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We prove that the number of non-isomorphic face 2-colourable triangulations of
the complete graph Kn in an orientable surface is at least 2n2�54&O(n) for n congruent
to 7 or 19 modulo 36, and is at least 22n2�81&O(n) for n congruent to 19 or 55 modulo
108. � 2000 Academic Press

1. INTRODUCTION

It is known [5] that a complete graph, Kn , triangulates some orientable
surface if and only if n#0, 3, 4 or 7 (mod 12). It triangulates some non-
orientable surface if and only if n#0 or 1 (mod 3), n�6 and n{7. For the
embedding to be face 2-colourable it is necessary for the vertex degrees to
be even and, consequently, for n to be odd. As pointed out in [1], at least
one face 2-colourable orientable embedding does exist for each n#3 or 7
(mod 12); the case n#3 is dealt with in Ringel's book [5] and the case
n#7 is dealt with by material in Youngs' paper [8]. The proof techniques
employed by these authors use the theory of current and voltage graphs.
Face 2-colourable embeddings are of particular interest because the sets of
three vertices which form the triangles in each of the two colour classes
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themselves form two Steiner triple systems of order n, STS(n)s. We recall
here that an STS(n) may be formally defined as being an ordered pair
(V, B), where V is an n-element set (the points) and B is a family of
3-element subsets of V (the blocks) such that every 2-element subset of V
appears in precisely one block.

In two earlier papers [1, 2], three of the present authors presented con-
structions of face 2-colourable triangular embeddings of Kn for various
values of n. These constructions focused much more closely on the design-
theoretical aspect of the problem than did the earlier work of Ringel and
Youngs. Based partly on these constructions and partly on the existing
work of Ringel and Youngs, two non-isomorphic triangular embeddings of
Kn in an orientable surface are given in [1] for each n#7 (mod 12) and
n{7, and two non-isomorphic triangular embeddings of Kn in a non-
orientable surface are given for half (in arithmetic set-density terms) of the
residue class n#1 (mod 6). In each case one of the two embeddings is face
2-colourable and the other is not.

It appears that remarkably few examples are known of non-isomorphic
triangular embeddings of Kn . The paper [4] (see also [6]) gives three
non-isomorphic orientable triangulations for n=19, two of which are not
face 2-colourable. The third of these, together with a further seven non-
isomorphic orientable triangulations (all eight of which have a cyclic
automorphism of order 19 and are face 2-colourable) are given in [2]. For
n=31, [2] gives seven non-isomorphic face 2-colourable orientable
triangulations of the complete graph, and it is there remarked that com-
putational evidence suggests the existence of many more. However, to the
best of our knowledge no other explicit examples have been given of non-
isomorphic triangular embeddings of Kn and there has been no lower
bound established (other than the figures given above) for the number of
non-isomorphic triangular embeddings.

The primary purpose of this paper is to establish that for n#7 or 19
(mod 36), there are at least 2n2�54&O(n) non-isomorphic triangular embed-
dings of Kn in an orientable surface, all of which are face 2-colourable.
When n#19 or 55 (mod 108) this estimate can be increased to 22n2�81&O(n).
We also establish a similar estimate for non-orientable embeddings when
n#1 or 7 (mod 18) (and an improved estimate in the cases when n#1 or
19 (mod 54)).

In the remainder of this paper, when we speak of isomorphisms and
automorphisms we will restrict ourselves to colour-preserving mappings;
this makes statements of some of the results a little simpler and in counting
the number of non-isomorphic systems there is only a factor 2 involved in
moving between colour-preserving mappings and non-colour-preserving
mappings. In the course of the proof we will exhibit collections of such
embeddings with a range of (to us) extraordinary and unexpected properties.
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Henceforth we will use the term 2to-embedding to refer to a face
2-colourable triangular embedding in an orientable surface. The colour
classes will be called ``black'' and ``white''. We refer the reader to [1, 2]
for reviews of the basic facts about graph embeddings, the connection
with biembeddings of Steiner triple systems, and for some of the historical
background.

