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Abstract

A finitely generated module M over a local ring is called a sequentially generalized Cohen–Macaulay
module if there is a filtration of submodules of M : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M such that dimM0 <

dimM1 < · · · < dimMt and each Mi/Mi−1 is generalized Cohen–Macaulay. The aim of this paper is
to study the structure of this class of modules. Many basic properties of these modules are presented and
various characterizations of sequentially generalized Cohen–Macaulay property by using local cohomol-
ogy modules, theory of multiplicity and in terms of systems of parameters are given. We also show that
the notion of dd-sequences defined in [N.T. Cuong, D.T. Cuong, dd-Sequences and partial Euler–Poincaré
characteristics of Koszul complex, J. Algebra Appl. 6 (2) (2007) 207–231] is an important tool for studying
this class of modules.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Good system of parameters; Generalized Cohen–Macaulay filtration; Sequentially generalized
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1. Introduction

Let (R,m) be a commutative Noetherian local ring and M a finitely generated R-module
of dimension d . Let x = (x1, . . . , xd) be a system of parameters of M . It is well known that
the length �(M/xM) carries a lot of information about the structure of M . If �(M/xM) =
e(x;M), where e(x;M) is the Serre multiplicity of M relative to x, then M is a Cohen–
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Macaulay module. The notion of Buchsbaum modules introduced by Stückrad and Vogel is the
first extension of Cohen–Macaulay modules, it contains all modules such that the difference
�(M/xM) − e(x;M) is a constant for all systems of parameters x. A further generalization was
obtained by Schenzel, Trung and the first author in [8], they considered the class of modules
M such that for all systems of parameters x the difference �(M/xM) − e(x;M) is bounded
above by a constant. This is equivalent to the fact that there is a system of parameters x such
that �(M/(x

n1
1 , . . . , x

nd

d )M) = n1 . . . nde(x;M) + c for all n1, . . . , nd > 0, where c is a con-
stant. These modules have many similar properties as of Cohen–Macaulay modules and were
called generalized Cohen–Macaulay modules. The theory of generalized Cohen–Macaulay mod-
ules was developed rapidly in the 1980s and early 1990s by the works of many authors and
found its applications in many fields of commutative algebra and algebraic geometry. Another
generalization of Cohen–Macaulay module is the notion of sequentially Cohen–Macaulay mod-
ules introduced first by Stanley [16]. A module M is called a sequentially Cohen–Macaulay
module if there is a filtration M0 ⊂ M1 ⊂ · · · ⊂ Mt = M of submodules of M such that each
Mi+1/Mi is Cohen–Macaulay and dimM0 < dimM1 < · · · < dimMt . Historically, Stanley de-
fined this notion for graded modules in order to study the so-called Stanley–Reisner rings (see
also Herzog–Sbara [11]). After that, this notion was defined for modules over local rings by
Schenzel [15], Nhan and the first author [7]. In the same paper, the authors also introduced
the notion of sequentially generalized Cohen–Macaulay module and gave a characterization for
these modules in terms of local cohomology modules. The definition of sequentially generalized
Cohen–Macaulay module is similar to the one of sequentially Cohen–Macaulay module except
each module Mi+1/Mi is required to be a generalized Cohen–Macaulay module instead of being
Cohen–Macaulay. In this case, that a filtration is called a generalized Cohen–Macaulay filtration.
The aim of this paper is to study basic properties of these modules with further purpose toward a
theory of sequentially generalized Cohen–Macaulay modules.

