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The apparent alignment of the cosmic microwave background multipoles on large scales challenges the
standard cosmological model. Scalar field inflation is isotropic and cannot account for the observed
alignment. We explore the imprints, a non-standard spinor driven inflation would leave on the cosmic
microwave background anisotropies. We show it is natural to expect an anisotropic inflationary expan-
sion of the Universe which has the effect of suppressing the low multipole amplitude of the primordial
power spectrum, while at the same time to provide the usual inflationary features.

© 2008 Elsevier B.V. All rights reserved.
Inflation is a successful theory to explain many cosmological
puzzles. However, one does not really know what has driven it,
since it most probably occurred near the scale of grand unification,
hence far beyond the standard model of particle physics.

In this Letter we study the possibility of non-standard spinors
to drive inflation and investigate the possible imprints of such
spinors on the Cosmic Microwave Background (CMB) anisotropies.
In fact, we consider the possibility that such an effect has already
been detected, in the form of the Axis of Evil: an apparent align-
ment of the CMB multipoles on very large scales [1–3]. While
a scalar field driven inflationary epoch is naturally isotropic, an
anisotropic expansion might occur within a more complex model.
This may lead to the existence of a preferred direction in the pri-
mordial power spectrum.

Although the statistical significance of such preferred direction
is hard to quantify, a variety of models have been put forward
to explain this phenomenon [4–12]. These are motivated since
the large scale anisotropy claimed by [13] in the CMB quadrupole
and octupole seems to be present at several cosmological scales
and observations. In particular the quadrupole and octupole seem
also to align with the dipole [14]. Recently, there are claims that
such alignment even extends to higher multipoles [15]. Further-
more, the polarization of radio galaxies and the optical polariza-
tions of quasars also indicate a preferred direction pointing at the
same direction [16]. Finally, there are several indications from the
SDSS data that deviations from isotropy and homogeneity are also
present at cluster and galactic scales [17]. Hence, there is an en-
tire set of observations that disfavor isotropy at high confidence
level.
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As for the non-standard Wigner class spinors, we consider a
spin one half matter field with mass dimension one, named elko
spinors [18]. These spinors are based on the eigenspinors of the
charge conjugation operator. The resulting field theory has the un-
usual property (C P T )2 = −I.1 This particular model belongs to
a wider class of so-called flagpole spinors [19]. The spinors have
mass dimension one and therefore the only power counting renor-
malizable interactions of this field with standard matter take place
through the Higgs doublet or with gravity [18]. Consider the left-
handed part φL of Dirac spinor ψ in Weyl representation, then an
elko spinor is defined by [18]

λ =
(±σ2φ

∗
L

φL

)
, (1)

where φ∗
L denotes the complex conjugate of φL . Since the helicities

of φL and σ 2φ∗
L are opposite [18], one has to distinguish the two

possible helicity configurations, therefore

λ{−,+} =
(±σ2φ

+∗
L

φ+
L

)
, λ{+,−} =

(±σ2φ
−∗
L

φ−
L

)
. (2)

The first entry of the helicity subscript {−,+} refers to the upper
two-spinor while the second to the lower. Let us henceforth denote
the helicity subscript by the indices u, v, . . . and define the elko
dual by

¬
λu = iεv

u λ
†
vγ

0, (3)

with the anti-symmetric symbol ε
{−,+}
{+,−} = −1 = −ε

{+,−}
{−,+} . Note that

due to the double helicity structure of the spinors, these have an

1 The original elko field theory is non-local. However, since C P T is an anti-
unitary operator, a local field theory in principle must exist. We thank Raymond
Streater for elucidating this point.
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imaginary bi-orthogonal norm [18] with respect to the standard
Dirac adjoint ψ̄ = ψ†γ 0. With the dual defined above one finds
(by construction)
¬
λu(p)λv (p) = ±2mδuv , (4)

where p denotes the momentum.
Notice that the cosmology of such spinors will be different from

the ones investigated by Saha and collaborators [20]. Firstly, the
scalar field like equations of motion are second order equations
opposed to the first order equations for standard spinors. More-
over, only intrinsically massless Dirac spinors are power counting
renormalizable, which is one of the main motivations to ana-
lyze non-standard spinors. The natural potential is power counting
renormalizable and their structure is much richer than that given
by standard spinors.

