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1. INTRODUCTION

In elastoplasticity models, there is a stress threshold or yield condition
that plays a role in determining whether the material is deforming elasti-
cally or plastically. If the stress is below the threshold, then the deforma-
tion is elastic, and is typically modeled by linear elasticity. If the stress
reaches the threshold, it is said to be at yield, and the deformation is
considered to be plastic. In models of plastic deformation in which the
material hardens with increasing stress, the stress-strain constitutive law is

Žtypically nonlinear. Since the equations are hyperbolic at least up to some
.maximum stress , nonlinearities can in principle lead to the formation of
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shocks. However, the nonlinear constitutive law for plastic deformation is
in effect only under conditions of continued plastic loading. That is, the
stress-strain law switches to linear elasticity unless the stress is at yield and
is increasing in time. This additional nonlinearity is thought to prevent the
formation of shock waves in many contexts.

The equations for plastic deformation are a system of nonlinear hyper-
bolic partial differential equations. Plastic waves associated with non-zero

w xwave speeds are typically genuinely nonlinear in the sense of Lax 2 . For
genuinely nonlinear plastic waves, shocks will form only if the magnitude
of the characteristic speed increases in time. However, for continued
plastic deformation, the stress must also increase. Thus, the possibility of
formation of plastic shocks would be ruled out if increases in stress during
plastic deformation necessarily gave rise to decreases in the characteristic
speed.

To formulate precise results, we analyze an elastoplasticity model in the
context of antiplane shearing. Antiplane shearing is a simplification of full
two or three dimensional deformation in that, although the model applies
to a three dimensional body of material, the deformation depends on only

Ž .two of the space variables i.e., x, y plus time, and the velocity has only
Ž .one component the z component . The stress tensor reduces to a pair of

unknown stress variables.
The model we consider includes non-associativity in the flow rule. The

degree of non-associativity is measured by a parameter a G 0. For a s 0,
the model is associative, and we show that plane plastic waves are gen-
uinely nonlinear. Moreover, the characteristic speed decreases in magni-
tude with respect to time across plane plastic waves. Consequently, plane
plastic waves are rarefaction waves, in which the characteristics spread out
rather than focus.

For a ) 0, however, there can be a balance between hardening and the
degree of non-associativity that makes the issue of genuine nonlinearity
much more delicate. As is well understood, constitutive laws in plasticity
models for granular materials that have a non-associative flow rule are in

w xbetter agreement with experiments 4 . However, it is also well understood
that these models are less stable than models with an associated flow rule
w x5, 6 . The possibility of plastic shock waves is a further destabilizing
feature of these models. In Theorem 3.1, the main result of this paper, we
prove that provided the hardening function is not too stiff, a condition
depending upon the degree of non-associativity measured by a , then the
system of partial differential equations is genuinely nonlinear everywhere,
i.e., for all stress fields. Consequently, for models satisfying the extra
condition, plastic shock waves cannot appear.

An examination of the possibility of shock waves for a different elasto-
plasticity model in a different configuration was undertaken by Nouri and
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w xChossat 3 . In their paper, weak plastic shock waves are realized as
inviscid limits of smooth solutions of an elasto-viscoplastic model, when
the shear stress on one side of the wave is zero.

In Section 4, we formulate a constitutive law that violates the main
hypothesis of Theorem 3.1, and for which genuine nonlinearity does not
hold. In this case, plastic shocks may form. The example is arrived at by

Ž .choosing unrealistically extreme but physically possible values of parame-
ters in the constitutive relation.

In Section 5, we give an algorithm that tests directly for genuine
nonlinearity; the algorithm is implemented as a MAPLE procedure in the
Appendix. The model and it’s characteristic structure are presented in
Section 2.

2. EQUATIONS OF MOTION

In this section, we present the specific equations to be studied, and
analyze the characteristic structure of the equations.

2.1. Antiplane Shear Model

w xThe model, derived in 7 , represents dynamic antiplane shearing. Such
deformations occur in three space dimensions perpendicular to the x, y-
plane. Thus, the first and second components of velocity vanish. The
fundamental variables are ¨ , the z component of velocity, and the stress

Ž .Tvector t s t , t , whose components correspond to the T and T1 2 z x z y
Ž .components of the full stress tensor. The density taken to be one and the

other components of the stress tensor are assumed constant, and the three
Ž .Tunknown functions depend on x s x, y , and t, but not on z.

