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Abstract

There has been recent progress on computing the 4-rank of the tame kernel K2ðOF Þ for F a

quadratic number field. For certain quadratic number fields, this progress has led to ‘‘density

results’’ concerning the 4-rank of tame kernels. These results were first mentioned in Conner

and Hurrelbrink (J. Number Theory 88 (2001) 263) and proven in Osburn (Acta Arith. 102

(2002) 45). In this paper, we consider some additional quadratic number fields and obtain

further density results of 4-ranks of tame kernels. Additionally, we give tables which might

indicate densities in some generality.

r 2002 Elsevier Science (USA). All rights reserved.

MSC: primary 11R70; 19F99; secondary 11R11; 11R45

1. Introduction

We are interested in the structure of the 2-Sylow subgroup of K2ðOF Þ for F a
quadratic number field. As K2ðOF Þ is a finite abelian group, it is a product of cyclic
groups of prime power order. We say the 2j-rank, jX1; of K2ðOF Þ is the number of
cyclic factors of K2ðOF Þ of order divisible by 2j: For any number field, the 2-rank of
the tame kernel is given by Tate’s 2-rank formula (see [12]). In the case where F is a
quadratic number field, Browkin and Schinzel [3] simplified the 2-rank formula. In
their formula, we can determine the 2-rank by counting the number of elements in
f71;72g which are norms from the given quadratic field and the number of odd
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primes which are ramified in the given quadratic field. Now what about the 4-rank of
K2ðOF Þ?
In [6], Conner and Hurrelbrink characterize the 4-rank of K2ðOÞ for certain

quadratic number fields in terms of positive definite binary quadratic forms. This
characterization led to a connection between densities of certain sets of primes and
4-rank values. Specifically, the author in [8] considers the 4-rank of K2ðOÞ for the
quadratic number fields Qð

ffiffiffiffi
pl

p
Þ; Qð

ffiffiffiffiffiffiffi
2pl

p
Þ; Qð

ffiffiffiffiffiffiffiffi
�pl

p
Þ; Qð

ffiffiffiffiffiffiffiffiffiffiffi
�2pl

p
Þ for primes

p � 7 mod 8; l � 1 mod 8 with ð l
p
Þ ¼ 1: In [6], it was shown that for the fields E ¼

Qð
ffiffiffiffi
pl

p
Þ; Qð

ffiffiffiffiffiffiffi
2pl

p
Þ and F ¼ Qð

ffiffiffiffiffiffiffiffi
�pl

p
Þ; Qð

ffiffiffiffiffiffiffiffiffiffiffi
�2pl

p
Þ;

4-rankK2ðOEÞ ¼ 1 or 2;

4-rankK2ðOF Þ ¼ 0 or 1:

The idea in [8] is to fix p � 7 mod 8 and consider the set

O ¼ l rational prime : l � 1 mod 8 and l

p

� �
¼ p

l

� �
¼ 1

� �
:

In [8], the following was proved.

Theorem 1.1. For the fields Qð
ffiffiffiffi
pl

p
Þ and Qð

ffiffiffiffiffiffiffi
2pl

p
Þ; 4-rank 1 and 2 each appear with

natural density 1
2

in O: For the fields Qð
ffiffiffiffiffiffiffiffi
�pl

p
Þ and Qð

ffiffiffiffiffiffiffiffiffiffiffi
�2pl

p
Þ; 4-rank 0 and 1 each

appear with natural density 1
2

in O:

In this paper, we consider the 4-rank ofK2ðOÞ for the quadratic number fieldsQð
ffiffiffiffi
pl

p
Þ;

Qð
ffiffiffiffiffiffiffiffi
�pl

p
Þ for primes p � l � 1 mod 8 with ð l

p
Þ ¼ 1 and Qð

ffiffiffiffi
pl

p
Þ for primes p � l �

1 mod 8 with ð l
p
Þ ¼ �1: We will see that for the primes p � l � 1 mod 8 with ð l

p
Þ ¼ 1;

4-rank K2ðOQð
ffiffiffi
pl

p
ÞÞ ¼ 1 or 2;

4-rank K2ðOQð
ffiffiffiffiffiffi
�pl

p
ÞÞ ¼ 1 or 2:

For the primes p � l � 1 mod 8 with ð l
p
Þ ¼ �1; we will see

4-rank K2ðOQð
ffiffiffi
pl

p
ÞÞ ¼ 0 or 1:

Let us fix a prime p � 1 mod 8 and consider the sets

A ¼ l rational prime : l � 1 mod 8 and l

p

� �
¼ 1

� �
;

B ¼ l rational prime : l � 1 mod 8 and l

p

� �
¼ �1

� �
:
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The goal of this paper is to prove two theorems analogous to Theorem 1.1,
namely:

Theorem 1.2. For the field Qð
ffiffiffiffi
pl

p
Þ; 4-rank 1 and 2 appear with natural density 3

4
and 1

4

in A. For the field Qð
ffiffiffiffiffiffiffiffi
�pl

p
Þ; 4-rank 1 and 2 each appear with natural density 1

2
in A.

Theorem 1.3. For the field Qð
ffiffiffiffi
pl

p
Þ; 4-rank 0 and 1 each appear with natural density 1

2

in B.

