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We show that an algebra with a non-nilpotent Lie group of automorphisms or “symmetries” (e.g., 

smooth functions on a manifold with such a group of diffeomorphisms) may generally be deformed 

(in the function case, “quantized”) in such a way that only a proper subgroup of the original group 

acts. This symmetry breaking is a consequence of the existence of certain “universal deformation 

formulas” which are elements, independent of the original algebra, in the tensor algebra of the 

enveloping algebra of the Lie algebra of the group. 

Introduction 

We show that if an algebra A admits a Lie group of automorphisms of dimension at 
least two then A may generally be deformed in such a way that the full group no 
longer acts, and we examine (but are unable to classify) the ways by which such 
“spontaneous symmetry breaking by deformation” may occur. A basic example of an 
algebra with a continuous group of symmetries is the algebra of smooth (or, in 
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suitable cases, analytic or algebraic) functions on a manifold X which itself possesses 

a “large” Lie group G of automorphisms. This commutative function algebra is then 

generally deformed to a non-commutative one, a process frequently called “quantiz- 

ation”. A special case, in turn, is that where the manifold is the group G itself, in which 

case its Hopf algebra, O(G), of polynomial functions is deformed into a “quantum 

group”. 

The phenomenon of general symmetry breaking just described results from the 

existence of certain “universal deformation formulas” (udfs), whose discussion will 

require a brief review of the algebraic deformation theory introduced in [S]. However, 

the oldest general formula [6], which serves a paradigm for the others, is both easy to 

understand and ubiquitous. Suppose that cp and $ are commuting derivations of an 

algebra A of characteristic zero. We can then define a new formal multiplication 

(technically not on A itself but on the algebra A [[t]] of formal power series on A - 

something we may suppress), by the exponential deformation formula 

a*,b = ab + t&)$(b) + ; q?(a)+‘(b) + ; $(a)t,h3(b) +. . . . 

If A is associative then this gives a “one-parameter family” of associative multiplica- 

tions on the “same” underlying vector space as that of A, a statement to be taken 

literally only when A is real or complex (or even p-adic!) and the series is well-defined 

for small values oft. The Lie group of symmetries of A which induced this deformation 

is that whose infinitesimal generators are cp and $. Note that A may be commutative 

but the deformed algebra generally need not be, for while cp and $ commute there may 

be elements a and b in A with q(a)$(b) # $(a)cp(b), so a *,b # b*,a. 

The formula displayed above remains meaningful for Lie algebras and may also 

create them. For if an associative algebra A deforms then the Lie algebra obtained by 

taking commutators also does so, and when A is commutative but deforms to a non- 

commutative algebra, then this commutator algebra becomes non-trivial. The infinitesi- 

mal of this associated Lie algebra deformation is then generally called a Poisson bracket. 

A fundamental special case of this formula, antedating algebraic deformation 

theory by 15 years, first appears in Moyal’s work [ 161 on statistical mechanics. Later, 

using algebraic deformation theory, Lichnerowitz [15] applied it to produce “star 

products”, i.e., deformations of the Poisson-Lie algebra of a symplectic manifold, but 

needed the vanishing of certain deRham cohomology groups. Subsequently Dewilde 

and Lecomte removed the restrictive hypothesis, thereby showing that quantization 

was always possible (cf. [3]). The BerezinToeplitz-Wick calculus uses the exponen- 

tial formula to realize a sizable sub-algebra of the algebra of Toeplitz operators on 

Fock space as a deformation of the algebra of functions having linear exponential 

growth (e.g., polynomials and linear exponentials in z and Z). More recently it has 

been used to obtain new quantum groups (cf. [S]). In this paper we will exhibit other 

udfs, and will show that, in general, an algebra A with a Lie group of automorphisms 

may be deformed so that only a nilpotent subgroup remains. 
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In what follows all rings will be assumed to contain unity. The ground ring k will be 

a commutative unital ring and “algebra” will always mean an associative unital 

k-algebra. All unsubscripted tensor and wedge products will be formed in the category 

of k-modules.’ 

Cohomology and deformation theory 

Let M be a bimodule over the algebra A and C”(A, M) = Horn&t@“, M) be the 

k-module of Hochschild n-cochains of A with coeficients in M. It is frequently 

convenient to view the n-cochains for n # 0 as k-multilinear maps 

Ax.. . x A (n times) + M 

and to identify C’(A, M) = HomJA @’ M) = Hom,(k, M) with M. An element of , 

C”(A, A) may be denoted F” when it is useful to note its dimension. The coboundary 
operator 6”: C”(A, M) + C”+l(A, M) is defined by 

@“F”)h,. . . , a,+,) 

= aIF(az,. . . ,a,+I)+ i (-l)‘F(al,...,aiai+,,...,a,+l) 

i=l 

+ (-l)nfl F(ar,. , a,)a,+l 

and has square zero. We set ker 6” = Z”(A, M), the module of n-cocycles; this contains 

im8 ‘-I = B”(A, M), the module of n-coboundaries, and we obtain H”(A, M) = 
Z”(A, M)/B”(A, M), the nth Hochschild cohomology group. Also note that Z1 (A, M) = 
Der(A, M), the k-module of k-linear derivations of A into M, which is a Lie algebra 

when M = A. Normalized n-cochains satisfy the further condition F(al, . . . , a,,) = 0 if 
any aiE k. These form a subcomplex C11_(A, M) of C’(A, M), and the inclusion 

C’,(A, M)-*C’(A, M) induces an isomorphism, H1;(A, M) z H’(A, M) (cf. [9]). In 

the case M = A, which we need for deformation theory, the cohomology ring 

H’(A, A) has the structure of a G-algebra (cf. [S]). That is, it is a graded k-module 

H’ = {H”} together with two multiplications, (Q V)H vv (“cup”) and (v, V)H [q, v] 

(“bracket”) satisfying the following three properties: 

(1) (v], v) H qv is an associative graded commutative product; i.e., for q” E H” and 

v”‘EH~ we have 

f’V’ = (- l)““vv] E H”+“. 

