Universal deformation formulas and breaking symmetry*

Vincent Coll
Department of Mathematics, Ursinus College, Collegeville, PA 19426, USA
Murray Gerstenhaber**
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA
Samuel D. Schack
Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14214-3093, USA

Communicated by P. Freyd
Received 2 December 1992
Revised 23 December 1992

Abstract

Coll, V., M. Gerstenhaber and S.D. Schack, Universal deformation formulas and breaking symmetry, Journal of Pure and Applied Algebra 90 (1993) 201-219. We show that an algebra with a non-nilpotent Lie group of automorphisms or "symmetries" (e.g., smooth functions on a manifold with such a group of diffeomorphisms) may generally be deformed (in the function case, "quantized") in such a way that only a proper subgroup of the original group acts. This symmetry breaking is a consequence of the existence of certain "universal deformation formulas" which are elements, independent of the original algebra, in the tensor algebra of the enveloping algebra of the Lie algebra of the group.

Introduction

We show that if an algebra A admits a Lie group of automorphisms of dimension at least two then A may generally be deformed in such a way that the full group no longer acts, and we examine (but are unable to classify) the ways by which such "spontaneous symmetry breaking by deformation" may occur. A basic example of an algebra with a continuous group of symmetries is the algebra of smooth (or, in

[^0]suitable cases, analytic or algebraic) functions on a manifold X which itself possesses a "large" Lie group G of automorphisms. This commutative function algebra is then generally deformed to a non-commutative one, a process frequently called "quantization". A special case, in turn, is that where the manifold is the group G itself, in which case its Hopf algebra, $\mathcal{O}(G)$, of polynomial functions is deformed into a "quantum group".
The phenomenon of general symmetry breaking just described results from the existence of certain "universal deformation formulas" (udfs), whose discussion will require a brief review of the algebraic deformation theory introduced in [5]. However, the oldest general formula [6], which serves a paradigm for the others, is both easy to understand and ubiquitous. Suppose that φ and ψ are commuting derivations of an algebra A of characteristic zero. We can then define a new formal multiplication (technically not on A itself but on the algebra $A[[t]]$ of formal power series on $A-$ something we may suppress), by the exponential deformation formula
$$
a *_{t} b=a b+t \varphi(a) \psi(b)+\frac{t^{2}}{2!} \varphi^{2}(a) \psi^{2}(b)+\frac{t^{3}}{3!} \varphi^{3}(a) \psi^{3}(b)+\cdots
$$

If A is associative then this gives a "one-parameter family" of associative multiplications on the "same" underlying vector space as that of A, a statement to be taken literally only when A is real or complex (or even p-adic!) and the series is well-defined for small values of t. The Lie group of symmetries of A which induced this deformation is that whose infinitesimal generators are φ and ψ. Note that A may be commutative but the deformed algebra generally need not be, for while φ and ψ commute there may be elements a and b in A with $\varphi(a) \psi(b) \neq \psi(a) \varphi(b)$, so $a *_{t} b \neq b *_{t} a$.
The formula displayed above remains meaningful for Lie algebras and may also create them. For if an associative algebra A deforms then the Lie algebra obtained by taking commutators also does so, and when A is commutative but deforms to a noncommutative algebra, then this commutator algebra becomes non-trivial. The infinitesimal of this associated Lie algebra deformation is then generally called a Poisson bracket.

A fundamental special case of this formula, antedating algebraic deformation theory by 15 years, first appears in Moyal's work [16] on statistical mechanics. Later, using algebraic deformation theory, Lichnerowitz [15] applied it to produce "star products", i.e., deformations of the Poisson Lie algebra of a symplectic manifold, but needed the vanishing of certain deRham cohomology groups. Subsequently Dewilde and Lecomte removed the restrictive hypothesis, thereby showing that quantization was always possible (cf. [3]). The Berezin-Toeplitz-Wick calculus uses the exponential formula to realize a sizable sub-algebra of the algebra of Toeplitz operators on Fock space as a deformation of the algebra of functions having linear exponential growth (e.g., polynomials and linear exponentials in z and \bar{z}). More recently it has been used to obtain new quantum groups (cf. [8]). In this paper we will exhibit other udfs, and will show that, in general, an algebra A with a Lie group of automorphisms may be deformed so that only a nilpotent subgroup remains.

In what follows all rings will be assumed to contain unity. The ground ring k will be a commutative unital ring and "algebra" will always mean an associative unital k-algebra. All unsubscripted tensor and wedge products will be formed in the category of k-modules. ${ }^{1}$

Cohomology and deformation theory

Let M be a bimodule over the algebra A and $C^{n}(A, M)=\operatorname{Hom}_{k}\left(A^{\otimes n}, M\right)$ be the k-module of Hochschild n-cochains of A with coefficients in M. It is frequently convenient to view the n-cochains for $n \neq 0$ as k-multilinear maps

$$
A \times \cdots \times A(n \text { times }) \rightarrow M
$$

and to identify $C^{0}(A, M)=\operatorname{Hom}_{k}\left(A^{\otimes 0}, M\right)=\operatorname{Hom}_{k}(k, M)$ with M. An element of $C^{n}(A, A)$ may be denoted F^{n} when it is useful to note its dimension. The coboundary operator $\delta^{n}: C^{n}(A, M) \rightarrow C^{n+1}(A, M)$ is defined by

$$
\begin{aligned}
\left(\delta^{n} F^{n}\right) & \left(a_{1}, \ldots, a_{n+1}\right) \\
= & a_{1} F\left(a_{2}, \ldots, a_{n+1}\right)+\sum_{i=1}^{n}(-1)^{i} F\left(a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n+1}\right) \\
& +(-1)^{n+1} F\left(a_{1}, \ldots, a_{n}\right) a_{n+1}
\end{aligned}
$$

and has square zero. We set ker $\delta^{n}=Z^{n}(A, M)$, the module of n-cocycles; this contains $\operatorname{im} \delta^{n-1}=B^{n}(A, M)$, the module of n-coboundaries, and we obtain $H^{n}(A, M)=$ $Z^{n}(A, M) / B^{n}(A, M)$, the nth Hochschild cohomology group. Also note that $Z^{1}(A, M)=$ $\operatorname{Der}(A, M)$, the k-module of k-linear derivations of A into M, which is a Lie algebra when $M=A$. Normalized n-cochains satisfy the further condition $\Gamma\left(a_{1}, \ldots, a_{n}\right)=0$ if any $a_{i} \in k$. These form a subcomplex $C_{\stackrel{\rightharpoonup}{\bullet}}^{\bullet}(A, M)$ of $C^{\bullet}(A, M)$, and the inclusion $C_{\dot{N}}^{\bullet}(A, M) \hookrightarrow C^{\bullet}(A, M)$ induces an isomorphism, $H_{N}^{\bullet}(A, M) \cong H^{\bullet}(A, M)$ (cf. [9]). In the case $M=A$, which we need for deformation theory, the cohomology ring $H^{\bullet}(A, A)$ has the structure of a G-algebra (cf. [5]). That is, it is a graded k-module $H^{\bullet}=\left\{H^{n}\right\}$ together with two multiplications, $(\eta, v) \mapsto \eta v$ ("cup") and $(\eta, v) \mapsto[\eta, v]$ ("bracket") satisfying the following three properties:
(1) $(\eta, v) \mapsto \eta v$ is an associative graded commutative product; i.e., for $\eta^{n} \in H^{n}$ and $v^{m} \in H^{m}$ we have

$$
\eta^{m} v^{n}=(-1)^{m n} v \eta \in H^{m+n} .
$$

[^1](2) $(\eta, v) \mapsto[\eta, v]$ is a graded Lie product for which the grading is the degree reduced by 1 , so $\eta^{m} \in H^{m}$ has reduced degree $m-1$ and $\left[\eta^{m}, v^{n}\right] \in H^{m+n-1}$. The bracket then satisfies
$$
\left[\eta^{m}, v^{n}\right]=-(-1)^{(m-1)(n-1)}\left[v^{n}, \eta^{m}\right]
$$
and
\[

$$
\begin{aligned}
& (-1)^{(m-1)(n-1)}\left[\eta^{m},\left[\lambda^{p}, v^{n}\right]\right]+(-1)^{(p-1)(m-1)}[\lambda,[v, \eta]] \\
& \quad+(-1)^{(n-1)(p-1)}[v,[\eta, \lambda]]=0 .
\end{aligned}
$$
\]

The associative and graded Lie products are connected by the following property:
(3) $\left[-, \lambda^{p}\right]$ is a graded derivation of degree $p-1$ of the associative algebra structure; that is, for all $\lambda^{p} \in H^{p}$,

$$
\left[\eta^{m} v^{n}, \lambda^{p}\right]=[\eta, \lambda] v+(-1)^{m(p-1)} \eta[v, \lambda] .
$$

For $H^{\bullet}(A, A)$ we describe products at the cochain level, and observe that they descend to cohomology, where (3) also holds. The graded associative multiplication on $C^{\bullet}(A, A)$, denoted by - , is defined by

$$
\left(F^{m} \smile G^{n}\right)\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)=F^{m}\left(a_{1}, \ldots, a_{m}\right) G^{n}\left(b_{1}, \ldots, b_{n}\right) .
$$

While the cup product uses the multiplication in A, the graded Lie bracket on $C^{\bullet}(A, A)$ does not. For this, first define $F^{m} \bar{o}_{i} G^{n} \in C^{m+n-1}(A, A)$ for $1 \leqslant i \leqslant m$ by

$$
\begin{aligned}
& F^{m} \bar{o}_{i} G^{n}\left(a_{1}, \ldots, a_{m+n-1}\right) \\
& \quad=F^{m}\left(a_{1}, \ldots, a_{i-1}, G\left(a_{i}, \ldots, a_{i+n-1}\right), a_{i+n}, \ldots, a_{m+n-1}\right)
\end{aligned}
$$

