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Abstract

We consider the high-frequency Helmholtz equation with a given source term, and a small
absorption parameter > 0. The high-frequency (or: semi-classical) parametet is0. We let
¢ and « go to zero simultaneously. We assume that the zero energy is non-trapping for the
underlying classical flow. We also assume that the classical trajectories starting from the origin
satisfy a transversality condition, a generic assumption.

Under these assumptions, we prove that the solutibrradiates in the outgoing direction,
uniformly in ¢. In particular, the functions®, when conveniently rescaled at the scalelose
to the origin, is shown to converge towards thetgoing solution of the Helmholtz equation,
with coefficients frozen at the origin. This provides a uniform version ginof the limiting
absorption principle.

Writing the resolvent of the Helmholtz equation as the integral in time of the associated
semi-classical Schrddinger propagator, our analysis relies on the following tools: (i) for very
large times, we prove and use a uniform version of the Egorov Theorem to estimate the
time integral; (ii) for moderate times, we prove a uniform dispersive estimate that relies on
a wave-packet approach, together with the above-mentioned transversality condition; (iii) for
small times, we prove that the semi-classical Schrédinger operator with variable coefficients has
the same dispersive properties as in the constant coefficients case, uniformly in
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1. Introduction

In this article, we study the asymptoties— O in the following scaled Helmholtz
equation, with unknownw?,

igos w(x) + %Axwa(x) +n2(exn)wi(x) = S (x). (1.1)
In this scaling, the absorption parametgr> 0 is small, i.e.
o, — 07 as ¢ > 0.

The limiting casex, = 0" is actually allowed in our analysis. Also, the index of
refractionn?(sx) is almost constant,

n?(ex) ~ n?(0).

The competition between these two effects is the key difficulty of the present work.
In all our analysis, the variable belongs toR?, for somed >3. The index of
refractionn?(x) is assumed to be given, smooth and non-negétive

vx e R, n2(x)>0 and n’(x) € C®(RY). (1.2)
It is also supposed that?(x) goes to a constant at infinity,
n?(x) = ngo +0 ((x)"’) as x — oo 1.3)

for some, possibly small, exponapt> 0.2 In the language of Schrédinger operators,
this means that the potentiaEO —n?(x) is assumed to be either short- or long range.
Finally, the source term in (1.1) uses a functifx) that is taken sufficiently smooth
and decays fast enough at infinity. We refer to the sequel for the very assumptions we
need on the refraction inden®(x), together with the sourc§ (see the statement of
the Main Theorem below).

Upon the L2-unitary rescaling

we (x) = 92U (ex),

Lour analysis is easily extended to the case where the refraction index is a function that changes sign.
The only really important assumption on the sign rofis ngo > 0, see Propositiod. Otherwise, all the
arguments given in this paper are easily adapted wi&n) changes sign, the analysis being actually
simpler whenn?(x) has the wrong sign because contribution of terms involvyiggH,:) vanishes in that
case (see below for the notations).

2Here and below we use the standard notatioh:= (1 + x2)%/2.
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the study of {.1) is naturally linked to the analysis of the high-frequency Helmholtz
equation,

2 1
isoeu® (x) + % At (1) + (e (x) = —75 S (z) , (1.4)

where the source tern§(x/e) now plays the role of a concentration profile at the
scalee. In this picture, the difficulty now comes from the interaction between the
oscillations induced by the sourc&(x/e), and the ones due to the semi-classical
operators?A/2 + n?(x). We give below more complete motivations for looking at the
asymptotics in 1.1) or (1.4).

The goal of this article is to prove that the solutia® to (1.1) converges (in
the distributional sense) to theutgoing solutionof the natural constant coefficient
Helmholtz equation, i.e.

lim w® = w°, where w°

e—0

07w () + $A w(x) + n2(O)w(x) = S (x). (1.5)

' is defined as the solution to

In other words,

1 -1
wo'= lim <i5 + A+ nZ(O)) S
0—0T 2

) +00 ) 1 5
=i / exp<zt (5 Ay +n (0))) Sdt. (1.6)
0

It is well known thatw® can also be defined as the unique solution(dq /2 +
n2(0))wo = § that satisfies the Sommerfeld radiation condition at infinity

\/_;_m - Vew®(x) + in(0)w(x) = 0 (ﬁ) as [x| — oo. 1.7)

The main geometric assumptions we need on the refraction index to ensure the
validity of (1.5) are twofolds. First, we need that the trajectories of the Hamiltonian
52/2 — n?(x) at the zero energy armot trapped This is a standard assumption in
this context. It somehow prevents accumulation of energy in bounded regions of space.
Second, it turns out that the trajectories that really matter in our analysis are those
that start from the originc = 0, with zero energyfz/Z = n?(0). In this perspective,
we need that these trajectories satisfiransversality conditionin essence, each such
ray can self-intersect, but we require that the self-intersection is then “tranverse” (see
assumption (H) i.e. (7.23) and (7.24), in Section 7 below). This second assumption
prevents accumulation of energy at the origin.
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We wish to emphasize that statemeht] is not obvious. In particular, if the transver-
sality assumption (H) is not fullfilled, our analysis shows that (1.5) becomes false in
general. We also refer to the end of this paper for “counterexamples”.

The central difficulty is the following. On the one hand, the vanishing absorp-
tion parameterz, in (1.1) leads to thinking thatv® should satisfy the Sommerfeld
radiation condition at infinitywith the variable refraction index2(sx) (see (1.7)).
Knowing that limy|—- e n?(ex) = ngo this roughly means thab® should behave like
exp(i2~Y?nq|x|)/|x| at infinity in x (in dimensiond = 3, say). On the other hand,
the almost constant refraction inde¥(sx) in (1.1) leads to observe that® nat-
urally goes to a solution of the Helmholtz equatianth constant refraction index
n?(0). Hoping that we may follow the absorption coefficient continuously along the
limit ¢ — 0 in n?(ex), statement (1.5) becomes natural, antl should behave like
expi2~1/2n(0)|x|)/|x| asymptotically. But, since:(0) # n. in general, the last two
statements are contradictory... As we see, the strong non-local effects induced by the
Helmholtz equation make the key difficulty in following the continuous dependence of
w® upon both the absorption parameter— 0" and on the index?(sx) — n?(0).

Let us now give some more detailed account on our motivations for looking at the
asymptoticse — 0 in (1.1).

In [BCKP], the high-frequency analysis of the Helmholtz equation with source term
is performed. More precisely, the asymptotic behaviourcas> 0 of the following
equation is studie®|

2

. 3 € e 2 e 1 X
icogu®(x) + > Acu®(x) +n(x)u’(x) = a2 S (g) , (1.8)

where the variablex belongs toR?, for somed >3, and the index of refraction®(x)
together with the concentration profile(x) are as before (sefBCKP]). Later, the
analysis of [BCKP] was extended in [CPR] to more general oscillating/concentrating
source terms. The paper [CPR] studies indeed the high-frequency analysi@ in

2
isou® (x) + % At (x) + n2(0u’ (x)

_1 S<ﬂ> A®y) exp(z’ ¢(x)> do(y). (1.9)
r & &

_8q

(See alsqCRu] for extensions—see [Fou] for the case whefehas discontinuities).

In (1.9), the functionS again plays the role of a concentration profile like in (1.8), but
the concentration occurs this time around a smooth submanifatdR? of dimension

p instead of a point. On the more, the source term here includes additional oscillations
through the (smooth) amplitudd and phasep. In these notationsic denotes the

3Note that we use here a slightly different scaling than the one use@KP]. This a harmless
modification that is due to mere convenience.
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induced euclidean surface measure on the manifgldand the rescaling exponanqt
depends on the dimension &f together with geometric considerations, $E€R].

Both Helmholtz equations (1.8) and (1.9) modellize the propagation of a high-
frequency source wave in a medium with scaled, variable, refraction inéex /<.
The scaling of the index imposes that the waves propagating in the medium naturally
have wavelengthe. On the other hand, the source in (1.8) as well as (1.9) is con-
centrating at the scale, close to the origin, or close to the surfafe It thus carries
oscillations at the typical wavelength One may think of an antenna concentrated close
to a point or to a surface, and emmitting waves in the whole space. The important
phenomenon that these linear equations include precisely lies iresomant interac-
tion between the high-frequency oscillations of the source, and the propagative modes
of the medium dictated by the inde’/s2. This makes one of the key difficulties of
the analysis performed in [BCKP,CPR].

A Wigner approach is used in [BCKP,CPR] to treat the high-frequency asymptotics
¢ — 0. Up to a harmless rescaling, these papers establish that the Wigner transform
fe(x, & of u®(x) satisfies, in the limitt — 0, the stationary transport equation

O+.f(x’ é’) + 6 : fo(x’ é) + Vxnz(x) : V(ff(xv é) = Q(X, é)a (110)

where f(x, &) = lim f¢(x, £) measures the energy carried by rays located at the point
x in space, with frequency € R¢. The limiting source termQ in (1.10) describes
quantitatively the resonant interactions mentioned above. In the easier case of (1.8),

one hasQ(x, &) =0 (52/2 — n2(0)> o(x) |§(é)|2, meaning that the asymptotic source
of energy is concentrated at the originxr(this is the factord(x)), and it only carries
resonant frequencies above this poinl(due tod (52/2 — nz(O))). A similar but more

complicated value ofQ is obtained in the case of (1.9). In any circumstance, Eq.
(1.10) tells us that the energy brought by the souxés propagated in the whole
space through the transport operafoV, + V,n?(x) - V¢ naturally associated with the
semi-classical operatore?A, /2 —n?(x). The term G f in (1.10) specifies a radiation
condition at infinity forf, that is the trace, as — 0 of the absorption coefficient
o, > 0in (1.8) and (1.9). It give$ as the outgoing solution

+00
f(x, 9 =/c.) Q(X(S,x,f),E(s,x,f)) ds.

Here (X (s, x, &), Z(s, x, £)) is the value at times of the characteristic curve @f-V, +
V. n?(x) - V¢ starting at point(x, £) of phase-space (se&.{3) below). Obtaining the
radiation condition forf as the limiting effect of the absorption coefficient in (1.8)
is actually the second main difficulty of the analysis performed in [BCKP,CPR].

It turns out that the analysis performed in [BCKP] relies at some point on the
asymptotic behaviour of the scaled wave functiof(x) = £4/2u(ex) that measures
the oscillation/concentration behaviour of close to the origin. Similarly, in [CPR]
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one needs to rescal¢’ around any pointy € I', settingwé, (x) := e%/2u(y + ex) for
any suchy. We naturally have

ieosw® (x) + %Axwg(x) +n2(ex)w’(x) = S (x),

in the case of1.8), and a similar observation holds true in the case of (1.9). Hence the
natural rescaling leads to the analysis of the prototype equation (1.1). Under appropriate
assumptions on?(x) and S(x), it may be proved thai?, solution to (1.1), is bounded

in the weightedL? spaceL?({x)*? dx), for any d > 0, uniformly in e. For a fixed

value of ¢, such weighted estimates are consequences of the work by Agmon and
Hoérmander [Ag,AH]. The fact that these bounds are uniformeirs a consequence

of the recent (and optimal) estimates established by Perthame and Vega in [PV1,PV2]
(where the weighted.? space are replaced by a more precise homogeneous Besov-like
space). The results in [PV1,PV2] actually need a virial condition of the typex2+

x - Ven?(x)>c > 0, an inequality thaimplies both our transversality assumption (H)

and the non-trapping condition, i.e. the two hypothesis made in the present paper. We
also refer to the work by Burg [Bu], Gérard and Martinez [GM], Jecko [J], as well as
Wang and Zhang [WZ], for (not optimal) bounds in a similar spirit. Under the weaker
assumptions we make in the present paper, a weaker bound may also be obtained as a
consequence of our analysis. In any case, antas seen to be bounded, it naturally
possesses a weak limit = lim w® in the appropriate space. The limitclearly satisfies

in a weak sense the equation

(%Ax + n2(0)) w(x) = S(x). (1.11)

Unfortunately, Eq. 1.11) does not specify = lim w® in a unique way, and it has to
be supplemented with a radiation condition at infinity. In view of Eq. (1.1) satisfied by
w?, it has beerconjecturedin [BCKP,CPR] that limw® actually satisfies

lim w® = w4,

wherew®! is the outgoing solution defined before. The present paper answers the con-
jecture formulated in these works. It also gives geometric conditions for the convergence
lim w® = w° to hold.