In order to study sequentially generalized Cohen–Macaulay modules, we consider a filtra-
tion F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M of submodules of M , which satisfies the condition that
dimM0 < dimM1 < · · · < dimMt = d . The most important example of filtration satisfying the
dimension condition as above is the dimension filtration. We say that a filtration F : M0 ⊂
M1 ⊂ · · · ⊂ Mt = M is the dimension filtration of M if each Mi is the biggest submodule
of Mi+1 with dimMi < dimMi+1 (cf. [7,16]). For a filtration satisfying the dimension condi-
tion F with di = dimMi , we restrict ourselves to those systems of parameters x = (x1, . . . , xd),
which are called good systems of parameters of M , such that Mi ∩ (xdi+1, . . . , xd)M = 0,
i = 0,1, . . . , t − 1. Then (x1, . . . , xdi

) is a system of parameters of Mi . It is proved in [6] that the
difference

IF ,M(x) = �(M/xM) −
t∑

i=0

e(x1, . . . , xdi
;Mi),

is a non-negative integer. From our point of view, IF ,M(x) is suitable to the study of sequentially
Cohen–Macaulay and sequentially generalized Cohen–Macaulay modules. It has been shown by
the authors in [6] that M is a sequentially Cohen–Macaulay module if and only if there is a
filtration F and a good system of parameters such that

IF ,M

(
x

n1
1 , . . . , x

nd

d

) = 0, for all n1, . . . , nd > 0,

or equivalently, �(M/(x
n1
1 , . . . , x

nd

d )M) = ∑t
i=0 n1 . . . ndi

e(x1, . . . , xdi
;Mi). As one of the main

results of this paper, we will show that M is a sequentially generalized Cohen–Macaulay
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module if and only if there are a filtration F and a good system of parameters x such that
IF ,M(x

n1
1 , . . . , x

nd

d ) is a constant for all n1, . . . , nd > 0. Moreover, this constant is independent
of the choice of systems of parameters and can be expressed in terms of length of certain local
cohomology modules. The key in the proof of these results is the use of the notion of dd-sequence
developed in [5]. dd-Sequence was first invented for a different purpose, see [4,13,14]. However,
when studying the two classes of sequentially Cohen–Macaulay and sequentially generalized
Cohen–Macaulay modules we found that this notion is very useful since all these modules admit
such a sequence.

The paper is organized as follows.
In Section 2 we recall briefly some facts about filtrations satisfying the dimension condition

and good systems of parameters. Some properties of dd-sequence defined in [5] are presented in
this section.

In Section 3 we introduce the notion of generalized Cohen–Macaulay filtrations to investigate
the structure of sequentially generalized Cohen–Macaulay modules. We first show some prop-
erties of these modules by using local cohomology modules, localization, passing to quotient,
etc. As the main result of this section, we show that for a sequentially generalized Cohen–
Macaulay module M there are a filtration M0 ⊂ M1 ⊂ · · · ⊂ Mt = M and a system of parameters
x = (x1, . . . , xd) such that

�
(
M/

(
x

n1
1 , . . . , x

nd

d

)
M

) =
t∑

i=0

n1 . . . ndi
e(x1, . . . , xdi

;Mi) + C (∗)

for all n1, . . . , nd > 0, where di = dimMi and C is a constant (Theorem 3.8).
We use Section 4 to study the constant C in the equality (∗). This number is important in our

investigation because it is the least bound for the function IF ,M(x
n1
1 , . . . , x

nd

d ). The main result
of this section is an expression of C in terms of lengths of certain local cohomology modules,

C =
t−1∑
i=0

di+1−1∑
j=0

cij �
(
H

j
m(M/Mi)

)
,

where cij = ∑di+1−1
k=di

(
k−1
j−1

)
.

Using the theory of multiplicity we prove in Section 5 various characterizations of sequentially
generalized Cohen–Macaulay modules in terms of good systems of parameters. Note that the
filtrations of submodules of M considered in this section are not necessary to be generalized
Cohen–Macaulay filtrations.

The last section is devoted to study the Hilbert–Samuel function of a sequentially generalized
Cohen–Macaulay module with respect to an ideal generated by a good system of parameters
satisfying the equality (∗). We compute all the coefficients of the Hilbert–Samuel polynomial
explicitly by using local cohomology modules. For the basic knowledge of commutative algebra
and local cohomology modules we refer to [2] and [3].