The recursive construction which appears in Theorems 1 and 2 of [1]
in a topological form and again in Theorems 2 and 3 of [2] in a design-
theoretical form takes a 2to-embedding of Kn and produces a 2to-embedding
of K3n&2 . This construction plays a key role in the current paper. We
therefore now give an informal review of this construction and show how
it can be further extended in a fashion suitable for our current purposes.

The construction commences with a given 2to-embedding of Kn . We fix
a particular vertex z* of Kn and, from the embedding, we delete z*, all
open edges incident with z* and all the open triangular faces incident with
z*. The resulting surface S now has a hole whose boundary is an oriented
Hamiltonian cycle in G=Kn&z*&Kn&1 . We next take three disjoint
copies of the surface S, all with the same colouring and orientation; we
denote these by S0, S 1 and S2, and use superscripts in a similar way to
identify corresponding points on the three surfaces. For each white
triangular face (uvw) of S, we ``bridge'' S0, S 1 and S2 by gluing a torus to
the triangles (uiviwi) for i=0, 1, 2 in the following manner. We take a
2to-embedding in a torus of the complete tripartite graph K3, 3, 3 with the
three vertex parts [ui], [vi] and [wi] and with black faces (uiwivi), for
i=0, 1, 2 (see Fig. 1). The orientation of the torus must induce the opposite
cyclic permutation of [ui, vi, wi] to that induced by the surfaces S i; this is
important for the integrity of the gluing operation where black faces
(uiwivi) on the torus are glued to the white faces (uiviwi) on S 0, S 1 and S 2

respectively.
After all the white triangles have been bridged we are left with a new

connected triangulated surface with a boundary. We denote this surface by
S� . It has (3n&3) vertices and the boundary comprises three disjoint cycles,
each of length (n&1). In order to complete the construction to obtain a
2to-embedding of K3n&2 we must construct an auxiliary triangulated bordered
surface S� and paste it to S� so that all three holes of S� will be capped. To
do this, suppose that D=(u1u2 , ..., un&1) is our oriented Hamiltonian cycle
in G=Kn&z*. Since n is odd, every other edge of D is incident with a
white triangle in S; let these edges be u2u3 , u4u5 , ..., un&1u1 .

The surface S� has, as vertices, the points u i
j for i=0, 1, 2 and

j=1, 2, ..., n&1 together with one additional point which we here call �.
Suppose initially that n#3 (mod 12). We may then construct S� from the
oriented triangles listed below (Table 1). The reason for the classification of
the triangles into types 1 and 2 will become apparent shortly. Precisely how
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FIG. 1. Toroidal embedding of K3, 3, 3 .

S� is constructed is described in more detail in [1] where it is also proved
that the final graph that triangulates the final surface is indeed a complete
graph of order 3n&2.

The significance of the condition n#3 (mod 12) is that it ensures
that the resulting surface is a closed surface and not a pseudosurface.
(A pseudosurface is obtained from a collection of closed surfaces by making
a finite number of identifications, each of finitely many points, so that the
resulting topological space is connected.) Equivalently, it ensures that the
point � has a single cycle of 3n&3 points surrounding it and not a union
of shorter cycles. As it appears above, the construction does not work in
the case n#7 (mod 12); however we can modify the construction by taking
a single value of j # [1, 3, 5, ..., n&2] and applying a ``twist'' to the type 1
triangles associated with this value of j. To do this we replace them by
those shown in Table 2.