Conservation of momentum is expressed by the equation

­ ¨ s =Tt , 2.1Ž .t

Ž .T Twhere = s ­ , ­ is the gradient operator, and = is the divergencex y
operator. In antiplane shearing, the strain rate tensor reduces to =¨ . In
the theory of elastoplasticity, during plastic deformation the strain rate
may be decomposed into elastic and plastic components:

=¨ s DŽ e. q DŽ p. . 2.2Ž .

We assume that elastic strain rate satisfies the constitutive relation for
linear elasticity,

­ t s DŽ e. , 2.3Ž .t
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in which the elastic wave speed has been normalized to have magnitude
one.

Plastic deformation occurs only when the stress satisfies the plastic yield
condition, which is taken to be

< <t x, t s g x, t , 2.4Ž . Ž . Ž .

Ž . < Ž . <where g x, t s max t x, s . Notice that the yield surface in stress0 F sF t
space is a circle which may expand as time evolves, but never contracts.

w xWe note that by Lemma 2.1 of 7 , the material is deforming plastically at
Ž . Ž .x, t if and only if 2.4 is satisfied and

T
t x, t ­ t x, t G 0. 2.5Ž . Ž . Ž .t

We assume that the plastic strain rate satisfies the constitutive relation

tT ­ tt Ž p.R a t s D , 2.6Ž . Ž .
h gŽ .

called the flow rule, where

cos a sin aR a sŽ . ysin a cos a

Ž .and a g 0, pr2 is a parameter. Note that the plastic component of strain
makes an angle a , measured clockwise, with respect to the normal to the

Žyield surface. Thus a characterizes the degree of non-associativity if
.a s 0, the flow rule is associated . The function h is called the hardening

w x 1modulus; as in 7 , we take h to be a monotonically decreasing differen-
w x Ž .tiable function on the interval 0, 1 , with h 1 s 0.

Ž .Remark 2.1. The yield condition 2.4 is related to the more conven-
tional yield condition with hardening as follows: Write

g s H j ,Ž .

where H is the yield stress, depending on the shear strain j , and defined
only for values of j less than some maximum value of shear strain,
j F j . H is typically monotonically increasing and concave: H X ) 0,max

Y X Ž .H - 0. Also H approaches zero as H approaches its maximum H atmax
w xj . It is shown in 7, Appendix B that h is related to H through themax

1 w xIt would be more accurate to assume h is decreasing on some interval d , 1 with d ) 0
small. However, the results here are concerned with anomalous behavior that arises for larger

Ž .values of g i.e., closer to g s 1 , so we do not include this additional complication.
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identity

2 Xh H j s 2G H j H j , 2.7Ž . Ž . Ž . Ž .Ž .

where G is the elastic modulus. In this paper, we have normalized H so
Ž . w xthat H s 1. Correspondingly, g s H j lies in the interval 0, 1 .max

Ž . Ž .Combining 2.1 ] 2.3 , we have the system describing elastic deforma-
Ž Ž p. .tions in which D is 0 ,

­ ¨ s =Ttt 2.8Ž .
­ t s =¨ .t

Ž . Ž . Ž .Combining 2.1 ] 2.3 , and 2.6 , we have the system describing plastic
deformations,

­ ¨ s =Ttt

T 2.9Ž .R a ttŽ .
I q ­ t s =¨ ,th gŽ .

< <where g s t .

2.2. Characteristic Speeds

In this subsection, we calculate the characteristic speeds of plane wave
Ž . Ž .solutions of the systems 2.8 and 2.9 . We consider solutions which

Ždepend only on x and t rotational invariance of the equations assures the
.same result for other directions in the x, y-plane . Then the equations

reduce to the system

­ ¨ s ­ tt x 1

2.10Ž .­ ¨x­ t st ž /0

for elastic deformation, and the system

­ ¨ s ­ tt x 1

T 2.11R a tt Ž .Ž . ­ ¨xI q ­ t st ž /h gŽ . 0
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Ž . Ž .for plastic deformation. We write 2.10 and 2.11 in the form

¨ ¨q A s 0, 2.12Ž .ž / ž /t tt x

where

0 1 0
a 0 0A s y .1

a 0 02

Ž .TLetting a s a , a , we have1 2

1Ž e.a s a s 2.13Ž .ž /0

for elastic deformations, and

TR a ttŽ . 1Ž p.a s a s I y 2.14Ž .2 ž /0h g q g cos aŽ .

for plastic deformations.
By computing the eigenvalues of A, we find that the characteristic

Ž .speeds of the system 2.12 are 0, " a . For future reference, we note' 1
that the corresponding eigenvectors are

. a' 10
, . 2.15Ž .0 a1ž / � 01 a2

Ž . Ž . Ž p.System 2.9 is hyperbolic in fact strictly hyperbolic , i.e., a ) 0 for all1
values of u , if

h g ) g 2 sin2 ar2 . 2.16Ž . Ž . Ž .