2. Preliminary

Throughout this paper, (R,m) is a commutative Noetherian local ring and M is a finitely
generated R-module of dimension d .
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In this section we will recall briefly some basic facts about filtrations satisfying the dimension
condition, good systems of parameters defined in [6]. Some preparations on dd-sequences and
generalized Cohen–Macaulay modules are also presented.

Definition 2.1.

(1) We say that a finite filtration of submodules of M

F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M

satisfies the dimension condition if dimM0 < dimM1 < · · · < dimMt−1 < dimM , and we
also say in this case that the filtration F has the length t . For convenience, we stipulate here
that dimM = −∞ if M = 0.

(2) A filtration D : D0 ⊂ D1 ⊂ · · · ⊂ Dt = M is called the dimension filtration of M if the
following two conditions are satisfied:

(a) Di−1 is the largest submodule of Di with dimDi−1 < dimDi for i = t, t − 1, . . . ,1;
(b) D0 = H 0

m(M) is the 0th local cohomology module of M with respect to the maximal
ideal m.

Definition 2.2. Let F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M be a filtration satisfying the dimension con-
dition. Put di = dimMi . A system of parameters x = (x1, . . . , xd) of M is called a good system
of parameters with respect to F if Mi ∩ (xdi+1, . . . , xd)M = 0 for i = 0,1, . . . , t − 1. A good
system of parameters with respect to the dimension filtration is simply called a good system of
parameters of M .

The next few results can be implied directly from the definitions or can be found in [6].

Remark 2.3.

(i) The dimension filtration always exists and it is unique. In this paper we will always denote
the dimension filtration of M by D : D0 ⊂ D1 ⊂ · · · ⊂ Dt = M .

(ii) Let N ⊆ M be a submodule. From the definition of the dimension filtration, there is a Di

such that N ⊆ Di and dimN = dimDi . Consequently, if a filtration M0 ⊂ M1 ⊂ · · · ⊂
Mt ′ = M satisfies the dimension condition then there exist indices 0 � i0 < i1 < · · · < it ′
such that Mj ⊆ Dij and dimMj = dimDij . Therefore, a good system of parameters of M

is a good system of parameters with respect to every filtration satisfying the dimension
condition.

(iii) Let F be a filtration satisfying the dimension condition of M . Then there always exists
on M a good system of parameters with respect to F . Moreover, if x = (x1, . . . , xd) is a
good system of parameters of M with respect to F , so is (x

n1
1 , . . . , x

nd

d ) for any integers
n1, . . . , nd > 0.

(iv) Let x be a good system of parameters. For dimDi < j � dimDi+1, Di = 0 :M xj . In par-
ticular, 0 :M x1 = H 0

m(M).



718 N.T. Cuong, D.T. Cuong / Journal of Algebra 317 (2007) 714–742
Let F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M be a filtration satisfying the dimension condition with
di = dimMi and x = (x1, . . . , xd) a good system of parameters with respect to F . It is clear that
(x1, . . . , xdi

) is a system of parameters of Mi . Therefore the following difference is well defined

IF ,M(x) = �(M/xM) −
t∑

i=0

e(x1, . . . , xdi
;Mi),

where e(x1, . . . , xdi
;Mi) is the Serre multiplicity and we set e(x1, . . . , xd0;M0) = �(M0) if

dimM0 = 0. Below are some remarkable properties of this number (cf. [6, Lemma 2.6 and Propo-
sition 2.9]).

Lemma 2.4. Let F be a filtration satisfying the dimension condition and x = (x1, . . . , xd) a good
system of parameters of M . We have

(i) IF ,M(x) � 0.
(ii) Denote x(n) = (x

n1
1 , . . . , x

nd

d ) for any d-tuple of positive integers n = (n1, . . . , nd) and con-
sider IF ,M(x(n)) as a function in n1, . . . , nd , then this function is a non-decreasing function,
it means that IF ,M(x(n)) � IF ,M(x(m)) for all ni � mi, i = 1, . . . , d .