1 Much of this paper was developed in the first author’s 1990 Ph.D. Thesis “Universal deformation 

formulae” at the University of Pennsylvania. 
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(2) (v, V)H [q, v] is a graded Lie product for which the grading is the degree 

reduced by 1, so q” E H” has reduced degree m - 1 and [q”, v”] E H”+“- ‘. The bracket 

then satisfies 

[v”, $P] = _ (_l)(m-l)(n-l) Cv”, VI”1 

and 

(_l)(m-l)(n-1) [rf”, [AP,v”]] + (- l)(p-r)@-r)[A, [v, Y/l] 

+(-l)‘“_ l)(p- “[V, [q, A]] = 0. 

The associative and graded Lie products are connected by the following property: 

(3) [-, ApI is a graded derivation of degree p - 1 of the associative algebra struc- 

ture; that is, for all Apt HP, 

[fv, nq = [r], A] 0 + (- l)m(p- “n [v, A]. 

For H’(A, A) we describe products at the cochain level, and observe that they 

descend to cohomology, where (3) also holds. The graded associative multiplication 

on C’(A, A), denoted by V, is defined by 

(F”-G”)(al,. . , a,, bl,. . . , b,) = Fm(ul,. . . , a,)G”(bl,. . . , b,). 

While the cup product uses the multiplication in A, the graded Lie bracket on 

C’(A, A) does not. For this, first define F” &G”E Cm+n-l(A, A) for 1 < i < m by 

F”6iG”(Uly. . . 7 Um+n-1) 

= Fm(ul,. . . 3 ai- G(ui,. . . ,ui+n-l)T ai+,,. . . 3 %t+n-I) 

(G is “composed into” the ith slot of F). The (total) composition product is 

i=l 

Note that the associativity of the multiplication c1 is equivalent to 

or, equally well, a Or CI = a O2 CC The graded commutator 

[F”, GnlG = F”6G” _ (_l)(m-l)(n-l)Gn~Fm 
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is then a graded Lie product. Note that 

Also C’(A, A) = End,(A), is an associative algebra under composition, and [-, -Ic 

coincides with the usual Lie product of endomorphisms since F’ 0 G1 = FG. More 

generally, F 1 0 G = F ’ OI G = F o G, for every cochain G. One has 

6(Fm- G”) = 6F”- G” + (-l)“Fm-6G”, 

so 

Z”-Z” c Z”+“’ and Z”-Bm, B”-_Z” c B”+“‘, 

and one defines the cup product of cohomology classes by 

[F”]-[G”] = [F”- G”] for F”‘EZ”‘, G”EZ”. 

At the cohomology level, - is graded commutative, 

CF”l-CC”] = (-l)““[G”]-[F”], 

by virtue of the identity [S] 

6(Fm6G”) - F”66G”- (-l)“-‘GFm6G” 

= (-l)“(G”- F” - (- l)““F”-G”). 

This also implies that the graded Lie product descends to cohomology. In particular, 

for derivations cp and $ one has 

which generalizes inductively to give 

Lemma 1. Zf cpl,. . . , cpn are derivations of A into itself, then 

&Pl . . .%I)= - 1 Cpil Cpiz ’ ’ ‘Pi,-(Pir+l(Pir+2’ ’ ‘Vi,. 
il< ,.. <i, 

i,+*<..‘<i, 

The sum is over all partitions of { 1,. . . , n} into two non-empty subsets. In particular, 
writing cp’ for the rth iterate of a single derivations q, we have 

n-1 

&p”= - c ‘: cp’-(p-‘. 0 0 
i=l l 
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That [-, -]c acts as graded derivations of - on H’(A, A) follows from another 

identity [S]: 

[F”- G”, H”]o = [F”, HPIG- G” + (- l)mCP- l)F”‘- [G”, HP& + SE5 

where 

p-l m+p-2 

E= c 1 (-1) (m-l)i+(n-l)j(HpOiFm)oj~“. 

i=l j=m+l 

We note a few other useful identities. Trivially, 

(FP.._G)oi~ = (FoiH)w 
F-(G Oi- 

G for i < p, 

_pH) for i > p, 

SO 

(FP-G)6Hq = (FoH)-G + (-1)P’q-1)F-(G6H). 

An easy induction establishes 

Lemma 2. If cp, ,. . . . ,, ~P,E!&x(A,. A) and F,G EC’(A, A) then 

Here the sum ranges over all partitions of { 1, . . . , r} into two (possibly empty) subsets. 
(Interpret an empty composite us the identity map in C’(A, Aj.) In particular, we have 

the standard Leibniz rule, 

qPPO(F-G)= i ’ 
0 

(cpr6F)-(cpP-r6G). 0 
r=. r 

The exterior algebra Ag on a Lie algebra g has a natural G-algebra structure in 

which the graded associative multiplication is just the exterior product, A, and the 

bracket is the Schouten bracket [-, -3s described as follows: 

(i) If x1,. . . , xp, y,, . . . , y,~q, then 

CXl,Yl A . . . Ay,],=C(-I)‘-‘yl A .” A[X,,yj]A “’ Ayq. 