The introduction of elko spinor fields into an arbitrary curved
spacetime can be found in [21]. This resulting theory is based on
the following matter action

S = 1

2

∫ (
gμν∇(μ

¬
λ∇ν)λ − m2¬

λλ + α[¬λλ]2)√−g d4x, (5)

where m is the mass of the field and α is a coupling constant.
With the aim to understand possible effects of non-standard

spinors in cosmology we investigate a quite general metric given
by

ds2 = dt2 − a(t)2(dx2 + dy2) − b(t)2 dz2, (6)

where a(t) and b(t) are two expansion parameters, that define two
Hubble parameters by Ha = ȧ/a and Hb = ḃ/b. Note that this re-
duces to the isotropic FRW metric in the case where a = b. The
presence of the spin-connection in the matter part leads to addi-
tional couplings between the field and the geometry. Hence, such a
spinor driven inflationary epoch can naturally result in anisotropic
expansion.

We assume that the non-standard spinors only depend on the
time coordinate t . Following [21], the cosmological spinors are
given by

λ{−,+} = F (t)ξ, λ{+,−} = F (t)ζ, (7)

with their respective dual spinors
¬
ξ and

¬
ζ , where ξ and ζ are

constant non-standard spinors [21] satisfying
¬
λ{−,+}λ{−,+} = ¬

λ{+,−}λ{+,−} = ±2F 2. (8)

Henceforth we consider the self-dual spinors with
¬
ξξ = ¬

ζ ζ = +2.
Note that such constant spinors are the ones compatible with
homogeneity. Moreover, they also satisfy the condition that an
anisotropic expansion requires the initial alignment of spins over
the Hubble horizon.

We are interested in finding a solution of the form

a(t) = eHat , b(t) = eHbt , F (t) = F0 = const . (9)

Plugging this ansatz into the Einstein field equations, the equations
of motion reduce to a system of algebraic equations

H2
a + 2Ha Hb = 8π

m2
pl

(
−2

4
H2

a − 1

4
H2

b + m2 + αF 2
0

)
F 2

0 ,

−(
Ha Hb + H2

a + H2
b

) = 8π

m2
pl

(
1

4
H2

b − m2 − αF 2
0

)
F 2

0 ,

−3H2
a = 8π

m2
pl

(
2

4
H2

a − 1

4
H2

b − m2 − αF 2
0

)
F 2

0 . (10)

These three equations can be simultaneously satisfied with Hb >

Ha > 0, F0 > 0 and m > 0, α > 0. These rather complicated expres-
sions can be greatly simplified after the following considerations
are taken into account.
It turns out to be convenient to refer to a fictitious isotropic
metric (with expansion parameter ā(t)), defined via an averaged
Hubble parameter

H̄ = 2Ha + Hb

3
, (11)

which can be used to parameterize deviations from isotropy by

εH = 2

3

Hb − Ha

H̄
. (12)

The parameter εH turns out to be expressed solely in terms of
the spinorial part F0. The function εH (F0) is increasing and van-
ishes at the origin. Since we are interested in a geometry with only
small deviations from isotropy, we assume F 2

0 � 1. This guarantees
the usual post-inflation isotropic expansion, and that non-standard
spinors never dominate a cosmological epoch.

Expanding the anisotropy parameter and the mean Hubble pa-
rameter for small F0 yields

H̄ = mF0

√
8π

3

(
1 + α

m2
F 2

0

)
+ O

(
F 5

0

)
, (13)

εH = 8π

3
F 2

0 − 2

(
8π

3
F 2

0

)2

+ O
(

F 6
0

)
. (14)

In order to treat the anisotropy as a perturbation around the
background, we furthermore assume that N∗εH � 1, where N∗ =
H̄t∗ is the number of e-folds at the end of inflation which we take
to be around 60 as in standard inflation.