Now for squarefree, odd integers d; consider the sets

X ¼ fd : d ¼ plg

and

Y ¼ fd : d ¼ �plg

for distinct primes p and l:

We have computed the following: For 15pdo106; there are 168 331 d’s in X :
Among them, there are 35 787 d’s (21.26%) yielding 4-rank 0, 128 468 d’s (76.32%)
yielding 4-rank 1, and 4076 d’s (2.42%) yielding 4-rank 2.

For �106odp� 15; there are 168 330 d’s in Y : Among them, there are
104 056 d’s (61.82%) yielding 4-rank 0, 63 054 d’s (37.46%) yielding 4-rank 1, and
1220 d’s (0.72%) yielding 4-rank 2. As a consequence of Theorems 1.2, 1.3 and
Tables I and II in [9,10], we obtain:

Corollary 1.4. For the fields Qð
ffiffiffiffi
pl

p
Þ; 4-rank 0, 1, and 2 appear with natural density 13

64
;

97
128

; 5
128

; respectively in X.

Corollary 1.5. For the fields Qð
ffiffiffiffiffiffiffiffi
�pl

p
Þ; 4-rank 0, 1, and 2 appear with natural density

37
64
; 13
32
; and 1

64
; respectively in Y.

2. Preliminaries

Let D be a Galois extension of Q; and G ¼ GalðD=QÞ: Let ZðGÞ denote the center
of G and DZðGÞ denote the fixed field of ZðGÞ: Let p be a rational prime which is

unramified in D and b be a prime of D containing p: Let ðD=Q
p
Þ denote the Artin

symbol of p and fgg the conjugacy class containing one element gAG: In Sections 5
and 6 we use the following elementary lemma from [8].

Lemma 2.1. ðD=Q
p
Þ ¼ fgg for some gAZðGÞ if and only if p splits completely in DZðGÞ:

Thus, if we can show that rational primes split completely in the fixed field of the
center of a certain Galois group G; then we know the associated Artin symbol is a
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conjugacy class containing one element. Note that determining the order of ZðGÞ
gives us the number of possible choices for the Artin symbol. The order of ZðGÞ can
be computed using the following setup.
Let G1 and G2 be finite groups and A a finite abelian group. Suppose r1 : G1-A

and r2 : G2-A are two epimorphisms and GCG1 	 G2 is the set fðg1; g2ÞAG1 	
G2: r1ðg1Þ ¼ r2ðg2Þg: Since A is abelian, there is an epimorphism r : G1 	 G2-A

given by rðg1; g2Þ ¼ r1ðg1Þr2ðg2Þ�1: Thus G ¼ kerðrÞCG1 	 G2: One can check that
ZðGÞ ¼ G-ZðG1 	 G2Þ: From [8], we provide:

Lemma 2.2. ZðGÞ ¼ ZðG1Þ 	 ZðG2Þ3r1jZðG1Þ and r2jZðG2Þ are both trivial.

We will use the following definition throughout this paper.

Definition 2.3. For primes p � l � 1 mod 8 with ð l
p
Þ ¼ 1; K ¼ Qð

ffiffiffiffiffi
2p

p
Þ; and hþðKÞ

the narrow class number of K; we say:

l satisfies /1; 32S if and only if l ¼ x2 þ 32y2 for some x; yAZ;

l satisfies /p;�2S if and only if l
hþðKÞ
4 ¼ pn2 � 2m2 for some n;mAZ with

mc0 mod l;

l satisfies /1;�2pS if and only if l
hþðKÞ
4 ¼ n2 � 2pm2 for some n;mAZ with

mc0 mod l:

3. First extension

Consider the fixed prime p � 1 mod 8: Note p splits completely in L ¼ Qð
ffiffiffi
2

p
Þ

over Q and so

pOL ¼ BB0

for some primes BaB0 in L: The field L has narrow class number hþðLÞ ¼ 1 as
hðLÞ ¼ 1 and NL=QðeÞ ¼ �1 where e ¼ 1þ

ffiffiffi
2

p
is a fundamental unit of Qð

ffiffiffi
2

p
Þ:

Similar to Lemma 2.1 in [6],

Lemma 3.1. The prime B which occurs in the decomposition of pOL has a generator

p ¼ a þ b
ffiffiffi
2

p
AOL; unique up to a sign and to multiplication by the square of a unit in

On

L for which NL=QðpÞ ¼ a2 � 2b2 ¼ p:

The degree 4 extension Qð
ffiffiffi
2

p
;
ffiffiffi
p

p
Þ over Q has normal closure Qð

ffiffiffi
2

p
;
ffiffiffi
p

p
;
ffiffiffi
p

p Þ as
NL=QðpÞ ¼ p: Set

N ¼ Qð
ffiffiffi
2

p
;
ffiffiffi
p

p
;
ffiffiffi
p

p Þ:
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Then N is Galois over Q and ½N : Q� ¼ 8: By Corollary 24.5 in [4], 4 divides the
narrow class number ofQð

ffiffiffiffiffi
2p

p
Þ:Moreover, N overQð

ffiffiffiffiffi
2p

p
Þ is unramified at all finite

primes. Similar to Lemma 2.3 in [6], N is the unique unramified cyclic degree 4

extension over Qð
ffiffiffiffiffi
2p

p
Þ:

Consider the rational primes l � 1 mod 8 for which ð l
p
Þ ¼ 1: These primes split

completely in Qð
ffiffiffi
2

p
;
ffiffiffi
p

p Þ over Q:We characterize such primes l that split completely

in N over Q: As N is the unique unramified cyclic degree 4 extension of Qð
ffiffiffiffiffi
2p

p
Þ;

mimicing Lemma 3.3 in [6] yields

Lemma 3.2. Let l � 1 mod 8 be a prime such that ð l
p
Þ ¼ 1: Then:

l splits completely in N if and only if l satisfies /1;�2pS:

Similar to Lemma 3.4 in [6], with 2 (respectively, D; the unique dyadic prime
in O

Qð
ffiffiffiffi
2p

p
ÞÞ replaced by p (respectively p; the prime over p whose class is the

unique element of order 2 in the narrow ideal class group of Qð
ffiffiffiffiffi
2p

p
ÞÞ; we

obtain

Lemma 3.3. Let l � 1 mod 8 be a prime such that ð l
p
Þ ¼ 1: Then:

l does not split completely in N if and only if l satisfies /p;�2S:

We now relate the characterizations of Lemmas 3.2 and 3.3 to the quadratic

symbol ðp
l
Þ: From Lemma 3.1, we have a presentation p ¼ a þ b

ffiffiffi
2

p
AOL with

NL=QðpÞ ¼ p: Let P be a prime above l in OL: As l splits in L over Q; then the

residue field OL=P is isomorphic to Z=lZ ¼ Fl ; the field with l elements. As 2 is a

square modulo l; we have 2 � a2 mod l for some aAFn

l : Thus, we can identify p ¼
a þ b

ffiffiffi
2

p
AOL with a þ baAFl :When we write the symbol ðplÞ; it is understood that we

mean ðaþba
l
Þ: From the discussion in Section 3 of [6], the symbol ðp

l
Þ is well defined

and l splits completely in N over Q if and only if ðp
l
Þ ¼ 1: Combining this discussion

with Lemmas 3.2 and 3.3, we have:

Proposition 3.4. Let l � 1 mod 8 be a prime with ð l
p
Þ ¼ 1: Then:

l satisfies /1;�2pS3ðp
l
Þ ¼ 1;

l satisfies /p;�2S3ðp
l
Þ ¼ �1:

4. Matrices and symbols

Hurrelbrink and Kolster [7] generalize Qin’s approach in [9,10] and obtain 4-rank
results by computing F2-ranks of certain matrices of local Hilbert symbols. Let us be

more specific. Let F ¼ Qð
ffiffiffi
d

p
Þ; da0; 1; squarefree. Let p1; p2;y; pt denote the odd

primes dividing d: Recall 2 is a norm from F 3 all pi’s are � 71 mod 8: If so, then d
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is a norm from Qð
ffiffiffi
2

p
Þ; thus

d ¼ u2 � 2w2

for u;wAZ: Now consider two matrices:
If do0;

M 0
F=Q ¼

ð�d; p1Þ2 ð�d; p1Þp1
? ð�d; p1Þpt

ð�d; p2Þ2 ð�d; p2Þp1
? ð�d; p2Þpt

^ ^ ^

ð�d; pt�1Þ2 ð�d; pt�1Þp1
? ð�d; pt�1Þpt

ð�d; vÞ2 ð�d; vÞp1
? ð�d; vÞpt

ð�d;�1Þ2 ð�d;�1Þp1
? ð�d;�1Þpt

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

If d40;

MF=Q ¼

ð�d; p1Þ2 ð�d; p1Þp1
? ð�d; p1Þpt

ð�d; p2Þ2 ð�d; p2Þp1
? ð�d; p2Þpt

^ ^ ^

ð�d; pt�1Þ2 ð�d; pt�1Þp1
? ð�d; pt�1Þpt

ð�d; vÞ2 ð�d; vÞp1
? ð�d; vÞpt

ðd;�1Þ2 ðd;�1Þp1
? ðd;�1Þpt

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

If 2 is not a norm from F ; set v ¼ 2: Otherwise, set v ¼ u þ w: Replacing the 1’s by
0’s and the �1’s by 1’s, we calculate the matrix rank over F2: Why look at these
matrices? From [7],

Lemma 4.1. Let F ¼ Qð
ffiffiffi
d

p
Þ; da0; 1; squarefree. Then

(i) If do0; then 4-rank K2ðOF Þ ¼ t � rkðM 0
F=QÞ;

(ii) If d40; then 4-rank K2ðOF Þ ¼ t � rkðMF=QÞ+a0 � a;

where

a ¼
0 if 2 is a norm from F ;

1 otherwise

(

and

a0 ¼
0 if both � 1 and 2 are norms from F ;

1 if exactly one of � 1 or 2 is a norm from F ;

2 if none of � 1 or 2 are norms from F :

8><
>:
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Recall that our cases are:

* Qð
ffiffiffiffi
pl

p
Þ; Qð

ffiffiffiffiffiffiffiffi
�pl

p
Þ where p � l � 1 mod 8 with ð l

p
Þ ¼ 1;

* Qð
ffiffiffiffi
pl

p
Þ for p � l � 1 mod 8 with ð l

p
Þ ¼ �1:

In both cases 2 is a norm fromQð
ffiffiffiffi
pl

p
Þ andQð

ffiffiffiffiffiffiffiffi
�pl

p
Þ: Before we view the matrices

for our cases, we characterize the symbol ð�d; vÞ2 for d ¼ pl;�pl (see [7, Lemmas 5.3

and 5.15]).