Concerning the question of when the function �(M/(x
n1
1 , . . . , x

nd

d )M) is a polynomial, the
authors in [5] have introduced a notion of dd-sequences. For the definition we need the notion
of d-sequence of Huneke [12]. A d-sequence on M is a sequence (x1, . . . , xs) of elements in m

such that for i = 1, . . . , s and j � i, (x1, . . . , xi−1)M : xixj = (x1, . . . , xi−1)M : xj .

Definition 2.5. A sequence (x1, . . . , xs) of elements in m is called a dd-sequence on M if
(x

n1
1 , . . . , x

ni

i ) is a d-sequence on M/(x
ni+1
i+1 , . . . , x

ns
s )M for all n1, . . . , ns > 0 and i = 1, . . . , s.

Then dd-sequence is closely related to the notion of good system of parameters by the follow-
ing lemma.

Lemma 2.6. (See [6, Lemma 3.5].) Every system of parameters of M , which is also a dd-sequence
on M , is a good system of parameters, and therefore it is a good system of parameters with
respect to any filtration F satisfying the dimension condition of M .

We have some characterizations of dd-sequence.

Proposition 2.7. Let x = (x1, . . . , xd) be a system of parameters of M . Then the following state-
ments are equivalent:

(i) x is a dd-sequence.
(ii) For all 0 < i � j � d , n1, . . . , nd > 0,

(
x

n1
1 , . . . , x̂

ni

i , . . . , x̂
nj

j , . . . , x
nd

d

)
M : xni

i x
nj

j = (
x

n1
1 , . . . , x̂

ni

i , . . . , x̂
nj

j , . . . , x
nd

d

)
M : xnj

j .
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(iii) There exist a0, a1, . . . , ad ∈ Z such that for all n1, . . . , nd > 0,

�
(
M/x(n)M

) =
d∑

i=0

ain1 . . . ni .

In this case, we have ai = e(x1, . . . , xi; (xi+2, . . . , xd)M : xi+1/(xi+2, . . . , xd)M).
(iv) x is a good system of parameters and there exist b0, b1, . . . , bd−1 ∈ Z such that for all

n1, . . . , nd > 0,

ID,M

(
x(n)

) =
d−1∑
i=0

bin1 . . . ni,

where D is the dimension filtration of M

Proof. The implication (i) ⇒ (ii) is proved in [5, Proposition 3.4]. For the converse, we need to
show that for 0 < i � j < s � d + 1, n1, . . . , nd > 0,

(
x

n1
1 , . . . , x

ni−1
i−1 , xns

s , . . . , x
nd

d

)
M : xni

i x
nj

j = (
x

n1
1 , . . . , x

ni−1
i−1 , xns

s , . . . , x
nd

d

)
M : xnj

j ,

but this is clear by using Krull’s Intersection Theorem and the hypothesis.
The equivalence of (i) and (iii) is proved in [5, Corollary 3.6]. By Lemma 2.6, if x is a

dd-sequence then it is a good system of parameters. Hence the equivalence of (iii) and (iv) is
obvious. �
Lemma 2.8. Let D : D0 ⊂ D1 ⊂ · · · ⊂ Dt = M be the dimension filtration and x = (x1, . . . , xd)

a system of parameters of M . Put di = dimDi . Assume that x is a dd-sequence on M . Then we
have xM ∩ Di = (x1, . . . , xdi

)M ∩ Di .

Proof. We need only to show for any integer j , di < j � di+1, that

xM ∩ Di = (x1, . . . , xj−1, xj+1, . . . , xd)M ∩ Di.

Indeed, let a be an arbitrary element of xM ∩Di . Write a = x1a1 +· · ·+xdad . Since x is a good
system of parameters, (iv), Di = 0 :M xj by Remark 2.3. Therefore

aj ∈ (
(x1, . . . , xj−1, xj+1, . . . , xd)M + 0 :M xj

) : xj

⊆ (x1, . . . , xj−1, xj+1, . . . , xd)M : x2
j = (x1, . . . , xj−1, xj+1, . . . , xd)M : xj ,

and the conclusion follows. �
To end this section, we recall some facts about generalized Cohen–Macaulay modules. For

the detailed proof of these results we refer to [8]. For an R-module M , we put

I (M) = sup
x

{
�(M/xM) − e(x;M)

}
,
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where the supremum is taken over all systems of parameters of M . Then M is called a generalized
Cohen–Macaulay module if I (M) < ∞. The following characterizations of generalized Cohen–
Macaulay modules are used in this paper.