Again, for an explanation of why this works, see [1]. It is also there
remarked that we may apply any number, say k, of such twists provided
that, if n#3 (mod 12) we select k#0 or 1 (mod 3), while if n#7 (mod 12)
we select k#1 or 2 (mod 3).
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TABLE 1

Subscript Arithmetic Cycles Modulo n&1

Type 1 oriented triangles ( j=1, 3, 5, ..., n&2)

White Black

(u0
j u0

j+1u2
j+1) (u0

j u2
j u1

j+1)

(u1
j u1

j+1u0
j+1) (u1

j u0
j u2

j+1)

(u2
j u2

j+1u1
j+1) (u2

j u1
j u0

j+1)

(u0
j u1

j u2
j ) (u0

j+1u1
j+1 u2

j+1)

(u0
j u1

j+1�)

(u1
j u2

j+1�)

(u2
j u0

j+1�)

Type 2 oriented triangles ( j=1, 3, 5, ..., n&2)

Black

(u0
j+1 u0

j+2 �)

(u1
j+1 u1

j+2 �)

(u2
j+1 u2

j+2 �)

We now make two new observations about the construction which
enable us to extend it. The proof of the original construction given in [1]
continues to hold good for the extended version with minor and obvious
modifications.

Firstly, the toroidal embedding of K3, 3, 3 given in Fig. 1 may be replaced
by one in which the cyclic order of the three superscripts is reversed. The
reversed embedding of K3, 3, 3 is isomorphic with the original but is labelled

TABLE 2

Oriented triangles

White Black

(u0
j u0

j+1u1
j+1) (u0

j u1
j u2

j+1)

(u1
j u1

j+1u2
j+1) (u1

j u2
j u0

j+1)

(u2
j u2

j+1u0
j+1) (u2

j u0
j u1

j+1)

(u0
j u2

j u1
j ) (u0

j+1 u2
j+1 u1

j+1)

(u0
j u2

j+1�)

(u1
j u0

j+1�)

(u2
j u1

j+1�)
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FIG. 2. Reversed toroidal embedding of K3, 3, 3 .

differently (see Fig. 2). For each original white triangular face (uvw) of S
we may carry out the bridging operation across S 0, S 1, S2 using either the
original K3, 3, 3 embedding or the reversed embedding. The choice of which
of the two K3, 3, 3 embeddings to use can be made independently for each
white triangle (uvw).

Secondly, it is not necessary for S0, S1 and S2 to be three copies of the
same surface S. All that the construction requires is that the three surfaces
have the ``same'' white triangular faces and the ``same'' cycle of (n&1)
points around the border, all with the ``same'' orientations. To be more
precise, by the term ``same'' we mean that there is a mapping from the
vertices of each surface onto the vertices of each of the other surfaces which
preserves the white triangular faces, the border and the orientation. The
sceptical reader may feel dubious that we can satisfy this requirement
without in fact having three identically labelled copies of a single surface S.
However, we shall see that not only is it possible to arrange this by other
means but it can often be done in a very large number of ways. We con-
tinue to use the notation x0, x1, x2 to denote corresponding points on the
three surfaces.
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Throughout the remainder of this paper we shall use the term ``the
construction'' to refer to the most general form of our construction allowing
the possibility of:

(a) different surfaces S 0, S1 and S2 (with the ``same'' white
triangles, etc.),

(b) use of either of the two labelled toroidal embeddings of K3, 3, 3

independently for each white triangle (uvw), and

(c) use of k twists in constructing the cap S� for any value of k
satisfying the admissibility condition modulo 3.

We shall have occasion to use the term ``Pasch configuration'' in connec-
tion with Steiner triple systems. A Pasch configuration is a set of four
blocks whose union has cardinality six, i.e. a set of four triangles
isomorphic to [[a, b, c], [a, y, z], [x, b, z], [x, y, c]].

2. THE MAIN RESULTS

Suppose that we have a particular 2to-embedding of K3n&2 obtained
from the construction. Our first goal is to show that we can identify the
point �. We then show that it is also possible to identify the entire cap S�
and the three surfaces S0, S 1 and S 2. In order to identify � we specify a
property which is shared by all vertices other than �. To do this we
consider the following operation and its result.