As a final remark, let us mention that our anaylsis is purely time dependent. We
wish to indicate that similar results than those in the present paper were recently and
independently obtained by Wang and ZhgWgZ] using a stationary approach. Note
that their analysis requires the stronger virial condition.

Our main theorem is the following:

Main Theorem. Let w® satisfy s, w®(x) + %Axwg(x) +n?(ex)wé(x) = S(x), for
some sequence. > 0 such thata, — 0T as s — 0. Assume that the source term S
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belongs to the Schwartz clas§R?). Suppose also that the index of refraction satisfies
the following set of assumptions

o Smoothnessiecay There exists an exponept> 0, and a positive constant?, > 0
such that for any multi-index e N9, there exists a constan, > 0 with

& (nz(x) - ngo) ] <Cy (x) P, (1.12)

e Non-trapping condition The trajectories associated with the Hamiltoni@ﬁ/Z -
n?(x) are not trapped at the zero energy. In other wordsy trajectory(X (¢, x, &),
Z(t, x, &)) solution to

%X(t’x’ 6) ZE(t7x’ é)’ X(07'x7 é’) ='x’

o _ -
—E(x ) = (Vxnz) (X(t.x,8), E0,x8=¢ (1.13)

with initial datum (x, ) such thath/Z— n?(x) = 0 is assumed to satisfy
X (t,x,E)| — oo, as|t|— oo.

e Tranversality conditionThe tranvsersality conditiofH) (see also(7.23) and (7.24))
on the trajectories starting from the origin = 0, with zero energyé“/2 = n2(0),
is satisfied.

Then we do have the following convergeneeeakly when tested against any function
¢ € SR,

Remark 1. Still referring to (H) or 7.23) and (7.24) for the precise statements, we
readily indicate that the transversality assumption (H) essentially requires that the set

{01, &) € R?x]0, 00[ .. X(1,0,8) =0, £(1,0,8) =n, &%/2=n?(0)}
is a smooth submanifold d8%**1, having a codimensios d+2, a generic asssumption.
In other words, zero energy trajectories issued from the origin and passing several times

through the originx = 0 should be “rare”.

Remark 2. As we already mentioned, it is easily proved that the virial condition
2n%(x) + x - Vun?(x)>c¢ > 0 implies both the non-trapping and the transversality
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conditions. This observation relies on the identit@s(X (7, x, £)2/2) = X(t,x, &) -
E(t,x, &) and 6, (X (1, x, &) - B(t, x, §)) = [20%(x) + x - Van® ()] L=x(r.r.0) =¢ > 0,
where (X (¢, x, &), Z(¢t, x, &) is any trajectory with zero energy (see Sect®ifor com-
putations in this spirit).

In fact, the virial condition implies even more, namely that trajectories issued from
the origin with zero energyever come back to the origirin other words, the set
involved in assumption (H) is simplyoid, and (H) is trivially true under the virial
condition. As the reader may easily check, such a situation allows to considerably
simplify the proof we give here: the tools developed in Sections 3—6 are actually
enough to make the complete analysis, and one does not need to go into the detailed
computations of Section 7 in that case.

Last, the above theorem asserts the convergence®ofnote in passing that even
the weak boundedness af under the sole above assumptions (i.e. without the virial
condition) is not a known result.

The above theorem is not only a local convergence result, valid for test functions
¢ € S. Indeed, by density of smooth functions in weightetispaces, it readily implies
the following immediate corollary. It states that, provideé is bounded in the natural
weighted L? space, the convergence also holds weakly in this space. In other words,
the convergence also holds globally.

Immediate Corollary. With the notations of the Main Theoreassume that the source
term S above satisfies the weaker decay property

IS8 ==Y 277218l 2y < oo, (1.14)
jez

where C; denotes the annulug’ < |x| <2/*1} in R?. Suppose the index of refraction
also satisfies the smoothness condition of the Main Theosgttm the non-trapping and
transversality assumptions replaced by the stronger

X - Vnz(x)
(virial-like condition) 2 sup (27)* <1 (1.15)
jez xeCj n ()C)

Then we do have the convergengé — w°t, weakly when tested against any function
¢ such that||¢|p < oo,

Under the simpler virial condition/Z(x) + x - n?(x)>c¢ > 0, a similar result holds
with the spaceB replaced by the more usual weighted spd&e((x)”%x) (6>0

arbitrary). Here, we give a version where decayl$) assumed on the sourds the
optimal one, and the above weak convergence holds in the optimal space.
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It is well known that the resolvent of the Helmholtz operator maps the weighted
L2 spaceL? ((x)1%dx) to L2 (<x>7175dx) for any 6 > 0 [Ag,J,GM]. Agmon and
Hoérmander [AH] gave an optimal version in the constant coefficients case: the resolvent

of the Helmholtz operator sends the weightieti spaceB defined in (1.14) to the dual
weighted space™ defined by

lull g = sup2~//2|lul y2c.. (1.16)
JjeZ

For non-constant coefficients, that are non-compact perturbations of constants, Perthame
and Vega in[PV1,PV2] established the optimal estimate BAB* under assumption
(1.15). In our perspective, assumption (1.15) is of technical nature, and it may be
replaced byany assumption ensuring that the solutiefi to (1.1) satisfies the uniform
bound

lwll g+ < Cy 2 IS8 (1.17)

for some universal constart, . that only depends on the dimensia>3 and the
index n?.

Proof of the Immediate Corollary. Under the virial-like assumption1(15), it has
been established in [PV1] that estimate (1.17) holds true. Hence, by density of the
Schwartz class in the spa@& one readily reduces the problem to the case when the
sourceS and the test functiop belong toS(RY). The Main Theorem now allows to
conclude. O

Needless to say, the central assumptions needed for the theorem are the non-trapping
condition together with the transversality condition. Comments are given below on the
very meaning of the transversality condition (H) (i.e. (7.23) and (7.24)), to which we
refer.

To state the result very briefly, the heart of our proof lies in proving that under
the above assumptions, the propagator @xp's (—e?A,/2 —n?(x))), or its rescaled
value exp(it (—A/2 — n?(ex))), satisfy “similar” dispersive properties as the free
Schrddinger operator e>(pt (—Ax/2— nz(O))) uniformly in e. This in turn is proved
upon distinguishing between small times, moderate times, and very large times, each
case leading to the use of different arguments and techniques.

The remaining part of this paper is devoted to the proof of the Main Theorem. The
proof being long and using many different tools, we first draw in Section 2 an outline
of the proof, giving the main ideas and tools. We also define the relevant mathematical
objects to be used throughout the paper. The proof itself is performed in the next
Sections 3-8. Examples and counterexamples to the theorem are also proposed in the
last Section 9.

The main intermediate results are Propositions 1, 2, 3, together with the more difficult
Proposition 4 (that needs an Egorov Theorem for large times stated in Lemma 5). The
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key (and most difficult) result is Propositiah The latter uses the tranversality condition
mentioned before.

2. Preliminary analysis: outline of the proof of the Main Theorem
2.1. Outline of the proof

Let w® be the solution taeo,w® + 3Aw® + n?(ex)w® = S (x), with § € S(R?).
According to the statement of our Main Theorem, we wish to study the asymptotic

behaviour ofw® ase — 0, in a weak sense. Taking a test functigfx) S(R?%), and
defining the duality product

(w®, ¢) ::/ w®(x)Pp(x) dx,
Rd
we want to prove the convergence
W, ¢) — (W, ) as ¢ — 0.
where the outgoing solution of the (constant coefficient) Helmholtz equatith is
defined in {.5) and (1.6) before.

Step1: Preliminary reduction—the time-dependent appraalth order to prove the
weak convergenceéw®, ¢) — (w, ¢), we define the rescaled function

u(x) = sd% w® (;—C) . (2.1)

It satisfiesisa.u® + £2/2 Au® + n(x)u® = 1/e9/2§ (x/¢) =: S.(x), where for any
function f(x) we use the short-hand notation

1 X
fe(x) = a7 f (;) .
Using now the function:® instead ofw?, we observe the equality
(w®, @) = (", ¢,). (2.2)

This transforms the original problem into the question of computing the semi-classical
limit ¢ — 0 in the equation satisfied hy’. One sees in2.2) that this limit needs to
be computecht the semi-classical scal@g.e. when tested upon a smooth, concentrated
function ¢, ).

In order to do so, we compute’ in terms of the semi-classical resolveito,+

(82/2)A+n2(x))_1. It is the integral over the whole time intervél, +oo[ of the
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propagator of the Schrédinger operator associated sitty2 +n2(x). In other words,
we write

2 -1
ut = <isocs + % A+ nz(x)> Se

+00 82
=i f exp(it (isocg + 5 A+ nz(x)>> Se dt. (2.3)
0
Now, defining the semi-classical propagator
t (&2 t
. 2 .
Ug(t) := exp(z— (E A+n (x))) = exp(—z— Hg) , (2.4)
& &
associated with the semi-classical Schrodinger operator
&2
H, = —?A—nz(x), (2.5)

we arrive at the final formula
i

+00
(', ) = ) = - /0 e (Un(1)Se, by} di. (2.6)

Our strategy is to pass to the limit in this very integral.

Step 2: Passing to the limit in the time integral2.6). In order to pass to the
limit ¢ — 0 in (2.6), we need to analyse the contributions of various time scales in
the corresponding time integral. More precisely, we choose for the whole subsequent
analysis two (large) cut-off parameters in time, denotedipyand 7T;, and we analyse
the contributions to the time integral (2.6) that are due to the three regions

0<r<Tpe, Toe<t<T1 and t>T1.

We also choose a (small) exponent> 0, and we occasionally treat separately the
contributions of very large times

t>e”

Associated with these truncations, we take once and for all a smooth cut-off function
4 defined onR, such that

1(z) =1 when |z]<1/2, y(z) =0 when |z]>1,

x(z)=0 for any z (2.7
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To be complete, there remains to finally choose a (small) cut-off parameter in energy
d > 0. Accordingly we distinguish in the.? scalar product(U,(1)S;, ¢,) between
energies close to (or far from) the zero energy, which is critical for our problem. In
other words, we set the self-adjoint operator

Hy
x5 (He) =1 (;) :

This object is perfectly well defined using standard functional calculus for self-adjoint
operators. We decompose

(Ue(0)Se, dp) = (Ue(t) 75(He)Se, do) + (Ue (1) (1= 15) (He) S, ¢,) -

Following the above-described decomposition of times and energies, we study each of
the subsequent terms:
e The contribution of small times

2T e
}/0 ’ A(L> =% (UL(1)Se, b,) di.

g Toe

We prove in Sectior8 that this term actually gives the dominant contribution in (2.6),
provided the cut-off parametdg is taken large enough. This (easy) analysis essentially
boils down to manipulations on the time-dependent Schrddinger opedaterA, /2 +
n2(ex), for finite times tof the orders ~ Ty at most.

e The contribution of moderate and large timesvay from the zero energys

1 [T t
—/ d-» (ﬁ) e %" (Ue(1) (1= 15) (He) Se. ¢) dt.