(ii) Setting x1 A . . . A xp = 5” and y, A . . . A yq = qq, then 

[~p,qq]s = c (- 1)"-"Xl A . . . A [Xi, ?/“I A . . A X,. 
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Combining these we obtain 

(iii) If x1 A . . . A pi A . . . A xp = tLpandyl A . . . A jj A . . A yq = f+‘, then 

[t”,ff”]s = [XI A . . ’ A Xq, YI A . ’ A Y,h 

= (_l)(P-lHq-l) 2 (_ l)i+j[xi, yj] A 5;” ,, vKq, 

where ii, jjj denote the omission of Xi and yj respectively. 

The functor g H R g is easily seen to be the left adjoint to the forgetful functor 

G-algebras -+ Lie algebras, H.-H’. This means, in particular, that [-, -IS is the 

unique graded Lie bracket on fig which restricts to the given bracket on g and, 

together with A, makes R g a G-algebra. 

A deformation of an (associative) algebra A is a new (associative) multiplication on 

the formal power series ring A[[t]] of the form 

a, = a + t!q + t2a2 + . . 

where c( (= ao) is the original multiplication and each dli is a k-bilinear map (2-cochain) 

A x A + A, tacitly extended to be k [ [t]] bilinear. We denote the deformed algebra by 

A,. (Adaptation to other categories, e.g. Lie algebras, is clear.) A second deformation 

Ai, with multiplication cc;, is equivalent to A, if there is a k[[t]]-algebra isomorphism 

ff : Ai -+ A, of the form ff = idA + tf + t2f2 + . . . where each J is a k-linear map 

(1-cochain) A -+ A (again extended to be k[ [t]]-1’ mear). The condition that ft be an 

algebra map may be rewritten as 

or, equivalently, cc; = f t -I 6 ((a, O2 5) olff). When this is the case, a; = al + Sfl. One 

may easily check that the associativity of a, is equivalent to a, 6 CI, = 0. Gathering the 

coefficients of t” for each n gives the equivalent set of conditions 

(*?I) c a,oa, = da, for all n = 1,2, . . . , 

1+m=n 
I,m>O 

from which one sees, in particular, that ha, = 0. It follows that the integrability of an 

~1~ EZ~(A, A), i.e., the existence of a deformation with the given CI~ as its linear term, 

depends only on the cohomology class [crl] of ~1~. We may view [al] eH2(A, A) as the 

injnitesimal of the equivalence class of the deformation A,. A trivial deformation is 

one equivalent to the k[ [t]]-bilinear extension of the original multiplication. If one 

has only o! + tee, + . . . + t’a, satisfying (en) for n = 1, . . . , r then 
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and the class of this cocycle is the obstruction to finding an c1,+ 1 such that ( *r+ i) is 

satisfied. In particular, Sq[al] = [a1 0 rxl] EH~(A, A), is the primary obstruction to 

integrating [ccl]. 

Suppose now that cp and rl/ are derivations of A into itself. Then cp - $ is a Hoch- 

schild 2-cocycle though not, in general, the infinitesimal of a deformation. However, if 

cp and 1+9 commute and k contains Q, then 

defines a deformation, and in characteristic p > 0 continues to do so, provided 

‘pp = I,V’ = 0. (Here, as earlier, cp” denotes the n-fold composite of cp with itself.) This 

deformation was denoted exp t(cp- $) in [7], but this notation is ambiguous; one 

should write tl exp t(cp 0 $). For note that we may have cp - 1+5 = (p - $ for some other 

pair of commuting derivations while c( exp t(cp 0 $) # aexp t($ @ $). With this nota- 

tion, the last formula may be rewritten to give the exponential deformation formula: 

@., = a 10 1 + tcp 0 $ + ; (p2 0 11/2 + ; (P3 0 ti” +. . . 
( > 

. 

This may be “skew-symmetrized” (cf. [17]) as follows: Setting cp A $ = 

3((p 0 II/ - II/ 0 cp) one has cp A II/ = cp 0 II/ - 6(2~+V, so there is an equivalent defor- 

mation 

In particular when cp and $ are commuting tangent vector fields on the smooth 

manifold X, this “integrates” the Poisson bracket rp A $ to a deformation of 

A = Cm(X). 

Universal deformation formulas 

The first known “universal deformation formula” (udf) based on a Lie algebra g was 

the exponential deformation formula of the previous section. In this case g is the 

unique abelian Lie algebra of dimension two, which we henceforth denote a2. The 

construction of udfs based on a2 and other Lie algebras parallels deformation of an 

algebra and their explicit construction is the subject of this section. 

To begin with, we note that the structure of C’(A, A) is richer still than described in 

the previous section-it is a “unital comp(osition) algebra”: By definition, a (right) 
camp algebra C’ is a graded k-module Co, C ‘, . . . together with a distinguished 
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element rc E C2 and k-bilinear operations bi : Cp x Cq + Cp+q-’ for i 2 1 such that 

fPdig = 0 if i > p, 

i 

(f ojh)oi+,_lg if j < i, 

(fPbigq)bjh* = fEi(lJOj-i+lh) if i < j < 4 + i, 

(fEj-q+lh)6ig if j 2 4 + i 

and 7c 017c = rr 027c. (The first and third parts of the equation displayed above are 

equivalent; we include them for symmetry and completeness.) We then define 0 and 

[-, -1 as for the case of C’(A, A). Moreover, we can define a coboundary operator and 

a “cup product” by Sf= - [f, rc] and f-g = (?r02g)01J: (The condition on rc in- 

sures that d2 = 0.) Now all of our previous assertions for C’(A, A) carry over to an 

arbitrary camp algebra C’. In particular, the homology H(C’) is a G-algebra. (This is 

essentially what is proved in [S]; the claim in [7] that the same is true for the 

“composition complexes” defined therein is not quite correct because the relationship 

between Oi and - is not precise enough there.) A camp algebra is unital if there are 

(necessarily unique) elements 1 E Co and ZE C’ such that rr 6i 1 = rr o2 1 = I and 

I of = foil =f for all p, all f~ Cp and all i d p. The element 1 is then an identity for 

- in both C’ and H(P). Also, 71 = I --I = 61. 