Let [X, Y, Z] be a non-facial triangle on a face 2-coloured triangulated
surface. (We are not concerned about its orientation.) By severing this
triangle, we mean that the surface is cut along the edges XY, YZ, and ZX.
Our interest focuses on the arrangement of edges and coloured facial
triangles incident with the points X, Y and Z on either side of the cut. We
will say that the non-facial triangle [X, Y, Z] gives configuration C if, when
severed, it has on one side of the cut the following arrangement of edges
and facial triangles:

(a) including the edges XY, YZ, and ZX, precisely six edges emanate
from X, from Y and from Z,

(b) these edges define faces, in sequence, around each of the three
vertices which are coloured white, black, white, black, white respectively.

The configuration C is illustrated in Fig. 3.
We now say that a point X of the K3n&2 embedding has property P if

there exists a non-facial triangle [X, Y, Z] giving configuration C.
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FIG. 3. Configuration C.

Lemma 1. If X{�, then X has property P.

Proof. Since X{�, X=xi for i=0, 1 or 2. Pick an original white
triangle (xuv), i.e. (x ju jv j ) is a white triangle on S j for each j=0, 1, or 2.
Then the triangle [xi, ui, vi] is non-facial in the K3n&2 embedding and,
from Figs. 1 and 2, we see that xi has property P. (Note that this is the case
whether or not the K3, 3, 3 bridge applied to (xuv) is as shown in Fig. 1 or
is its reverse as shown in Fig. 2.) K

Lemma 2. The point � does not have property P.

Proof. Suppose that � does have property P, so that there is a non-
facial triangle [�, X, Y ] giving configuration C. Suppose firstly that, using
the lettering given in the Introduction, X=ui

j for some j # [1, 3, 5, ..., n&2]
and i=0, 1 or 2. Then, following the sequence of facial triangles about �
given in Tables 1 and 2 above, we find that Y=uh

j+5 for some value of
h=0, 1 or 2. But then following the sequence of facial triangles about Y we
find X=uh

j+4. Thus we obtain uj=uj+4, which is a contradiction because
n{5. The second alternative is that X=ui

j for some j # [2, 4, 6, ..., n&1]
and i=0, 1 or 2. In this case we obtain Y=uh

j&5 for some value of h=0, 1
or 2. Then, by reversing the roles of X and Y, this alternative reduces to
the former case and again provides a contradiction. (For the reader who is
happier with rotation schemes, it may be helpful to examine the rotation
schemes about the points �, ai and bi given in Theorem 2 of [2] but note
that these need amendment as described in Theorem 3 of that paper for
any twists in the construction.) K

Having now identified the point � in the given K3n&2 embedding we can
proceed to identify the entire cap S� and consequently the surface S� . To do
this, start with an arbitrary white face containing �. Label the other two
vertices of this triangle 1 and 2. Using the orientation established by this
labelling, label the remaining vertices around � with integers 3, 4, ..., 3n&3.
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Note that the white triangles incident with � are [�, 1, 2], [�, 3, 4], ...,
[�, 3n&4, 3n&3]. For each j # [1, 2, ..., (n&1)�2] we will refer to the
seven points [�, 2j&1, 2j, 2j&1+(n&1), 2j+(n&1), 2j&1+2(n&1),
2j+2(n&1)] as the jth crevice. Apart from their numbering, the crevices
are defined independently of the choice of starting vertex (i.e. the vertex
numbered 1) and the orientation of the rotation about �.

As a consequence of the construction, the points of each crevice define
seven white facial triangles forming an STS(7). For each of the three of
these white triangles which are incident with �, the points of the crevice
define a neighbouring black triangle not containing �. The points of the
crevice further define a unique fourth black triangle forming a Pasch
configuration with the other three. In effect the crevices generate the type
1 triangles given in Table 1 (or the alternative triangles given in Table 2).

If we now remove all eleven of these (open) triangles for each crevice,
together with all (open) black triangles incident with �, all (open) edges
forming the common boundary to any two of these triangles, and the point
� itself, then we will have removed the cap (i.e. S� ) and we obtain the
surface S� . It follows that the surface with which we are now left is a
bordered surface, the border comprising three disjoint oriented cycles each
of length n&1. We now wish to recover the three original surfaces S0, S1

and S2; to do this we define levels. We say that the points X, Y, ({�) are
on the same level if they lie on the same (n&1)-cycle. There are therefore
three levels, each consisting of (n&1) points. We may label these levels
A, B, and C. The points at level A necessarily are the points [x i

j : j #
[1, 2, ..., n&1]] for one value of i # [0, 1, 2]; and likewise for B and C.