(G is "composed into" the i th slot of F). The (total) composition product is

$$
F^{m} \bar{o} G^{n}=\sum_{i=1}^{m}(-1)^{(i-1)(n-1)} F^{m} \bar{o}_{i} G^{n} .
$$

Note that the associativity of the multiplication α is equivalent to

$$
\alpha \bar{o} \alpha=0
$$

or, equally well, $\alpha \bar{o}_{1} \alpha=\alpha \bar{o}_{2} \alpha$. The graded commutator

$$
\left[F^{m}, G^{n}\right]_{G}=F^{m} \bar{o} G^{n}-(-1)^{(m-1)(n-1)} G^{n} \bar{o} F^{m}
$$

is then a graded Lie product. Note that

$$
\delta F^{n}=(-1)^{n+1}\left[\alpha, F^{n}\right]_{G}=-[F, \alpha]_{G} .
$$

Also $C^{1}(A, A)=\operatorname{End}_{k}(A)$, is an associative algebra under composition, and $[-,-]_{G}$ coincides with the usual Lie product of endomorphisms since $F^{1} \bar{\circ} G^{1}=F G$. More generally, $F^{1} \bar{\circ} G=F^{1} \bar{o}_{1} G=F \circ G$, for every cochain G. One has

$$
\delta\left(F^{m} \smile G^{n}\right)=\delta F^{m} \smile G^{n}+(-1)^{m} F^{m} \smile \delta G^{n},
$$

so

$$
Z^{n} \smile Z^{m} \subset Z^{n+m} \quad \text { and } \quad Z^{n} \smile B^{m}, B^{n} \smile Z^{m} \subset B^{n+m},
$$

and one defines the cup product of cohomology classes by

$$
\left[F^{m}\right] \smile\left[G^{n}\right]=\left[F^{m} \smile G^{n}\right] \text { for } F^{m} \in Z^{m}, G^{n} \in Z^{n} .
$$

At the cohomology level, - is graded commutative,

$$
\left[F^{m}\right]-\left[G^{n}\right]=(-1)^{m n}\left[G^{n}\right]-\left[F^{m}\right],
$$

by virtue of the identity [5]

$$
\begin{gathered}
\delta\left(F^{m} \bar{\circ} G^{n}\right)-F^{m} \bar{\circ} \delta G^{n}-(-1)^{n-1} \delta F^{m} \overline{\bar{c}} G^{n} \\
=(-1)^{n}\left(G^{n} \smile F^{m}-(-1)^{m n} F^{m} \smile G^{n}\right) .
\end{gathered}
$$

This also implies that the graded Lie product descends to cohomology. In particular, for derivations φ and ψ one has

$$
\delta(\varphi \psi)=-(\psi \smile \varphi+\varphi \smile \psi)
$$

which generalizes inductively to give
Lemma 1. If $\varphi_{1}, \ldots, \varphi_{n}$ are derivations of A into itself, then

$$
\delta\left(\varphi_{1} \cdots \varphi_{n}\right)=-\sum_{\substack{i_{1}<\cdots<i_{r} \\ i_{r+1}<\cdots<i_{n}}} \varphi_{i_{1}} \varphi_{i_{2}} \cdots \varphi_{i_{r}}-\varphi_{i_{r+1}} \varphi_{i_{r+2}} \cdots \varphi_{i_{n}}
$$

The sum is over all partitions of $\{1, \ldots, n\}$ into two non-empty subsets. In particular, writing φ^{r} for the rth iterate of a single derivations φ, we have

$$
\delta \varphi^{n}=-\sum_{i=1}^{n-1}\binom{n}{i} \varphi^{i} \smile \varphi^{n-i}
$$

That $[-,-]_{G}$ acts as graded derivations of \smile on $H^{\bullet}(A, A)$ follows from another identity [5]:

$$
\left[F^{m} \smile G^{n}, H^{p}\right]_{G}=\left[F^{m}, H^{p}\right]_{G} \smile G^{n}+(-1)^{m(p-1)} F^{m} \smile\left[G^{n}, H^{p}\right]_{G}+\delta E,
$$

where

$$
E=\sum_{i=1}^{p-1} \sum_{j=m+1}^{m+p-2}(-1)^{(m-1) i+(n-1) j}\left(H^{p} \overline{\mathrm{O}}_{i} F^{m}\right) \bar{o}_{j} G^{n}
$$

We note a few other useful identities. Trivially,

$$
\left(F^{p} \smile G\right) \bar{o}_{i} H= \begin{cases}\left(F \bar{o}_{i} H\right) \smile G & \text { for } i \leqslant p \\ F \smile\left(G \bar{o}_{i-p} H\right) & \text { for } i>p\end{cases}
$$

so

$$
\left(F^{p} \smile G\right) \bar{\circ} H^{q}=(F \bar{\circ} H) \smile G+(-1)^{p(q-1)} F \smile(G \bar{\circ} H) .
$$

An easy induction establishes
Lemma 2. If $\varphi_{2}, \ldots, \varphi_{p} \in \operatorname{Der}(A, A)$ and $F, G \in C^{\bullet}\{A, A\}$ then

$$
\left(\varphi_{1} \cdots \varphi_{p}\right) \bar{o}(F \smile G)=\sum_{\substack{i_{1}<\cdots<i_{r} \\ i_{r}+1<\cdots<i_{p}}}\left(\varphi_{i_{1}} \cdots \varphi_{i_{r}} \bar{\sigma} F\right) \smile\left(\varphi_{i_{r+1}} \cdots \varphi_{i_{p}} \bar{\circ} G\right) .
$$

Here the sum ranges over all partitions of $\{1, \ldots, r\}$ into two (possibly empty) subsets. (Interpret an empty composite as the identity map in $C^{1}(A, A)$.) in particular, we have the standard Leibniz rule,

$$
\varphi^{p} \bar{o}(F \smile G)=\sum_{r=0}^{p}\binom{p}{r}\left(\varphi^{r} \bar{\circ} F\right) \smile\left(\varphi^{p-r} \bar{o} G\right) .
$$

The exterior algebra $\wedge^{\bullet} \mathfrak{g}$ on a Lie algebra g has a natural G-algebra structure in which the graded associative multiplication is just the exterior product, \wedge, and the bracket is the Schouten bracket $[-,-]_{s}$ described as follows:
(i) If $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{q} \in \mathfrak{q}$, then

$$
\left[x_{1}, y_{1} \wedge \cdots \wedge y_{q}\right]_{s}=\sum(-1)^{j-1} y_{1} \wedge \cdots \wedge\left[x_{1}, y_{j}\right] \wedge \cdots \wedge y_{q}
$$

(ii) Setting $x_{1} \wedge \cdots \wedge x_{p}=\xi^{p}$ and $y_{1} \wedge \cdots \wedge y_{q}=\eta^{q}$, then

$$
\left[\xi^{p}, \eta^{q}\right]_{s}=\sum(-1)^{(i-1)} x_{1} \wedge \cdots \wedge\left[x_{i}, \eta^{q}\right] \wedge \cdots \wedge x_{p}
$$

Combining these we obtain
(iii) If $x_{1} \wedge \cdots \wedge \hat{x}_{i} \wedge \cdots \wedge x_{p}=\xi^{i, p}$ and $y_{1} \wedge \cdots \wedge \hat{y}_{j} \wedge \cdots \wedge y_{q}=\eta^{j, q}$, then

$$
\begin{aligned}
{\left[\xi^{p}, \eta^{q}\right]_{s} } & =\left[x_{1} \wedge \cdots \wedge x_{q}, y_{1} \wedge \cdots \wedge y_{q}\right]_{s} \\
& =(-1)^{(p-1)(q-1)} \sum(-1)^{i+j}\left[x_{i}, y_{j}\right] \wedge \xi^{\hat{i}, p} \wedge \eta^{\hat{j}, q}
\end{aligned}
$$

where \hat{x}_{i}, \hat{y}_{j} denote the omission of x_{i} and y_{j} respectively.
The functor $\mathfrak{g} \mapsto \wedge^{\bullet} \mathfrak{g}$ is easily seen to be the left adjoint to the forgetful functor G-algebras \rightarrow Lie algebras, $H^{\bullet \bullet} \rightarrow H^{1}$. This means, in particular, that $[-,-]_{s}$ is the unique graded Lie bracket on $\wedge^{\bullet} \mathrm{g}$ which restricts to the given bracket on \mathfrak{g} and, together with \wedge, makes $\wedge^{\bullet} g$ a G-algebra.