Ž w x . Ž .Compare 7 . We define g s g a to be the smallest value of g at whichc c
Ž . Ž x2.16 fails, i.e., g is the unique number in 0, 1 satisfyingc

h g s g 2 sin2 ar2 . 2.17Ž . Ž . Ž .c c

In what follows, we shall make extensive use of planar polar coordinates
< <Ž .for t:t s t cos u , sin u . In particular, during plastic deformation, we
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FIG. 1. Regions.

have

t s g cos u , sin u .Ž .

Notice that the speed of plastic waves exceeds the speed of elastic waves
exactly when aŽ p. ) aŽ e. s 1. This occurs only in the intervals pr2 - u -1 1

Ž w x.pr2 q a and ypr2 - u - ypr2 q a cf. 7 . Since such an ordering of
the elastic and plastic wave speeds is associated with a loss of well-posed-

w xness of initial value problems 5 , we specifically exclude these ranges of u
Ž .in what follows see Fig. 1 . A more complete discussion of this issue in the

context of two dimensional deformations is given in the forthcoming paper
w x1 .

3. GENUINELY NONLINEAR LOADING WAVES

Ž .In this section we give conditions on the hardening function h g in
relation to the degree of non-associativity measured by a , that guarantee
the genuine nonlinearity of plane plastic waves, and thereby establishing
that plane plastic waves are necessarily rarefaction waves. For the entirety
of this section, we impose the restriction 0 F a - pr3.

Ž .Consider a rarefaction wave solution of the system 2.12 for plastic
deformation. Then the stress t is constrained to follow an integral curve of

Ž . Žan eigenvector 2.15 , in the direction of increasing total stress g so as to
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.maintain plastic deformation . Thus, the stress rate t is a positive multiplet
of the stress component a of the eigenvector. Moreover, since the charac-
teristics spread out in a rarefaction wave, the characteristic speed l

s a t x , t must decrease in time. Consequently, the directional' Ž .Ž .1
˙ Žderivative l of l along the integral curve must be negative. This condition

˙ .is more stringent than genuine nonlinearity, which requires only l / 0.
˙From the above discussion, we see that the condition l - 0 is equivalent

to

p p
a ? = a - 0 for y q a F u F , 0 - g F g . 3.18Ž .t 1 c2 2

ŽNote that a ? = a - 0 for pr2 q a F u F 3pr2, 0 - g F g , then fol-t 1 c
. w xlows by symmetry. This condition is derived in more detail in Ref. 1 .

The main result of this paper is as follows.

Ž .THEOREM 3.1. i For a s 0,

p p
a ? = a - 0 for y - u - .t 1 2 2

Ž . Ž . Ž .ii For 0 - a - pr3, 3.18 holds if h satisfies condition A ;

A yh g hX g rg 3 ) B a for g - g - g a , 3.19Ž . Ž . Ž . Ž . Ž . Ž .˜ c

where g is defined by˜

h g s g 2 , 3.20Ž . Ž .˜ ˜

and

1 y cos ar2Ž .
B a s . 3.21Ž . Ž .

cos ar2 cos aŽ .

Ž . Ž .Remark 3.2. a Note that B a is monotonically increasing in the
Ž .interval 0 F a - pr3, and B pr3 - .31.

Ž . Ž . Ž . Ž .b Since B 0 s 0, part ii is consistent with part i . However, the
points u s "pr2 are special when a s 0, and must be excluded.

Ž . Ž .c In terms of the yield function H of Remark 2.1, condition A
becomes

2X Y2 H t q H t H t ) B a ,Ž . Ž . Ž . Ž .

Ž . Ž .˜ ˜for t - t - t , where H t s g and H t s 1.˜max max
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Ž .To prove the theorem, it is convenient to express 3.18 in terms of the
auxilliary function

32h q g cos aŽ .
F u , g , a s a ? = a . 3.22Ž . Ž .t 1g

Ž .Since h G 0 for g F g and 0 F a F pr3, we see that 3.18 is equivalentc
to the condition

p p
F u , g , a ) 0, for y q a F u F and 0 - g F g . 3.23Ž . Ž .c2 2

A straightforward calculation shows that

F u , g , a s h2 cos u y a q cos u cos aŽ . Ž .Ž .
y g hhX cos2 u cos u y aŽ .
q g 2 h sin 2u y a sin u y a q sin u cos aŽ . Ž .Ž .
q g 4 sin 2u y a sin u y a cos a . 3.24Ž . Ž . Ž .