As in the case of cochains, C 1 is an associative algebra under 0 = O1 and, hence, 

a Lie algebra under the commutator [-, -1. The 1-cocycles Z’(P) again comprise 

a Lie subalgebra. Now, with the evident maps, unital camp algebras form a category 

and, clearly, the assignment C’ H Z1 (C’) is a functor. This functor has a left adjoint. 

That is, for each Lie algebra g there is a “universal” unital camp algebra, denoted 

T’Ug, characterized by the fact that there is a natural bijection between Lie algebra 

maps g + .Z’(C’) and unital camp algebra maps T’ Ug + C’. A special case occurs 

for each Lie algebra map g + Der(A, A). Such morphisms arise, in particular, when 

a Lie group G acts on A and g is the Lie algebra of G. 

The universal unital camp algebra on g is, as an algebra, just the tensor algebra 

T’Ug of the universal enveloping algebra Ug of g. To define the camp algebra 

structure, first note that Ug is a bialgebra (in fact, a Hopf algebra) with comultiplica- 

tion A : Ug -+ Ug 0 Ug defined by Ag = 1 0 g + g 0 1 for g E g (the primitives of Ug) 

and A(uw) = A (u)A(w) for u, WE Ug. Then, following [7], we can make the tensor 

algebra TU on any bialgebra U (and so, in particular, for U = Ug) into a camp 

algebra by setting 

where, extending the Sweedler notation, we write Aq(Ui) = c Ui,(l) 0. . .@I Ui,(q) for 

the iterated comultiplication A, : U + TqU = UBq. (Note that A2 = A while Al = Id; 

thus, on T1 U = U, the operation 0 = ol is just the multiplication in U.) The elements 
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n, I and 1 are, respectively, 1 @ 1 E U 0 U, 1 E U and 1 ok. Elementary computations 

show that - is just 0, that 6u = - [u, 1 0 l] = u 0 1 + 1 0 u - du for UE U-so 

the 1-cocycles are just the primitives-and that 6a = 0 for a E k = T’U. In particular, 

H’(T*Ug) = k and H’(T’Ug) = Z’(T*Ug) = g. It is now easily checked that 

gH T’Ug to C*HZ~(C*). Finally, we note 

has arisen in in Drinfel’d’s study of 

[4] and Grabowski’s on star-products [13]. 

A universal deformation formula on g a formal power series 

yt = 1 0 1 + ty1 t2y2 + . . (T’ Ug) [t]] such yt 0 = 0. sense in 

yt is is the if g Der(A, A) Z’(A, A) a Lie mor- 

phism the induced algebra map + C’(A, will carry to a 

mation. A y; is to yr there is formal power 

a, = + ta, Pa2 + . . 

Theorem 3. The canonical G-algebra map fl g + H(T’Ug) is an isomorphism. 

Proof. The Poincare-Birkoff-Witt theorem (PBW) asserts that if x1, x2,. . . is an 

ordered linear basis for the Lie algebra g the “standard” monomials of the form 
XVX1;. . .x: comprise a basis for Ug. We will call i1 + i2 + . . . + i, the degree of such 

a monomial. Since nothing depends on the actual Lie bracket of g, we may, without 

any loss of generality, assume that g is an abelian Lie algebra with basis xi, x2, . . . . 

Then Ug is just the polynomial ring k[xl, x2, . . .]. 

Now let y,, y, . . . be new variables and set S = k[y,, y,, . . .]. If I = (iI, . . . , i,) 

is a multi-index with each i, 2 0 then set yr = yv . . . yk and 111 = il + . . . + i,. Also, 

if I’=(i;,. . . , ik) then, extending one or the other by zeros if necessary, set 
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I + I’ = I’ + I = (il + i;, i2 + ii,. . . ). Write & for the derivation 8/3yi of S into itself 

and 8 for ai,lal;. . .a:. Then aryl = 1 but azyJ = 0 for all J # I with IJI G II). 

Now, each Ch(S, S) (normalized n-cochains) has a natural topology in which a basis 

ui 3 uz 3 . . . of neighborhoods of 0 is defined by letting U, consist of those F with 

F(x”, . . . , x’“) = 0 whenever lZ1 + . . . + I,1 d r. Each U,./U,+i is spanned, over S, 

bytheimagesofthosei3z1--~~waa’nwithII, +... + I,,1 = r. We may therefore write 

every FE CI;(S, S) uniquely as an infinite k-linear combination of the form 

cc,,, ,,..., 0+rl-. . . - aIn) with each 11,l > 0. (However, IJI = 0 is permitted.) As 

in the complex T’Ug, we assign yJ( ,‘I-. . .-a’n)~C:(S, S) degree 11i + . . . + I,,[. 

Then 6 preserves degrees. Moreover, for each fixed multi-index J, the space of (infinite) 

linear combinations, as above, of the terms y”( 8’ -. . . - aIn) forms a subcomplex of 

Ck(S, S). The map g + Der(S, S), xi++ai induces the cochain map 

T’Ug + C’(S, S), x1~ 0. . .o ,$,+_+@l_. . .--In, 

which is obviously a monomorphism and restricts to a map of normalized complexes 

T’,Ug + C’,(S, S). Here TkUg is the span of those xrl 0. . . OxIn in which each 

1 I,( > 0 and it is easily checked that the inclusion Tk Ug c) T’ Ug induces a cohomol- 

ogy isomorphism. Note that the image of the map T’,Ug + C&(S, S) lies in the 

subcomplex with J = 0. 