A deformation of an (associative) algebra A is a new (associative) multiplication on the formal power series ring $A[[t]]$ of the form

$$
\alpha_{t}=\alpha+t \alpha_{1}+t^{2} \alpha_{2}+\cdots
$$

where $\alpha\left(=\alpha_{0}\right)$ is the original multiplication and each α_{i} is a k-bilinear map (2-cochain) $A \times A \rightarrow A$, tacitly extended to be $k[[t]]$ bilinear. We denote the deformed algebra by A_{t}. (Adaptation to other categories, e.g. Lie algebras, is clear.) A second deformation A_{t}^{\prime}, with multiplication α_{t}^{\prime}, is equivalent to A_{t} if there is a $k[[t]]$-algebra isomorphism $f_{t}: A_{t}^{\prime} \rightarrow A_{t}$ of the form $f_{t}=\mathrm{id}_{A}+t f_{1}+t^{2} f_{2}+\cdots$ where each f_{i} is a k-linear map (1-cochain) $A \rightarrow A$ (again extended to be $k[[t]]$-linear). The condition that f_{t} be an algebra map may be rewritten as

$$
\left(\alpha_{t} \bar{o}_{2} f_{t}\right) \bar{o}_{1} f_{t}=f_{t} \bar{o} \alpha_{t}^{\prime}
$$

or, equivalently, $\alpha_{t}^{\prime}=f_{t}^{-1} \bar{o}\left(\left(\alpha_{t} \bar{o}_{2} f_{t}\right) \bar{o}_{1} f_{t}\right)$. When this is the case, $\alpha_{1}^{\prime}=\alpha_{1}+\delta f_{1}$. One may easily check that the associativity of α_{t} is equivalent to $\alpha_{t} \bar{o} \alpha_{t}=0$. Gathering the coefficients of t^{n} for each n gives the equivalent set of conditions

$$
\left(*_{n}\right)
$$

$$
\begin{equation*}
\sum_{\substack{t+m=n \\ 1, m>0}} \alpha_{l} \bar{o} \alpha_{m}=\delta \alpha_{n} \quad \text { for all } n=1,2, \ldots, \tag{n}
\end{equation*}
$$

from which one sees, in particular, that $\delta \alpha_{1}=0$. It follows that the integrability of an $\alpha_{1} \in Z^{2}(A, A)$, i.e., the existence of a deformation with the given α_{1} as its linear term, depends only on the cohomology class $\left[\alpha_{1}\right]$ of α_{1}. We may view $\left[\alpha_{1}\right] \in H^{2}(A, A)$ as the infinitesimal of the equivalence class of the deformation A_{t}. A trivial deformation is one equivalent to the $k[[t]]$-bilinear extension of the original multiplication. If one has only $\alpha+t \alpha_{1}+\cdots+t^{r} \alpha_{r}$ satisfying $\left(*_{n}\right)$ for $n=1, \ldots, r$ then

$$
\alpha_{1} \bar{o} \alpha_{r}+\alpha_{2} \bar{o} \alpha_{r-1}+\cdots+\alpha_{r} \bar{o} \alpha_{1} \in Z^{3}(A, A),
$$

and the class of this cocycle is the obstruction to finding an α_{r+1} such that $\left(*_{r+1}\right)$ is satisfied. In particular, $\mathrm{Sq}\left[\alpha_{1}\right]=\left[\alpha_{1} \bar{\circ} \alpha_{1}\right] \in H^{3}(A, A)$, is the primary obstruction to integrating $\left[\alpha_{1}\right]$.

Suppose now that φ and ψ are derivations of A into itself. Then $\varphi \smile \psi$ is a Hochschild 2-cocycle though not, in general, the infinitesimal of a deformation. However, if φ and ψ commute and k contains \mathbb{Q}, then

$$
\alpha_{t}=\alpha+t \varphi \smile \psi+\frac{t^{2}}{2!} \varphi^{2} \smile \psi^{2}+\frac{t^{3}}{3!} \varphi^{3} \smile \psi^{3}+\cdots
$$

defines a deformation, and in characteristic $p>0$ continues to do so, provided $\varphi^{p}=\psi^{p}=0$. (Here, as earlier, φ^{n} denotes the n-fold composite of φ with itself.) This deformation was denoted $\exp t(\varphi \smile \psi)$ in [7], but this notation is ambiguous; one should write $\alpha \exp t(\varphi \otimes \psi)$. For note that we may have $\varphi \smile \psi=\tilde{\varphi} \smile \tilde{\psi}$ for some other pair of commuting derivations while $\alpha \exp t(\varphi \otimes \psi) \neq \alpha \exp t(\tilde{\varphi} \otimes \tilde{\psi})$. With this notation, the last formula may be rewritten to give the exponential deformation formula:

$$
\alpha_{t}=\alpha\left(1 \otimes 1+t \varphi \otimes \psi+\frac{t^{2}}{2!} \varphi^{2} \otimes \psi^{2}+\frac{t^{3}}{3!} \varphi^{3} \otimes \psi^{3}+\cdots\right) .
$$

This may be "skew-symmetrized" (cf. [17]) as follows: Setting $\varphi \wedge \psi=$ $\frac{1}{2}(\varphi \otimes \psi-\psi \otimes \varphi)$ one has $\varphi \wedge \psi=\varphi \otimes \psi-\delta(2 \varphi \psi)$, so there is an equivalent deformation

$$
\alpha_{t}^{\prime}=\alpha\left(1 \otimes 1+t \varphi \wedge \psi+\frac{t^{2}}{2!}(\varphi \wedge \psi)^{2}+\cdots\right)=\alpha e^{t \varphi \wedge \psi}
$$

In particular when φ and ψ are commuting tangent vector fields on the smooth manifold X, this "integrates" the Poisson bracket $\varphi \wedge \psi$ to a deformation of $A=C^{\infty}(X)$.

Universal deformation formulas

The first known "universal deformation formula" (udf) based on a Lie algebra \mathfrak{g} was the exponential deformation formula of the previous section. In this case g is the unique abelian Lie algebra of dimension two, which we henceforth denote \mathfrak{a}_{2}. The construction of udfs based on \mathfrak{a}_{2} and other Lie algebras parallels deformation of an algebra and their explicit construction is the subject of this section.

To begin with, we note that the structure of $C^{\bullet}(A, A)$ is richer still than described in the previous section - it is a "unital comp(osition) algebra": By definition, a (right) comp algebra C^{\bullet} is a graded k-module C^{0}, C^{1}, \ldots together with a distinguished
element $\pi \in C^{2}$ and k-bilinear operations $\bar{o}_{i}: C^{p} \times C^{q} \rightarrow C^{p+q-1}$ for $i \geqslant 1$ such that $f^{p} \bar{o}_{i} g=0$ if $i>p$,

$$
\left(f^{p} \bar{o}_{i} g^{q}\right) \bar{o}_{j} h^{r}= \begin{cases}\left(f \bar{o}_{j} h\right) \bar{o}_{i+r-1} g & \text { if } j<i, \\ f \bar{o}_{i}\left(g \bar{o}_{j-i+1} h\right) & \text { if } i \leqslant j<q+i, \\ \left(f \bar{o}_{j-q+1} h\right) \bar{o}_{i} g & \text { if } j \geqslant q+i\end{cases}
$$

and $\pi \bar{o}_{1} \pi=\pi \bar{o}_{2} \pi$. (The first and third parts of the equation displayed above are equivalent; we include them for symmetry and completeness.) We then define \bar{o} and $[-,-]$ as for the case of $C^{\bullet}(A, A)$. Moreover, we can define a coboundary operator and a "cup product" by $\delta f=-[f, \pi]$ and $f \sim g=\left(\pi \bar{o}_{2} g\right) \bar{o}_{1} f$. (The condition on π insures that $\delta^{2}=0$.) Now all of our previous assertions for $C^{\bullet}(A, A)$ carry over to an arbitrary comp algebra C^{\bullet}. In particular, the homology $H\left(C^{\bullet}\right)$ is a G-algebra. (This is essentially what is proved in [5]; the claim in [7] that the same is true for the "composition complexes" defined therein is not quite correct because the relationship between \bar{o}_{i} and - is not precise enough there.) A comp algebra is unital if there are (necessarily unique) elements $1 \in C^{0}$ and $I \in C^{1}$ such that $\pi \bar{o}_{1} 1=\pi \bar{o}_{2} 1=I$ and $I \bar{o} f=f \bar{o}_{i} I=f$ for all p, all $f \in C^{p}$ and all $i \leqslant p$. The element 1 is then an identity for \smile in both C^{\bullet} and $H\left(C^{\bullet}\right)$. Also, $\pi=I \smile I=\delta I$.

As in the case of cochains, C^{1} is an associative algebra under $\bar{o}=\bar{o}_{1}$ and, hence, a Lie algebra under the commutator $[-,-]$. The 1 -cocycles $Z^{1}\left(C^{\bullet}\right)$ again comprise a Lie subalgebra. Now, with the evident maps, unital comp algebras form a category and, clearly, the assignment $C^{\bullet} \mapsto Z^{1}\left(C^{\bullet}\right)$ is a functor. This functor has a left adjoint. That is, for each Lie algebra \mathfrak{g} there is a "universal" unital comp algebra, denoted $T^{\bullet} U \mathfrak{g}$, characterized by the fact that there is a natural bijection between Lie algebra maps $\mathfrak{g} \rightarrow Z^{1}\left(C^{\bullet}\right)$ and unital comp algebra maps $T^{\bullet} U \mathfrak{g} \rightarrow C^{\bullet}$. A special case occurs for each Lie algebra map $\mathfrak{g} \rightarrow \operatorname{Der}(A, A)$. Such morphisms arise, in particular, when a Lie group G acts on A and g is the Lie algebra of G.
The universal unital comp algebra on \mathfrak{g} is, as an algebra, just the tensor algebra $T^{\bullet} U \mathfrak{g}$ of the universal enveloping algebra $U \mathfrak{g}$ of \mathfrak{g}. To define the comp algebra structure, first note that $U \mathfrak{g}$ is a bialgebra (in fact, a Hopf algebra) with comultiplication $\Delta: U \mathfrak{g} \rightarrow U \mathfrak{g} \otimes U \mathfrak{g}$ defined by $\Delta g=1 \otimes g+g \otimes 1$ for $g \in \mathfrak{g}$ (the primitives of $U \mathfrak{g}$) and $\Delta(u w)=\Delta(u) \Delta(w)$ for $u, w \in U \mathfrak{g}$. Then, following [7], we can make the tensor algebra $T U$ on any bialgebra U (and so, in particular, for $U=U \mathfrak{g}$) into a comp algebra by setting

$$
\begin{aligned}
& \left(u_{1} \otimes \cdots \otimes u_{p}\right) \bar{o}_{i}\left(u_{1}^{\prime} \otimes \cdots \otimes u_{q}^{\prime}\right) \\
& \quad=\sum u_{1} \otimes \cdots \otimes u_{i-1} \otimes u_{i,(1)} u_{1}^{\prime} \otimes \cdots \otimes u_{i,(q)} u_{q}^{\prime} \otimes u_{i+1} \otimes \cdots \otimes u_{p}
\end{aligned}
$$