& Jpe

We prove in Sectiort below that this term has a vanishing contribution, providgd

is large enough. This easy result relies on a non-stationary phase argument in time,
recalling thatU, (r) = exp(—itH: /¢) and the energyH, is larger thand > O.

e The contribution of very large timeslose to the zero energg

1 [F
: / ¢ (Ua()75 (He) Se. b, dt.

& —K

We prove in Section5 that this term has a vanishing contribution as— 0. To

do so, we use results proved by Wang [Wa]: these essentially assert that the operator
(x)™* Ue(t)y5(He) (x)~* has the natural sizg)™* as time goes to infinity, provided the
critical zero energy is non-trapping. Roughly, the semi-classical opetat@ys(H;)

sends rays initially close to the origin, at a distance of the ordiemm the origin, when

the energy is non-trapping. Hence the above scalar product involves both a function
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U:()ys (H:) Se that is localized at a distandefrom the origin, and a functiow, that

is localized at the origin. This makes the corresponding contribution vanish.
The most difficult terms are the last two that we describe now.

e The contribution of large timgeslose to the zero energg

—K

1 &
z / e %" (Ue()ys (He) Se, §,) dt.
& T

The treatment of this term is performed in Sect®nlt is similar in spirit to (though
much harder than) the analysis performed in the previous term: using only information
on the localization properties di.(1)yxs (H:) S and ¢, we prove that this term has

a vanishing contribution, providedy is large enough. To do so, we use ideas of
Bouzouina and Robert [BR] to establish a version of the Egorov Theorem that holds
true for polynomially large timesn ¢. We deduce that for any tim& <r<e7 ", the

term U, (¢) x5 (He) S¢ is localized close to the value at tinef a trajectory shot from the
origin. The non-trapping assumption then says thaiotarge enoughl/. (1) xs (Hs) Se

is localized away from the origin. This makes the scalar prodUetr)ys (H.) Se, ¢,)
vanish asymptotically.

e The contribution of moderate times close to the zero energy

1T11~ ! —el (U, s (Hg) S dt
E/T 1= (m) e < e (D)5 (He) Ssqss) .

0e

This is the most difficult term: contrary to all preceding terms, it cannot be analysed
using only geometric information on the microlocal support of the relevant functions.
Indeed, keeping in mind that the functidn.(¢)ys (H,) S, is localized on a trajectory
initially shot from the origin, whereas, stays at the origin, it is clear that for times
Toe <t <Ti, the support ofU,(r)ys (H:) S. and ¢, may intersecgtdue to trajectories
passingseveral timesat the origin. This might create a dangerous accumulation of
energy at this point. For that reason, we need a precise evaluation of the semi-classical
propagatorU,(t), for times up to the order ~ 71. This is done using the elegant
wave-packet approach of Combescure and RoJg&Ro] (see also [Ro], and the nice
lecture [R02]): projectings, over the standard gaussian wave packets, we can compute
U:(t)S. in a quite explicit fashion, with the help of classical quantities like, typically, the
linearized flow of the Hamiltoniawjz/Z—nz(x). This gives us an integral representation
with a complex-valued phase function. Then, one needs to insert a last (small) cut-
off parameter in time, denoted > 0. For small times, using the above-mentioned
representation formula, we first prove that the term

1’ ! —otpt
e /Tog -2 (m) e *" (U (g5 (He) Se, §,) dt,

vanishes asymptotically, provide@ is small, andTy is large enough. To do so, we
use that for small enoughl, the propagato/,(r) acting on S, resembles the free
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Schrddinger operator e>(pt[Ax/2 + n2(0)]). In terms of trajectories, on this time scale,
we use that/,(r) S, is localized around a ray that leaves the origtrspeed:(0). Then,
for later times, we prove that the remaining contribution

1 h
= /9 e %! (Ug(t)}{(s (He) Se, ¢e> dt

&

is small. This uses stationary phase formulae in the spir[C&R], and this is where
the transversality assumption (H) enters: trajectories passing several times at the origin
do not accumulate to much energy at this point.

We end up this sketch of proof with a figure illustrating the typical trajectory (and
the associated cut-offs in time) that our analysis has to deal with.

Ug(t) S¢

point X(t) of the trajectory
attime t

trajectory in the constant
coefficients case
typical spreéading €

spreading
increases with time

support of the test function ¢8

time €%

2.2. Notations used in the proof

Throughout this article, we will make use of the following notations.
e Semi-classical quantitieShe semi-classical Hamiltoniaf, and its associated prop-
agator U, (t) have already been defined. We also need to use the Weyl quantization.
For a symbola(x, ¢) defined onR??, its Weyl quantization is

w . 1 l% X+y
(Op! @) () = (o7 fRZde 1 a( . ,é) fdyde.

Throughout the paper, we use the standard semi-classical symbolic calculus, and refer,
e.g. to[DS] or [Ma]. In particular, for a weightn(x, &), we use symbolsi(x, &) in
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the classS(m), i.e. symbols such that for any multi-index there exists a constant,
so that

10%a(x, &)| < Cam(x, &), Y(x, &) € R,

The notationa ~ Zs"ak means that for anil and anye, there exists a constadiy
such that

<Cno eNhm(x, &), V(x, &) e R¥,

N
o (a(x, & — Zskak(x, f))

k=0

e Classical quantititiesAssociated with the Hamiltonia# (x, &) = 52/2— n?(x), we
denote the Hamiltonian flow

P(r,x,8) = (X(1,x,9), 2, x, ),

defined as the solution of the Hamilton equations

%X(r,x, H=E(t,x,8, XO,x, & =x,

0
A, = (Vxn2> (X(t.x,8). EOx&=¢ (2.8)

These may be written shortly as

0
5¢(Z‘,X, é) =J D(x’ é)

(@1, x,9), (2.9)

whereJ is the standard symplectic matrix

J:(_?d 'g). (2.10)

The linearized flow of® is denoted by

Do, x,
F(t,x, &) = #x@@. (2.11)

It may be decomposed into

(AG.x. &) B(t.x.9)
F(t,x,é)_(c(t,x’@ D(;,x,§)>’ (2.12)
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where the matrices\ (), B(t), C(r), and D(¢r) are, by definition,

At x,§) = %’xx’g), B(t.x. &) = %’
C(t,x, &) = DE(II)—’;’@, D(t.x. &) = DE(ID—,éx,Q

Upon linearizing 2.8), the matricesA(z), B(t), C(z), and D(z) clearly satisfy the
differential system

%A(t,x, H=C@t,x,8, A0 x,&=Id,

O ca 5—D2”2m o) Alt,x, &), CO,x,&=0  (2.13)
E (,X, )_ sz( (1x7 )) (,.X, )7 (v-xv )_ ’ .

together with

%B(t’x7 5):D(t7x’ 6)7 B(O7'x7 6)207

D2n2

iD(txé)—
o0 7Y D

(X(t,x,9) B(t,x,&), D@O,x,&=ld. (2.14)

2

In short, one may write as well

0 D?H
_F(tv-xv 6) =J

o D(_x—i)z (¢([,X,é)) F(t,x,f). (215)

A last remark is in order. Indeed, it is a standard fact to observe that the matrix
F(t,x, &) is a symplectic matrix, in that

F(t,x, OTIF(t, x,8) = J, (2.16)

for any (¢, x, &). Here, the exponent T denotes transposition. Decompa&inyg as in
(2.12), this gives the relations

ADTC) =CTA®W), B®D(t) = D) B(1),
ADOTD@) — C1)"B@) = Id. (2.17)
These can be put in the following useful form:

(A(t) +iB®)T (C(t) +iD@®) = (Ct) +iD())T (At) +iB®))
(CO)+iD@)T (A(t) —iB(t)) — (A(t)+iB())T (C(t) —iD(t)) =2ild. (2.18)

These relations will be used in Secti@n
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3. Small time contribution: the case 0Kt <Tpe
In this section, we prove the following:
Proposition 1. We use the notations of Secti@nThe refraction index:? is assumed

bounded and continuous. The data S apdare supposed to belong t§(RY). Then
the following holds

(i) for any fixed value ofly, we have the asymptotics

i 2To ¢ ¢
—/ ,((—) e % (Ue(t)Se, ¢,) dt
e Jo Toe

2Ty ¢
—>i/ x(—) (exp(it(Ax/Z—i—nz(O))) S, ¢) dt. 3.1)
0

e—0 To

(i) Besides there exists a universal constafl; depending only on the dimensjon
such that the right-hand side ¢8.1) satisfies

2To t
i x(—) (exp(it(Ac/2+n2(0) S, §)di — (w™, ¢>>|
0 To

<CyTo™ % — o. (3.2)

To —00

Proof. (i) In order to recover the limiting value announced B1), we first perform
the inverse scaling that leads fromt to u® (see (2.1)). We rescale tinteby a factor
¢ as well. This gives

1 +oo t ot
_/ X( ) e e (US(I)SEs ¢5>dt
e Jo Toe

+o00 t
=/ y(—) e %! (Ug(e1)Se, ) dt
0 To

_ /0+°° X <%) o—e%! (exp(it (A/z n nz(sx))> S, ) dt.

We now let

WE (7, x) = exp(it (A/z + nz(sx)>) S(x).
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The functionw? (z, x) is bounded inL* ([RR; L2 (Rd>), and it satisfies in the distribu-
tion sense

10WE (1, x) = —SAWE (2, x) — nP(ex)W®,  WE(O, x) = S(x).

These informations are enough to deduce that there exists a funetion) € L
(R; L? <[RE">) such that a subsequence wf(f, x) goes, ase — 0, to w(z,x) in

L ([R{; L2 ([Rd))—weakk. On the more, the limitw(z, x) obviously satisfies in the
distribution sense

i0W(t, x) = —3Aw(, x) —n?(O)w, W(0,x) = S(x).
In other words
w(r) = exp(it (4/2+n%(0)) ) 5.

Hence, by uniqueness of the limit, the whole sequewéé, x) goes tow(z, x) in
L>® (R; L? (IRRd )-Weakk. This proves 8.1) and part (i) of the proposition.

(i) This part is easy and relies on the standard dispersive properties of the free
Schrddinger equation. Indeed, we have

)(exp(iz (Ax/z n nZ(O))) S, ¢>>‘
< |exp(it (As2+72@)) 5| 16l

<Ca 728 11 1p]l 1

(recall thatS and ¢ are assumed smooth enough to have fidifenorm), for some
constantCy; > 0O that only depends upon the dimensidn This, together with the
integrability of the functions—%/2 at infinity whend >3, ends the proof of (3.2).0]

4. Contribution of moderate and large times, away from the zero energy
In this section we prove the (easy)
Proposition 2. We use the notations of Secti@ The indexn? is assumed to have

the symbolic behavioufl.12). The data S andp are supposed to belong th2(RY).
Then there exists a constarfs > 0, which depends on the cut-off parametgrsuch
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that for anye <1, and Tp >1, we have

‘1‘/+OO(1—7) <L) e (1= 75 (He)) Us (0)Se, b,) dt
e Jr “\Toe o \Hel) Fell)oer e

0e

1
<Cj (E +o<§). (4.1)

Proof. The proof relies on a simple non-stationary phase argument. Indeed, this term
has the value

1/+oo 1— (- “s’<1—~~H exp(—i LH.) S d)>dt
. o ( X)(m)e ( %5 ( a)) p( lg g) es Qg .