The Hochschild-Kostant-Rosenberg theorem ([14]; see also [17]), asserts, in 

particular, that since S is a polynomial ring over k 2 Q, the natural S-module map 

/j\‘,Der(S, S) + H’(S, S), yJ(aIl A . . . A a~~)i--+yJ(a~~-. . ._aJn) 

is an isomorphism. As 6 preserves degrees, this means that the summands of 

degree n in an n-cocycle themselves comprise a cocycle having the same cohomology 

class while the other summands constitute a coboundary. This is true in particular for 

the subcomplex with J = 0 and, so, for the image of the map Tk Ug -+ C’,(S, S). It now 

follows that this map induces a cohomology monomorphism with image /Vg. In 

particular, H(T$ Ug) z fig and it is easily checked that this isomorphism is inverse 

to the canonical map fig + H(T;Ug) E H(T’Ug). q 

As in the case of deformations, the equation y,O yt = 0 for a udf 

yr = 10 1 + ty1 + t2y2 + . . . (where yig Ug @ Ug) implies that y1 is a 2-cocycle, i.e., 

is in Z2( T’ Ug). Since up to equivalence of formulas only the cohomology class of 

y1 matters, we may view the class [yi] in H2(T*Ug) E //“g as the infinitesimal of yt. 

The yi satisfy the equations ( *,) as before. If we have yi, . . . , yn satisfying ( *,) for 

r=l,..., n the primary obstruction to extending the “approximate formula” 

r, = 1 0 1 + tyl + . . + t”y,, one more term is the class 

Obs(T,)=Cy,6y,+y,oy,-, +-+yn~y&Kg. 
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When dim,g = 2 we have Rg = 0, and so, by Theorem 3, the obstruction is trivial 

and every infinitesimal can be integrated. 

For dim,g 2 3 the obstruction map Sq: K g + Rg sends y1 to Sq(y,) = 

[yl Oy,] = i[yl, ylls. Suppose now that dim,g < co. Those y1 with Sq(y,) = 0 form 

an algebraic subset, V,(g) = V, of R g which is stable under all automorphisms of 

g and therefore, in particular, under the action of the adjoint Lie group G as well as 

under ad(g) for g E g. Those y1 which can be prolonged to an approximate formula 

1 @ 1 + tyl + t2y2 + t3y3 form an algebraic subset V2 of V,, and so forth. We thus 

obtain a descending sequence V, 1 V2 2 . . . of (quadratic) algebraic subvarieties of 

V, = Rg c Ug @ Ug. In a finite number of steps we arrive at V, the locus of 

integrability consisting of all y1 E K g for which there is a full universal deformation 

formula beginning 1 0 1 + tyl + . . . . Denote by L x 1 the greatest integer less than or 

equal to x. 

Theorem 4. If g is a nilpotent Lie algebra 

v, = &3N+l),ZJ. 

Proof. If 1 @ 1 + tyl + t2y2 + . . . + t”yn is an 

with index of nilpotence N, then 

approximate deformation formula 

then each of the tensor factors of the obstruction 3-cocycle is a word in Ug and the 

total length of these words is 2 + 2n. After reordering, using PBW, some terms will 

have total degree 3 and according to Theorem 3, these determine the cohomology 

class of the obstruction. Each term is reordered by the introduction of a sequence of 

commutators in each tensor factor. Since there are only three tensor factors, each term 

will have one (or more) tensor factors requiring (2 + 2n - 3)/3 iterated commutators. 

Noting that g has index of nilpotence N < (2n - 1)/3 for n > L (3N + 1)/2 J finishes 

the proof. q 

Determining the locus of integrability is generally difficult but we conjecture the 

following: 

Conjecture. If g is semisimple then V, = V,. 

For dimkg = 2, the cohomology theory has shown that every infinitesimal can be 

integrated, so udfs based on g surely exist (as noted earlier). As also mentioned, the 

exponential deformation formula is a udf based on a2. Although not previously 

described as such the quasi-exponential formula of [2] is a udf (strictly) based on the 

unique non-abelian Lie algebra b2 of dimension two. We repeat it without proof. 

Theorem 5. Let cp, tj be generators of b2 with [q, $1 = cp and set [tj]” = 

$($ - 1). . .(I) - n + 1). Zf k =) Q then 

e(t; v, $) = 10 1 + tcP 0 $ + g (p2 0 [$I2 + $ rp3 0 [$I3 + . . * 

is a udf strictly based on b2. 0 
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The absolute values of the coefficients of the poloynomial [x],, = x(x - 1). . . 
(x - n + 1) are the Stirling numbers of the first kind; the coefficient of xi is precisely the 
number of elements of the symmetric group on n letters, expressible as a product of 
i disjoint cycles. If A is a finite-dimensional algebra over Iw or @ and b2 + Der (A, A) is 
a Lie algebra map then the deformation of A induced by e(t; cp, 9) has a nonzero 
radius of convergence which is generally finite (the reciprocal of the absolute value of 
the largest eigenvalue of cp). The skew symmetrized version of the quasi-exponential is 
not exponential. However, Giaquinto has observed that the quasi-exponential may 
also be written as 

e(t;cp,+)=exp tfp@$--~fp'@*+~cp"@*-... ( > 
=exp 

( 
f ~(-l~“@*$ 

fl=l 1 

= exp(ln(1 + tcp) 0 II/). 

Denote by e12 the three-dimensional simple Lie algebra with basis h, x, y and 
commutator relations 

Ch, xl = x, Ck ~1 = - y, Cx, y] = 2h. 