where, extending the Sweedler notation, we write $\Delta_{q}\left(u_{i}\right)=\sum u_{i,(1)} \otimes \cdots \otimes u_{i,(q)}$ for the iterated comultiplication $\Delta_{q}: U \rightarrow T^{q} U=U^{\otimes q}$. (Note that $\Delta_{2}=\Delta$ while $\Delta_{1}=$ Id; thus, on $T^{1} U=U$, the operation $\bar{o}=\bar{o}_{1}$ is just the multiplication in U.) The elements
π, I and 1 are, respectively, $1 \otimes 1 \in U \otimes U, 1 \in U$ and $1 \in k$. Elementary computations show that - is just \otimes, that $\delta u=-[u, 1 \otimes 1]=u \otimes 1+1 \otimes u-\Delta u$ for $u \in U$ - so the 1-cocycles are just the primitives - and that $\delta a=0$ for $a \in k=T^{0} U$. In particular, $H^{\mathrm{n}}\left(T^{\bullet} U_{\mathfrak{g}}\right)=k$ and $H^{1}\left(T^{\bullet} U \mathfrak{g}\right)=Z^{1}\left(T^{\bullet} U_{\mathfrak{g}}\right)=\mathrm{g}$. It is now easily checked that $\mathfrak{g} \mapsto T^{\bullet} U \mathrm{~g}$ is, as claimed, left adjoint to $C^{\bullet} \mapsto Z^{1}\left(C^{\bullet}\right)$. Finally, we note that this complex has arisen in other considerations recently - notably in Drinfel'd's study of quasi-bialgebras [4] and Grabowski's work on star-products [13].

A universal deformation formula (udf) hased on \mathfrak{g} is a formal power series $\gamma_{t}=1 \otimes 1+t \gamma_{1}+t^{2} \gamma_{2}+\cdots$ in $\left(T^{2} U \mathfrak{g}\right)[[t]]$ such that $\gamma_{t} \bar{\circ} \gamma_{t}=0$. The sense in which γ_{t} is "universal" is the following: if $\mathfrak{g} \rightarrow \operatorname{Der}(A, A)=Z^{1}(A, A)$ is a Lie algebra morphism then the induced comp algebra map $T^{\bullet} U \mathfrak{g} \rightarrow C^{\bullet}(A, A)$ will carry γ_{t} to a deformation. A udf γ_{t}^{\prime} is equivalent to γ_{t} if there is a formal power series $a_{t}=1+t a_{1}+t^{2} a_{2}+\cdots \operatorname{in}\left(T^{1} U \mathfrak{g}\right)[[t]]$ such that $\left(\gamma_{t} \bar{o}_{2} a_{t}\right) \bar{o}_{1} a_{t}=a_{t} \bar{o} \gamma_{t}^{\prime}$. Note that, since ō coincides with multiplication on $T^{1} U \mathfrak{g}=U \mathfrak{g}$, every $a_{t}=\sum a_{i} t^{i} \in\left(T^{1} U \mathfrak{g}\right)[[t]]$ with $a_{0}=1$ is \bar{o}-invertible. The definition of equivalence can thus be rewritten as $\gamma_{t}^{\prime}=a_{t}^{-1} \bar{o}\left(\left(\gamma_{t} \bar{o}_{2} a_{t}\right) \bar{o}_{1} a_{t}\right)$. Conversely, given any $a_{t} \in\left(T^{1} U \mathrm{~g}\right)[[t]]$ with $a_{0}=1$, it is easily checked that conjugating γ_{t} by a_{t}, as in the latter formula, produces a (necessarily equivalent) udf γ_{t}^{\prime} with $\gamma_{1}^{\prime}=\gamma_{1}+\delta a_{1}$. The infinitesimal of a udf is thus well-defined as a cohomology class - namely that of γ_{1}-in $H^{2}\left(T^{\bullet} U_{\mathfrak{g}}\right)$. Clearly, equivalent udfs always induce equivalent deformations.

Note that any udf based on \mathfrak{g} induces, in particular, a deformation of the tensor algebra $T U \mathfrak{g}$. However, since $H^{n}(T V, T V)=0$ for $n \geqslant 2$ and every vector space V, these deformations - and all others - are necessarily trivial. Of course, for other algebras the induced deformations are generally nontrivial.

If \mathfrak{g}_{0} is a subalgebra of g then any udf based on g_{0} may be constructed as a udf based on \mathfrak{g}. A formula is strictly based on \mathfrak{g} if it does not arise from a proper subalgebra. For example, if $\mathfrak{g}=\mathfrak{a}_{2}$ then the exponential deformation formula is a udf strictly based on \mathfrak{a}_{2}.

We now compute the cohomology of $T^{\bullet} U \mathfrak{g}$. First note that, by the earlier stated universal property of $\bigwedge^{\bullet} \mathfrak{g}$, the identity map $\mathfrak{g} \rightarrow \mathfrak{g}=Z^{1}\left(T^{\bullet} U \mathfrak{g}\right)=H^{1}\left(T^{\bullet} U \mathfrak{g}\right)$ induces a G-algebra map $\wedge^{\bullet} \mathfrak{g} \rightarrow H\left(T^{\bullet} U \mathfrak{g}\right)$.

Theorem 3. The canonical G-algebra map $\wedge^{\bullet} \mathfrak{g} \rightarrow H\left(T^{\bullet} U \mathfrak{g}\right)$ is an isomorphism.
Proof. The Poincaré-Birkoff-Witt theorem (PBW) asserts that if x_{1}, x_{2}, \ldots is an ordered linear basis for the Lie algebra \mathfrak{g} the "standard" monomials of the form $x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{r}^{i_{r}}$ comprise a basis for $U \mathfrak{g}$. We will call $i_{1}+i_{2}+\cdots+i_{r}$ the degree of such a monomial. Since nothing depends on the actual Lie bracket of \mathfrak{g}, we may, without any loss of generality, assume that \mathfrak{g} is an abelian Lie algebra with basis x_{1}, x_{2}, \ldots. Then $U \mathfrak{g}$ is just the polynomial ring $k\left[x_{1}, x_{2}, \ldots\right]$.

Now let $y_{1}, y_{2} \ldots$ be new variables and set $S=k\left[y_{1}, y_{2}, \ldots\right]$. If $I=\left(i_{1}, \ldots, i_{n}\right)$ is a multi-index with each $i_{r} \geqslant 0$ then set $y^{I}=y_{1}^{i_{1}} \cdots y_{n}^{i_{n}}$ and $|I|=i_{1}+\cdots+i_{n}$. Also, if $I^{\prime}=\left(i_{1}^{\prime}, \ldots, i_{m}^{\prime}\right)$ then, extending one or the other by zeros if necessary, set
$I+I^{\prime}=I^{\prime}+I=\left(i_{1}+i_{1}^{\prime}, i_{2}+i_{2}^{\prime}, \ldots\right)$. Write ∂_{i} for the derivation $\partial / \partial y_{i}$ of S into itself and ∂^{I} for $\partial_{1}^{i_{1}} \partial_{2}^{i_{2}} \cdots \partial_{n}^{i_{n}}$. Then $\partial^{I} y^{I}=1$ but $\partial^{I} y^{J}=0$ for all $J \neq I$ with $|J| \leqslant|I|$.

Now, each $C_{\mathrm{N}}^{n}(S, S)$ (normalized n-cochains) has a natural topology in which a basis $U_{1} \supset U_{2} \supset \cdots$ of neighborhoods of 0 is defined by letting U_{r} consist of those F with $F\left(x^{I_{1}}, \ldots, x^{I_{n}}\right)=0$ whenever $\left|I_{1}+\cdots+I_{n}\right| \leqslant r$. Each U_{r} / U_{r+1} is spanned, over S, by the images of those $\mathrm{a}^{I_{1}} \smile \cdots \smile \partial^{I_{n}}$ with $\left|I_{1}+\cdots+I_{n}\right|=r$. We may therefore write every $F \in C_{\mathrm{N}}^{n}(S, S)$ uniquely as an infinite k-linear combination of the form $\sum c_{J, I_{1}, \ldots, I_{n}} y^{J}\left(\partial^{I_{1}} \ldots \cdots \hat{\mathrm{o}}^{I_{n}}\right.$) with each $\left|I_{r}\right|>0$. (However, $|J|=0$ is permitted.) As in the complex $T^{\bullet} U \mathfrak{g}$, we assign $y^{J}\left(\hat{\partial}^{I_{1}} \smile \cdots \smile \partial^{I_{n}}\right) \in C_{\mathrm{N}}^{*}(S, S)$ degree $\left|I_{1}+\cdots+I_{n}\right|$. Then δ preserves degrees. Moreover, for each fixed multi-index J, the space of (infinite) linear combinations, as above, of the terms $y^{J}\left(\partial^{I_{I}} \smile \cdots \smile \partial^{I_{n}}\right)$ forms a subcomplex of $C_{\mathrm{N}}^{\bullet}(S, S)$. The map $\mathfrak{g} \rightarrow \operatorname{Der}(S, S), x_{i} \mapsto \mathrm{c}_{i}$ induces the cochain map

$$
T^{\bullet} U \mathfrak{g} \rightarrow C^{\bullet}(S, S), \quad x^{I_{1}} \otimes \cdots \otimes x^{I_{n} \mapsto \partial^{I_{1}} \smile \cdots \smile \partial^{I_{n}}, ~}
$$

which is obviously a monomorphism and restricts to a map of normalized complexes $T_{\mathrm{N}}^{\bullet} U \mathfrak{g} \rightarrow C_{\mathrm{N}}^{\bullet}(S, S)$. Here $T_{\mathrm{N}}^{\bullet} U \mathfrak{g}$ is the span of those $x^{I_{1}} \otimes \cdots \otimes x^{I_{n}}$ in which each $\left|I_{r}\right|>0$ and it is easily checked that the inclusion $T_{\mathrm{N}}^{\bullet} U \mathfrak{g} \hookrightarrow T^{\bullet} U \mathfrak{g}$ induces a cohomology isomorphism. Note that the image of the map $T_{\mathrm{N}}^{\bullet} U \mathfrak{g} \rightarrow C_{\mathbf{N}}^{\bullet}(S, S)$ lies in the subcomplex with $J=0$.