Again, from the construction, two points xi, yi at the same level which
are not adjacent on the (n&1)-cycle boundary will define a black triangle,
say (xiyizi ), where zi also lies on the same level. The two points will also
define a white triangle, say ( yixiwh), h{i. The surface S i may now be
reconstructed from these black triangles (xiyizi ) and the derived white
triangles ( yixiwi ). Note that triangles with an edge forming part of the
boundary are covered by this process since the other two edges will not lie
on the boundary. Thus we may recover the three original surfaces S0, S1

and S2 (although their labelling as 0, 1, and 2 is indeterminate).
We will now pay attention to the levels of the points encountered in

traversing the (3n&3)-cycle around the point � in any given K3n&2

embedding obtained from the construction. The construction ensures that
we obtain a (circular, ordered) list of the following form.

points 1 2 3 4 5 6 } } } 3n&4 3n&3

levels a0 a1 a1 a2 a2 a3 } } } a(3n&5)�2 a0
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where the letters ai identify the levels of the points to which they
correspond, i.e. each ai is one of 0, 1 or 2. Moreover, ai {ai+1 (subscript
arithmetic modulo (3n&3)�2).

We may firstly compress this list of levels to a circular list of (3n&3)�2
symbols by omitting every other entry. We may then derive a circular list
of (3n&3)�2 0's and 1's from this list of levels by recording for each adja-
cent pair of levels (ai , ai+1) a ``0'' if ai+1 #ai&1 (mod 3) or a ``1'' if
ai+1 #ai+1 (mod 3). It follows from the construction method that this list
will be periodic with a period (n&1)�2 (each crevice is encountered three
times in the (3n&3)-cycle). We now take (n&1)�2 consecutive terms from
this list of 0's and 1's. We will call this (circular) list of (n&1)�2 0's and
1's a twist list; it records the pattern of twists in a K3n&2 embedding as
described in the Introduction. Not all strings of (n&1)�2 0's and 1's can
arise from the construction. In fact, if k is the number of 1's in such a list
then, as previously mentioned, for n#3 (mod 12) we require k#0 or 1
(mod 3), while for n#7 (mod 12) we require k#1 or 2 (mod 3).

Two twist lists will be called equivalent if one can be obtained from the
other by a combination of

(a) rotation (i.e. starting the list at a different position in the cycle),

(b) reversal (i.e. writing the list in the reverse order), and

(c) negation (i.e. permuting the 0 and 1 entries).

Rotation corresponds to choosing a different point to serve as the initial
vertex numbered 1, reversal corresponds to reversing the direction of
rotation, and negation corresponds to a renumbering of the levels which
reverses the cyclic ordering (0, 1, 2). However, an equivalence class of twist
lists is an invariant of any K3n&2 embedding produced by the construction:
the equivalence class is independent of the labelling of points and the
choice of orientation.

Suppose now that we choose three fixed initial surfaces S 0, S 1 and S2

and perform two versions of the construction using a fixed distribution of
the two alternative types of K3, 3, 3 bridges but different distributions of
twists. If the two resulting K3n&2 embeddings have non-equivalent twist
lists then there can be no colour-preserving isomorphism between them.
From this observation alone, and using three copies of the same initial
2to-embedding of Kn to form our three surfaces S 0, S1 and S2, it is possible
to deduce the existence of exponentially many non-isomorphic 2to-embeddings
of K3n&2 . However, we can do much better than this.

