necessary and stCfJ7cient to use Mahlo cardinals of 
arbitrarily high j7nite order in order to prove Proposition R, even for m < o 
and Jinitely Bore1 functions F. It is necessary to go beyond ZFC and 
suficient to use MKC in order to prove Proposition R for n = 4, m < co, and 
finitely Bore1 functions F. 

We now mention an important metamathematical point. It is already clear 
that if we relativize Propositions P-R to the universe of constructible sets, 
then the resulting propositions also have the metamathematical properties 
cited in this section. (In fact, the relativizations are equivalent, because the 
statements are 7ri .) 

However, we can say much more. Let S be the axioms of set theory 
consisting of extensionality, pairing, union, infinity, &separation, C,- 
replacement, and “every well ordering of w  is isomorphic to an ordinal.” Let 
A be any transitive model of S (perhaps a proper class) which is given by a 
description within ZFC. By this we mean that A is defined as {x: p(x)} for 
some formula rp of set theory with only ‘x’ free, and such that ZFC I- “A is a 
transitive model of S.” Typical cases are the minimum model of ZF, and the 
minimum model of ZF - 9. 

THEOREM 5.7. The relativizations of Propositions P-R to A (using Bore1 
codes) share the same metamathematical properties @‘ven earlier in this 
section for Propositions P-R. 
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Proof. Firstly, A must be an admissible class such that x E A n 9(w) + 
x+ E A, where x+ is the least admissible set with x present. This tells us that 
the relativized forms follow immediately from the original forms, in ZFC. 
Secondly, in obtaining all of our reversals in this section for 
Propositions P-R, we used only arithmetically coded Bore1 functions F. But 
Propositions P-R for such F follow immediately from their relativizations to 
A (even just for such F). 

The following metamathematical equivalents can be obtained from 
examination of the proofs given in this section. 

THEOREM 5.8. The following are provably equivalent in ZF - 9’: 
(a) any of Propositions P-R formulated with Bore1 codes, with or without 
restriction to finitely Bore1 functions, with or without restriction to m < W, 
(b)for every x c co, n < w, there is an w-model of ZFC + (3~) (K is ii- 
Mahlo) in which x is present. The following are provably equivalent. in 
ZF - 98: (c)Proposition R formulated with Bore1 codes, for n = 4, m < co, 
(d) for every x c co, n < w, there is an co-model of ZFC, in which x is 
present. 

Finally, we remark that if we strengthen the invariance condition on F in 
Propositions P, Q to assert that if y, k zi ,..., y,, zz z, then F(x, y ,,..., y,) = 
F(x, zl,..., zJ, and if we strengthen the invariance condition on F in 
Proposition R to assert that if y2 E z~,..., yn z z,, u E H then F(x, y, o o, 
z2,..., z,J = F(x, Y,  9 ~2,..., Y,) o u, then we retain all of the metamathematical 
properties cited here. (In fact, we have provable equivalences within 
ZFC - 9.) 

APPENDIX 

Here we give a Baire category proof of the basic Bore1 diagonalization 
theorem, Proposition C, as referred to in the Introduction. 

The proof is essentially equivalent to the forcing proof given in Section 3. 
The unusual feature here is that, instead of applying the Baire category 
theorem to a separable space such as the reals under the infinite product 
topology I?‘, where [R is given its usual separable topology, we must use the 
infinite product topology I?“, where @ is the reals under the discrete 
topology. 

The necessity of using the discrete topology on IR, or at least some non- 
separable topology, is indicated by the following result: Theorem 3.1 cannot 
be proved in a suitable formalization of “separable” or “essentially coun- 
table” set theory, given below. 
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We have already shown that Proposition C cannot be proved in the usual 
formalization of countable set theory-namely, ZFC - 9’. In this theory, no 
uncountable sets can be proved to exist. In fact, ZFC - 9 + “all sets are 
countable” is not only consistent, but also does not suffice to prove 
Proposition C. 

Thus in ZFC - 9, we cannot construct iR as a set. In essentially coun- 
table set theory, we use the axiom “every countable set has a power set” to 
construct all the usual separable spaces. We will give the exact formalization 
later. 

We begin with a lemma from general topology. Let T be a topological 
space. The BoreZ sets in T form the least o-algebra of subsets of T containing 
the open sets. A nowhere dense set is a set whose closure contains no open 
set. A meager set is a countable union of nowhere dense sets. 

LEMMA 1. Every Bore1 set in T darers from some open set by a meager 
set; i.e., every Bore1 set has the Baire property. 

ProoJ It is obvious that the Bore1 sets form the least class of sets 
containing all open sets, closed under complements, and closed under coun- 
table unions. Suppose A A B is meager, B open. Then -A A -B is meager. 
Now -B A Int(-B) is meager. Hence -A A Int(-B) is meager. Finally, let 
{A,} be given, {B,} open, and each A,, A B, meager. Then U. A,, A U” B, c 
U,, (A, A B,), which is meager. 

Let I? be R with the discrete topology. Let Q” be (I?)” with the infinite 
product topology. 