Hence, making the natural integrations by parts in time, we recover the value

3

+o0o g
2 _ —0let
2w (e () )
X Wexp<_i£}]>s (Zs dt
(=i H)3 e 7))

A direct inspection shows that this is bounded by

i (00 (7))

1 1
<C 2673 |yllwaee — O
) 121l ws (T22+Tos+a —i—ac)

3

2 -3 oo
Ce? 077 ISl ||¢>||Lz/0 dt

5. Contribution of large times, close to the zero energy: the case>g™*
In this section, we prove the following:

Proposition 3. We use the notations of Secti@ The indexn? is assumed to have
the symbolic behaviou¢l.12). The Hamiltonian flow associated Wiﬁ‘?/Z —n?(x) is
assumed non-trapping at the zero energy level. Finallg data S and) are supposed
to belong toS(R?). Then for any § > 0 small enoughand for anyx > 0, there exists
a constantC,. ; depending onc and 6, so that

1 [too
—/ e %" (U ()15 (He) Se, ) di | <Cy5 €. (5.1)

& J gk
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The proof relies on the dispersive properties of the semi-classical propddator
inherited from the ones of the classical flaiMz). More quantitatively, we use in this
section a theorem by WanjyVa] that we now state. Our index of refractiorf (x) is
such thatn2(x) lies in C*°(R%), and it has the symbolic behaviour

n?(x) =n2 — V(x), with 0"V (x)| < (x)7P~1*

(the case O< p<1 is the long-range case, and the case 1 is the short-range case,

in the terminology of quantum scattering). On the more, the trajectories of the classical
flow at the zero energy (i.e. on the sgt, &) € R¥ sit. 52/2 —n?(x) = 0}) are
assumed non-trapped. It is knoylDG] that this non-trapping behaviour is actually an
open property, in that

there exists @o > 0 such that for any energg
satisfying|E| < do, the trajectories of the classical flow
at the energyE are non-trapping as well. (5.2)

Under these circumstances, it has been proveiva] that for any reals > 0, and for
any n > 0, the following weighted estimate holds true:

Co 1,8

VEER, ) U5 (HO e < ity

16)* f N 22, (5.3)

provided the cut-off in energy satisfieso <dg, i.e. provided we are only looking at
trajectories having a non-trapping energy. This inequality holds for any test furfction
and for some constart; , , depending only orj, n ands. In the short-range case

(p > 1), one may even take = 0 in the above estimate. Note tHaVa] actually proves
more: in some sense, the non-trapping behaviour of the classical flequisalentto

the time decay (5.3). We refer to the original article for details. We are now ready to
give the

Proof of Proposition 3. Taking é < dg, we estimate, using (5.3),

1 +00
Z / e™ ™! (15 (He) Ue (1) Se, ) dt

—K

1 [+
<—/ 1) Us (0725 (o) Sel 2 11()° b, 2 it

& —K

1 —+00 Cé, ’
< ISz 1) ¢z f ys 40

<Css €T DTR) S, () 12 1) el 2
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Hence, takings large enough, ang small enough, e.gs = 2+ 2/x, n = 1, we obtain
an upper bound of the size

Ci.o € 1) SN2 1{x) Pl 2.

Here we used the easy fact thitc)® fo (x) || 2 <[[(x)* f(x)|l 2, whene<1, together
with [[(x)*S(x)|l 2 < oo, and similarly for¢. [

6. Contribution of large times, close to the zero energy: the cas#; <r<g™*

To complete the analysis of the contribution of “large times” and “small energies”
in (2.6) that we began in Section 5, there remains to estimate the term

1 e
—f 1-» <L> e ™" (15 (He) Ug(1) S, ) dt. (6.1)
e Jr T

1
In this section, we prove,

Proposition 4. We use the notations of Secti@ The indexn? is assumed to have
the symbolic behaviou¢l.12) with n2, > 0.4 The Hamiltonian flow associated with
52/2— n?(x) is assumed non-trapping at the zero energy. Finalhe data S andp
are supposed to belong t8(R?). Then for § > 0 small enoughthere exists a1 ()
depending ond such that for anyry > T (6), we have fork small enough

1 87,6
‘— / Q-n (L> e (15 (He) U (1)Se, ¢ ) dt
£ T1

Vi

<Crse ase—0 (6.2)

for some constan€, s that depends upowr and 6.

The idea of proof is the following: the functior$s and¢, are microlocally supported
close to points(xg, &) € R?? such thatxg = 0 (due to the concentration of both
functions close to the origin as— 0). All the more, using the Egorov Theorem, one
may think of the time-evolved functiot,(r)S. as being microlocally supported close
to points(X (z; xo, &o), Z(¢; x0, &o)) that are trajectories of the classical flow, with initial
data(xo, &g) such thatxg = 0. Using the non-trapping assumption on the classical flow,
we see that for large times>T7 with 71 large enough, the trajector¥ (¢; xo, &g)

4The assumptiorngO is crucial, see Lemm& below. It ensures that the wavE.(r)S: propagates
with a uniformly non-zero speed, at infinity in time
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with xg = 0 is far away from the origin. Hence the microlocal supporthfr)S, and
¢, do not intersect, and facto6.() should be arbitrarily small ia ase — 0.

The difficulty in making this last statement rigorous lies in the fact that we need
to use the Egorov Theorem up to (polynomially) large times of the orders™*.
This difficulty is solved in Lemma 5 below. Indeed, upon adapting a recent result of
Bouzouina and Robert [BR] we give remainder estimates in the Egorov Theorem that
hold up to polynomially large times (logarithmic times are obtained in the context of
[BR]). This is enough to conclude.

6.1. Proof of Proposition 4

The proof is given in several steps.

Step 1: Preliminary reduction In this step we quantify the fact that the functions
involved in the scalar product in (6.2) are microlocalized close to the zero energy
52/2 = n?(x) (in frequency) and close to the origin= 0 (in space). To do so, we
simply write, using the fact tha® and ¢ belong toS(R%),

d.(x) = 151X (x) + 05(e>) in LZ2RY),

and similarly for S,. This means that for any integé\, there exists &y s > 0 that
depends oM andd, such than|¢£(x)—15(|x|)¢£(x)||L2<Rd) <CneV. As a consequence,
we may rewrite contribution6(1) we are interested in as

l ek ¢ o
—/ 1= (—) e (s (IxD) 25 (He) Ue (D) 25(1xD) Se. @) dt
e Jr T]_

1

up to an0s(£*°). There remains to bound the above term by

l 877\‘
<USellzz e llzz x /T 5 (%D 25 (He) Us @75 (16D | 2,12, it
1

e K

C
<3/ |75 (xD) 25 (He) Ue@ s (XD || £ 2, dt (6.3)
1

up to an0s(e*°). Our strategy is to now evaluate the operator norm under the integral
sign. This task is performed in the next two steps.

Step2: Symbolic calculusin view of (6.3), our analysis boils down to computing,
for any 71 <t <&~ ", the operator norm

5 (xD) 25 (He) Us ()75 (x| 2,12, -
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Expanding the square, this norm has the value

|25 (6D UZ @025 (Ho) 73 (%1 25 (Ho) Us 075 (13D | (6.4)

L2
Now, and for later convenience, we rewrite the above localizations in energy and space,
as microlocalizations in position and frequency.

Using the functional calculus for pseudo-differential operators of Helffer and Robert
[HR] (see also the lecture notes [DS,Ma]), there exists a symfat, &) such that

15 (He) = OpP(Xs) + 0(e®) in L(L?).

The symbolX;(x, &) is given by a formal expansion

Xs(x, &) ~ Y a0, 9, (6.5)

k>0
where 6.5) holds in the class of symbols that are bounded together with all their

derivatives. Furthermore, the principal symbol &f is computed through the natural
equality

22
X5 (x, &) = xS <E — nz(x)> )

Finally, the explicit formulae ifDS] give at any ordek >0 the following information
on the support of the symbol;®,

suppXs®  {1€2/2 — n?(x)| <9}

Hence 6.4) becomes, using standard symbolic calculus,

25 () UZ @) [OBY (X506, &) 2.3 (1) 15, ) | Vet 25D, - (66)

up to an04(¢>) (Here we used the uniform bounflU. (1)|| z,2)<1). Let us define
for convenience the following short-hand notation for the symbol in bracket6.): (

bs(x, &) 1= Xs(x, &) £ 15 (Ix]) 8 Xs(x, O).

The only information we need in the sequel is thatadmits an asymptotic expansion
bs = Zk>08kbfsk)' where eacﬁag‘) has support

suppbs© C {1x| <) N {1272 — n?(x)| <) =: E(9).
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This serves as a definition of the (compact) 8¢€6) in phase space. In the sequel, we
summarize these informations in the following abuse of notation

suppbs C E(0). (6.7)
The remainder part of our analysis is devoted to estimating

|5 (x) UL (@) O (b5 (x, €) U (1) 15 (%D 12, »

and the hard part of the proof lies in establishing an “Egorov theorem for large times”,
to compute the conjugatioly; (r)OpY (bs(x, £))Ue (1) in (6.4).

Step3: An Egorov Theorem valid for large times—end of the pragébw we claim
the following.

Lemma 5. We assume that the refraction index has the symbolic beha(lol®) with
n2 > 0.5 We also assume that the zero energy is non-trapping for the flow. Take the

cut-off parameter in energy small enough. Then

() Let &(t,x,&) be the classical flow associated with the Hamiltoniéﬁlz -
n?(x). Let F(z, x, &) be the linearized flow. For any multi-index and for any(smal)
parameter; > 0, there exists a constait; |, , such that for any initial datuntx, ¢) €

E(d) = {Ix| <8} N {|E4/2 — n?(x)| < I}, we have

F(t, x, &)

N4 R,
'€ . O°

< Co g (1) FHDEHID+20A, 6.8)

In other words the linearized flow has at most polynomial growth with time.
(i) As a consequencéor any time { there exists a time-dependent symbol

bs(t, x, &) ~ Y &b M (1, x, 9,
k=0

such that the following holdghere exists a numbets > 0 such that for anyN > 0,

there exists a constanfs y such that

<Cs y VL ()N, (6.9)
L(L?)

N
UZ(1)OpY (bs) Us (1) — OpY (Z Ekbé(k)>

k=0

Again the error grows polynomially with timeand we have some control on the
dependence of the estimates with the truncation parameter N

5The assumptiom?, > 0 is crucial, see .11).
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(iif) Moreover we have the natural formulae
bs @ (2, x. &) = bs (D2, x, &))
and, for any k >0 we have the information on the support
(k) z 2d
suppb; (2, x, &) C {(x, &) € R 5.1 (1, x, &) € E(0)}.

We postpone the proof of Lemntto Section 6.2 below. We first draw its conse-
quences in our perspective.
Leaving N as a free parameter for the moment, we obtain

| 25 (1x1) UZ @) OB (b5 (x, &) Ue () 15 (1XD] 12,

N
%5 (x]) OpY (Z b, x, é)) %5 (1xD)

k=0

L(L?)

10y (8N+1 (t)c(sNZ)

N
OopY’ (X& (Ix]) ¢ (Z 'bs @, x, f)) £ 1 (|x|))
k=0

10y (8N+1 (t)c(;N2> _

L(L?)