* ð�pl; vÞ2 ¼ 13 both p; l satisfy /1; 32S or neither p; l satisfy /1; 32S;
* ðpl; vÞ2 ¼ 1:

Also, v is an l-adic unit and hence

ð�pl; vÞl ¼ ðl; vÞl ¼
v

l

� �
:

Similarly, ð�pl; vÞp ¼ ðv
p
Þ: In the entries of the matrices below, we write ð�pl; vÞ2;

ðv
l
Þ; and ðv

p
Þ remembering to first evaluate the symbols, make the substitutions 1 for 0

and �1 for 1, and then calculate the matrix rank over F2: Now what are the matrices
in our situations?

* For p � l � 1 mod 8 with ð l
p
Þ ¼ 1; we have:

M
Qð

ffiffiffi
pl

p
Þ=Q ¼

0 0 0

ð�pl; vÞ2 ðv
p
Þ ðv

l
Þ

0 0 0

0
B@

1
CA;

M 0
Qð

ffiffiffiffiffiffi
�pl

p
Þ=Q

¼
0 0 0

0 ðv
p
Þ ðv

l
Þ

0 0 0

0
B@

1
CA:

* For p � l � 1 mod 8 with ð l
p
Þ ¼ �1; we have:

M
Qð

ffiffiffi
pl

p
Þ=Q ¼

0 1 1

ð�pl; vÞ2 ðv
p
Þ ðv

l
Þ

0 0 0

0
B@

1
CA:

Remark 4.2. For p � l � 1 mod 8 with ð l
p
Þ ¼ 1; we have:

* 4-rank K2ðOQð
ffiffiffi
pl

p
ÞÞ ¼ 13rankM

Qð
ffiffiffi
pl

p
Þ=Q ¼ 13ð�pl; vÞ2 ¼ 1; ðv

l
Þ ¼ �1 or

ð�pl; vÞ2 ¼ �13 both p; l satisfy /1; 32S; ðv
l
Þ ¼ �1 or neither p; l satisfy

/1; 32S; ðv
l
Þ ¼ �1; or exactly one of p; l satisfies /1; 32S:
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* 4-rank K2ðOQð
ffiffiffi
pl

p
ÞÞ ¼ 23rankM

Qð
ffiffiffi
pl

p
Þ=Q ¼ 03ð�pl; vÞ2 ¼ 1; ðv

l
Þ ¼ 13 both p;

l satisfy /1; 32S; ðv
l
Þ ¼ 1 or neither p; l satisfy /1; 32S; ðv

l
Þ ¼ 1:

* 4-rank K2ðOQð
ffiffiffiffiffiffi
�pl

p
ÞÞ ¼ 13 rank M 0

Qð
ffiffiffiffiffiffi
�pl

p
Þ=Q

¼ 13ðv
l
Þ ¼ �1:

* 4-rank K2ðOQð
ffiffiffiffiffiffi
�pl

p
ÞÞ ¼ 23 rank M 0

Qð
ffiffiffiffiffiffi
�pl

p
Þ=Q

¼ 03ðv
l
Þ ¼ 1:

Remark 4.3. For p � l � 1 mod 8 with ð l
p
Þ ¼ �1:

* 4-rank K2ðOQð
ffiffiffi
pl

p
ÞÞ ¼ 13rankM

Qð
ffiffiffi
pl

p
Þ=Q ¼ 13ð�pl; vÞ2 ¼ 13 both p; l satisfy

/1; 32S or neither p; l satisfy /1; 32S:
* 4-rank K2ðOQð

ffiffiffi
pl

p
ÞÞ ¼ 03 rank M

Qð
ffiffiffi
pl

p
Þ=Q ¼ 23ð�pl; vÞ2 ¼ �13 exactly one

of p; l satisfies /1; 32S:

We can now prove Theorem 1.3.

Proof. Consider the sets

A1 ¼ fl prime : l � 1 mod 8 and l satisfies /1; 32Sg;

A2 ¼ fl prime : l � 1 mod 8 and l does not satisfy/1; 32Sg:

By the discussion before Corollary 24.2 in [4],A1 andA2 each have density
1
2
in the

set of all primes l � 1 mod 8: By Dirichlet’s Theorem on primes in arithmetic

progressions,A1 andA2 each have density
1
8
in the set of all primes l: Note that for

primes p � 1 mod 8; the sets
B1 ¼ l prime : l � 1 mod 8; l

p

� �
¼ �1;

n
and l satisfies /1; 32S

o
;

B2 ¼ l prime : l � 1 mod 8; l
p

� �
¼ �1;

n
and l does not satisfy /1; 32S

o
each have density 1

2
inA1 andA2; respectively. Thus B1 and B2 have densities

1
16
in

the set of all primes l: If p satisfies /1; 32S; then by Remark 4.3:

B1 ¼ l prime : l � 1 mod 8; l
p

� �
¼ �1;

n
and 4-rank K2ðOQð

ffiffiffi
pl

p
ÞÞ ¼ 1

o
;

B2 ¼ l prime : l � 1 mod 8; l
p

� �
¼ �1;

n
and 4-rank K2ðOQð

ffiffiffi
pl

p
ÞÞ ¼ 0

o
:
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For each Bi; i ¼ 1; 2; we have:
Density of Bi in the

set of all primes l

( )
¼

Density of

Bi in B

( )
Density of B in the

set of all primes l

( )
;

where B has density 1
8
in the set of all primes l: Thus 4-rank 0 and 4-rank 1 each

appear with natural density 1
2
in B: A similar argument works if p does not satisfy

/1; 32S: &

For the primes p � l � 1 mod 8 with ð l
p
Þ ¼ 1; let us relate the Legendre symbol ðv

l
Þ

to the quadratic symbol ðp
l
Þ: For primes l � 1 mod 8; the quadratic symbol ð1þ

ffiffi
2

p

l
Þ is

well defined and satisfies, see [1],

1þ
ffiffiffi
2

p

l

 !
¼ 1 3 l satisfies /1; 32S:

Proposition 4.4. Let d ¼ 7pl be as above, d ¼ u2 � 2w2 with u;wAZ: Then:

v

l

� �
¼ p

l

� � 1þ
ffiffiffi
2

p

l

 !
if d ¼ pl;

v

l

� �
¼ p

l

� �
if d ¼ �pl:

Proof. From the proof of Proposition 4.6 in [6], we use the identity

v

l

� �
¼ gþ d

ffiffiffi
2

p

l

 !
1þ
ffiffi
2

p

l

� �
;

where d
l
¼ NL=Qðgþ d

ffiffiffi
2

p
Þ for g; dAZ: For d ¼ pl; we have d

l
¼ p ¼ NL=QðpÞ and

thus gþ d
ffiffiffi
2

p
¼ p; up to squares. For d ¼ �pl; we have d

l
¼ �p ¼ �NL=QðpÞ and so

gþ d
ffiffiffi
2

p
¼ ð1þ

ffiffiffi
2

p
Þp; up to squares. &

In view of Proposition 3.4, Remark 4.2, and Proposition 4.4, we can determine the
4-rank of the tame kernel in terms of quadratic forms.

Proposition 4.5. For p � l � 1 mod 8 with ð l
p
Þ ¼ 1:

* 4-rank K2ðOQð
ffiffiffi
pl

p
ÞÞ ¼ 13 both p, l satisfy /1; 32S; l satisfies /p;�2S or neither

p, l satisfy /1; 32S; l satisfies /p;�2S or exactly one of p, l satisfies /1; 32S:
* 4-rank K2ðOQð

ffiffiffi
pl

p
ÞÞ ¼ 23 both p, l satisfy /1; 32S; l satisfies /1;�2pS or neither

p, l satisfy /1; 32S; l satisfies /1;�2pS:
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* 4-rank K2ðOQð
ffiffiffiffiffiffi
�pl

p
ÞÞ ¼ 13l satisfies /p;�2S:

* 4-rank K2ðOQð
ffiffiffiffiffiffi
�pl

p
ÞÞ ¼ 23l satisfies /1;�2pS:

It should be noted that Qin Yue has obtained characterizations of 4-rank values,
similar to Proposition 4.5, by additionally assuming that the fundamental unit of

Qð
ffiffiffiffiffi
2p

p
Þ; p � 1 mod 8; has norm �1; see [11].

5. Two Artin symbols

5.1. First Artin symbol

Consider Qð
ffiffiffi
2

p
Þ over Q: Let e ¼ 1þ

ffiffiffi
2

p
AðZ½

ffiffiffi
2

p
�Þn: Then e is a fundamental unit

of Qð
ffiffiffi
2

p
Þ which has norm �1: The degree 4 extension Qð

ffiffiffi
2

p
;
ffiffi
e

p
Þ over Q has normal

closure Qð
ffiffiffi
2

p
;
ffiffi
e

p
;
ffiffiffiffiffiffiffi
�1

p
Þ: Set

N1 ¼ Qð
ffiffiffi
2

p
;
ffiffi
e

p
;
ffiffiffiffiffiffiffi
�1

p
Þ:

Note that GalðN1=QÞ is the dihedral group of order 8 and ZðGalðN1=QÞÞ ¼
GalðN1=Qð

ffiffiffi
2

p
;
ffiffiffiffiffiffiffi
�1

p
ÞÞ (see [8, Section 3.2]).