LEMMA 2. No nonempty open set in Q” is meager in I?“. 

Proof A set in I?” is said to be dense if its closure is everything. Alter- 
natively, a set V in IQ” is dense if it meets every nonempty open set in lQN. It 
suffices to prove that the intersection of any sequence of dense open sets is 
dense. I 

For finite sequences s of real numbers, we let G, be the set of all elements 
of iRN which extend s. The G, form a basis for the topology of Q”. Let {V,} 
be a sequence of dense open sets, and let V be any open set. Let {s,} be a 
strictly increasing sequence of finite sequences of real numers defined as 
follows. Choose s, so that G,, c Vi n V. Choose s”+, so that G,,,, c 
Gs/’ V,+I. Observe that {s,} determines an element of [RN which is in 
n. V,n V. This completes the proof of the lemma. 

We now assume that F: IRN+ R is a Bore1 function such that if y is 
obtained from x by permuting finitely many coordinates, then F(x) =F(y). 

For each rational numer q, let A, = {x: F(x) < q}. 

LEMMA 3. For each q, either A, or its complement is meager in B”. 
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Proof: Any permutation r of finitely many coordinates induces a 
homeomorphism of Q”. Let A, A V be meager, where Y is open. Then each 
t[A,] Ar[Y] =A,Ar[I’] is meager. Therefore A, A U, r[ V] is meager. It is 
easy to see that if Vf 0 then U, r[ V] is dense. In this case, since 
U, t[ I’] -A, is meager and -lJ, r[ V] is meager, we see that -A, is meager. 
If V = 0 then clearly A, is meager. 

LEMMA 4. There is an x such that F(x) E Rng(x). 

Proof: Consider the set S of rationals q such that A, is meager. It is 
obvious that S is closed under <. Now S cannot be all rationals, since a 
countable union of meager sets is meager. Similarly (using Lemma 3) S # 0. 
Let z be the least upper bound of S. Then {x: F(x) < z} is meager. Since for 
each rational q > z, {x: F(x) > q} is meager (by Lemma 3), we see that 
{x: F(x) = z } is the complement of a meager set. Now, the complement of 
any meager set must be dense. Hence {x: F(x) = z} has an element which 
begins with z, and we are done. 

Lemma 4 concludes this proof of Proposition C. 
We now present the axiomatic system of essentially countable set theory. 

The idea here is that even though uncountable sets can be constructed in 
ECST, only limited use can be made of their uncountability. We give the 
axioms of ECST informally. 

1. Extensionality. Two sets are equal if and only if they have the same 
elements. 

2. Pairing. Each {a, b} exists. 

3. Union. Each {x: (3~ E a)@ E y)} exists. 
4. Infinity. The least set o such that $ E o & (Vx)(x E w -+ 

x U {x} E w) exists. 
5. Limited separation, {x E a: p(x)} exists, where p(x) is any formula 

(possibly with parameters) in which all quantifiers are bounded to sets (so 
called A,-formulas). 

6. Limited power set. The set of all subsets of any countable set exists. 

7. Limited replacement. If (Vx E a)P! YM-T Y)) then 

(YXVX E aNP(-% .fW))~ where q(x, y) is any formula (possibly with 
parameters) in which all quantifiers are bounded to sets (so-called A,- 
formulas). 

8. Choice. Every set of nonempty sets has a choice function. 

It is possible to add certain stronger principles such as well orderings and 
translinite recursion, but we do not go into these here. 

The reader can convince himself that all of the usual separable 



ABSTRACT SETTHEORY 279 

mathematics can be formalized in ECST. One of the trickier matters is to 
construct the set of all Bore1 sets in a space. One cannot simply take the 
intersection of all a-algebras containing the open sets for two reasons. 
Firstly, we do not know that there are any such u-algebras since, e.g., we 
cannot construct the power set of the space (the space has power c). 
Secondly, taking the intersection would normally be done via 
separation-however, the formula would have unbounded set quantifiers. 

Instead, one first develops the theory of well founded trees of finite 
sequences of natural numbers, and then uses them to describe the recipes for 
constructing the Bore1 sets. Topmost nodes are labelled with open sets. Other 
nodes are labelled with the instructions “complement,” “union,” or “inter- 
section.” For any such labelled tree and any point in the space, one proves 
that there is a unique “answering” function which assigns to each node the 
answer “yes” or “no” as to whether the point belongs to the Bore1 set given 
by the tree at that node. A point gets into the Bore1 set given by the labelled 
tree if the answer is “yes” at the vertex of the tree. We can then use limited 
separation and limited replacement to obtain the set of all Bore1 sets. 

However, the proof given here of Proposition C cannot be given in ECST. 
The principal difficulty is with Lemma 1 applied to a non-separable space 
such as eN. Here separation is needed with quantifiers ranging over subsets 
of RN just to construct, e.g., the interior of any subset of Q”. 

The following will be proved elsewhere, and establishes that Proposition C 
is unprovable in ECST. 

THEOREM. ECST is a conservative extension of second order arithmetic 
(2,) for 7r: sentences. 
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