Now, part (iii) of Lemma 5 and standard symbolic calculus indicate that the above
symbol has suppoft in

N
U (suppzs (1x1) N suppbs ¥ r, x, )
C{(x, & st |x|<d, and &(¢, x, &) € E(D)}.

The non-trapping condition (and more precisely estimate (6.10) below) allows in turn
to deduce that this set is void fodarge enough. Hence, up to taking a large value of
T1, T1 > T1 (0) for someT; (9), we eventually obtain in (6.3),

—K

1 &
- fT |5 (1) 2 (He) Us ()75 (121 12y 1
1

< 1‘ /\806 (8(N+1)/2<I>L0N2/2) dtg O(} <€(N71)/276516N2/2) < OK,(S(‘C:)
& T1

for k small enough (an@v = 4 will do). This ends the proof of Proposition 4.

6Wwe make here the same abuse of notation than6i).(
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6.2. Proof of Lemma 5: an Egorov Theorem for polynomially large times

In view of the above proof, we are left with the task of proving the large time
Egorov Theorem of Lemm&. To do so, we follow here closely ideas developed in
[BR] in a slightly different context. Part (iii) of the lemma is proved in [BR], so we
will skip this aspect. The implication (i} (ii) in Lemma 5, which we prove below
for completeness, is also essentially proved in [BR]. Our main task in the sequel turns
out to be the proof of part (i) of the lemma.

The proof is given in several steps.

Step 1l: Estimates on the flowb(z, x, £). In this step, we prove that for & small
enough, there is a tim& (d), depending orv, such that for any initial datunix, &)
of phase-space in the sét(d) = {|x|<d} N {|£2/2—n2(x)|<5} (see 6.7), one has

Vi>T(6), |X(t, x,E)|=>Cst (6.10)

for some constants > 0 that depends om, that is, however, independent of both
time t and the initial point(x, &) under consideration. The proof is standard and uses
the informationn2, > 0.

First, the non-trapping condition implies that for any large numRer 0, and for
any initial point (x, &) € E(9), there exists a tim& (R’, x, &) such that

Vi>T(R',x,%), |X(@t x,OI=R.

By continuous dependence of the floW(z, x, &) with respect to the initial datéx, &),
and compactness of the sB{(J), there is a timeT (R’, §), that now depends upoR’
and o only, such that for any initial pointx, &) € E(J), there holds

ViZT(R), |X(t,x,O|>R"

In other words, the trajectorX (¢, x, £) goes to infinity as time goes to infinity, uni-
formly with respect to the initial datunix, &) € E(9).

Second, we get estimates for the standard “escape function” of quantum and classical
scattering, namely the functiok (¢) - Z(¢). We compute

0 E2(t, x,
F (X(t,x, &) E(t,x,8))=2 (“Tx@ —n?(X(,x, 5)))

+2n2 (X (t, x, &) + X (1, x, &) - Vn? (X (1, x, ©))
52 2 2
=2 (? —n (x)) +2n° (X (1, x, &)

+X(t,x, &) - Vn? (X (1, x, )
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(thanks to the conservation of energy)
— 2 5—2 - nz(x) + 212
t—00 2 002

uniformly with respect to the initial datunmix, &) € E(J). Hence, using the fact that

ngo > 0, and taking a possibly smaller value of the cut-off paraméteve obtain the

existence of a constarf; > 0, and another timég (d), such that
Vi>T(), X(t,x, 8- 5@, x, E>Cst. (6.11)

Using the fact that% (% X2(t,x,8) = X(t,x,8) - Et, x, &), we deduce the desired
lower bound

1/ 5 B} 5 12
VizTO). (X2 2,8 - X2T©).x,9) >G5 5

Step2: Estimates on the linearized flow(z, x, £). One first proves estimates.8)
in the casex = f = 0. By its very definition (2.11), the linearized flow

(A, x, &) B(t,x,9
F@,x &= (C(t,x,ﬁ) D(t,x,f))'

satisfies (see2(13) and (2.14)) the differential system

%A(t,x, & =C(t,x, &), AQ,x, ¢ =1Id,

%C(z, x, &) = D% (X(t,x,8)) Alt,x,8), C(0,x,8 =0, (6.12)
together with

0

5, B.x, & =D(t,x,8, BO,x, & =0,

%D(t,x, & =D%%(X(t,x,0) B(t,x,8), D@Ox,&)=1d  (6.13)

Here, the notationD2n2(x) refers to the Hessian of the functiarf(x) in the variable
x. Due to assumption1(12) on the behaviour 0f?(x) at infinity, we readily have

|D?n?(x)| < C (x)7P72
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for some constanC > 0, independent ok. This, together with the previous bound
(6.10) on the behaviour of the flow (¢, x, &) at infinity in time, gives the estimate

‘Dznz (Xt x. é))‘ <Co (1)~P2 (6.14)

for some constan€y > 0 which is independent of time>0, and of the pointix, &)
in phase-space. We are thus in a position to estimgt® and C(¢) using 6.12).
Integrating (6.12) in time, and setting

e(t) == |D*n® (X (t,x, )| (6.15)
for convenience, we obtain (dropping the dependencéxob) of the various functions),
t t

[A() —Id| < / (t—s)e(s) |A(s) — Id|ds +/ (t —s) e(s)ds, (6.16)
0 0
t
1IC ()| < / e(s) |A(s)| ds. (6.17)
0
Choose now a constaid,, and define the time, as
fy :=Supr =0 s.t. |A®t) — Id| < Cy (1))

We prove thatr, = +oo, provided C, is large enough. Indeed, for any timez,,
using 6.16) together with the decay (6.14), we have

! t
IA(t)—Id|<CoC*/ (t —s)(s) P~ ds < CoCy t / (s)~P~ L+ g
0 0

<CoCiCy t
(for some constanC, > 0, providedsn > O satisfiesy < p/2)
< Cy (1)t
(provided: is large enougfy > T (Co, Cy), for someT (Co, Cy)
that only depends oo and Cy)).

On the other hand, we certainly haya(r) — 1d| < C,(r)}*" for bounded values of
time ¢t <T(Co, Cn), provided C, is large enough. Hence, = +oo. Inserting this
upper-bound forA in (6.17) gives

IC(OI<Cy
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for someC,, > 0, providedy > 0 is small enough. We may estimaBgt) and D(z) in
the similar way. The analysis is the same, and starts with the formulae

t

|B()| <1t +/ (t —s) &(s) |B(s)| ds,
0

t
ID(t)I<1+/ &(s) |B(s)|ds.
0
We skip the details. At this level, we have obtained the bound
[F(t,x, OI<Cy (1)

for any (small enough)y > 0, and a constanf,, independent ofz, x, &).
Step3: Estimates on the derivatives of the linearized fllet now o be any multi-
index. We prove §.8) by induction onj«|. Define, for anyp>1,

Mp(t) ;= sup sup
IBl=n (x,&)eR¥

Poc, x, o
a(x, O)F

We have proved in the second step above that
M1() <Cy (1)1,
Assume that for some integern, the estimate
M,(t)<Cp.p <t>[7(1+'1)+2([7—1)

has been proved for any < pg. We wish to prove the analogous estimate M, 1.
Take any multi-indexx of length || = pg. From now on, we systematically omit the
dependence of the various functions and derivatives with respegt,t©, and write
O"F(r), "H instead of 0" F(r, x, &)/d(x, &)*, 6"H(x, &)/d(x, &)* and so on. Upon
differentiatinga times the linearized equatior2.(5) onF, we obtain,

o (a“F(r)) =J ;ga (;) o (DZH (@(z))) (a“‘*ﬁF(z)) . (6.18)

In order to make estimates i6.(8), we first need to write the Faa de Bruno formula
as

AL m({)
oF (DZH o qﬁ(t)) = B! Z (aVDZH) o (1) x 1—[ % (0 Z(t)) .

7,m
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Here f € N, y ¢ N* and({ € N? are multi-indices, andn associates to each
multi-index ¢ € N2, another multi-indexn({) € N2, Also, the above sum carries
over all values ofy, m, and{ such that

Yom@ =y )y Lim@l =4 (6.19)
{

P

S

Finally, when || >1, the above sums carries ovgls and {’s such that|y|>1 and
[{| > 1. All this gives in 6.18),

o, (6“F(t)) =7 > B (;) 3 (@VDZH) o ®(t)

B<a v.m
¢ m(&)
1 (o) B

Hence, putting apart the contribution stemming frgme= 0, we recover
EX (a“F(;)) — J D2H (9(1)) (a“nn) + Ry (1), (6.20)
where the remainder termR,(z) is estimated by

| Ry (1)

<Gy Y Y 1(@02H) o0 [T (1 0w) " 10 Fa)
4

0£p <o Vom

<Cu Y Y FoI[T (16 0m)"

04 <o 7um ¢

for some constanC), > 0 that depends on«|. The last line uses the fact that

sup, ¢ |0’ D?H (x, &)<, for some constanC,. Using the inductive assumption, we
recover

|R()| < Clapp Z Z<t>(\0¢—l3l+1)(l+n)+2\oc—ﬂ|
0#£f <o 7
X l‘[ (1) (E1@+D+2(L1=D) Im©)]
S
<Chuy Y (1) D (BB [ O1)+2( 1= 211D i ))

0#£f<a
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= Ciy.p Z (t>(1+ﬂ)(l+\af/5|+|[5|)+2(|a7ﬁ|+|ﬁ|7m)
0£f <o
< Ciyp <t>(1+'7)(1+‘“|)+2(|o<|—1) .

Here we used constraint§.(9) together with the informatiofy| >1. Using Lemma 6
below in Eq. (6.20) satisfied b§” F, we obtain,

10" F (1) < Cla.y () D02+ D22
Hence
M po11(1) S Cpyy (1) THMPOFD200,

This ends the recursion.
Step4: A Gronwall Lemma for solutions to the linearized Hamilton equatiohe
preceding step uses the following.

Lemma 6. Assume the functio (¢, x, &) satisfies the differential equation

0G(t,x, &)
ot
G@0,x,¢) =0, (6.21)

= J - D?H (d(t,x,9))  G(t,x,8) + O ((;)’),

where theO ((r))-) is uniform in (x, &). Then G satisfies the uniform estimate

G(t,x,&) =0 ((N*Z) .

Proof. DecomposeG (1) = G(¢, x, &) as

_ (Ag(@) Bg(1)
G(’)‘<cc<t) Da(t)>‘

Then, Eq. 6.21) for G writes

i ; B
—AG()=Co)+0 (). 460 =0,

0
= C(1) = D*n® (X(1)) Ag() + 0 ("), cc@=0, (6.22)
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together with

0 ; _
= Bo() = Do) +0 (). Bs(©=0,

0
= DG = D*n* (X)) Ba) + 0 (). De(© =0. (6.23)

Egs. 6.22) give rise to the estimates
t
Al <C fo (t =) (26) 1AGO)] + ()*) ds, (6.24)

t
ICe)1<C fo 6(s) |AG(s)| ds. (6.25)

where the function e(s) is defined in 6.15) above. Using e(s)<Co
(s)7P72<Cy (s)7"72 for any smally > O (see (6.14)) gives in Eq. (6.24),

t
A6 <Cy 1 f ()2 |AG ()| ds + C (12 . (6.26)
0

From this it can be deduced that
|AG(D<C (1),

(for a given constanC,, define indeed, = supr>0 s.t. |Ag(1)|<Cs (t)*T2}—one
deduces from@.26) thats, = +oo providedC, is large enough—see (6.16) and sequel
for details). Eq. (6.25) then gives

t
ICo(1<C, /O (5712 | A (s)| ds < Cy (1) +1.