Lemma 2.9.

(i) If M is a generalized Cohen–Macaulay module, then Mp is Cohen–Macaulay for all p ∈
SuppM,p 
= m. Moreover, the converse holds true if R is a factor of a Cohen–Macaulay
ring and M is equidimensional.

(ii) The following statements are equivalent:

(1) M is a generalized Cohen–Macaulay module.
(2) There exist a system of parameters x = (x1, . . . , xd) of M and c � 0 such that

�
(
M/x(n)M

) = n1 . . . nde(x;M) + c,

for all n1, . . . , nd > 0. In this case, c = I (M).
(3) All the local cohomology modules Hi

m(M) are of finite length for i = 0,1, . . . , d − 1.

In particular, if M is a generalized Cohen–Macaulay module then

I (M) =
d−1∑
i=0

(
d − 1

i

)
�
(
Hi

m(M)
)
.

3. Sequentially generalized Cohen–Macaulay modules

First, we recall the notions of generalized Cohen–Macaulay filtration and of sequentially gen-
eralized Cohen–Macaulay modules, which were introduced in [7].

Definition 3.1. Let F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M be a filtration of submodules of M . F is called
a generalized Cohen–Macaulay filtration if F satisfies the dimension condition, dimM0 � 0 and
M1/M0, . . . ,Mt/Mt−1 are generalized Cohen–Macaulay modules.

M is called a sequentially generalized Cohen–Macaulay module if it has a generalized
Cohen–Macaulay filtration.

By the definition, it is obvious that every generalized Cohen–Macaulay module M is a se-
quentially generalized Cohen–Macaulay module, where the trivial filtration 0 ⊂ M is a gen-
eralized Cohen–Macaulay filtration. Suppose that M is unmixed up to m-primary, it means
that dimR/p = dimM for all p ∈ AssM \ {m}. Then it is easy to see that M is sequentially
generalized Cohen–Macaulay if and only if M is generalized Cohen–Macaulay. Therefore the
two-dimensional local domain constructed by Ferrand and Raynaud in [9] is an example of a two-
dimensional ring which is not a sequentially generalized Cohen–Macaulay module. However, the
m-adic completion of this domain is sequentially generalized Cohen–Macaulay as shown in the
following proposition.

Proposition 3.2. Assume that R is a homomorphic image of a Cohen–Macaulay ring and
dimM = 2. Then M is a sequentially generalized Cohen–Macaulay module.
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Proof. Let N be the biggest submodule of M such that dimN < 2. Since dimR/p = 2 for
every p ∈ Ass(M/N), it is shown by Trung [18] that M/N is a generalized Cohen–Macaulay
module. If N is of finite length then M has a generalized Cohen–Macaulay filtration N ⊂ M . If
dimN = 1 then N is generalized Cohen–Macaulay and M has a generalized Cohen–Macaulay
filtration 0 ⊂ N ⊂ M . �

The following lemma shows that if M has a generalized Cohen–Macaulay filtration, then it is
unique up to m-primary components and relatively closed to the dimension filtration as follows.

Lemma 3.3. Let M be a sequentially generalized Cohen–Macaulay module with the dimension
filtration D : D0 ⊂ D1 ⊂ · · · ⊂ Dt = M . Let F : M0 ⊂ M1 ⊂ · · · ⊂ Mt ′ = M be a filtration
satisfying the dimension condition with dimM1 > 0. Then F is generalized Cohen–Macaulay
if and only if t = t ′ and �(Di/Mi) < ∞ for i = 0,1, . . . , t − 1. In particular, the dimension
filtration of a sequentially Cohen–Macaulay module is always a generalized Cohen–Macaulay
filtration.