Next we verify that the usual inflationary parameters (num-
ber of e-folds, near scale invariant spectral index, small non-
gaussianities) are also in agreement with the present model. In
order to calculate them we express the field equations in terms
of the averaged Hubble parameter (11) and the deviation from
isotropy (12).

It turns out that the terms linear in εH vanish identically.
Therefore, by neglecting term of the order O (ε2

H ) and higher, we
find that the average Hubble parameter and the equation of mo-
tion for the spinor field are given by

H̄2 = 8π

3m2
pl

(
1

2
∂t

¬
λ∂tλ − 3

8
H̄2¬

λλ + V (
¬
λλ)

)
, (15)

∂ttλ + 3H̄∂tλ − 3

4
H̄λ + V¬

λ
(
¬
λλ) = 0, (16)

respectively, where the latter equation is indeed exact. Requiring
a power counting renormalizable theory uniquely determines the

potential to have the form V (
¬
λλ) = m2¬

λλ + α[¬λλ]2. Note that in
contrast to the scalar field case, the matter part (right-hand side)
now also contains the Hubble parameter. One can then (cosmolog-
ically) re-interpret the non-standard spinors as a scalar field with
a time dependent mass. However, since both Hubble parameters
are assumed to be constant throughout inflation this merely leads
to a shift of the mass parameter. Therefore, although this model
naturally allows for anisotropic inflation it is effectively equiva-
lent to standard single field inflation. This greatly simplifies the
interpretation of all equations. Since the expressions for the usual
inflationary quantities will be similar in this theory. However, as
one will see bellow, there are some cosmological imprints which
are very particular to an anisotropic inflationary epoch driven by
a non-standard spinor, which are not present in the usual scalar
field models.

Eq. (15) can be solved for H̄ and yields

H̄2 � 8π

3m2

(
1

2
∂t

¬
λ∂tλ + V (

¬
λλ)

)
, (17)
pl
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where we neglected terms of the order
¬
λλ/m2

pl. Where mpl is the
Planck mass.

For the slow-roll conditions: λ̇2/2 � V (
¬
λλ) and |λ̈| � 3H|λ̇| we

therefore obtain

H̄2 � 8π

3m2
pl

V (
¬
λλ), 3H̄∂tλ � −V¬

λ
(
¬
λλ) + 3

4
H̄2λ. (18)

The last term containing H̄2 can again be replaced by the actual
expression for H̄2 and results in a rather complicated expression.
However, the factors of mpl as before make all additional contribu-
tions small.

The spectral index is given in terms of the slow roll parameters
n = 1 − 6ε + 2η. Both the parameters can be calculated straightfor-
wardly from the above equations. The parameter ε is given by

ε � m2
pl

16π

V¬
λ

Vλ

V 2
−

¬
λλ

4V
� m2

pl

16π

V¬
λ

Vλ

V 2
, (19)

as it is usual in scalar field inflation. On the other hand, the param-
eter η acquires one non-trivial extra term. This term is obtained by
differentiating Eq. (18) with respect to t and dividing the resulting
equation by 9H2∂tλ, which yields an additional term of 1/12 to η,
then we find

η � m2
pl

8π

V¬
λλ

V
− 1

12
, (20)

plus some lower order terms that can be neglected. Hence, we find
that η should be smaller for non-standard spinor inflation. Simi-
larly, for the number of e-folds we get

N∗ = log
a f

a
=

t f∫
t

H̄ dt � 8π

m2
pl

¬
λ∫

¬
λ f

V

V¬
λ

d
¬
λ.