The Hochschild-Kostant-Rosenberg theorem ([14]; see also [17]), asserts, in particular, that since S is a polynomial ring over $k \supseteq \mathbb{Q}$, the natural S-module map

$$
\bigwedge_{s} \operatorname{Der}(S, S) \rightarrow H^{\bullet}(S, S), \quad y^{J}\left(\partial^{I_{1}} \wedge \cdots \wedge \partial^{I_{n}}\right) \mapsto y^{J}\left(\partial^{I_{1}} \smile \cdots \smile \partial^{I_{n}}\right)
$$

is an isomorphism. As δ preserves degrees, this means that the summands of degree n in an n-cocycle themselves comprise a cocycle having the same cohomology class while the other summands constitute a coboundary. This is true in particular for the subcomplex with $J=0$ and, so, for the image of the map $T_{\mathrm{N}}^{\bullet} U_{\mathrm{g}} \rightarrow C_{\mathrm{N}}^{\bullet}(S, S)$. It now follows that this map induces a cohomology monomorphism with image $\wedge^{\circ} \mathrm{g}$. In particular, $H\left(T_{\stackrel{\sim}{*}}^{\bullet} U \mathfrak{g}\right) \cong \bigwedge_{\bullet} \mathfrak{g}$ and it is easily checked that this isomorphism is inverse to the canonical map $\bigwedge^{\bullet} \mathfrak{g} \rightarrow H\left(T_{\mathrm{N}}^{\bullet} U \mathfrak{g}\right) \cong H\left(T^{\bullet} U \mathfrak{g}\right)$.

As in the case of deformations, the equation $\gamma_{t} \bar{o} \gamma_{t}=0$ for a udf $\gamma_{t}=1 \otimes 1+t \gamma_{1}+t^{2} \gamma_{2}+\cdots$ (where $\left.\gamma_{i} \in U \mathfrak{g} \otimes U \mathfrak{g}\right)$ implies that γ_{1} is a 2-cocycle, i.e., is in $Z^{2}\left(T^{\bullet} U \mathfrak{g}\right)$. Since up to equivalence of formulas only the cohomology class of γ_{1} matters, we may view the class $\left[\gamma_{1}\right]$ in $H^{2}\left(T^{\bullet} U \mathfrak{g}\right) \cong \bigwedge^{2} \mathfrak{g}$ as the infinitesimal of γ_{t}. The γ_{i} satisfy the equations $\left(*_{r}\right)$ as before. If we have $\gamma_{1}, \ldots, \gamma_{n}$ satisfying ($*_{r}$) for $r=1, \ldots, n$ the primary obstruction to extending the "approximate formula" $\Gamma_{n}=1 \otimes 1+t \gamma_{1}+\cdots+t^{n} \gamma_{n}$ one more term is the class

$$
\operatorname{Obs}\left(\Gamma_{n}\right)=\left[\gamma_{1} \bar{\circ} \gamma_{n}+\gamma_{2} \bar{\sigma} \gamma_{n-1}+\cdots+\gamma_{n} \bar{\circ} \gamma_{1}\right] \in \bigwedge^{3} \mathfrak{g} .
$$

When $\operatorname{dim}_{k} \mathfrak{g}=2$ we have $\bigwedge^{3} \mathfrak{g}=0$, and so, by Theorem 3, the obstruction is trivial and every infinitesimal can be integrated.

For $\operatorname{dim}_{k} \mathfrak{g} \geqslant 3$ the obstruction map $\mathrm{Sq}: \bigwedge^{2} \mathfrak{g} \rightarrow \bigwedge^{3} \mathfrak{g}$ sends γ_{1} to $\mathrm{Sq}\left(\gamma_{1}\right)=$ $\left[\gamma_{1} \bar{\circ} \gamma_{1}\right]=\frac{1}{2}\left[\gamma_{1}, \gamma_{1}\right]_{s}$. Suppose now that $\operatorname{dim}_{k} \mathrm{~g}<\infty$. Those γ_{1} with $\mathrm{Sq}\left(\gamma_{1}\right)=0$ form an algebraic subset, $V_{1}(\mathrm{~g})=V_{1}$ of $\bigwedge^{2} \mathrm{~g}$ which is stable under all automorphisms of g and therefore, in particular, under the action of the adjoint Lie group G as well as under $\operatorname{ad}(g)$ for $g \in \mathfrak{g}$. Those γ_{1} which can be prolonged to an approximate formula $1 \otimes 1+t \gamma_{1}+t^{2} \gamma_{2}+t^{3} \gamma_{3}$ form an algebraic subset V_{2} of V_{1}, and so forth. We thus obtain a descending sequence $V_{1} \supseteq V_{2} \supseteq \cdots$ of (quadratic) algebraic subvarieties of $V_{0}=\bigwedge^{2} \mathfrak{g} \subset U \mathfrak{g} \otimes U \mathfrak{g}$. In a finite number of steps we arrive at V_{∞} the locus of integrability consisting of all $\gamma_{1} \in \Lambda^{2} \mathfrak{g}$ for which there is a full universal deformation formula beginning $1 \otimes 1+t \gamma_{1}+\cdots$. Denote by $\lfloor x\rfloor$ the greatest integer less than or equal to x.

Theorem 4. If \mathfrak{g} is a nilpotent Lie algebra with index of nilpotence N, then $V_{\infty}=V_{\lfloor(3 N+1) / 2\rfloor}$.

Proof. If $1 \otimes 1+t \gamma_{1}+t^{2} \gamma_{2}+\cdots+t^{n} \gamma_{n}$ is an approximate deformation formula then each of the tensor factors of the obstruction 3-cocycle is a word in $U g$ and the total length of these words is $2+2 n$. After reordering, using PBW, some terms will have total degree 3 and according to Theorem 3, these determine the cohomology class of the obstruction. Each term is reordered by the introduction of a sequence of commutators in each tensor factor. Since there are only three tensor factors, each term will have one (or more) tensor factors requiring ($2+2 n-3$)/3 iterated commutators. Noting that \mathfrak{g} has index of nilpotence $N<(2 n-1) / 3$ for $n>\lfloor(3 N+1) / 2\rfloor$ finishes the proof.

Determining the locus of integrability is generally difficult but we conjecture the following:

Conjecture. If \mathfrak{g} is semisimple then $V_{1}=V_{\infty}$.
For $\operatorname{dim}_{k} \mathfrak{g}=2$, the cohomology theory has shown that every infinitesimal can be integrated, so udfs based on \mathfrak{g} surely exist (as noted earlier). As also mentioned, the exponential deformation formula is a udf based on \mathfrak{a}_{2}. Although not previously described as such the quasi-exponential formula of [2] is a udf (strictly) based on the unique non-abelian Lie algebra \mathfrak{b}_{2} of dimension two. We repeat it without proof.

Theorem 5. Let φ, ψ be generators of b_{2} with $[\varphi, \psi]=\varphi$ and set $[\psi]_{n}=$ $\psi(\psi-1) \cdots(\psi-n+1)$. If $k \supset \mathbb{Q}$ then

$$
e(t ; \varphi, \psi)=1 \otimes 1+t \varphi \otimes \psi+\frac{t^{2}}{2!} \varphi^{2} \otimes[\psi]_{2}+\frac{t^{3}}{3!} \varphi^{3} \otimes[\psi]_{3}+\cdots
$$

is a udf strictly based on \mathfrak{b}_{2}.

The absolute values of the coefficients of the poloynomial $[x]_{n}=x(x-1) \cdots$ $(x-n+1)$ are the Stirling numbers of the first kind; the coefficient of x^{l} is precisely the number of elements of the symmetric group on n letters, expressible as a product of i disjoint cycles. If A is a finite-dimensional algebra over \mathbb{R} or \mathbb{C} and $\mathbf{b}_{2} \rightarrow \operatorname{Der}(A, A)$ is a Lie algebra map then the deformation of A induced by $e(t ; \varphi, \psi)$ has a nonzero radius of convergence which is generally finite (the reciprocal of the absolute value of the largest eigenvalue of φ). The skew symmetrized version of the quasi-exponential is not exponential. However, Giaquinto has observed that the quasi-exponential may also be written as

$$
\begin{aligned}
e(t ; \varphi, \psi) & =\exp \left(t \varphi \otimes \psi-\frac{t^{2}}{2} \varphi^{2} \otimes \psi+\frac{t^{3}}{3} \varphi^{3} \otimes \psi-\cdots\right) \\
& =\exp \left(\sum_{n=1}^{\infty} \frac{t^{n}}{n}(-1)^{n+1} \varphi^{n} \otimes \psi\right) \\
& =\exp (\ln (1+t \varphi) \otimes \psi) .
\end{aligned}
$$

Denote by $\mathfrak{s l}_{2}$ the three-dimensional simple Lie algebra with basis h, x, y and commutator relations

$$
[h, x]=x, \quad[h, y]=-y, \quad[x, y]=2 h .
$$

Theorem 6. $\quad V_{1}=V_{\infty}=\left\{\gamma=a(h \wedge x)+b(h \wedge y)+c(x \wedge y) \in \bigwedge^{2} \mathfrak{s I}_{2} \mid a b-c^{2}=0\right\}$. Moreover, every non-zero $\gamma \in V_{\infty}$ is integrable to a udf based strictly on $\mathfrak{s I}_{2}$.