For n�19 we now examine those K3n&2 embeddings which arise, by
varying the selection of K3, 3, 3 bridges, from three fixed initial surfaces
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S0, S 1 and S2 and a fixed distribution of twists with a (representative) twist
list

T0=(1, 1, 1, 0, 1, 0, 0, 0, 0, a, b, c, ..., z)

where all of the entries a, b, c, ..., z are zeros (so that T0 contains at least
four consecutive zeros). Note that such a list has four 1's in total and is
therefore a valid twist list both for n#3 and for n#7 (mod 12). Note also
that such a twist list does not map to itself under any combination of the
three operations (a), (b), (c) described above, a fact which is important for
the subsequent argument. Consequently, if we consider the cycle around
�, then by choosing an appropriate starting point and direction and an
appropriate numbering of the levels, we may assume that the cycle has the
form

points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 } } }

levels 0 1 1 2 2 0 0 2 2 0 0 2 2 1 1 0 0 } } }

The pattern of levels ..., 2, 2, 1, 1, 0, 0, ... continues to complete n&1 entries
in the table and then the entire pattern of rising and falling levels is
repeated twice more to form a (3n&3)-cycle. The pattern of rising and fall-
ing levels determines that there are only three choices for the vertex to be
numbered ``1'' (one at each level). Having chosen the vertex ``1'', there is
only one choice of direction (i.e. which vertex to number ``2'') and, if we
take vertex 1 to define level 0, one choice of subsequent level numbering.
It follows that the only possible colour-preserving mappings between a pair
of such embeddings are of the form u i

j � u i+k
j where k is independent of

both i and j, and superscript arithmetic is modulo 3; we will express this
property by saying that the mapping cyclically permutes levels.

Theorem 1. Suppose that for n#3 or 7 (mod 12) and n�19 we take
three fixed orientable surfaces S0, S 1 and S 2, and that we choose a fixed
labelling of the 3n&3 points to generate the twist list T0 . If we then apply
the construction twice, using two different selections of the K3, 3, 3 bridges,
then the two resulting 2to-embeddings of K3n&2 are non-isomorphic.

Proof. From the remarks above, we see that the twist list T0 only
permits isomorphisms which cyclically permute levels. If there were an
isomorphism between the two embeddings then, because the K3, 3, 3 bridges
and the cap S� are invariant under a cyclic permutation of levels, the two
embeddings would have identical white triangles, which they do not because
we have used different selections of the K3, 3, 3 bridges. Consequently the
resulting K3n&2 embeddings are non-isomorphic. K
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There are (n&1)(n&3)�6 white triangles on each of the surfaces S0, S1

and S2. Using the construction, we may therefore generate 2(n&1)(n&3)�6

non-isomorphic 2to-embeddings of K3n&2 . Since there is a 2to-embedding
of Kn for every n#3 or 7 (mod 12), we may use this to produce the initial
surfaces S 0, S 1 and S 2. Consequently we have the following.

Corollary 1. For every n#3 or 7 (mod 12) with n�19 there are at
least 2(n&1)(n&3)�6 non-isomorphic 2to-embeddings of K3n&2 .

In fact the result also holds for n=15. The argument is similar but uses
the twist list T1=(1, 1, 0, 1, 0, 0, 0). It is also clear that the only
automorphisms of these embeddings are those which cyclically permute the
three levels, i.e. the embeddings have C3 as their (full) automorphism
group. K

In terms of the order of growth we may state the result in the following
form.

Corollary 2. For n#7 or 19 (mod 36) there are at least 2n2�54&O(n)

non-isomorphic 2to-embeddings of Kn . K

We now make an observation about the black triangles of the embeddings
generated as described in the above Theorem and the first Corollary. Given
any two such embeddings, the black triangles which they contain are iden-
tical and have the same orientations. To see this we note that the black
triangles come from three sources. Those lying on the surfaces S0, S1 and
S2 are unaltered during the construction and therefore are common to
both embeddings. Those lying on the K3, 3, 3 bridges are the same whether
or not the bridges are reversed (see Figs. 1 and 2). Those lying on the sur-
face S� are common to both embeddings. It follows that the 2(n&1)(n&3)�6

non-isomorphic 2to-embeddings of K3n&2 each contain identical black
triangles with the same orientations. In particular, the STS(3n&2) defined
by the black triangles is identical for each of the 2(n&1)(n&3)�6 non-
isomorphic embeddings. We find these observations startling. Furthermore,
we can put them to good use.