Considering F as the sum of four terms, we make the following
observations, restriction u to the interval ypr2 q a F u F pr2, and

Ž xconsidering g g 0, g :c

Ž . Ž . Ž XŽ .1 The first two terms in 3.24 are nonnegative. Note that h g -
.0.

Ž .2 The third and fourth terms can be negative only in the range
ar2 - u - a .

First consider the associative case, for which a s 0. Then all four terms
are nonnegative. In fact, they are all zero at u s "pr2, and positive
elsewhere. The singular behavior at u s "pr2 occurs because the projec-
tion of the right eigenvector onto the stress plane is tangent to the yield
surface at u s "pr2. The characteristic speed, restricted to the integral

Ž .curve, therefore necessarily has a critical point a maximum at u s "pr2.
Ž .This completes the proof of part i of Theorem 3.1.

Ž .The remainder of this section is devoted to proving part ii of the
Ž .theorem. That is, we establish that 3.23 holds for a ) 0, under condition

Ž .A . The argument is based upon assessing the signs of the four terms in
Ž .3.24 , and analyzing cancellations when one or more of the terms are
negative.
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Ž .We define the regions see Fig. 1

p p 3a a
I s u , g , a : 0 - g F g , y q a F u F and u y GŽ . c½ 52 2 4 4

a
II s u , g , a : 0 - g F g , F u F aŽ . ˜½ 52

a
III s u , g , a : g F g F g , F u F a ,Ž . ˜ c½ 52

Ž . Ž . Ž .where g s g a is given by 2.17 , and g is given by 3.18 .˜c c
Ž .In Propositions 3.3 and 3.5 we prove that 3.23 is satisfied in Regions I

Ž .and II without any added hypothesis. In Proposition 3.8 we prove 3.23 is
Ž .satisfied in Region III under the extra assumption 3.19 . This seems

Ž .reasonable since for g close to g , h g could be very small and the fourthc
Ž . Ž .term in 3.24 negative for ar2 - u - a can only be cancelled if the

Ž .second term in 3.24 is sufficiently large in comparison.
Ž .In the next section we construct an example for which relation 3.23 is

not satisfied. This proves that some conditions on h and hX are certainly
necessary in order to rule out the possibility of plastic shock waves.

Ž .PROPOSITION 3.3. For 0 - a F pr3, F u , g , a ) 0 in region I.

Ž . Ž . Ž .Proof. From observations 1 , 2 above, all four terms in 3.24 are
nonnegative in Region I. To show strict inequality, it is enough to note

Ž .that the first term in 3.24 can be zero only if a s 0, u s pr2.

Ž .In regions II and III, the third and fourth terms in 3.24 may be
negative, and there is some cancellation with the first and second terms of
Ž . Ž . Ž3.24 . In Region II, we are able to show that F u , g , a ) 0 see Proposi-

. Ž .tion 3.5 , whereas in Region III, we need the additional condition 3.19 to
Ž . Ž .guarantee F u , g , a ) 0 see Theorem 3.1 . We begin with two elemen-

tary trigonometric inequalities.

LEMMA 3.4. For 0 - ar2 F u F a , we ha¨e

cos u y a q sin 2u y a sin u y a q sin u cos a ) 0,Ž . Ž . Ž .Ž .

and

a 1
sin 2u y a sin u y a G cos y 1 ) y .Ž . Ž .

2 2
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Ž .Proof. Since sin u y a q sin u cos a is an increasing function of u ,
the minimum is attained at u s ar2, where it takes the value

a a a
3ysin q sin cos a s y2 sin .

2 2 2

Ž .Now using the observation that sin 2u y a F sin a for ar2 F u F a , we
have

cos u y a q sin 2u y a sin u y a q sin u cos aŽ . Ž . Ž .Ž .
a

3G cos u y a q sin a y2 sinŽ . ž /2
a

3s cos u cos a q sin u sin a y 2 sin a sin
2

a a
3G cos u cos a q sin sin a y 2 sin a sin

2 2
a

s cos u cos a q sin a sin cos a ) 0.
2

To prove the second inequality, we write

a
sin 2 u y sin a y uŽ .ž /ž /2

a a a a
s 2 cos u y sin u y sin y u yž / ž / ž /ž /2 2 2 2

a a u
F 2 sin u y sin y u y .ž / ž /ž /2 2 2

Ž .Since the function sin y sin ar2 y y has a maximum at y s ar4, we
conclude that

a a
2sin 2u y a sin a y u F 2 sin s 1 y cos . 3.25Ž . Ž . Ž .