Only the prime 2 ramifies in Qð
ffiffiffi
2

p
Þ; Qð

ffiffiffiffiffiffiffi
�1

p
Þ; Qð

ffiffi
e

p
Þ; and so only the prime 2

ramifies in the compositum N1 over Q: Now as lAA is unramified in N1 over Q; the

Artin symbol ðN1=Q
b Þ is defined for primes b of ON1

containing l: Let ðN1=Q
l
Þ denote the

conjugacy class of ðN1=Q
b Þ in GalðN1=QÞ: The primes lAA split completely in

Qð
ffiffiffi
2

p
;
ffiffiffiffiffiffiffi
�1

p
Þ and N

ZðGalðN1=QÞÞ
1 ¼ Qð

ffiffiffi
2

p
;
ffiffiffiffiffiffiffi
�1

p
Þ: Thus by Lemma 2.1, we have that

ðN1=Q
l

Þ ¼ fgg for some gAZðGalðN1=QÞÞ: As ZðGalðN1=QÞ) has order 2, there are
two possible choices for ðN1=Q

l
Þ: Combining this statement with Addendum (3.7) from

[6], we have

Remark 5.1.

N1=Q

l

� �
¼ fidg3 l splits completely in N1

3 l satisfies /1; 32S:

5.2. Second Artin symbol

In Section 3, we considered

N ¼ Qð
ffiffiffi
2

p
;
ffiffiffi
p

p
;
ffiffiffi
p

p Þ;
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the unique unramified cyclic degree 4 extension over Qð
ffiffiffiffiffi
2p

p
Þ: Similar to the

extension N1; we have GalðN=QÞ is the dihedral group of order 8 and

ZðGalðN=QÞÞ ¼ GalðN=Qð
ffiffiffi
2

p
;
ffiffiffi
p

p ÞÞ:

Proposition 5.2. If lAA; then l is unramified in N over Q:

Proof. Since p � 1 mod 8; the discriminant of Qð
ffiffiffiffiffi
2p

p
Þ is 8p: For lAA; we have

ð2p
l
Þ ¼ 1 and so l is unramified in Qð

ffiffiffiffiffi
2p

p
Þ: We conclude that l is unramified in N

over Q: &

As lAA is unramified in N over Q; the Artin symbol ðN=Q
b Þ is defined for primes b

of ON containing l: Let ðN=Q
l
Þ denote the conjugacy class of ðN=Q

b Þ in GalðN=QÞ: The
primes lAA split completely in Qð

ffiffiffi
2

p
;
ffiffiffi
p

p Þ and NZðGalðN=QÞÞ ¼ Qð
ffiffiffi
2

p
;
ffiffiffi
p

p Þ: By
Lemma 2.1, we have that ðN=Q

l
Þ ¼ fhg for some hAZðGalðN=QÞÞ: As ZðGalðN=QÞÞ

has order 2, there are two possible choices for ðN=Q
l
Þ: Combining this statement and

Lemmas 3.2 and 3.3, we have

Remark 5.3.

N=Q

l

� �
¼ fidg3 l splits completely in N

3 l satisfies /1;�2pS;

N=Q

l

� �
afidg3 l does not split completely in N

3 l satisfies /p;�2S:

6. A composite and proof of Theorem 1.2

In this section, we consider the composite field N1N: Set

N ¼ N1N:

Note that ½N : Q� ¼ 32: As N1 and N are normal extensions of Q; N is a normal
extension of Q:
For lAA; l is unramified in N as it is unramified in N1 and N: The Artin symbol

ðN=Q
b Þ is now defined for some prime b of ON containing l: Let ðN=Q

l
Þ denote the

conjugacy class of ðN=Q
b Þ in GalðN=QÞ: Letting M ¼ Qð

ffiffiffi
2

p
;
ffiffiffiffiffiffiffi
�1

p
;
ffiffiffi
p

p ÞCN; we prove
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Lemma 6.1. ZðGalðN=QÞÞ ¼ GalðN=MÞ is elementary abelian of order 4.

Proof. For sAGalðN=MÞ; s can only change the sign of
ffiffi
e

p
and

ffiffiffi
p

p
as eAM: Since

N ¼ Mð
ffiffi
e

p
;
ffiffiffi
p

p
Þ; GalðN=MÞ is elementary abelian of order 4. Now consider the

restrictions r1 : G1-GalðQð
ffiffiffi
2

p
Þ=QÞ and r2 : G2-GalðQð

ffiffiffi
2

p
Þ=QÞ where G1 ¼

GalðN1=QÞ and G2 ¼ GalðN=QÞ: Clearly r1jZðG1Þ and r1jZðG2Þ are both trivial. Then

by Lemma 2.2, ZðGÞ is elementary abelian of order 4 where G ¼ GalðN=QÞ: Thus,
ZðGalðN=QÞÞ ¼ GalðN=MÞ: &

Now for lAA; l splits completely in Qð
ffiffiffiffiffiffiffi
�1

p
Þ and Qð

ffiffiffi
2

p
;
ffiffiffi
p

p Þ and so splits
completely in the composite field M ¼ Qð

ffiffiffi
2

p
;
ffiffiffiffiffiffiffi
�1

p
;
ffiffiffi
p

p Þ: From Lemma 6.1,

NZðGalðN=QÞÞ ¼ Qð
ffiffiffi
2

p
;
ffiffiffiffiffiffiffi
�1

p
;
ffiffiffi
p

p Þ: So by Lemma 2.1, we have

N=Q

l

� �
¼ fkg for some kAGalðN=QÞ:

As ZðGalðN=QÞÞ has order 4, there are four possible choices for ðN=Q
l
Þ: Using

Remarks 5.1 and 5.3, we now make the following one to one correspondences.