We now take these 2(n&1)(n&3)�6 non-isomorphic embeddings of K3n&2

and reverse the colours. From each, we then delete the point � together
with all (open) edges and all (open) triangular faces incident with �. This
produces a plentiful supply of non-isomorphic surfaces S i on which to base
a reapplication of the construction to produce 2to-embeddings of K9n&8 .
All of these surfaces S i have the ``same'' white triangles and the ``same''
Hamiltonian cycle of points forming the border, all with the ``same'' orien-
tation. We can select three different surfaces from this collection to form
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S0, S 1, S 2 (in some order) in ( N
3 ) ways, where N=2(n&1)(n&3)�6. We will

again use a fixed selection of twists giving rise to the twist list T0 . The
K3, 3, 3 bridges may be selected in 2(3n&3)(3n&5)�6 different ways. Any two of
the resulting 2to-embeddings of K9n&8 (obtained by varying the surfaces
S0, S 1 and S2, and the K3, 3, 3 bridges, but with a fixed selection of twists)
will be non-isomorphic. To see this, note firstly that embeddings based on
two different selections of the surfaces S0, S 1 and S 2 cannot be isomorphic.
For those based on a common selection, T0 only permits isomorphisms
which cyclically permute levels. Because the three surfaces S 0, S 1 and S2

are not isomorphic, the only possible isomorphism is then the identity
mapping. However the use of different selections of the K3, 3, 3 bridges
precludes this possibility. We also observe that all of the resulting
2to-embeddings of K9n&8 are automorphism-free (i.e. have only the trivial
automorphism). Again this follows from the structure of T0 , which only
permits automorphisms which cyclically permute levels, together with the
fact that S0, S 1 and S2 are selected to be non-isomorphic. We may
summarise these results in the statement of the following Theorem.

Theorem 2. Suppose n�15 and n#3 or 7 (mod 12). Put N=2(n&1)(n&3)�6.
Then there are at least ( N

3 ) 2(3n&3)(3n&5)�6 non-isomorphic 2to-embeddings of
K9n&8 , all of which are automorphism-free. K

In terms of the order of growth we may state the result in the following
form.

Corollary 3. For n#19 or 55 (mod 108) there are at least 22n2�81&O(n)

non-isomorphic 2to-embeddings of Kn . K

3. THE NON-ORIENTABLE CASE

An inspection of the proofs given above shows that, in essence, they
apply also to the non-orientable case. We now briefly discuss this aspect.
We form S0, S 1 and S2 from three face 2-colourable embeddings (having
the ``same'' white triangles and the ``same'' cycle of points around z*) of Kn

in a non-orientable surface. The white triangles are bridged using the
toroidal embeddings given in Figs. 1 and 2. The construction is completed,
to form a face 2-coloured triangular embedding of K3n&2 in a non-orientable
surface, by forming a cap S� having k twists in the manner previously
described. The number k must satisfy the congruence k#1 or 2 (mod 3) if
n#1 (mod 6), or k#0 or 1 (mod 3) if n#3 (mod 6).
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In any embedding generated by this construction we may, as previously,
identify firstly the point �, then the cap S� , the surface S� , and finally the
original surfaces S 0, S1, and S 2 (although their labelling as 0, 1 and 2
remains indeterminate). A twist list can be defined as before and we can
then examine those K3n&2 embeddings which arise from three fixed (non-
orientable) surfaces S0, S1, and S2, and a fixed distribution of twists giving
rise to the twist list T0 . The analogue of Theorem 1 is Theorem 3 below.