4 2

This completes the proof of the lemma.

Ž .Note that from 3.25 , we have

sin 2u y a sin a y u - 1r2 for ar2 - u - a - pr3. 3.26Ž . Ž . Ž .
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Ž .PROPOSITION 3.5. In Region II, F u , g , a ) 0.

Proof.

F u , g , a G h2 cos u y a q cos u cos aŽ . Ž .Ž .
q g 2 h sin 2u y a sin u y a q sin a cos aŽ . Ž .Ž .
q g 4sin 2u y a sin u y a cos aŽ . Ž .

s h h cos u y a q g 2 sin 2u y a� Ž . Ž .

= sin u y a q sin u cos a 4Ž .Ž .

q cos a h2cos u q g 4sin 2u y a sin u y a .� 4Ž . Ž .

The proposition now follows from Lemma 3.4, the inequality h G g 2 in
Ž .Region II, and 3.26 .

Finally, we consider Region III.

Ž .LEMMA 3.6. For 0 - ar2 F u F a F pr3, and 0 - g F g a , we ha¨ec

h2 cos u y a q cos u cos aŽ .Ž .
q g 2 h sin 2u y a sin u y a q sin u cos a ) 0.Ž . Ž .Ž .

Proof. As in Lemma 3.4

a
3sin 2u y a sin u y a q sin u cos a G y2 sin a sin .Ž . Ž .Ž .

2

2 2Ž . Ž .We use this fact together with h G g sin ar2 since g F g to writec

h2 cos u y a q cos u cos aŽ .Ž .
q g 2 h sin 2u y a sin u y a q sin u cos aŽ . Ž .Ž .

a a
2 2 3G hg sin cos u y a cos u cos a y 2 sin a sinŽ .

2 2
a a

2 2s hg sin cos u y a q cos u cos a y 2 sin a sinŽ .½ 52 2
a a

2 2s hg sin 2 cos u cos a q sin a sin u y 2 sin a sin½ 52 2
a a

2 2G hg sin 1 cos u cos a y sin a sin .½ 52 2
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'For u F a F pr3, we have cos u G 1r2, cos a G 1r2, sin a F 3 r2, and
Ž .sin ar2 F 1r2. This proves the lemma.

Ž .LEMMA 3.7. In Region III, if h satisfies condition A , then

yhhX

2cos u cos u y a q sin 2u y a sin u y a cos a ) 0.Ž . Ž . Ž .3g

Proof. From Lemma 3.4 we write

yhhX

2cos u cos u y a q sin 2u y a sin u y a cos aŽ . Ž . Ž .3g

yhhX a
2G cos u cos u y a y cos a 1 y cosŽ .3 ž /2g

yhhX a a
2G cos a cos y cos a 1 y cos3 ž /2 2g

yhhX a a
s cos a cos a cos y 1 y cos .3 ž /½ 52 2g

This last term will be positive if

yhhX 1 y cos ar2Ž .
) ,3 cos a cos ar2g Ž .

Ž .i.e., if h satisfies condition A . This proves the lemma.

Ž . Ž .PROPOSITION 3.8. Let a g 0, pr3 . If h satisfies condition A , then
Ž .F u , g , a ) 0 for u , g in Region III.

Proof.

F u , g , u s h h cos u y a q cos u cos u�Ž . Ž .Ž .
qg 2 sin 2u y a sin u y a q sin u cos a 4Ž . Ž .Ž .

hhX

4 2q g y cos u cos u y aŽ .3½ g

qsin 2u y a sin u y a cos a .Ž . Ž . 5
The proposition follows from Lemmas 3.6 and 3.7.
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Ž .Proof of Theorem 3.1. The result follows from 3.22 , together with
Propositions 3.3, 3.5, and 3.8.