Remark 6.2. (i) ðN=Q
l
Þ ¼ fidg3l splits completely in

N3
l splits completely in
N1 and N

� �
3

l satisfies /1; 32S
l satisfies /1;�2pS

� �
:

(ii) ðN=Q
l
Þafidg3l does not split completely in N: Now there are three cases:

(1) l splits completely in N1;
but does not in N

� �
3

l satisfies /1; 32S
l satisfies /p;�2S

� �
;

(2) l splits completely in N

but does not in N1

� �
3

l does not satisfy /1; 32S
l satisfies /1;�2pS

� �
;

(3) l does split completely
in N1 or N

� �
3

l does not satisfy /1; 32S
l satisfies /p;�2S

� �
:

We can now prove Theorem 1.2

Proof. Consider the set X ¼ fl prime : l is unramified in N and ðN=Q
l
Þ ¼ fkgg for

some kAGalðN=QÞ: By the Čebotarev Density Theorem, the set X has natural

density 1
32 in the set of all primes l: Recall

A ¼ l rational prime : l � 1 mod 8 and l

p

� �
¼ 1

� �

for some fixed prime p � 1 mod 8: By Dirichlet’s Theorem on primes in arithmetic

progressions, A has natural density 1
8
in the set of all primes l: Thus, X has natural
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density 14 in A: If p satisfies /1; 32S; then by Proposition 4.5,

4-rank K2ðOQð
ffiffiffi
pl

p
ÞÞ ¼ 13

l satisfies /1; 32S

l satisfies /p;�2S

( )

or
l does not

satisfy /1; 32S

( )
:

and

4-rank K2ðOQð
ffiffiffi
pl

p
ÞÞ ¼ 2 3

l satisfies /1; 32S

l satisfies /1;�2pS

( )
:

Using Remark 6.2, we see that for Qð
ffiffiffiffi
pl

p
Þ; 4-rank 1 and 4-rank 2 appear with

natural density 1
4
þ 1
2
¼ 3
4
and 1

4
; respectively. A similar argument works if p does

not satisfy /1; 32S: For Qð
ffiffiffiffiffiffiffiffi
�pl

p
Þ; use Proposition 4.5 and Remark 6.2 to obtain

that 4-rank 1 and 2 each appear with natural density 1
4
þ 1
4
¼ 1
2
in A: &

7. Proof of two corollaries

For squarefree, odd integers d; recall the sets X ¼ fd : d ¼ plg and Y ¼ fd : d ¼
�plg for distinct primes p and l: Now consider the sets

Xi ¼ fd : d ¼ pl; p � imod 8g;

Yi ¼ fd : � pl; p � imod 8g:

Thus, X ¼ X1,X3,X5,X7 and Y ¼ Y1,Y3,Y5,Y7: Additionally consider
the sets

Xi;j ¼ fd : d ¼ pl; p � imod 8; l � jmod 8g;

Yi;j ¼ fd : d ¼ �pl; p � imod 8; l � jmod 8g:

Thus, for example, X1 ¼ X1;1,X1;3,X1;5,X1;7 and Y7 ¼ Y7;1,Y7;3,Y7;5,Y7;7:
In Tables 1 and 2, for K2ðOQð

ffiffiffi
pl

p
ÞÞ; we provide cases in which densities of 4-rank

values follow from congruence conditions on p and l; a condition on the Legendre

symbol ð l
p
Þ (if any), and Dirichlet’s theorem on primes in arithmetic progressions. In

Tables 3 and 4, we provide the same information for K2ðOQð
ffiffiffiffiffiffi
�pl

p
ÞÞ (compare with [5]

or [9, Tables I and II, 10]).
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Remark 7.1. By Theorem 1.2, p � l � 1 mod 8 with ð l
p
Þ ¼ 1 yields 4-rank 1 and 2

with densities 3
32
and 1

32
; respectively in X1: By Theorem 1.3, p � l � 1 mod 8 with

ð l
p
Þ ¼ �1 yields 4-rank 0 and 1 each with density 1

16
in X1: We can now prove

Corollary 1.4.

Table 1

Qð
ffiffiffiffi
pl

p
Þ

p; l mod 8 4-rank Densities

3, 3 0 1
4
in X3

5, 5 1 1
4 in X5

7, 7 1 1
4
in X7

3, 5 1 1
4
in X3 and X5

3, 7 1 1
4
in X3 and X7

5, 7 1 1
4
in X5 and X7

Table 2

Qð
ffiffiffiffi
pl

p
Þ

p; l mod 8 Legendre symbols 4-rank Densities

1, 3 ð l
p
Þ ¼ �1 0 1

8
in X1 and X3

ð l
p
Þ ¼ 1 1 1

8 in X1 and X3

1, 5 ð l
p
Þ ¼ �1 0 1

8
in X1 and X5

ð l
p
Þ ¼ 1 1 1

8
in X1 and X5

1, 7 ð l
p
Þ ¼ �1 1 1

8 in X1 and X7

ð l
p
Þ ¼ 1 1 1

16
in X1 and X7

2 1
16
in X1 and X7

Table 3

Qð
ffiffiffiffiffiffiffiffi
�pl

p
Þ

p; l mod 8 4-rank Densities

3, 3 1 1
4
in Y3

5, 5 1 1
4
in Y5

7, 7 1 1
4
in Y7

3, 5 0 1
4
in Y3 and Y5

3, 7 0 1
4
in Y3 and Y7

5, 7 0 1
4
in Y5 and Y7
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Proof. Regarding the set X1:

* 4-rank 0, 1, and 2 appear with natural densities 1
16
; 3
32
þ 1
16
¼ 5
32
; and 1

32
in X1;1;

* 4-rank 0 and 1 each appear with natural densities 1
8
in X1;3;

* 4-rank 0 and 1 each appear with natural densities 1
8
in X1;5;

* 4-rank 1 and 2 appear with natural densities 1
8
þ 1
16
¼ 3
16
and 1

16
in X1;7:

Thus 4-rank 0, 1, and 2 appear with natural densities 5
16
; 19
32
; and 3

32
in X1: For the

set X3:

* 4-rank 0 and 1 each appear with natural density 1
8
in X3;1;

* 4-rank 0 appears with natural density 1
4
in X3;3;

* 4-rank 1 appears with natural density 1
4
in X3;5;

* 4-rank 1 appears with natural density 1
4
in X3;7:

So 4-rank 0 and 1 appear with natural densities 3
8
and 5

8
in X3: Similarly, 4-rank 0 and

1 appear with natural densities 1
8
and 7

8
in X5 and 4-rank 1 and 2 appear with natural

densities 15
16
and 1

16
in X7: As each Xi has density

1
4
in X ;

* 4-rank 0 appears with natural density 5
64
þ 3
32
þ 1
32
¼ 13
64
in X ;

* 4-rank 1 appears with natural density 19
128

þ 5
32
þ 7
32
þ 15
64
¼ 97
128
in X ;

* 4-rank 2 appears with natural density 3
128

þ 1
64
¼ 5
128
in X : &

Remark 7.2. By Theorem 1.2, p � l � 1 mod 8 with ð l
p
Þ ¼ 1 yields 4-rank 1 and 2

each with density 1
16
in Y1: We can now prove Corollary 1.5.

Proof. Regarding the set Y1:

* 4-rank 1 and 2 appear with natural densities 1
8
þ 1
16
¼ 3
16
and 1

16
in Y1;1;

Table 4

Qð
ffiffiffiffiffiffiffiffi
�pl

p
Þ

p; l mod 8 Legendre symbols 4-rank Densities

1, 1 ð l
p
Þ ¼ �1 1 1

8
in Y1

1, 3 ð l
p
Þ ¼ �1 0 1

8
in Y1 and Y3

ð l
p
Þ ¼ 1 1 1

8
in Y1 and Y3

1, 5 ð l
p
Þ ¼ �1 0 1

8
in Y1 and Y5

ð l
p
Þ ¼ 1 1 1

8
in Y1 and Y5

1, 7 ð l
p
Þ ¼ �1 0 1

8
in Y1 and Y7

ð l
p
Þ ¼ 1 0 1

16
in Y1 and Y7

1 1
16
in Y1 and Y7
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* 4-rank 0 and 1 each appear with natural densities 18 in Y1;3;
* 4-rank 0 and 1 each appear with natural densities 1

8
in Y1;5;

* 4-rank 0 and 1 appear with natural densities 1
8
and 1

16
þ 1
16
¼ 1
8
in Y1;7:

Thus 4-rank 0, 1, and 2 appear with natural densities 3
8
; 9
16
; and 1

16
in Y1: For the set

Y3:

* 4-rank 0 and 1 each appear with natural density 1
8
in Y3;1;

* 4-rank 1 appears with natural density 1
4
in Y3;3;

* 4-rank 0 appears with natural density 1
4
in Y3;5;

* 4-rank 0 appears with natural density 1
4
in Y3;7:

So 4-rank 0 and 1 appear with natural densities 5
8
and 3

8
in Y3: Similarly, 4-rank 0 and

1 appear with natural densities 5
8
and 3

8
in Y5 and 4-rank 0 and 1 appear with natural

densities 11
16
and 5

16
in Y7: As each Yi has density

1
4
in Y ;

* 4-rank 0 appears with natural density 3
32
þ 5
32
þ 5
32
þ 11
64
¼ 37
64
in Y ;

* 4-rank 1 appears with natural density 9
64
þ 3
32
þ 3
32
þ 5
64
¼ 13
32
in Y ;

* 4-rank 2 appears with natural density 1
64 in Y : &
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Appendix

The approach of Hurrelbrink and Kolster [7] led us to write a program in
GP/PARI [2] which generates the numerical values in Tables 5–8. The aim is to
motivate possible density results for tame kernels of quadratic number fields. In
Tables 5 and 6, p; l; and r are distinct odd primes. In Tables 7 and 8, d is odd and
squarefree.

Table 5

Cardinality 105pd ¼ plro106 (%)

j4-rank 0j 8247 6.827

j4-rank 1j 92 544 76.605

j4-rank 2j 20 000 16.555

j4-rank 3j 16 0.013
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j4-rank 1j 148 669 36.68258

j4-rank 2j 4730 1.16708

j4-rank 3j 2 0.00049
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