Theorem 3. Suppose that for n#1 or 3 (mod 6) and n�19 we take
three fixed non-orientable surfaces S0, S 1 and S2, and that we choose a fixed
labelling of the 3n&3 points to generate the twist list T0 . If we then apply
the construction twice, using two different selections of the K3, 3, 3 bridges,
then the two resulting face 2-colourable triangular non-orientable embeddings
of K3n&2 are non-isomorphic. K

Since there is a face 2-colourable triangular embedding of Kn in a non-
orientable surface for every n#1 or 3 (mod 6) with n{7, we may use this
to produce the initial surfaces S0, S 1 and S2. This enables us to state the
following.

Corollary 4. For every n#1 or 3 (mod 6) with n�19, there are at
least 2(n&1)(n&3)�6 non-isomorphic face 2-colourable triangular embeddings of
K3n&2 in a non-orientable surface. K

As before it is the case that the automorphism group of each of these
embeddings is C3 . Once again we can make a colour reversal and then
reapply the construction to form a face 2-colourable triangular embedding
of K9n&8 in a non-orientable surface. Similar arguments to those given
previously lead to the following Theorem.

Theorem 4. Suppose n�19 and n#1 or 3 (mod 6). Put N=2(n&1)(n&3)�6.
Then there are at least ( N

3 ) 2(3n&3)(3n&5)�6 non-isomorphic face 2-colourable
triangular embeddings of K9n&8 in a non-orientable surface. K

Again, these embeddings are all automorphism-free.

4. CONCLUDING REMARKS

It is clear that a refinement of some of the arguments given above, such
as consideration of different twist lists, would lead to an improvement in
the O(n) term in the orders of growth. In the opposite direction a weaker
version of Corollary 2 may be obtained without recourse to Theorem 1. To
see this, note that the recursive construction produces, from a given
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2to-embedding of Kn with a fixed vertex set V=V(Kn), at least 2(n&1)(n&3)�6

distinct labelled 2to-embeddings of K3n&2 . Each isomorphism class of these
embeddings can contain at most (3n&2)! embeddings. The number of non-
isomorphic embeddings is therefore at least 2(n&1)(n&3)�6�(3n&2)!. Writing
m for 3n&2 and estimating the factorial term gives 2m2�54&O(m log m).
However, Theorem 1 continues to be important because it identifies a
representative of each isomorphism class as well as providing a better
estimate for the order of growth.

It seems highly likely that for all n#3 or 7 (mod 12) there will be at
least 2an2

non-isomorphic 2to-embeddings of Kn for some value of a.
Perhaps the most interesting question is whether this is the true order. We
can obtain an upper estimate by using the known upper bound for the
number of labelled Steiner triple systems of order n, namely (e&1�2n)n2�6 (see
[7]). Each labelled 2to-embedding of Kn gives rise to a pair of labelled
STS(n)s, ``white'' and ``black''. There are 2n(n&1)�6 possible choices for the
orientations of the white triangles (i.e. the blocks of the white system). Any
one such choice will determine the orientation of the corresponding black
triangles. Thus the number of labelled 2to-embeddings of Kn is at most
(e&1�2n)n2�6 } (e&1�2n)n2�6 } 2n(n&1)�6<nn2�3. Consequently, the number of non-
isomorphic 2to-embeddings of Kn is less than nn2�3. Unfortunately there
seems to be no simple way of using this type of argument to establish a
lower bound because an arbitrary pair of labelled STS(n)s will not, in
general, be biembeddable as the black and white systems of a 2to-embedding
of Kn no matter what orientations are chosen for the blocks (for example,
the systems may have a common triple). Indeed, it is far from clear whether
or not every STS(n) is biembeddable (i.e. forms the black system of a
2to-embedding). If the rate of growth of the number of non-isomorphic
2to-embeddings of Kn were of the order 2an2

then this would imply that
almost all STS(n)s are not biembeddable. At various times, various
combinations of the present authors have felt that 2an2

may be the correct
order of growth, that nan2

may be correct, or that the truth lies in some
intermediate order.

Note. The referee has drawn to our attention a recent paper by
V. P. Korzhik and H. J. Voss [3] containing different results on non-isomorphic
embeddings of complete graphs.
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