The estimates foB; and Dg are the same. This ends the proof of the lemnia.

Step 5: Adapting the estimates dBR]. We now put together the estimates on
the linearized flow obtained before to complete the proof of parts (ii) and (iii) of
Lemma 5.

The construction of the symbols(;(")(t,x, £) in Lemma 5 is made in an explicit
way in [BR]. Part (iii) of Lemma 5 follows. Also, the remainder estimate (6.9) is a
consequence of the above estimates on the linearizedAlow, &) and its derivatives,
upon adapting the analysis of [BR]. Let us indeed write the rough (but simpler) estimate

10" F (1, x, &)| < Cy 1) H*1H2,
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corresponding to the special choige= 1 in (6.8). Then, Theorem 1.2 and formula
(12) of [BR],

bs @ ¢, x, &) = bs (D1, x, 9)),
together with the Faa de Bruno formula, give for any multi-indethe estimate
107059 (1, x, O < Clog (1)

From Theorem 1.2 and formula (14) fBR], we have for anyk >1 the explicit value

t
b x = 3 F(oc)f [a“H x 6“b5“)] o ®(t — s, x, &) ds,
lol+e=k+1 0
0<e<k-1

where I'(z) is a harmless coefficient whose explicit value is given[BR]. This,
together with the Fad de Bruno formula, implies for any 1, the upper-bound

N 2
105 ® (1, x, E)| < Clyp i (1) ORIHFFAHD

for some fixed numberty, independent of. andk. Then, using formulae (51), together
with (52), (54), (97) and (99) ofBR] gives estimate (6.9). This ends the proof of
Lemma 5.

7. Contribution of moderate times, close to the zero energy

After the work performed in Sections 3-6, there only remains to estimate the most
difficult term

1T11~ ! —l (U, s (Hg) S, dt
E/T: 1= (m) e < e (D)5 (He) 8a¢5> .

0e

This is the key point of the present paper.
The main result of the present section is the following:

Proposition 7. We use the notations of Secti@nThe index:? is assumed to have the
symbolic behaviou(1.12). The zero energy is assumed non-trapping for the Hamilto-
nian 52/2—n2(x). Finally, we need the tranversality conditiqitl) on the trajectories
&(t, x, £) with initial data satisfyingx = 0, 52/2 = n2(0). Then the following two
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estimates hold true

(i) for any fixed value of the truncation parameterts 7;, and 6, we have

17 t i
f/ =) <0) e ™" (U ()5 (Hy) Se, §,) dt —> 0.
0 e—0

&

(i) for 6 > 0 small enoughthere exists a constanfy > 0 such that for anys <1,
we have

N L W £ W
g/;&( _0<]‘og>’{<9) ¢ < e (1) (He) 87¢g> t

0

<CpTo 4% — o
To —+0o0

The remaining part of this paragraph is devoted to the proof of Propositidn
order to shorten the notations, we define

7)) =1 —7y) (;) e %!t (7.1)
0&

so that the proof of Propositior boils down to estimating

1 T1~
- /T 7o) (s (He) Se. Us(—1),) di. (7.2)

0¢é

The precise value of the cut-off functign(s) in the analysis of {.2) will be essentially
irrelevant in the sequel.

Proof of Proposition 7. The proof is given in several steps. As in Section 6, we begin
with some preliminary reductions, exploiting the informations on the microlocal support
of the various functions. Then, we use the elegant wave-packet approach of Combescure
and Robert [CRo] to compute the semi-classical propagéidgr) in (7.2) in a very
explicit way—see Theorem 8 below: this gives a representation in terms of a Fourier
integral operatowith complex phasthat is very well suited for our asymptotic analysis
(see also [CRR], or the work by Hagedorn and Joye [H1,H2,HJ], or by Robinson [Rb],
or even the seminal work by Hepp [He] for similar representations—see also Butler
[Bt]). This eventually reduces the analysis to stationary phase arguments that are very
much in the spirit of [CRR], and where the tranversality assumption (H) turns out to
play a crucial role.

Step 1: Preliminary reduction projection over the Gaussian wave packeds in
Section 6 (see (6.3), (6.5), and (6.7)), we may first build up a symb6t, &) €
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C®(R*) such that
suppao C {1x| <8} N {1€%/2 — n?(x)| < 5) (7.3)
and
(15 (He) Se. Us(=0).) = (0P (ao(x, &)) Se, Ue(—1)p,) + 05(e).

With notation 6.5), we actually have the valug(x, &) = Xs(x, £)iys (Ix|). Therefore,
the asymptotic analysis of (7.2) reduces to that of the expression

1 h
—/ 7 (1) (OPY (a0)Se, Ue(—1) ) dt. (7.4)

&€ Jpe

Now, to be able to use the wave-packet approacfC&o], we need to decompose the
above scalar product on the basis of the Gaussian wave packets

) 2
s el ) oo 5).

Each functiongg , is microlocally supported near the poiy, p) in phase-space.
Using the well-known orthogonality properties of these states, i.e.

. —d
(u, v) = (21¢) /de dqdp (u, (/);,1) (‘Pfl,p, v)

for any u(x) andv(x) in the spacel.2(R%), and forgetting the normalizing factors like
7, etc., we obtain in{.4)

1 Tl ~ W & &
. N |, dtda dp7.0) (OB @)S:. 05,) (0, Vs

1 (n - "
= m L‘Os \/RZd dt dq dp Xé‘(t) <Sé‘v Op&‘ (00)¢;,p> <Us(t)€02,p’ ¢6> ° (75)

Before going further, and in order to prepare for the use of the stationary phase theorem
below, we make the simple observation that the integeadlp over R? in (7.5) may

be carried over the compact sgik| <20} N {|€2/2 — n?(x)| <26}, up to a negligible

error O5(¢>). For that purpose, take a functigr(q, p) € C°(R%*) such that

SUPPYo(q, p) C {Ix]<23) N {1E2/2 — n?(x)| < 20}

foa. p) =1 on [IxI<39/2) N (122~ n?(x)] <39/2] . (7.6)
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We claim the following estimate holds true:

= 05(c%). (7.7)

2
/RZA dq dp (1 — %0(q, 17)) ”Opg)(a())(/);,ﬂ L2(RY)

Indeed, we have the following simple computation:

2
o8t @00}, o) = (OB @020, . 05, ,)

- /R  dxdé atao)(x. &) W5 ,)(x. O
(where W(gofl.p) denotes the Wigner transform oi;p)

g —xP+1p - §|2>
&

= g_d/ dx d¢ (aphtag)(x, &) eXp(
R

and the last line uses the fact that the Wigner transfornppf, is a Gaussian. Now,
using suppaotiag) C {|x|<d} N {|§2/2 — n?(x)| <0}, together with 7.6), establishes
(7.7).

Using this estimate (7.7), and replacing back the factof’ @g) by the identity in
(7.5), we arrive at the conclusion

1
2 [T (13 (0 50 U0 di = O (=)

Toe

1 n ~
o [ [ drdadn 70 1060 ) 5e05,) (U005, 00)
0e

Our strategy is to now pass to the limit in the term

1 Tl ~ & &
m \/Tog /RZd dt dq dp Xs(t) XO(% P) <S87 (pq,p> <U6(t)q)q,p7 ¢£> N (78)

In order to do so, we need to compute the time evolved Gaussian wave packet; ,
in an accurate way.

Step 2: Computation of Ug(t)cp;p—reducing the problem to a stationary phase
formula The following theorem is proved ifCRo] (see also [Ro,R02]).

Theorem 8 (Combescure and Robef€Ro], Robert[Ro]). We use the notations of
Section2. Under assumptior1.12) on the refraction index?(x), there exists a family
of functions{py ;(z,q, p,x)}(k,j)eNz, that are polynomials of degree at most k in the

variable x € R?, with coefficients depending on d, and p such that for anye <1,
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the following estimate holds true: for any given valueTaf and any given integer N
we have for any timer € [0, 71 ],

H Us(t)(pf],p - eXp(éé([, q, 17)) 7;(qu pt)ASQN(t’ q, P, X)

M(F(t, q. p)) (n*d/“ exp(—xz/Z)) H <Cn eV, (7.9)

L2(RY)

where

&_‘
ON(t.q.p.x) =1+ > &2 pit.q.p.x),
k.l

Iy = {1<j<2N —1, 1<k —2j<2N — 1, k>3j}.

Here the following quantities are defined

e /. is the dilation operator

(Aeu) (x) = =44y <%> : (7.10)

Te(q:, p:) is the translation(in phase-spageoperator

(T2 (@e, pow) () 1= exp(:;p, (x- "5)) u(x = qp). (7.11)

(q:, pr) denotes the trajectory

(s, pr) == (X(t,q, p), E(t,q, p)), (7.12)

o(t, g, p) denotes quantity

t 2 . —qg -

M(F(t, p)) is the metaplectic operator associated with the symplectic matrix
F(,q, p). It acts on the Gaussian as

x2
(oo 2))

= det(A(t, g, p) +iB(t, q, p)z*/? exp(i

—F(”q’p)x"“). (7.14)

2
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Here, the square rootet(A(z, g, p)+iB(t, q, p)){l/2 is defined by continuouslyence
the indexc) following the argument of the complex numliet(A(z, ¢, p)+iB(t, g, p))
starting from its valuel at timer = 0. Alsg the complex matrix'(¢, ¢, p) is defined
as

I'(t,q.p) = (C(t.q, p) +iD(t.q, p)) (Alt,q, p) +iB(t.q, p)) " (7.15)

Remark. If the refraction index:?(x) is quadraticin x, then formula 7.9) is exact
and the whole family{p; ;} vanishes. This is essentially a consequence of the Mehler
formula. We refer to [Fo] for a very complete discussion about the propagators of
pseudo-differential operators witluadratic symbols.

In the case whem?(x) is a general function, the polynomials; ; are obtained
in [CRo] using perturbative expansions “around the quadratic case”. We refer to [RO]
for a very clear and elegant derivation of these polynomials. Let us quote that similar
formulae are derived and used in [HJ]. The idea of considering such perturbations
“around the quadratic case” traces back to [He]; see also [H1,H2,Rb].

The fact that the matriX (z) +i B(¢) is invertible, andl'(z) is well defined, is proved
in [Fo]; see also [Ro2]. It is a consequence of the symplecticity' ¢f) (see relations
(2.17)). We refer to the sequel for an explicit use of these important relations.

In the next lines, we apply the above theorem, and transform formula (7.8) accord-
ingly.
On the one hand, we use the Parseval formula in (7.8) to compute the two scalar

products. Forgetting the normalizing factors likeetc., it gives, e.g. for the first scalar
product,

(Se, @5 ) =& /Rd dx d& explix - £/e) S(&) ¢f ,(x)
=02 [ dxag exptix - £/0) 11050 0,0 + O)
R

for any truncation functiory; being = 1 close to the origin. On the other hand, we
use formula (7.9) to comput&, (1)¢; , in (7.8), using the short-hand notation

Pn(t,q, p,x) =1 Y4 det(A(r, q. p) +iB(t, ¢, p)c /% On(t, q, p, x).