4. EXAMPLE FOR WHICH GENUINE NONLINEARITY FAILS

In this section we construct an example of a hardening function for
which the plastic rarefactions are not always genuinely nonlinear. Specifi-

Ž . Ž .cally, we show that for any given a g 0, pr4 , there are functions h g
Ž .for which a ? =a ) 0 at some values of stress, i.e., F u , g , a - 0 for some1

values of g , u .
2 w x Ž .Let f be a C function on the interval 0, 1 , and satisfy f 0 s 1,

Ž . XŽ .f 1 s 0, and f 0 s b - 0. For n ) 0 we define the one parameter family
Ž . Ž . Ž . Ž .of functions h g by h g s n f g . The critical value g for h g ,n n c n

Ž . 2Ž Ž ..2defined by h g s g sin ar2 , now depends on n , as well as a . Sincen c c
Ž .we consider a to be fixed in this section, we write g s g nc c

LEMMA 4.1. For 0 - a - pr4,

y1a
1r2lim g n s 0 and g n s n sin q O 1 as n ª 0 q .Ž . Ž . Ž .c c ž /2nª0q

Ž .Proof. From the definition of g n , we havec

2a
n f g n s g n sin . 4.27Ž . Ž . Ž .Ž .c cž /2

Ž . Ž . Ž .Since n f g ª 0 uniformly as n ª 0 q , we see from 4.27 that g n ª 0.c
Ž Ž ..Therefore, lim f g n s 1, which impliesn ª 0q c

2
g n sin ar2Ž . Ž .Ž .c

lim s 1.
nnª0q

This completes the proof.

Ž Ž .. X Ž Ž ..COROLLARY 4.2. h g n ( n and h g n ( bn as n ª 0 q .n c n c

Ž .Now let F denote the function F given by 3.22 , with h s h .n n

PROPOSITION 4.3.

F u , g n , a s n 2 g u , a q 0 n 5r2Ž . Ž . Ž .Ž .n c
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as n ªs q, where

g u , a s cos u y a q cos u cos aŽ . Ž .
a

2q sin 2u y a sin u y a q sin u cos a rsinŽ . Ž .Ž .
2

a
4q sin 2u y a sin u y a cos arsin .Ž . Ž .

2

Proof. Using

y1a
X 1r2h f n , h f bn , and g f n sin ,n n ž /2

Ž . 5r2in the expression for F in 3.24 we see that the 2nd term is of order n
while the other terms are of order n 2. The proposition follows easily using

Ž Ž . .Taylor’s Theorem to expand F u , g n , a around n s 0.n c

Ž .Remark 4.4. We observe using Maple V, for example that the func-
Ž . Ž .tion G a s g 3ar4, a is a monotonically increasing function for 0 - a

Ž .- pr3 satisfying lim G a s y` and G s 0 for a f .27327p )a ª 0q 0
Ž . Ž Ž . Ž .pr4. That is, G a - 0 for 0 F a F pr4. See Figs. 2 a and 2 b , ob-

Ž . XŽ . Ž .tained with Maple V. In Fig. 2 a we plot G a and in Fig. 2 b we plot
XŽ . Ž . .G a and G a for 2pr9 - a - pr3 .

Ž .FIG. 2. Leading coefficient, G a .



GENUINE NONLINEARITY OF PLASTIC WAVES 359

Ž .THEOREM 4.5. The plastic rarefactions associated to system 2.12 are not
Ž . Ž .always genuinely nonlinear. In particular, for h g s n 1 y g , with nn

small enough, a ? =a is positï e for some ¨alues of the stress, and negatï e for1
other ¨alues.

Ž . Ž .Proof. Let a - pr6 be fixed. Let h g s n 1 y g . By Propositionn

4.3

3a 3a
2 5r2F , g n , a s n g , a q O n .Ž . Ž .n cž / ž /4 4

Ž . Ž . Ž .Since g 3ar4, a - 0, by Remark 3.2 a , F 3ar4, g , a - 0 for all nn c
sufficiently small. For such values of n , we have that a ? =a - 0 in1
Regions I and II, but a ? =a ) 0 on the ray u s 3ar4 and g close to g .1 c
This proves the theorem.

5. NUMERICAL TEST

Ž .In this section, we describe a numerical test to check condition 3.23 .
The idea is to rewrite F as a polynomial and then study the roots.

Ž .We observe in Eq. 3.24 that the first term is homogeneous of degree 1
� 4in the trigonometric pair cos u , sin u , and the remaining three terms are

homogeneous of degree 3 in the same pair. This means that we will obtain
a polynomial in tan u after performing the following operations on
Frcos3 u :

Ž .a Expand all trigonometric functions involving u in terms of sin u
and cos u only.

Ž .b Replace sin u by tan u cos u . The resulting expression depends
on u only through tan u and cos u .

Ž . 2 2c Replace sec u by 1 q tan u .