Theorem 6. V,=V,=(y=a(hr\x)+b(h/\y)+c(xr\y)~/\2~1,~ab-c’=O}. 
Moreover, every non-zero y E V, is integrable to a udf based strictly on s12. 

Proof. First note that fi512 is generated (over k) by h A x A y and that for y and 
y’ = a’(h A x) + b’( h A y) + c’(x A y) E K e12 we have 

[y, y’ls = (2ab’ + 2a’b - 4cc’)h A x A y. 

The primary obstruction to y, namely &[y, yls, thus vanishes if and only if ab - c2 = 0, 
and this equation then defines VI. Now suppose that r, = 10 1 + ty 1 + . . . + t”yn is 
a udf modulo t”+ ‘, that yi # 0, and that, for some d, d(h A x A y) is the obstruction to 
extending r,, to be a udf modulo t”+2. Replacing yn by y. + y’ with y’ E R 51, changes 
the obstruction to d(h A x A y) + [y, ~‘1~. Clearly then we can always alter the last 
term of r, by a cocycle to make the approximate series integrable. If d = 0 we may use 
y’ = 0. Thus every y1 E VI can be extended first to 10 1 + tyl + t2y2 and then, by 
adjusting y2, to a udf with infinitesimal yi. We have proved the first assertion. 

For the second assertion, note that it is trivial if abc # 0. Otherwise, any coefficient 
being zero implies that yr is a(h A x) or b(h A y), so we may assume without loss of 
generality that y1 = - h A x. Now, as h and x generate a subalgebra of sIZ isomorphic 
to b2, the quasi-exponential e(t; x, h) is a udf with infinitesimal x A h = - h A x = yl. 

In particular, 1 @ 1 + t(x A h) + $(x2 @ h(h - 1)) is unobstructed and, by the 
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foregoing, remains so if we adjust the quadratic term by any cocycle y’ with 

[x A h, 7’1s = 0. The latter condition requires only that b’ = 0, so we may choose, for 

example, y’ = x A y. Any integral of the adjusted series then has quadratic term 

3(x’ 0 h(h - 1)) + x A y and, so, is strictly based on 512. 0 

We now consider udfs based on the Lie algebra al, for n 2 3. Recalling that al, may 

be viewed (in its natural representation) as the set of n x n matrices with trace 0, we 

denote by eij the matrix with a 1 in the ijth location and zeros elsewhere. Set 

p = 2Cl<j<.eljOej, and 
H+ = el, - en”. Then, with 

write H[,“] = H+(H+ + 1). . .(H+ + m - l), where 

+ 0 y (H[,“-‘] @I eyL2)P2 -I-. . . + pm, 

a straightforward induction argument gives 

Theorem 7. The series p, = 1 0 1 + tpl + $p2 + . . . is a udf bused on 51,. 0 

Note that the latter formula is based strictly on a subset of a one-dimensional 

extension of a Heisenberg algebra generated by {ell - en,,, eii, e,,j 1 i = 2, . . . , n and 

j = 1,. . . , n - l}. 

Breaking symmetry 

It is natural to ask, when a non-abelian Lie group G operates as automorphisms of 

an algebra A, whether there will generally be deformations of A- whose form 

depends only on the structure of the Lie group-such that the deformed algebra no 

longer admits the operation of G. That is, does the very existence of symmetries 

provide paths to breaking them? While we cannot as yet answer this question in such 

generality, we can address the analogous issue for udfs. 

Let G be a Lie group operating on an algebra A by automorphisms and g be the Lie 

algebra of G. We may view cp ~g as the injinitesimal of 

exp tcp = e’” = Id + tcp + $ cp2 + . . . . Abusing language 

a symmetry of A. 

the formal automorphism 

we refer also to CpEg as 

The Hochschild cohomology groups of an algebra A are upper semicontinuous 

functions of the algebra in the following sense: if A, is a deformation of A then its 

cohomology groups are subquotients of those of A [l, 7, lo]. In particular, if k is 

a field then the dimensions of the cohomology groups of A cannot increase under 

deformation. Indeed, if the characteristic of k is 0 and A undergoes a “jump” 

deformation, i.e., one that remains constant for generic t # 0, then dimk H2(A, A) must 

strictly decrease (assuming that it was finite at the start) [lo]. 
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To compare H”(A, A) and H”(A,, A,), first consider C”(A,, A,) = C”(A [[t]], 

A[[t]]) 3 C”(A, A). The coboundary operator 6, in C’(A,, A,) is (as usual) given by 

&F, = - [F,, ‘&lG, so 6, = 6 + t6, + t2d2 + . . . where 6 = & = - [-, c~]G is the 

coboundary operator in C’(A, A) and each 6i is a k-linear map C”(A, A) + C”+ ‘(A, A) 

extended to be k[[t]]-linear. Note that if 6,F, = 0 then, in particular, F0 is a cocycle. 

(The upper semicontinuity of cohomology follows from this.) We shall say that 

a derivation cp E Der(A, A) Zifts under a deformation (A,, a,) if there is a derivation 

qt~Der(A,, A,) having the form qt = cp + tcp, + . . . ; equivalently, there are cochains 

(pi E C 1 (A, A) for which 

C (z. [qn-i, MilG) t” = CVt, GIG = 0, 
” 

(Here cl0 = CI and cp,, = cp.) Otherwise, cp is said to break. Since cohomology is upper 

semicontinuous, no new derivations may appear at t # 0. For this reason, once 

a symmetry is broken, there is no way to recover it via deformation. We note trivially 

that if cp is central in Der(A, A) then it necessarily lifts, so the exponential deformation 

formula breaks no symmetries; it may however trivialize them in the sense that they 

become coboundaries. 