These two tasks being done, we eventually obtain #r8)( upon computing the
relevant phase factors explicitly,

1
o |70 (15 (05 Ui=09) di = 075 ()

To
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1 n ~
+8(5‘IT)/2 /TOS /Red dtdgdpd&dndxdyy,(1)

i
X eXp(; Y(x,y.¢n.q, p, t)>

<SP M10(@, Pra(x, ¥) Py <t, q.p. 2 ;g’) . (7.16)

where y; € C is = 1 close to(0, 0). Here, the crucial (complex) phase factor has
the value

t 2
Y(x,y.¢, 1.9, p.t) =/0 (%S +n2(qs)> ds—p-(x—q)+p - —q)
(x —q)?
2
+F(t)(y - q;) (y— q;).

+x-E—y-n+i

(7.17)

Our goal is now to apply the stationary phase formula to estimater). Obviously,
the cut-off in time away front = 0 in (7.16) prevents one to use directly the stationary
phase formula close to= 0. This is the reason why times close to 0 are treated apart
in the sequel (see steps four and five below—see also the outline of proof given in
Section 2).

Step3: Computing the first- and second-order derivatives of the phHsd-irst, it
is an easy exercice, using the symplecticity relations (2.17), to prove that the matrix
I'(¢) is symmetric and it has positive imaginary part. The relation

2
Im (1) (y — q) - (v — q0) = [(AQ) +iB@) ™ (v —q0)| .
implies indeed
2 : -1 2
ImY¥ = |x —ql”+ [(A@) +iB®)~ (y —q1)]| -

Hence we recover the equivalence

Im¥ =0 iff y=¢g, and x =g¢q. (7.18)
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Second, using the differential syste@13), (2.14) satisfied by the matricdsz), B(r),
C(t), and D(t), we prove

t 2 T
Py 2 (AW ' p—0p
Vq’[7 <\/0 ( 2 +n (%)) ds) - ( B(I)Tpl ) .
This gives the value of the gradient &f

Vx,y,f,r[,q,p,t l]l(x’ Y, 57 ’/Ia q, p, t)

—p+Ei+ilx—gq)
p—n+IT MO —q)
X
= -y . (719
COT—ag)+ilg—x)+ADOTT () (g —y)
—(x =)+ DOy —q) +BOTT(1)(q — y)

pi 2 2
=% +n%q) +Vnq) - (y —q) + p - I'()(q — y)

This computation is done up to irreleva®((y — ¢,)? + (x — ¢)?) terms.
These observations allow to compute the stationary set, defined as

M :={(x,y,&n,q, p,t) € R¥x]0, +-00[

st. Im¥Y =0 and V, ¢ 4.,¥ =0 (7.20)

Note (see above) that we exclude the original time O in the definition ofM. In
view of (7.18) and (7.19), the sédl has the value

M={(x,y.¢q) st x=y=¢g=0, {=p}
n 2
N {(p, n,t) S.t 5= n“0), ¢s =0, p; = 1']} . (7.22)
Note that the second set reads also, by definition,

2
{(p, n1) st "E —n20), X(1,0, p) =0, £(,0, p) =11}.
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Last, there remains to compute the HessiarPoéit the stationary points. A simple but
tedious computation gives, for any poi@t, y, &, 1, q, p,t) € M, the value

2 '4
YA P T (x y E g, p)EM

id 0 Id 0 —ild —Id 0
0o I 0 -Id ¢,~I'yA, D,—T',B, Vn?(0)
=I'm
d 0 00 O 0 0
0 -ud 00 O 0 0
= | —ild ¢]-ATI, 0 0 —CJA+ild —C[B; —cTy
+ATT A, +ATT B,  +ATTm
—-ld Df-B'I, 0 0 1d-DJA, DB -D[n
+BTA,  +B/T\B, +B[Ty
0 Vvi2OT 00 -—n5'C - D, —TVn2(0)
"I, +n'IAr ' IB 40Ty

Here we wrote systematically,, B;, etc. instead ofA(¢), B(¢), etc. The above matrix
is symmetric, due to relation2(18). The very last computation we need is that of
Ker D?¥ at stationary points. The value @?2¥|, clearly shows that

Ker (D211/|M)={(X,Y,E,H, 0,P,T) st. X=Y=0=0, E=P,

—H + (D; — I'tB;))P + T(Vn?©) — I';y) =0,
(~CI+ A THBP+T(-C]+A[THn=0,
(=D} + B I')B,P+T(-D] + B I')n=0,

N (=D; + I'tB)P + Ty (=Vn?©) + I';y) = o}.

Hence, usingD; — B[ I', = (A, +iB,)~1, together withCT — ATT', = —i(A,+iB;) %,
and (A, +iB)" YT +I';B, = D, (see (2.18)), we obtain

Ker <D2T|M> - {(x, Y.5.H,Q.P.T) st. X=Y=0=0, E=P,

andn"H =0, BBP+Tn=0,H = D,P+TVn?®0) = o}. (7.22)

Step4: Application of the stationary phase theorem—proof of f@riof Proposition
7. In this step, we formulate the main geometric assumption on the dlawx, &),
that allows for the proof that the contribution in (7.16) vanishes asymptotically.
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Transversality assumption on the flow (H) We suppose that the stationary set

2
M={x=y=4q=0, §=p}ﬂ{%=n2(0), X(t,0, p) =0, E(I,O,p)=n},

is a smooth submanifoldf R8¢ x]0, +oo], satisfying the additional constraint
k :=codimM > 5d + 2. (7.23)

We also assume that at each point= (x, v, &, 1, q, p,t) € M, the tangent space of
M atmis

ToM ={(X,Y,E,H,0,P,T) st. X=Y=0Q=0, 2= P,

andi"H =0, B,P + Ty =0, —H + D,P + TVn2(0) = o} . (7.24)

In other words, we assume thaj, M is precisely given by linearizing the equations
defining M.

Remark 1. We show below examples of flows satisfying the above assumption. It
is a natural, and generic, assumption. Note in particular that the assumption on the
codimension is natural, in that the equations definihgyive (roughly) 4/ constraints

on (x, v, q, &), one constraint om, and again @ constraints on the momentum the

solid anglen/|n|, and timet. Hence one has typically = 64 + 1.

Remark 2. Equivalently, the above assumption may be formulated as follows. The set

2
M= {(p,n, 1) Sit. "’E — n2(0), X(1,0, p) =0, 5(t,0, p) = 1}

is assumed to be a smooth submanifold®5'**, satisfying the additional constraint
codimM > d 4 2, and whose tangent space is given by

((P,H,T)st.n"H=0, BBP+Tn=0, D;P+TVn?0) — H = 0}.

Note in passing that the conservation of energy allows to replace the requirement
n?/2 = n?(0) by the equivalentp?/2 = n2(0) in the definition of M.

Remark 3. ProvidedM is a smooth submanifold with tangent space given upon lin-
earizing the constraints, its codimension anyhow satisfies

codimM >5d + 2.
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Equivalently, providedM is a smooth submanifold with the natural tangent space, its
codimension anyhow satisfies

codimM >d + 2.

As a consequence, the analysis given below (se27]) establishes thatw?, ¢) is
uniformly bounded ins. This fact is not known in the literature.

Under assumption (H), we are ready to use the stationary phase theorem in (7.16),

at least for large enough timegrecall that the very point = 0 is excluded from the
definition of M above). Indeed, assumption (H) precisely asserts the equality

T, M = Ker (DZ‘P|M),

so that the Hessiam?¥|; is non-degenerate on the normal spatg M)L. This is
exactly the non-degeneracy that we need in order to apply the stationary phase theorem.
To perform the claimed stationary phase argument, we first take a (small) parameter

0> 0.

We use a cut-off in time/(¢/0) with y as in .7), and evaluate the contribution
10 t
- /g 7 (1) (1 — <5>> (x5 (He) Se, Us(=1),) dt

N 1 Ty, - t
= Op, 5 (%) + £(5d+2)/2 /9 ,/;QG“' Z(1) (1 7 <§>>

i
x exp(g Yx,y,¢ 1,9, p, f))

Y — 4

/e

When the point(x, y, &, 1, q, p,t) is far from the stationary seM, the integral is
0(e®). Close to the stationary séfl, using the fact that the integral carries over a
compact support, we may use a partition of unity closeMioand on each piece we
may use straightened coordinates ) € R%+17% x R* such that

x§(é)$*(n)xo(q, P)x1(x, y) Py (t, q,p, ) dtdxdydldndgdp.

(x,v,¢, 1,9, p,t) =79, ), where y is a local diffeomorphism, with

(x,y,¢,1n,9,p,t) €M < a=0.
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Using such coordinates, we recover a finite sum of terms of the form

1 i
m[g dxdyddndgdp eXD(; P(x,y, é,n,q,p,t)>

<S(&$" () Py (t, a.p Lﬁq’) 12y E g, p. 1)

1 i
= (64122 /Q,XQ,, dodp eXp(g‘Po 7(a, ﬂ))
x (E(')a*(-)PN ( s ﬁ» oy ) xa(@. B). (7.25)

where Q, ', and Q" are bounded, open subsets, gndand x5 are cut-off functions.
Thanks to the non-degeneracy of the Hessi#i in the normal direction tdM, for
any f5, we have

o2

D?¥ o Y
<det D ) O, p) £0.

Hence, by the standard stationary phase theorem, for any inlegiee above integral
has the asymptotic expansion to order

o (k—5d-2)/2 / dp exp(éq’ 0 7(0, ﬂ)>
Q//

J
x Y &/ 02;(0s. Op) ((ﬁ(.w*(.)m ( . ﬁ» oy X3> )

j=0

4ek=5-2120 [ I+1 gy
k<2J+d+3

)

(7.26)

Oy (ﬁ(.ﬁ*(.)PN ( . ﬁ) m)

where theQ»;’s are differential operators of orderj 2Now, we anyhow have

. i A2 y
VieN  edpy < 2 )=o0.
Je

All the more, Py is a polynomial of degree<4N in its last argument. This implies
that thee®*—5=2/20(.. ) in (7.26) has at most the size

) (81+1+(k—5d—2)/2—2N)
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Hence, takingJ large enough J>2N will do), we eventually obtain in1.26), using
assumption (H) on the codimensitn(k > 5d + 2),

1 n_ t
m/g) L (1) <1 -1 <§>> (x5 (He) Se. Us(—1)p,) di

= 0y, 5 (4%7212) — 0. (7.27)

e—0

Step5: Elimination of times such thaifp ¢ <t < 0—proof of part(ii) of Proposition7.
The previous step leaves us with the task of estimating

1 (% t
E JTt 0

0é

The idea is to now come back to the semi-classical scale, and write

12 f
- / Xg(t) X (_> (X(S (HS) SS» UE(_I)(:bg) dt
& JTi 0

o€

= /;2()/5 P (%) <X5 (Hg) S, eXD(—it (gZA + nz(x)>) q’)g> dt. (7.28)

0

This term is expected to be small, providé&gl is large enough. Indeed, the propagator
exp(—it (e2A 4+ n?(x))) acting on¢, is expected to be close to the free propagator
exp(—it (82A+n2(0))) on the time scale we consider. Hence the propagator should
have sizeO(t~%/2) for large values of time, and the above time integral should be
O(To %t - 0 asTy — oo.