The resulting expression is a polynomial, C , of degree 3 on tan u ,1

C u , g , a s a tan3 u q a tan2 u q a tan u q a ,Ž .1 2 2 1 0

where the coefficients a are functions of g and a only.i
Ž .1r3w Ž .xThe change of variables z s a tan u y a r 3a transforms C3 2 3 1

Ž . 3 Ž . Ž .into a generic polynomial C z, g , a s z y a g , a z q b g , a . Now2
Ž .condition 3.23 , for ar2 - u - a is equivalent to

C z , g , a ) 0, for z - z - z , 5.28Ž . Ž .2 0 1

Ž .1r3w Ž . Ž .x Ž .1r3wwhere z s a tan ar2 y a r 3a and z s a tan a y0 3 2 3 1 3
Ž .xa r 3a .2 3
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Ž .We notice that C z , as a function of z only, has a relative minimum if2
Ž .and only if a g , a ) 0. If a relative minimum exists, it would occur at

3Ž .'z s ar3 and take the value b y 2 z .m m
We have the following theorem

THEOREM 5.1. The characteristic fields associated to plastic rarefactions
Ž Ž . .fails to be genuinely nonlinear i.e., condition 3.23 is ¨iolated if and only if

the following conditions are satisfied at the same time:
3r2a ) 0, and b y 2 ar3 - 0.Ž .

Proof. Genuine nonlinearity of the plastic rarefactions is equivalent to
Ž . Ž .condition 3.23 or, equivalently, to 5.28 . From Propositions 3.3 and 3.5,

Ž . Ž .we know that 3.23 is satisfied whenever u G a or u F ar2. Thus if 3.23
is to be violated, it must happen in the region ar2 - u - a or equiva-

Ž . Ž .lently in z - z - z . In particular C z G 0 and C z G 0 for all0 1 2 0 2 1
admissible values of g and a .

Ž . Ž .It follows that F u , g , a - 0 for some value of u , g , a if and only if
Ž .C z has a negatï e local minimum in z - z - z for some values of g2 0 1

Ž .and a . From the above remarks, C z can have a minimum if and only if2
Ž . Ž .3r2a ) 0, in which case the minimum takes the value C z s b y 2 ar3 .2 m

This proves the theorem.

Ž .For a given a , condition 5.28 can be tested numerically by checking
Ž . Ž .whether the function f g s C z , g , a is nonnegative for all values of2 m

g - g . We include an Appendix with the MapleV code for such test. Inc
Fig. 3 we show two examples of the application of the test. In both cases

Ž . Ž .a s pr6 with different expressions for the hardening modulus: a h g s
Ž . Ž . Ž . Ž . Ž .'.27 1 y g and b h g s .02 1 y g . In Figs. 3 a and 3 b we plot the

Ž .corresponding graphs of f g . In the first case the test shows that
Ž .condition 3.23 is always satisfied and therefore the plastic waves are

Ž .genuinely nonlinear. In the second case the test shows that condition 3.23
is violated for g close to g . In this case the plastic waves are not genuinelyc
nonlinear.

APPENDIX: MAPLE CODE

ŽThis is the maple file for the test of genuine nonlinearity. Note: y
.stands for g .

U Ž . Ž .) C [ .27; h [ C sqrt 1 y y ; a This line defines h y .
)

Ž . Ž .) alpha [ evalf Pir6 ; a chooses value of alpha
X Ž .) h [ diff h, y ;
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Ž . Ž .FIG. 3. a Genuinely nonlinear; b non-genuinely nonlinear.

U ˆŽ Ž .. w x Ž .) hc eq [ h s y sin alphar2 ] 2: y c [ fsolve hc eq, y, 0..1 :] ]
Ž .) with plots :

ˆ U UŽ Ž . Ž . Ž ..) Phi [ h 2 cos theta-alpha q cos theta cos alpha
U XU ˆ UŽ Ž .. Ž .) yh h cos theta 2 cos theta-alpha
ˆ U U U UŽ . Ž Ž .) qy 2 h sin 2 theta-alpha sin theta-alpha
Ž .U Ž ..) qsin theta cos alpha

ˆ U U U UŽ . Ž . Ž .) qy 4 sin 2 theta-alpha sin theta-alpha cos alpha ;

i.e.,

2X2F [ h cos u y a q cos u cos a y hh cos u cos u y aŽ . Ž . Ž . Ž . Ž .Ž .
q y2 h sin 2u y a sin u y a q sin u cos aŽ . Ž . Ž . Ž .Ž .
q y4 sin 2u y a sin u y a cos aŽ . Ž . Ž .