In analogy with the case of algebras, given an x E g and a udf yt = 10 1 + c t’yi we 

say that x lifts if there are elements xi E Ug for which xt = x + ztixi satisfies 

[x,, yt]G = 0. Equivalently, 

(**J i$o CXn-i, YilG = 0 

for all IE. (Here y0 = 1 0 1 and x0 = x.) Otherwise, yt breaks x. Any map 

f: g + Der[A, A) carries liftable elements of g to liftable derivations (with respect to 

the induced deformation f(y,)). However, the image of an element which breaks may 

nonetheless be a liftable derivation. For example, when A = TV, the tensor algebra on 

a k-module I’, every derivation is liftable under every deformation simply because TV 
is rigid, i.e., all its deformations are trivial. The general problem is that the contain- 

ment of the image of T’ Ug in C’(A) may be proper. Consequently, a failure to solve 

(**,,) in T’ Ug does not preclude the possibility of finding solutions in C’(A, A). 

Nonetheless, in some generic sense it must be true that if yt breaks x then there is some 

map f:g + Der(A, A) such that f(rt) breaks f(x). We also make the 

Conjecture. Let G be a non-nilpotent Lie group acting as automorphisms on a finite- 

dimensional algebra A through an inclusion gLtDer(A, A) having the property that 

g -+ H ’ (A, A) is also a monomorphism. Then every non-nilpotent cp E g breaks under 

some deformation of A. More generally, there is a sequence of deformations of 

A which breaks all symmetries outside of the subalgebra generated by the nilpotent 

elements of g and one other element. 
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We return to this conjecture after examining the easier question of liftability of 

elements of a Lie algebra. 

Theorem 8. Let h and x be a basis for b2 with [h, x] = x. Then yt = e(t; h, x) breaks 

h but x is li;fuble to x, = x + xln(1 + tx). 

Proof. If h were to lift, to say h, = h + th, + . . . , we would have from 

(**i), [h, x @ h]o + [h,, 1 @ llG = 0. That is, [x 0 h, h]o = [h,, 10 11, = 6hI and, 

so, - h 6 (x 0 h) + (x @ h) 0 h = 6hI. But the left-hand side of the latter equation is 

-hxOh-x@h2+xh@h+x@h2=[x,h]@h=x@h, 

which is not a coboundary in T2 Ubz. So h breaks. The reader may easily check the 

lifting of x. 0 

Remarkably, no perturbation of the formula e(t; x, h) will break x. More specifi- 

cally, we have the following: 

Theorem 9. Let yt be a formula strictly based on s12 with infinitesimal x A h. Then x lifts 

while yt breaks both h and y. 

Proof. The breaking of h and y is established as in the previous theorem. That x lifts is 

more subtle and follows from Lemma 10. 

We first note that the complex T’Usl2 is the direct sum of two subcomplexes: 

T’ Usl, = T,’ Usl, 0 Tt X Ue12, 

where T,’ Usl, is the ideal generated by { h”xbyc 1 b # 0}, i.e., the linear combinations of 

terms holxblycl Q P2xb7yC2 0. . . in which at least one bi # 0. (Here we have ordered 

the standard PBW basis as h, x, y.) Elements of T’, X Uelz are linear combinations of 

the basis elements h"' y” 0 h”‘y” 0 . . . . We call the elements of T: UsI, x-terms. It is 

trivial that these are indeed subcomplexes. Our proof of the theorem requires 

Lemma 10. Zf CI, BE U5lz @ Uelz and IX is an x-term then the composition products c( 6 /? 

and /? 6 c( are also x-terms. Also, tf yt = 1 @ 1 + 1 t’yi is a formula strictly based on slz 

with infinitesimal h A x then yt is equivalent to a udf Ft in which each y*i is an x-term. 

Proof of Theorem 9 (continued). Assuming the lemma for a moment, suppose that 

x, = x + txI + t2x2 + . . . + t”- ’ x,_ 1 is a lifting of x modulo t”. In as much as 

liftability is invariant under equivalence, we may assume that every yn is an x-term. 

The obstruction to extending x, to a lifting modulo t”+l is [x,_ r, yllG + . . . + 

[xi, yn_ rlG + [x, yJG, for this is precisely - 6x, if such a lifting exists. The lemma 

insures that this is an x-term and, so, its cohomology class in /\2512 is 



Universal deformation formulas and breaking symmetry 217 

a(h A x) + b(x A y) for some a, b E k. Now writing 6 (rather than [o]) for the 
cohomology class of o, we have, by assumption, y1 = h 0 x = h A x and so 

[y, flls = - x A y and [h, ylls = h A x. Therefore, if we replace x,_~ by 

x,_ 1 + by - ah, then the cohomology class of the obstruction to extending the new 

(n - 1)st order lifting vanishes, so the obstruction is a coboundary and x, can be 

found. Since it is trivial that x lifts to first order, this inductive procedure shows that 

x lifts. 17 

Proof of Lemma 10. For the first assertion, it suffices to consider the case in which 

o! = CI~ @ c(~ and /? = fil @ pz with each Cli and /?i being in the standard basis given by 

PBW. We show only that a 5 fi is an x-term, the argument for fi 0 c1 being similar. Since 

o! 6 B = (czl 0 fi)@ a2 + ~1~ 0 (c(~ 0 p) we may assume without loss of generality that 

CI~ = hPxQy’ is an x-term (q # 0) and must show that czl 6 fi is an x-term. Lemma 2 

implies that a, 6 fi is the sum of terms hP1xQ1y”fil @ h~xQ2yrZjj2 where p1 + p2 = p, 

q1 + q2 = q and rl + r2 = r. In particular, either q1 # 0 or q2 # 0. It thus suffices to 

show that hpxQy%“xbyc is an x-term if q # 0. Since y*h”xbyc is a linear combination of the 

PBW basis elements h’x”‘y”, it suffices to show that hPxQhfxmy” is an x-term whenever 

q > 0. For this, note that the relation [h, x] = x easily implies that xQh’ = (h - q)lxQ. So 
hJ’xQh’x”y” = hP( h - q)lxQ + m n y , which is clearly an x-term, as required. 