Proof. First note that $\wedge^{3} \mathfrak{s l}_{2}$ is generated (over k) by $h \wedge x \wedge y$ and that for γ and $\gamma^{\prime}=a^{\prime}(h \wedge x)+b^{\prime}(h \wedge y)+c^{\prime}(x \wedge y) \in \bigwedge^{2} \mathfrak{s l}_{2}$ we have

$$
\left[\gamma, \gamma^{\prime}\right]_{s}=\left(2 a b^{\prime}+2 a^{\prime} b-4 c c^{\prime}\right) h \wedge x \wedge y .
$$

The primary obstruction to γ, namely $\frac{1}{2}[\gamma, \gamma]_{s}$, thus vanishes if and only if $a b-c^{2}=0$, and this equation then defines V_{1}. Now suppose that $\Gamma_{n}=1 \otimes 1+t \gamma_{1}+\cdots+t^{n} \gamma_{n}$ is a udf modulo t^{n+1}, that $\gamma_{1} \neq 0$, and that, for some $d, d(h \wedge x \wedge y)$ is the obstruction to extending Γ_{n} to be a udf modulo t^{n+2}. Replacing γ_{n} by $\gamma_{n}+\gamma^{\prime}$ with $\gamma^{\prime} \in \bigwedge^{2} \mathfrak{s I}_{2}$ changes the obstruction to $d(h \wedge x \wedge y)+\left[\gamma, \gamma^{\prime}\right]_{s}$. Clearly then we can always alter the last term of Γ_{n} by a cocycle to make the approximate series integrable. If $d=0$ we may use $\gamma^{\prime}=0$. Thus every $\gamma_{1} \in V_{1}$ can be extended first to $1 \otimes 1+t \gamma_{1}+t^{2} \gamma_{2}$ and then, by adjusting γ_{2}, to a udf with infinitesimal γ_{1}. We have proved the first assertion.

For the second assertion, note that it is trivial if $a b c \neq 0$. Otherwise, any coefficient being zero implies that γ_{1} is $a(h \wedge x)$ or $b(h \wedge y)$, so we may assume without loss of generality that $\gamma_{1}=-h \wedge x$. Now, as h and x generate a subalgebra of $\mathfrak{s I}_{2}$ isomorphic to b_{2}, the quasi-exponential $e(t ; x, h)$ is a udf with infinitesimal $x \wedge h=-h \wedge x=\gamma_{1}$. In particular, $1 \otimes 1+t(x \wedge h)+\frac{t^{2}}{2}\left(x^{2} \otimes h(h-1)\right)$ is unobstructed and, by the
foregoing, remains so if we adjust the quadratic term by any cocycle γ^{\prime} with $\left[x \wedge h, \gamma^{\prime}\right]_{s}=0$. The latter condition requires only that $b^{\prime}=0$, so we may choose, for example, $\gamma^{\prime}=x \wedge y$. Any integral of the adjusted series then has quadratic term $\frac{1}{2}\left(x^{2} \otimes h(h-1)\right)+x \wedge y$ and, so, is strictly based on $\mathfrak{s l}_{2}$.

We now consider udfs based on the Lie algebra $\mathfrak{s l}_{n}$ for $n \geqslant 3$. Recalling that $\mathfrak{s l}_{n}$ may be viewed (in its natural representation) as the set of $n \times n$ matrices with trace 0 , we denote by $e_{i j}$ the matrix with a 1 in the $i j$ th location and zeros elsewhere. Set $\beta=2 \sum_{1<j<n} e_{1 j} \otimes e_{j n}$ and write $H_{+}^{[m]}=H_{+}\left(H_{+}+1\right) \cdots\left(H_{+}+m-1\right)$, where $H_{+}=e_{11}-e_{n n}$. Then, with

$$
\begin{aligned}
\mu_{m}= & H_{+}^{[m]} \otimes e_{1 n}^{m}+\binom{m}{1}\left(H_{+}^{[m-1]} \otimes e_{1 n}^{m-1}\right) \beta \\
& +\binom{m}{2}\left(H_{+}^{[m-2]} \otimes e_{1 n}^{m-2}\right) \beta^{2}+\cdots+\beta^{m}
\end{aligned}
$$

a straightforward induction argument gives
Theorem 7. The series $\mu_{t}=1 \otimes 1+t \mu_{1}+\frac{t^{2}}{2!} \mu_{2}+\cdots$ is a udf based on $\mathfrak{s I}_{n}$.
Note that the latter formula is based strictly on a subset of a one-dimensional extension of a Heisenberg algebra generated by $\left\{e_{11}-e_{n n}, e_{1 i}, e_{n j} \mid i=2, \ldots, n\right.$ and $j=1, \ldots, n-1\}$.

Breaking symmetry

It is natural to ask, when a non-abelian Lie group G operates as automorphisms of an algebra A, whether there will generally be deformations of A-whose form depends only on the structure of the Lie group - such that the deformed algebra no longer admits the operation of G. That is, does the very existence of symmetries provide paths to breaking them? While we cannot as yet answer this question in such generality, we can address the analogous issue for udfs.

Let G be a Lie group operating on an algebra A by automorphisms and \mathfrak{g} be the Lie algebra of G. We may view $\varphi \in \mathrm{g}$ as the infinitesimal of the formal automorphism $\exp t \varphi=e^{t \varphi}=\mathrm{Id}+t \varphi+\frac{t^{2}}{2!} \varphi^{2}+\cdots$. Abusing language we refer also to $\varphi \in \mathfrak{g}$ as a symmetry of A.

The Hochschild cohomology groups of an algebra A are upper semicontinuous functions of the algebra in the following sense: if A_{t} is a deformation of A then its cohomology groups are subquotients of those of $A[1,7,10]$. In particular, if k is a field then the dimensions of the cohomology groups of A cannot increase under deformation. Indeed, if the characteristic of k is 0 and A undergoes a "jump" deformation, i.e., one that remains constant for generic $t \neq 0$, then $\operatorname{dim}_{k} H^{2}(A, A)$ must strictly decrease (assuming that it was finite at the start) [10].

To compare $H^{n}(A, A)$ and $H^{n}\left(A_{t}, A_{t}\right)$, first consider $C^{n}\left(A_{t}, A_{t}\right)=C^{n}(A[[t]]$, $A[[t]]) \supset C^{n}(A, A)$. The coboundary operator δ_{t} in $C^{\bullet}\left(A_{t}, A_{t}\right)$ is (as usual) given by $\delta_{t} F_{t}=-\left[F_{t}, \alpha_{t}\right]_{G}$, so $\delta_{t}=\delta+t \delta_{1}+t^{2} \delta_{2}+\cdots$ where $\delta=\delta_{0}=-[-, \alpha]_{G}$ is the coboundary operator in $C^{\bullet}(A, A)$ and each δ_{i} is a k-linear map $C^{n}(A, A) \rightarrow C^{n+1}(A, A)$ extended to be $k[[t]]$-linear. Note that if $\delta_{t} F_{t}=0$ then, in particular, F_{0} is a cocycle. (The upper semicontinuity of cohomology follows from this.) We shall say that a derivation $\varphi \in \operatorname{Der}(A, A)$ lifts under a deformation $\left(A_{t}, \alpha_{t}\right)$ if there is a derivation $\varphi_{t} \in \operatorname{Der}\left(A_{t}, A_{t}\right)$ having the form $\varphi_{t}=\varphi+t \varphi_{1}+\cdots ;$ equivalently, there are cochains $\varphi_{i} \in C^{1}(A, A)$ for which

$$
\sum_{n}\left(\sum_{i=0}^{n}\left[\varphi_{n-i}, \alpha_{i}\right]_{G}\right) t^{n}=\left[\varphi_{i}, \alpha_{l}\right]_{G}=0
$$

(Here $\alpha_{0}=\alpha$ and $\varphi_{0}=\varphi$.) Otherwise, φ is said to break. Since cohomology is upper semicontinuous, no new derivations may appear at $t \neq 0$. For this reason, once a symmetry is broken, there is no way to recover it via deformation. We note trivially that if φ is central in $\operatorname{Der}(A, A)$ then it necessarily lifts, so the exponential deformation formula breaks no symmetries; it may however trivialize them in the sense that they become coboundaries.

In analogy with the case of algebras, given an $x \in \mathfrak{g}$ and a udf $\gamma_{t}=1 \otimes 1+\sum t^{i} \gamma_{i}$ we say that x lifts if there are elements $x_{i} \in U \mathfrak{g}$ for which $x_{t}=x+\sum t^{i} x_{i}$ satisfies $\left[x_{t}, \gamma_{t}\right]_{G}=0$. Equivalently,
$\left(* *_{n}\right) \quad \sum_{i=0}^{n}\left[x_{n-i}, \gamma_{i}\right]_{G}=0$
for all n. (Here $\gamma_{0}=1 \otimes 1$ and $x_{0}=x$.) Otherwise, γ_{t} breaks x. Any map $f: \mathfrak{g} \rightarrow \operatorname{Der}[A, A$) carries liftable elements of \mathfrak{g} to liftable derivations (with respect to the induced deformation $f\left(\gamma_{t}\right)$). However, the image of an element which breaks may nonetheless be a liftable derivation. For example, when $A=T V$, the tensor algebra on a k-module V, every derivation is liftable under every deformation simply because $T V$ is rigid, i.e., all its deformations are trivial. The general problem is that the containment of the image of $T^{1} U \mathrm{~g}$ in $C^{1}(A)$ may be proper. Consequently, a failure to solve $\left(*_{n}\right)$ in $T^{1} U_{\mathfrak{g}}$ does not preclude the possibility of finding solutions in $C^{1}(A, A)$. Nonetheless, in some generic sense it must be true that if γ_{t} breaks x then there is some map $f: \mathrm{g} \rightarrow \operatorname{Der}(A, A)$ such that $f\left(\gamma_{t}\right)$ breaks $f(x)$. We also make the

Conjecture. Let G be a non-nilpotent Lie group acting as automorphisms on a finitedimensional algebra A through an inclusion $g \hookrightarrow \operatorname{Der}(A, A)$ having the property that $\mathrm{g} \rightarrow H^{1}(A, A)$ is also a monomorphism. Then every non-nilpotent $\varphi \in \mathrm{g}$ breaks under some deformation of A. More generally, there is a sequence of deformations of A which breaks all symmetries outside of the subalgebra generated by the nilpotent elements of g and one other element.