Proof. Since M is a sequentially generalized Cohen–Macaulay module, Lemma 4.4 of [7] shows
that the necessary condition holds and D is a generalized Cohen–Macaulay filtration. We prove
the sufficient condition. There are two short exact sequences for each i = 0,1, . . . , t − 1,

0 → Di/Mi → Di+1/Mi → Di+1/Di → 0,

0 → Mi+1/Mi → Di+1/Mi → Di+1/Mi+1 → 0,

where Di+1/Di is generalized Cohen–Macaulay and �(Di/Mi) < ∞. The first exact sequence
implies that Di+1/Mi is generalized Cohen–Macaulay. Combining this with the second exact
sequence we get that Mi+1/Mi is generalized Cohen–Macaulay. �
Remark 3.4. Note that without the assumption dimM1 > 0 Lemma 3.3 is false. Indeed, if M1 
=
0 is of finite length, both filtrations 0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mt = M and M1 ⊂ M2 ⊂
· · · ⊂ Mt = M are generalized Cohen–Macaulay filtrations of lengths t and t − 1, respectively.
For convenience, from now on we only consider generalized Cohen–Macaulay filtrations M0 ⊂
M1 ⊂ · · · ⊂ Mt = M with dimM1 > 0. Then by Lemma 3.3 all generalized Cohen–Macaulay
filtrations have the same length which is equal to the length of the dimension filtration. Moreover,
Lemma 3.3 enables us to derive many examples of generalized Cohen–Macaulay filtration from a
given one. For example, let x = (x1, . . . , xd) be a good system of parameters and F : M0 ⊂ M1 ⊂
· · · ⊂ Mt = M a generalized Cohen–Macaulay filtration of M . Then the filtration 0 = N0 ⊂ N1 ⊂
· · · ⊂ Nt = M where Ni = x(n)Mi, i = 1,2, . . . , t − 1, is also a generalized Cohen–Macaulay
filtration of M , and in this example

�(Mi/Ni) = �
(
Mi/x(n)Mi

)
� n1 . . . ndi

e(x1, . . . , xdi
;Mi)

can be arbitrarily large, where di = dimMi .

Note that a characterization of sequentially generalized Cohen–Macaulay modules by the use
of modules of deficiency was proved in [7] when R possesses a dualizing complex. In the next,
without any restriction on the ground ring, we give a characterization for sequentially generalized
Cohen–Macaulay modules by means of local cohomology modules.
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Proposition 3.5. M is a sequentially generalized Cohen–Macaulay module if and only if
there exists a filtration F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M satisfying the dimension condition
such that �(M0) < ∞ and Hi

m(M/Mj) is of finite length for j = 0,1, . . . , t − 1 and i =
0,1, . . . ,dimMj+1 − 1. Moreover, in this case F is a generalized Cohen–Macaulay filtration.

Proof. Let M be a sequentially generalized Cohen–Macaulay module with a generalized Cohen–
Macaulay filtration F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M . We prove the necessary condition by
induction on the length t of the filtration. The case t = 1 is proved by Lemma 2.9(ii). Sup-
pose t > 1. We observe that 0 ⊂ M2/M1 ⊂ · · · ⊂ Mt−1/M1 ⊂ M/M1 is a generalized Cohen–
Macaulay filtration. It follows from the inductive hypothesis that Hi

m(M/Mj) is of finite length
for j = 1, . . . , t − 1 and i = 0,1, . . . ,dimMj+1 − 1. It remains to prove that �(H i

m(M)) < ∞
for i = 0,1, . . . ,dimM1 − 1. This is clear from the long exact sequence

· · · → Hi
m(M1) → Hi

m(M) → Hi
m(M/M1) → ·· ·

and the fact that M1 is a generalized Cohen–Macaulay module.
For the converse, we consider the long exact sequence

· · · → Hi−1
m (M/Mj) → Hi

m(Mj/Mj−1) → Hi
m(M/Mj−1) → ·· · .