For the second assertion note that x @ h is an x-term and assume inductively that 

each yi is an x-term for 1 < i < n. Clearly, y,, may be written as y. = y; + yi where 

yb E T: Ud2 while yi E T?_ x Ud2. Since 6y, = ciyl- ’ yi 6 yn_i, the first assertion im- 

plies that it is an x-term. As T: Usl, and T'_ x Usl, are subcomplexes, we have that 

6~; = 6y, and 67: = 0, so yi = a( h A y) + 68, where 0, E T ', x U412. Conjugating y, by 

1 - 0, t” produces an equivalent udf yt in which yi = yi for i < n and 

f,, = v, - 66, = 7; + a(h A y). We have 

&xi+, = 2, i- Y OYn+l-i + CYI~Y~IG + CYlta(h A Y)IG, 

Since this is a 3-cocycle, the sum of its degree-three terms is also a cocycle and has the 

same cohomology class, namely 0. Now, the proof of the first assertion shows that, as 

y; and yi for i < n are all x-terms, every summand of [yl, ykIG and each yi 6 yn+ 1 _i has 

an x in two tensor factors. Hence each such summand with degree three reduces to 

x A x A ZE&$ Lz H3(T'UsIz) for some ZE&, which means that it contributes 0 to 

the class of 6y”,+ 1. It follows that, with 5 once again denoting the cohomology class of 0, 

- 
0 = 61 = [YI, a(h A Y)]G = [‘YI, a(h A y)]s 

= a[x A h, h A y]s = - 24h A X A y), 

and so a = 0 and j7” = y;, which is an x-term. This is just what we need to proceed by 

induction, replacing yt with Ft. The equivalent udf $* is then the result of conjugating 

yt by n (1 - kt”). 0 
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We remark that there exist udfs based strictly on elz which break x, namely those 

with infinitesimal y A h. 

Our conjecture concerning the breaking of symmetry would follow from Theorem 

8 if we knew that whenever A is finite-dimensional and Der(A) contains a copy of b2, 

some deformation induced by a universal formula breaks the approximate symmetry. 

This requires the following easy lemma: 

Lemma 11. Every non-nilpotent Lie algebra g contains a copy of bZ. 

Proof. If g is not nilpotent then Engel’s theorem provides an x E g for which ad(x) 

is not nilpotent. Consequently, ad(x) must have a non-zero eigenvalue, i. If y~g 

is corresponding non-zero eigenvector then x/n and y together generate a copy 

of bz. 0 

We conclude the paper with an example of a udf based on a non-abelian Lie algebra 

which, like the exponential deformation formula breaks no symmetries. Let h denote 

the Heisenberg algebra, which has basis x, y, z and commutator relations [x, y] = z 

and [x, z] = [y, z] = 0. In its natural representation h may be described as the set of 

all strictly upper triangular 3 x 3 matrices with the commutator product. The primary 

obstruction to a 2-cocycle ax A z + by A z + cx A y is - 2C2X A y A Z, SO 

VI (6) = { @X + by) A z}. Since the factors of (ax + by) A z generate a copy of a2, 

every element of Vi is integrable (e.g., by the exponential formula) and V1 = I’,. To 

produce a formula based strictly on h (rather than the subalgebra generated by 

ax + by and z), it will clearly suffice to modify the exponential formula for the case 

x A y of the foregoing by introducing a summand of y @ z in, say, the quadratic term. 

We may achieve this as follows: Any Lie algebra automorphism g + g induces a map 

T’ Ug + T’ Ug. In characteristic 0 such an automorphism can be obtained as the 

exponential et0 of a derivation rr of g. Now if yr is a udf based on g then so too will be 

Y: = ef%). 
For the case of g = h, we let g = ~8,. Then upon applying et(yaX) to the exponential 

deformation formula e’(” @ ‘) = 1 h xk @ zk = 1 ak we obtain 

y; = 2 t” i + (ya*)mCI,_, 
n=O m=O m. 

and so yi is strictly based on h. If A is given then the deformation induced by the latter 

udf is equivalent to the exponential deformation of A and therefore breaks no 

symmetries. 

In summary. If g is non-abelian and contains b2 then there is a udf based on g which 

generally breaks some symmetry. Otherwise g must be nilpotent and, as in the example of 

the Heisenberg algebra, may break no symmetry. 
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We do not know if there are any nilpotent Lie algebras which generically break. It is 

curious that the very existence of a non-nilpotent symmetry group generally provides 

a path to the breaking of symmetry! 

Finally, we note that although our focus has been on associative algebras much of 

what we do is applicable to other categories. If yr is a udf based on g and A is any 

structure whose “deformation cochain complex” is a camp algebra, C’, and g + Z ‘(C ‘) 

is a Lie algebra morphism then the induced map T’ Ug -+ C’ carries yt to a deformation 

of A. This applies, in particular, to coalgebras but not to Lie algebras (cf. [lo, 121). 

Note added in proof. Giaquinto and Zhang have observed the following udf 

yt = Ct”y. ba se d on ~1, with infinitesimal y1 = hOelk + /?, where h = +(ell - ekk) 

and /3 = cJ:i e,j@ ejk: set h,,i=(h+n-l)(h+n-2).‘.(h+i), then yn= 

fCy=,fii(h,,i@e;ii). 
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