Similarly to the single field inflation scenario, the non-gaussianity
parameters within this scenario are given by

f N L = 5

6
(η − 2ε), τN L = (η − 2ε)2 = 36

25
f 2

N L, (21)

where we neglect the parameter gN L which contains the third
derivatives of the potential because of its smallness. For these
non-standard spinors the additional contribution of 1/12 in η will
therefore yield a slightly smaller f N L parameter with respect to
the usual slow roll inflationary scalar field models

f N L = 5

6
(η − 2ε) − 5

6

1

12
. (22)

From WMAP3, −54 � f N L � 114, and the PLANCK satellite’s de-
sign aim is, among others, to constrain the parameter | f N L | � 5.
Hence, we can conclude that non-standard spinor inflation cannot
be ruled out by this new data alone.

In standard inflation the primordial power spectrum P (k) only
depends on the magnitude of the vector k which follows from the
rotational invariance. An inflationary epoch driven by non-standard
spinors results in anisotropic expansion where rotational invari-
ance is broken by a small unit vector n. The imprint of such an
anisotropy on the density perturbation power spectrum has the
following most general form

P ′(k) = P (k)
(
1 + A(k)(k̂ · n)2), (23)

where higher powers in k̂ · n have been suppressed [25,27]. k̂ de-
notes the unit vector in the direction of k. In leading order in
deviations from anisotropy, the rotationally non-invariant part of
the power spectrum is characterized by a single function A(k),
which is given by

A(k) = 9

2
εH log

(
k

¯
)

. (24)

ā(t∗)H
Since we assume around 60 e-folds before the end of inflation,
we find that log(k/(ā(t∗)H̄)) is of the order −60 (the minus sign
is present due to ā∗ in the denominator) for a wide range of
scales which are cosmologically relevant today. CMB measurements
probe k/ā(t∗) up to 103. Hence, one can roughly assume that
A(k) is k-independent at the astrophysical scales of interest. How-
ever, the additional effect on A(k) is a decrease with k. Therefore,
anisotropies will predominantly suppress the low multipoles. To-
gether with the explicit solutions given by Eq. (14) in the lowest
order we obtain

A(k) ∼ A∗ ≈ −720π F 2
0 . (25)

This is consistent with our above approximations and, as one will
see, it also allows sufficiently large values of A∗ to account for the
quadrupole anomaly.

The effects of a preferred direction, n, in the primordial power
spectrum will affect the CMB temperature anisotropies by (see e.g.
[22–27])

�T

T
(n) =

∫
dk

∑
l

(
2l + 1

4π

)
Pl(k̂ · n)δ(k)Θl(k), (26)

where Pl is the Legendre polynomial. Θl(k) encompasses the
transfer functions of the usual isotropic post-inflationary epochs.
Hence, it is a function of the magnitude of the wavevector k only.
The CMB power spectra can then be obtained decomposing it into
the usual isotropic part plus a primordial anisotropic piece which
is of first order in A(k),〈
alma∗

l′m′
〉 = 〈

alma∗
l′m′

〉
iso + ϕ(lm; l′m′), (27)

where the sought-after perturbation is given by

ϕ(lm; l′m′) = Ξlm;l′m′ ×
∞∫

0

dk k2 P (k)A(k)Θl(k)Θl′ (k), (28)

where

Ξlm;l′m′ = 4π

3

∫
dΩk Y m

l (k̂)
(
Y m′

l′ (k̂)
)∗

× (
n+Y 1

1 (k̂) + n−Y −1
1 (k̂) + n0Y 0

1 (k̂)
)2

. (29)

The constants Ξlm;l′m′ are purely geometric, and n+ , n0, n− are
the spherical components of the vector that defines the preferred
direction. Those are given in [25].

Taking into account only the astrophysical scales of interest for
us today (A(k) becomes roughly k-independent) we have A(k) =
A∗ , then we find

ϕ(lm; lm)

〈alma∗
lm〉iso

= A∗
2

[
sin2 θ∗ + (

3 cos2 θ∗ − 1
)(2l2 + 2l − 2m2 − 1

(2l − 1)(2l + 3)

)]
. (30)

It is interesting to notice that within this scenario one gets a low
quadrupole. The multipole spectrum is described by

Q l =
√√√√ 1

2π

l(l + 1)