We return to this conjecture after examining the easier question of liftability of elements of a Lie algebra.

Theorem 8. Let h and x be a basis for b_{2} with $[h, x]=x$. Then $\gamma_{t}=e(t ; h, x)$ breaks h but x is liftable to $x_{t}=x+x \ln (1+t x)$.

Proof. If h were to lift, to say $h_{t}=h+t h_{1}+\cdots$, we would have from $\left(* *_{1}\right),[h, x \otimes h]_{G}+\left[h_{1}, 1 \otimes 1\right]_{G}=0$. That is, $[x \otimes h, h]_{G}=\left[h_{1}, 1 \otimes 1\right]_{G}=\delta h_{1}$ and, so, $-h \bar{o}(x \otimes h)+(x \otimes h) \bar{o} h=\delta h_{1}$. But the left-hand side of the latter equation is

$$
-h x \otimes h-x \otimes h^{2}+x h \otimes h+x \otimes h^{2}=[x, h] \otimes h=x \otimes h
$$

which is not a coboundary in $T^{2} \mathrm{Ub}_{2}$. So h breaks. The reader may easily check the lifting of x.

Remarkably, no perturbation of the formula $e(t ; x, h)$ will break x. More specifically, we have the following:

Theorem 9. Let γ_{t} be a formula strictly based on $\mathfrak{s l}_{2}$ with infinitesimal $x \wedge h$. Then x lifts while γ_{t} breaks both h and y.

Proof. The breaking of h and y is established as in the previous theorem. That x lifts is more subtle and follows from Lemma 10.

We first note that the complex $T^{\bullet} U \mathrm{sI}_{2}$ is the direct sum of two subcomplexes:

$$
T^{\bullet} U_{\mathfrak{s I}}^{2} 2=T_{x}^{\bullet} U_{\mathfrak{s I}_{2}} \oplus T_{\sim}^{\bullet}{ }_{x} U_{\mathfrak{s I}_{2}},
$$

where $T_{x}^{\bullet} U$ sI $_{2}$ is the ideal generated by $\left\{h^{a} x^{b} y^{c} \mid b \neq 0\right\}$, i.e., the linear combinations of terms $h^{a_{1}} x^{b_{1}} y^{c_{1}} \otimes h^{a_{2}} x^{b_{2}} y^{c_{2}} \otimes \cdots$ in which at least one $b_{i} \neq 0$. (Here we have ordered the standard PBW basis as h, x, y.) Elements of $T_{\sim}^{\bullet}{ }_{x} U \mathfrak{s I}_{2}$ are linear combinations of the basis elements $h^{a_{1}} y^{c_{1}} \otimes h^{a_{2}} y^{c_{2}} \otimes \cdots$. We call the elements of $T_{x}^{*} U{ }_{s I_{2}} x$-terms. It is trivial that these are indeed subcomplexes. Our proof of the theorem requires

Lemma 10. If $\alpha, \beta \in U \operatorname{sI}_{2} \otimes U \operatorname{si}_{2}$ and α is an x-term then the composition products $\alpha \bar{\circ} \beta$ and $\beta \bar{\circ} \alpha$ are also x-terms. Also, if $\gamma_{t}=1 \otimes 1+\sum t^{i} \gamma_{i}$ is a formula strictly based on si_{2} with infinitesimal $h \wedge x$ then γ_{t} is equivalent to a udf $\hat{\gamma}_{t}$ in which each $\hat{\gamma}_{i}$ is an x-term.

Proof of Theorem 9 (continued). Assuming the lemma for a moment, suppose that $x_{t}=x+t x_{1}+t^{2} x_{2}+\cdots+t^{n-1} x_{n-1}$ is a lifting of x modulo t^{n}. In as much as liftability is invariant under equivalence, we may assume that every γ_{n} is an x-term. The obstruction to extending x_{t} to a lifting modulo t^{n+1} is $\left[x_{n-1}, \gamma_{1}\right]_{G}+\cdots+$ $\left[x_{1}, \gamma_{n-1}\right]_{G}+\left[x, \gamma_{n}\right]_{G}$, for this is precisely $-\delta x_{n}$ if such a lifting exists. The lemma insures that this is an x-term and, so, its cohomology class in $\bigwedge^{2} \mathfrak{s l}_{2}$ is
$a(h \wedge x)+b(x \wedge y)$ for some $a, b \in k$. Now writing $\bar{\sigma}$ (rather than $[\sigma])$ for the cohomology class of σ, we have, by assumption, $\bar{\gamma}_{1}=\overline{h \otimes x}=h \wedge x$ and so $\left[y, \bar{\gamma}_{1}\right]_{s}=-x \wedge y$ and $\left[h, \bar{\gamma}_{1}\right]_{s}=h \wedge x$. Therefore, if we replace x_{n-1} by $x_{n-1}+b y-a h$, then the cohomology class of the obstruction to extending the new ($n-1$)st order lifting vanishes, so the obstruction is a coboundary and x_{n} can be found. Since it is trivial that x lifts to first order, this inductive procedure shows that x lifts.

Proof of Lemma 10. For the first assertion, it suffices to consider the case in which $\alpha=\alpha_{1} \otimes \alpha_{2}$ and $\beta=\beta_{1} \otimes \beta_{2}$ with each α_{i} and β_{i} being in the standard basis given by PBW. We show only that $\alpha \bar{o} \beta$ is an x-term, the argument for $\beta \bar{o} \alpha$ being similar. Since $\alpha \bar{o} \beta=\left(\alpha_{1} \bar{\circ} \beta\right) \otimes \alpha_{2}+\alpha_{1} \otimes\left(\alpha_{2} \bar{o} \beta\right)$ we may assume without loss of generality that $\alpha_{1}=h^{p} x^{q} y^{r}$ is an x-term $(q \neq 0)$ and must show that $\alpha_{1} \delta \beta$ is an x-term. Lemma 2 implies that $\alpha_{1} \bar{\circ} \beta$ is the sum of terms $h^{p_{1}} x^{q_{1}} y^{r_{1}} \beta_{1} \otimes h^{p_{2}} x^{q_{2}} y^{r_{2}} \beta_{2}$ where $p_{1}+p_{2}=p$, $q_{1}+q_{2}=q$ and $r_{1}+r_{2}=r$. In particular, either $q_{1} \neq 0$ or $q_{2} \neq 0$. It thus suffices to show that $h^{p} x^{q} y^{r} h^{a} x^{b} y^{c}$ is an x-term if $q \neq 0$. Since $y^{r} h^{a} x^{b} y^{c}$ is a linear combination of the PBW basis elements $h^{l} x^{m} y^{n}$, it suffices to show that $h^{p} x^{4} h^{l} x^{m} y^{n}$ is an x-term whenever $q>0$. For this, note that the relation $[h, x]=x$ easily implies that $x^{q} h^{l}=(h-q)^{l} x^{q}$. So $h^{p} x^{4} h^{l} x^{m} y^{n}=h^{p}(h-q)^{l} x^{q+m} y^{n}$, which is clearly an x-term, as required.

For the second assertion note that $x \otimes h$ is an x-term and assume inductively that cach γ_{i} is an x-term for $1 \leqslant i<n$. Clearly, γ_{n} may be written as $\gamma_{n}=\gamma_{n}^{\prime}+\gamma_{n}^{\prime \prime}$ where $\gamma_{n}^{\prime} \in T_{x}^{2} U \mathfrak{I I}_{2}$ while $\gamma_{n}^{\prime \prime} \in T_{\sim x}^{2} U \operatorname{sl}_{2}$. Since $\delta \gamma_{n}=\sum_{1=1}^{i=n-1} \gamma_{i} \bar{\circ} \gamma_{n-i}$, the first assertion implies that it is an x-term. As $T_{x}^{\bullet} U \mathfrak{S I}_{2}$ and $T_{\sim_{x}^{*}} U \mathcal{S I}_{2}$ are subcomplexes, we have that $\delta \gamma_{n}^{\prime}=\delta \gamma_{n}$ and $\delta \gamma_{n}^{\prime \prime}=0$, so $\gamma_{n}^{\prime \prime}=a(h \wedge y)+\delta \theta_{n}$ where $\theta_{n} \in T^{1}{ }_{\sim}{ }_{x} U$ sI $_{2}$. Conjugating γ_{t} by $1-\theta_{n} t^{n}$ produces an equivalent udf $\tilde{\gamma}_{t}$ in which $\tilde{\gamma}_{i}=\gamma_{i}$ for $i<n$ and $\tilde{\gamma}_{n}=v_{n}-\delta \theta_{n}=\gamma_{n}^{\prime}+a(h \wedge y)$. We have

$$
\delta \tilde{\gamma}_{n+1}=\sum_{n>i \geqslant 2} \gamma_{i} \bar{o} \gamma_{n+1-i}+\left[\gamma_{1}, \gamma_{n}^{\prime}\right]_{G}+\left[\gamma_{1}, a(h \wedge y)\right]_{G} .
$$

Since this is a 3-cocycle, the sum of its degree-three terms is also a cocycle and has the same cohomology class, namely 0 . Now, the proof of the first assertion shows that, as γ_{n}^{\prime} and γ_{i} for $i<n$ are all x-terms, every summand of $\left[\gamma_{1}, \gamma_{n}^{\prime}\right]_{G}$ and each $\gamma_{i} \overline{\mathrm{o}} \gamma_{n+1-i}$ has an x in two tensor factors. Hence each such summand with degree three reduces to $x \wedge x \wedge z \in \bigwedge^{3} \mathfrak{s l}_{2} \cong H^{3}\left(T^{\bullet} U \operatorname{si}_{2}\right)$ for some $z \in \mathfrak{S I}_{2}$, which means that it contributes 0 to the class of $\delta \tilde{\gamma}_{n+1}$. It follows that, with $\bar{\sigma}$ once again denoting the cohomology class of σ,

$$
\begin{aligned}
0 & =\overline{\delta \tilde{\gamma}_{n}}=\overline{\left[\gamma_{1}, a(h \wedge y)\right]_{G}}=\left[\bar{\gamma}_{1}, a(h \wedge y)\right]_{S} \\
& =a[x \wedge h, h \wedge y]_{S}=-2 a(h \wedge x \wedge y),
\end{aligned}
$$

and so $a=0$ and $\tilde{\gamma}_{n}=\gamma_{n}^{\prime}$, which is an x-term. This is just what we need to proceed by induction, replacing γ_{t} with $\tilde{\gamma}_{t}$. The equivalent udf $\hat{\gamma}_{t}$ is then the result of conjugating γ_{t} by $\prod\left(1-\theta_{n} t^{n}\right)$.