We give below a quantitative proof of this rough statement, based on the exact
computation of the propagator ekpit (s?A + n?(x))) obtained in Theoren8. The
proof given below could easily be replaced by a slightly simpler one, upon writing the
propagator as a Fourier Integral Operator withl phase. We do not detail this aspect,
since we anyhow had to use in the previous steps the more precise expansion of the
propagator given by Theorem 8: this theorem has indeed the great advantage to give a
representation of the propagator that is vdld all times

From the second step above (see (7.16)), we know

/Tze/s , <%t) <X5 (H.) S, exp(—it (gZA + nz(x))> ¢>g> dt

0

20/¢ 5
=0r5 (8°°)+/T0 9{(5) xe Z /de exp(i ¥ (st)/e)
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xS M10(a- P1alx. ) Py (f’ 4.0 :/gt>

xdx dyd&dndgdp, (7.29)

where we drop the dependence of the ph#sén (x,y, ¢, 1, g, p). To estimate this
term, we now concentrate our attention on the space integral

b4 o
felty =27 fedexp(iﬂ> JErAG)
R &

y—
x%0(q, p)ya(x, y) Py <t,q, 22 \g‘”) dxdydidndqgdp. (7.30)

We claim we have the following dispersion estimat@jformly in ¢,
| fo(t)] <Cgt~%?,  for someCy > 0, provided To <1< 20/e. (7.31)

Assuming {.31) is proved, Eq. (7.29) shows that

20
- / }:g(t) 4 (é) <)((3 (Hs) S87 Us(_t)d)g) dt gcé) TO_%_H. — 0» (732)
Tt

0E To —00

in any dimensiord > 3, which is enough for our purposes. It is thus sufficient to prove
(7.31).

We have in mind that the integral (7.30) defininfg(z) should concentrate on the
setx=y=¢qg=0,¢9, =0, p, =1, p=_¢E. Also, the present case should be close to
the “free” case where the refraction inde%(x) has frozen coefficients at the origin
n?(x) ~ n2(0). For that reason, we perform in (7.30) the changes of variables

(x —q@)/Ve— x, (y —qe)/NE =y, g = JVeq,
&= p+e& n— E(et, Veq, p) + en.

We also put apart the important phase factors in the obtained formula. This gives

fe() = /RM dgdpdn exp(it P (p, et, «/Eq,«/?n)) G(q, p.n. €t, \/eq, \/en), (7.33)

up to introducing the phase

~ 1 et /= , , 2
P(p. et, \/eq, Ven) ::E/O (W +n% (X (s, N/ECIaP))) ds
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+J§p -q — E(et, \Jeq, p) - X (et, \Jeq, p)
&t

e Vegq — X(et, \/Eq,p)’

et

together with the amplitudeC®, and compactly supported i /2q)

G(q, p. 1, €t, /eq, J/en) = /R&’ dxdyd exp(ié- (g +x)—in-(y+q))

2 TI(et :
Xexp<_162+l. (8,\/5;1,p)y y)

xS(p + VeO (Eet, Veq, p) + Vemio (Veq, p)
x11(v€(q + x), X (et, \/eq, p) + /&)
x Py (t, JVeq, p, y) . (7.34)

Now, the idea is to use the stationary phase formula inpthariable in 7.33), wheret
plays the role of the large parameter. We wish indeed to recognize in (7.33) a formula
of the form

P2
/dp exp(—it 2) x smooth{p),

to recover the claimed decaying factor?/2 in (7.31). In other words, we wish to get
the same dispersive properties as for the free Schrodinger equation. This is very much
reminiscent of the dispersive effects proved $omall timesin [Dsf] for wave equations
with variable coefficients, and relies on the fact thét~ —p?/2 aser<0 is small
enough. ~

In order to do so, we need to get further informations both on the pltased the
amplitudeG.

Firstly, the smooth amplitud& is defined in (7.34). It clearly is compactly supported
in p and /eq. Also, the Gaussian expx?/2 +iI'(¢t, \/eq, p)y - y/2) belongs to the

Schwartz spaces (R%) in the variablesx andy (recall indeed that Inf'(¢7) > 0,
ander belongs to a compact set), uniformly in the compactly supported parameters
J/eq, andp. From this it follows that the amplitud&(q, p, 1, st, \/¢q, /en) belongs
to the Schwartz spac§ ([RRZ") in the first and third variableg andy, it is C>°(R9) in
the second variablp, and these informations are uniform with respect to the compactly
supported parameters, /g, together with the (non-compact) parametgss.

Secondly, the smooth phaﬁ? depends upon the small parameter € [0, 20],
together with the two position/velocity variablggeq and p. All of them belong to a
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compact set. It also depends upon the variagks;, which is not in a compact set.
On the more, we have the easy first-order expansion in the (small) parametef,

P (p, et, Veq, Ven)

2
= — L+ n?(Veq) — VVeq - Van? (Veg) = Ven - (p + 00) + 0 (¢7).

Here the remainder term8 () and O (6?) only depend upon the compactly supported
parameterst <20 andp, +/eq (they do not depend upog’ey), and they are uniform
with respect to these variables. Hence, the stationary points of the phase (m the
variable) are given by

—p—ma1+0w»+0(§)=o. (7.35)
Finally, there remains to observe that the Hessian of the phapdsn

D2y
= . 7.
bz = a4 00 (7.36)

Upon taking 6 small enough, all these informations allow us to make use of the
standard stationary phase estimatepirMore precisely, we write,

dqdn 3
fa(f)Z/RZd W/Rd dp eXp(l t Y(p,et, ﬁq,ﬁn))

(@) (i G(q, p, 1, et, /eq, Ven). (7.37)

For each given values af and 5, we analyse the integral over in (7.37). If \/en
is outside some compact set around the suppoi® afi p, integrations by parts ip
together with information (7.35) allow to prove that the integral opein (7.37) is
bounded, for any integeN, by CN’QI_N for someCy ¢ > 0 independent ofj and
n. Hence the corresponding contribution fo is bounded byCy ot~V as well. Now,
for \/en in some compact set around the supportGfn p, we may use information
(7.36): this, together with the stationary phase Theorem with the paramete(éq,
and \/en in a compact set, establishes that the integral qvr (7.37) is bounded by
Cot~/2 for someCy > 0, andCy turns out to be independent gfand#. Hence the
corresponding contribuition tg; in (7.37) is bounded by'r~4/? as well.
All this gives the claimed estimate

| fe ()] < Cot /2.

The proof of PropositiorY is complete.
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8. Conclusion: proof of the Main Theorem

We want to prove the convergence

(w®, ) — (W, ¢),

when the sourc& and the test functior) are Schwartz class. Therefore, one needs to
prove

i +00
—/ e % (Ue(t)Se, ) dt — (W ¢) ase — 0.
€ Jo

Proposition1 asserts

i 2To ¢ t
-/ ,{(—) e % (Ue (1) Se, d,) dr
e Jo Toe

1
= (W™, ¢) + 07, (%) + 0 (W) ,
TO

where the notatior0 (¢%) denotes a term going to zero with and Or, (%) emphasizes
the fact that the convergence depends a priori on the valug of
On the other hand, Proposition 2 asserts

1 [t t .
E/T d-n <m) e %! <Us(t) (1_){5) (He) Se, ¢e) dt

0¢é

—o(2)+ 0
= (E) (&").

Now, for very large times and almost zero energies, Proposition 3 shows, orall
enough, and any,

1 +oo
g/ e " (U ()5 (He) Se, §,) dt = Oy 5(e).
K

As for large times and almost zero energies, Proposifloshows that, foro small
enough,x small enough, andy large enough,

—K

1 &
—/ e *" (U (D)5 (He) Se, d,) di = Oy 5(¢).
& i
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Finally, for moderate times and almost zero energies, one has the following two infor-
mations. First, forf small enough, and uniformly ia, we have

1/261— ! ! 5 U5 (He) Se, §) dt
g TS( X)(m)%(@) e e(Dys (He) Se, ¢,

0

1
= 00( i)

Second, for any fixed value df > 0, and 71,

1 (h t ot
;A 1-» <m> e <U£(t)X5 (He) Se, ¢e) dt

= 00,T1,5 (80) .

All this information shows our Main Theorem, upon conveniently choosing the cut-off
parameterd), To, T1 (in time), ¢ (in energy), and the exponent(in time). This ends
our proof.

9. Examples and counterexamples

9.1. The harmonic oscillator

Given an appropriate potentidl (x), and defining the semi-classical Schrodinger
operator

82
H8 — —E AX + V()C),

our Main Theorem proves

1 [t t
—/ e %! <exp<—i—Hs) Se, ¢€> dt
£ Jo &

+0oo

—cy A (exp(=it [-As /24 V(0)]) S, ) dt. 9.1)

Though we used in many places that our analysis requires a potential of the form

V(x) = —n?(x) = —nZ, + O((x)7),
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it seems interesting to investigate the validity 6f1) when the potential is harmonic

d
V@) =VO + )

j=1

9.2)

N |\8N

for some frequencies); € R, and a given valué/(0) < 0. Such a potential does not
enter our analysis since it is confining. However, it is easily proved thapdmvise
rationally independentalues of the frequencies;, the transversality assumption (H)
is true for this potential, whereas in the extreme case where»g#l are equal, this
assumption fails. On the other hand, one may use the Mehler forfhiadl (see [C]
for the use of these formulae in the non-linear context) to compute the propagator

d
1 2 2.2
exp —lg —&e“Ay/2+ Elex]/Z
/:

d w; 1/2
= 1_[ (—j> exp
. 2ime sin(w;t)

=1

~

X

L) o
<2€Sin(a)jt) [( +y])coiw]t) 1)’/]>~ (9.3)

(Here we identified the propagator and its integral kernel).

Surprisingly enough, using the Mehler formula to compute the limit on the left-hand
side of @.1), we may prove that famtionally independent»;’s, the convergence result
(9.1) islocally true in this case, for dimensiong>4, i.e (9.1) is true with the upper
bounded+oco replaced byT, for any value of7T > 0.

We do not give the easy computations leading to this result. The idea is the following:
at each timen/w; (k € Z), the trajectory of the harmonic oscillator shows periodicity
in the directionj. However, due to rational independence, at tithesw;, the trajectory
does not show periodicity in any of the— 1 other directions. Hence one gets enough
local dispersion from these directions to show that the corresponding contribution to
the time integral on the left-hand side of (9.1) is roughly

(A+kn/wj)/e
o[ D2 41) = 0 (b2 ) o
(=1+km/w;) /e

aslong asd — 1> 2, i.e.d>4.

Needless to say, in the extreme case whereval are equal, the result ir9(1) is
falsg even locally: in this case, periodicity creates a disastrous accumulation of energy
at the origin &ll rays periodically hit the origin at timekr/w, k € 7).



F. Castella/Journal of Functional Analysis 223 (2005) 204-257 255

To our mind, this simple example indicates that our Main Theorem probably holds
true for less stringent assumptions on the refraction index. For instance, a uniform
(in time) version of our transversality assumption is probably enough to get the result
(without assuming neither decay at infinity of the refraction index, nor assuming the
non-trapping condition).

9.2. Examples of flows satisfying the transversality condition

We already observed that the harmonic oscillator with rationally independent fre-
quencies does satisfy the transversality assumption (H). One actually has the value
k =6d + 1 (see [.23)) of the codimension in that case.

It is also easily verified that the flow of a particle in a constant electric field, i.e.
the case of a potential

Vi(x) = x1,

does satisfy (H) as well, with = 64 + 1.
Coupling the two flows, it is also verified that the potential

d
V(x)=x1+ Z w?sz/Z,
j=1

does satisfy (H) as well, with = 6d + 1.

Clearly, these examples are satisfactory, in that we may assume that the potential
has the above-mentioned valuglsseto the origin, and we may truncate outside some
neighbourhood of the origin so as to build up a potential that satisfies the global
assumptions we met in our Main Theorem.
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