(2l + 1)

l∑
m=−l

〈
alma∗

lm

〉
iso

[
1 + ϕ(lm; lm)

〈alma∗
lm〉iso

]
. (31)

The observed value of this is Q obs
2 ≈ 5.72 × 10−3, while the stan-

dard concordance model predicts Q �CDM
2 ≈ 13 × 10−3 [29]. It has

been suggested in previous works that this discrepancy could also
be explained by an ellipsoidality of the universe [31], by inho-
mogeneous cosmological magnetic fields [32], or a dark energy
component with an anisotropic equation of state [33]. This would
require that the anisotropy of the background is suitably oriented
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with respect to the intrinsic quadrupole and cancels its power
to a sufficient amount. For any orientation then, we should have
Q 2 � 19.7 × 10−3 to be consistent with observations taking into
account the cosmic variance. Inserting the values predicted by the
concordance model a2m = √

π/3 · 13 × 10−6 into Eq. (31) one ob-
tains the following quadrupole moment

Q model
2 = 13

√
1 + A∗/3 × 10−3, (32)

which must be compared with the observed values for a2m from
the cleaned SILC400 (a), WILC3YR (b) and TCM3YR (c) maps, see
[28–30], which lead to the following observed quadrupoles

Q (a)
2

10−3
= 6.08,

Q (b)
2

10−3
= 5.77,

Q (c)
2

10−3
= 5.30.

In order to have agreement between the value predicted by an
anisotropic model and the actually observed value, it now be-
comes clear that models in which the anisotropy is treated as a
small quantity can indeed explain the low quadrupole moment
we observe. From Eq. (32) we find that A∗ should be around
A∗ ≈ −2.41. This in turn fixes the spinorial part of the model,
namely F0 should be of the order of F0 ≈ 0.033 which in turn
leads to F 2

0 ≈ 1.1 × 10−3 which clearly is in agreement with our
above assumption F 2

0 � 1.
Taking into account the rather reasonable assumption that for

the isotropic background we can assume the modulus of alm to be
equal for all modes. In that case, we can give an explicit expression
of the corrected power spectrum

Q l = √
l(l + 1)Cl/2π(1 + A∗/3). (33)

Hence, within this model multipole moments are suppressed by
the factor (1 + A∗/3) where we neglected variations of A(k). Such
feature might result in a better agreement between the observa-
tional data and the theoretical models, since for the low l multi-
poles there are mild discrepancies between the prediction of the
power spectrum from the �CDM model and the actually observed
values.

Finally a question which remains to be answered is: How does
inflation end and reheating occur? In spite of its differences, scalar
field inflation and spinor field inflation, have however several sim-
ilar features. Just like in scalar field inflation, it is natural to define
the end of inflation when the inflation parameters ε and η are
of order unity. The interpretation of slow-roll inflation stays in-
tact. The spinor field slowly rolls down its potential and near the
minimum inflation ends. Once inflation is over, oscillations around
the minimum of the potential begin. Next, one includes the decay
of the spinorial inflaton particles into either fermion or bosons.
A rapid decay, i.e. preheating, would require a decay into bosons
since the Pauli exclusion principle would prevent decays into the
same energy state. Once the non-relativistic particles decay into
relativistic ones, the universe becomes radiation dominated, re-
heating. A detailed investigation of these processes is however
being left for a future study.

In resume, non-standard spinors are a candidate to drive
anisotropic inflation. The presence of the spin-connection in the
matter part leads to additional couplings between the field and
the geometry. Hence, inflation naturally becomes an anisotropic
expansion, yielding a preferred direction which might have been
detected as the axis of evil. Our derivation of the anisotropy
corrected power spectrum is valid for all models in which the
anisotropy can be treated as a perturbation around an isotropic
background. Remarkably, while the usual inflationary features are
obtained (low non-gaussianities, 60 e-folds, etc.), one finds that
non-standard spinor driven inflation naturally results into a sup-
pression of the lower multipoles of the CMB. This, in particular,
cures the quadrupole anomaly that puzzles today’s cosmological
observations.
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