We remark that there exist udfs based strictly on $\mathfrak{s l}_{2}$ which break x, namely those with infinitesimal $y \wedge h$.

Our conjecture concerning the breaking of symmetry would follow from Theorem 8 if we knew that whenever A is finite-dimensional and $\operatorname{Der}(A)$ contains a copy of b_{2}, some deformation induced by a universal formula breaks the approximate symmetry. This requires the following easy lemma:

Lemma 11. Every non-nilpotent Lie algebra \mathfrak{g} contains a copy of \mathfrak{b}_{2}.
Proof. If \mathfrak{g} is not nilpotent then Engel's theorem provides an $x \in \mathfrak{g}$ for which $\operatorname{ad}(x)$ is not nilpotent. Consequently, $\operatorname{ad}(x)$ must have a non-zero eigenvalue, λ. If $y \in g$ is corresponding non-zero eigenvector then x / λ and y together generate a copy of b_{2}.

We conclude the paper with an example of a udf based on a non-abelian Lie algebra which, like the exponential deformation formula breaks no symmetries. Let \mathfrak{h} denote the Heisenberg algebra, which has basis x, y, z and commutator relations $[x, y]=z$ and $[x, z]=[y, z]=0$. In its natural representation \mathfrak{h} may be described as the set of all strictly upper triangular 3×3 matrices with the commutator product. The primary obstruction to a 2 -cocycle $a x \wedge z+b y \wedge z+c x \wedge y$ is $-2 c^{2} x \wedge y \wedge z$, so $V_{1}(\mathfrak{h})=\{(a x+b y) \wedge z\}$. Since the factors of $(a x+b y) \wedge z$ generate a copy of \mathfrak{a}_{2}, every element of V_{1} is integrable (e.g., by the exponential formula) and $V_{1}=V_{\infty}$. To produce a formula based strictly on \mathfrak{b} (rather than the subalgebra generated by $a x+b y$ and z), it will clearly suffice to modify the exponential formula for the case $x \wedge y$ of the foregoing by introducing a summand of $y \otimes z$ in, say, the quadratic term. We may achieve this as follows: Any Lie algebra automorphism $\mathfrak{g} \rightarrow \mathfrak{g}$ induces a map $T^{\bullet} U \mathfrak{g} \rightarrow T^{\bullet} U \mathfrak{g}$. In characteristic 0 such an automorphism can be obtained as the exponential $e^{t \sigma}$ of a derivation σ of \mathfrak{g}. Now if γ_{t} is a udf based on \mathfrak{g} then so too will be $\gamma_{t}^{\prime}=e^{t \sigma}\left(\gamma_{t}\right)$.

For the case of $\mathfrak{g}=\mathfrak{h}$, we let $\sigma=y \mathrm{a}_{x}$. Then upon applying $e^{t\left(y \theta_{x}\right)}$ to the exponential deformation formula $e^{t(x \otimes z)}=\sum \frac{1}{k!} x^{k} \otimes z^{k}=\sum \alpha_{k}$ we obtain

$$
\gamma_{t}^{\prime}=\sum_{n=0}^{\infty} t^{n} \sum_{m=0}^{n} \frac{1}{m!}\left(y \partial_{x}\right)^{m} \alpha_{n-m}
$$

and so γ_{t}^{\prime} is strictly based on \mathfrak{b}. If A is given then the deformation induced by the latter udf is equivalent to the exponential deformation of A and therefore breaks no symmetries.

In summary. If \mathfrak{g} is non-abelian and contains \mathfrak{b}_{2} then there is a udf based on \mathfrak{g} which generally breaks some symmetry. Otherwise \mathfrak{g} must be nilpotent and, as in the example of the Heisenberg algebra, may break no symmetry.

We do not know if there are any nilpotent Lie algebras which generically break. It is curious that the very existence of a non-nilpotent symmetry group generally provides a path to the breaking of symmetry!

Finally, we note that although our focus has been on associative algebras much of what we do is applicable to other categories. If γ_{t} is a udf based on \mathfrak{g} and A is any structure whose "deformation cochain complex" is a comp algcbra, C^{\bullet}, and $g \rightarrow Z^{1}\left(C^{*}\right)$ is a Lie algebra morphism then the induced map $T^{\bullet} U g \rightarrow C^{\bullet}$ carries γ_{t} to a deformation of A. This applies, in particular, to coalgebras but not to Lie algebras (cf. $[10,12]$).
Note added in proof. Giaquinto and Zhang have observed the following udf $\gamma_{t}=\sum t^{n} \gamma_{n}$ based on $\mathfrak{s l}_{n}$ with infinitesimal $\gamma_{1}=h \otimes e_{1 k}+\beta$, where $h=\frac{1}{2}\left(e_{11}-e_{k k}\right)$ and $\beta=\sum_{j=2}^{k-1} e_{1 j} \otimes e_{j k}$: set $h_{n, i}=(h+n-1)(h+n-2) \cdots(h+i)$, then $\gamma_{n}=$ $\frac{1}{n!} \sum_{i=0}^{n} \beta^{i}\left(h_{n, i} \otimes e_{1 k}^{n-i}\right)$.

References

[1] J. Coffee, Filtered and associated graded rings, Bull. Amer. Math. Soc. 78 (1972) 584-587.
[2] V. Coll, M. Gerstenhaber and A. Giaquinto, An explicit deformation formula with non-commuting xderivations, Ring Theory, Vol. 1, Israel Mathematical Conference Proceedings (Weizmann Science Press, New York, 1989) 396-403.
[3] M. DeWilde and P. Lecompte, Formal deformations of the Poisson Lie algebra of a symplectic manifold and star-products. Existence, equivalence, derivations, in: M. Hazewinkel and M. Gerstenhaber, eds., Deformation Theory of Algebras and Structures and Applications, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 247 (Kluwer, Dordrecht, 1988) 897-958.
[4] V.G. Drinfel'd, Quasi-Hopf algebras, Ieningrad J. Math. 1 (1990) 1419-1457.
[5] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. 78 (1963) 267-288.
[6] M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964) 59-103.
[7] M. Gerstenhaber, On the deformation of rings and algcbras III, Ann. of Math. 88 (1968) 1-34.
[8] M. Gerstenhaber, A. Giaquinto and S.D. Schack, Quantum Symmetry, in: P.P. Kulish, ed., Quantum Groups, Lecture Notes in Mathematics, Vol. 1510 (Springer, Berlin, 1992) 9-46.
[9] M. Gerstenhaber and S.D. Schack, Relative Hochschild cohomology, rigid algebras, and the bockstein, J. Pure Appl. Algebra 43 (1986) 53-74.
[10] M. Gerstenhaber and S.D. Shack, Algebraic cohomology and deformation theory in: M. Hazewinkel and M. Gerstenhaber, eds., Deformation Theory of Algebras and Structures and Applications, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 247 (Kluwer, Dordrecht, 1988) 11-264.
[11] M. Gerstenhaber and S.D. Schack, Bialgebra cohomology, deformations and quantum groups, Proc. Nat. Acad. Sci. 87 (1990) 478-481.
[12] M. Gerstenhaber and S.D. Schack, Algebras, bialgebras, quantum groups, and algebraic deformations, in: M. Gerstenhaber and J. Stasheff, eds., Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Contemporary Mathematics, Vol. 134 (American Mathematical Society, Providence, RI, 1992) 51-92.
[13] J. Grabowski, Abstract Jacobi and Poisson structures. Quantization and star-products, J. Geom. Phys. 9 (1992) 45-73.
[14] G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962) 383-408.
[15] A. Lichnerowitz, Quantum mechanics and deformations of geometrical dynamics, in: A.O. Barut, ed., Quantum Theory, Groups, Fields and Particles (Reidel, Dordrecht, 1982) 3-82.
[16] J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45 (1949) 99-124.
[17] J. Vey, Deformation du Crochét de Poisson sur une varieté symplectique, Comment. Math. Helv. 50 (1975) 421-454.

[^0]: Correspondence to: Professor S.D. Schack, Department of Mathematics, State University of New York at Buffalo, 106 Diefendorf Hall, Buffalo, NY 14214-3093, USA. Email: mthsds@ubvmsc.cc.buffalo.edu.

 * The authors thank the National Security Agency of the U.S.A. for partial support of this work.
 ** E-mail: mgersten@mail.sas.upenn.edu.

[^1]: ${ }^{1}$ Much of this paper was developed in the first author's 1990 Ph.D. Thesis "Universal deformation formulae" at the University of Pennsylvania.