Ž .Next, we manipulate F to extract a polynomial in tt s tan u :

Ž .) g0 [ expand Phi :
ˆŽ Ž . .) g1 [ g0r cos theta 3 :

Ž Ž . U Ž . .) g2 [ subs sin theta s tt cos theta , g1 :
Ž Ž ..) g3 [ expand simplify g2 :
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ˆ ˆŽ Ž Ž Ž .. ..) g4 [ expand subs 1r cos theta 2 s 1 q tt 2, g3 :
w x Ž .) Psi 1 [ sort g4, tt ;

22 3 4 3 2 3C [ h sin a tt q y cos a sin a tt q 2 y h sin a cos a ttŽ . Ž . Ž . Ž . Ž .1

32 2 2 2 4 2 4 2y y htt q 2h cos a tt y y cos a tt q 3 y cos a ttŽ . Ž . Ž .
2 X2 2 2q 5 y h cos a tt y hh sin a tt y 4 y h sin a cos a ttŽ . Ž . Ž . Ž .

2 X2 4 2q h sin a tt y 3 y cos a sin a tt q y h y hh cos aŽ . Ž . Ž . Ž .
2 34 2 4 2q y cos a y y h cos a y y cos a q 2h cos aŽ . Ž . Ž . Ž .

We write C s a3) tt 3 q a2) tt 2 q a1) tt q a0, where1

Ž w x . Ž w x .) a0 [ coeff Psi 1 , tt, 0 :a1 [ coeff Psi 1 , tt, 1 :
Ž w x . Ž w x .) a2 [ coeff Psi 1 , tt, 2 :a3 [ coeff Psi 1 , tt, 3 :

Ž Ž w x . .) g5 [ sort expand Psi 1 ra3 , tt : a normalize coefficient of cubic
to 1.

Then g5 s tt 3 q b2) tt 2 q b1) tt q b0, where

Ž . Ž . Ž .) b0 [ coeff g5, tt, 0 :b1 [ coeff g5, tt, 1 :b2 [ coeff g5, tt, 2 :

Ž .We now write the original F u , g , a as a polynomial C of z. Here2
z s tan u q b2r3, where b2 is a function of y and a chosen to eliminate
the z 2 term. The coefficients of C are aa and bb, both functions of y and2
a .

Ž . Ž Ž . .) g6 [ subs tt s z y b2r3, g5 : g7 [ sort expand g6 , z :
Ž Ž .. Ž Ž ..) aa [ ysimplify coeff g7, z, 1 : bb [ simplify coeff g7, z, 0 :

ˆ Uw x) Psi 2 [ z 3 y aa z q bb;

This gives the formula

13F [ z y2 3

2 24 4 2 2y3 y cos a y y y 8 y h cos a y 7h cos aŽ . Ž . Ž .Ž
2X X2q3h y 3hh q 3hh cos a zŽ . .

2 2 42 2 4 4r yh q h cos a y y cos a q y cos aŽ . Ž . Ž .Ž
3 12 2y2 y h cos a q 2 y cos a h yŽ . Ž . . 27

2 3 3X X2 2 6 3 2 236h y q 18 y cos a y 20h cos a q 9h h cos a y 9 y hhŽ . Ž . Ž .Ž
23 6 2 2 4q36h cos a y 2 y q 12 y h cos a q 30 y h cos aŽ . Ž . Ž .
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3 2X X4 2 2q18 y h cos a y 9h h cos a q 9 y hh cos aŽ . Ž . Ž . .
2 2 43 3 4 4r sin a yh q h cos a y 3hy cos a q 3hy cos aŽ . Ž . Ž . Ž .ŽŽ

3 3 52 2 2 2 6 6y3 y h cos a q 3 y h cos a y y cos a q y cos aŽ . Ž . Ž . Ž . . .

Ž . Ž .) z0 [ tan alphar2 q b2r3: z1 [ tan alpha q b2r3: a define the
range of z.

U ˆŽ Ž .. Ž .) zmin [ simplify sqrt aar3 : phi [ simplify bb-2 zmin 3 : amin
w xPsi 2 s phi

) at z s zmin

For a fixed value of a , we now have two functions of y labeled aa and
phi. If for the same value of y, the following occurs,

aa ) 0 and phi - 0,

then the system is not genuinely nonlinear for this choice of a . Such
w xvalues can be observed from the following plots, in which y c denotes g .c

Ž w x .) plot aa, y s 0..y c , title s‘aa-coefficient’ ;
Ž w x.) plot phi, y s 0..y, y s 0..y c ;
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