Since Hi−1
m (M/Mj) and Hi

m(M/Mj−1) are of finite length for all i � dimMj − 1, we have
�(H i

m(Mj/Mj−1)) < ∞. Hence from Lemma 2.9, Mj/Mj−1 is generalized Cohen–Macaulay
for j = 1, . . . , t . �

Let F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M be a filtration satisfying the dimension condition and
x = (x1, . . . , xd) a good system of parameters of M with respect to F . Put di = dimMi . For
each 1 � i � d , there is j ∈ {0,1, . . . , t − 1} such that dj < i � dj+1. We consider the following
filtration

Fi : (M0 + xiM)/xiM ⊂ · · · ⊂ (Mj−1 + xiM)/xiM ⊂ (Ms + xiM)/xiM ⊂ · · · ⊂ Mt/xiM,

where s = j if dj+1 > dj + 1 and s = j + 1 if dj+1 = dj + 1. Then the following lemma is often
used in the paper.

Lemma 3.6. Let M be a sequentially generalized Cohen–Macaulay module with a general-
ized Cohen–Macaulay filtration F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M . Let x = (x1, . . . , xd) be a good
system of parameters of M with respect to F . Then for any i ∈ {1,2, . . . , d}, M/xiM is a sequen-
tially generalized Cohen–Macaulay module with the generalized Cohen–Macaulay filtration Fi

defined as above.

Proof. Let k be a positive integer. If k � j , remember the definition of the integer j correspond-
ing to the filtration Fi we get dk < i, then Mk ∩ xiM = 0 since x is a good system of parameters
with respect to F . So (Mk + xiM)/(Mk−1 + xiM) � Mk/Mk−1 and each quotient module of the
filtration

(M0 + xiM)/xiM ⊂ · · · ⊂ (Mj−1 + xiM)/xiM
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is a generalized Cohen–Macaulay module. Thus, in order to show the generalized Cohen–
Macaulay property of the filtration Fi , it remains to prove that (Ms + xiM)/(Mj−1 + xiM)

and (Mk + xiM)/(Mk−1 + xiM), k = s + 1, . . . , t , are generalized Cohen–Macaulay. Let k > j .
It is clear that xi is a parameter element of Mk . Let D : D0 ⊂ · · · ⊂ Dt ′ = M be the dimension
filtration of M . By Lemma 3.3, t ′ = t and dimDk = dimMk = dk . Since x is a good system of
parameters with respect to F and dim(0 :M xi) < dimDj+1, we have Mj ⊆ 0 :M xi ⊆ Dj and
Mk ⊆ 0 :M xdk+1 ⊆ Dk . If xia ∈ Mk ⊆ 0 :M xdk+1 then a ∈ 0 :M xixdk+1 ⊆ 0 :M xn

dk+1 ⊆ Dk for
some n  0. So xiM ∩ Mk ⊆ xiDk . We have

�
(
(xiM ∩ Mk + Mk−1)/(xiMk + Mk−1)

)
� �

(
(xiDk + Mk−1)/(xiMk + Mk−1)

)
� �(xiDk/xiMk) � �(Dk/Mk) < ∞.

Thus (xiM ∩Mk +Mk−1)/(xiMk +Mk−1) is of finite length. It should be noted that Mk/(xiMk +
Mk−1) � (Mk/Mk−1)/xi(Mk/Mk−1) is a generalized Cohen–Macaulay module. Therefore from
the short exact sequence

0 → (xiM ∩ Mk + Mk−1)/(xiMk + Mk−1) → Mk/(xiMk + Mk−1)

→ Mk/(xiM ∩ Mk + Mk−1) → 0,

we imply that (Mk + xiM)/(Mk−1 + xiM) � Mk/(xiM ∩ Mk + Mk−1) is also generalized
Cohen–Macaulay, k = j + 1, . . . , t . Hence if s = j or equivalently dj+1 > dj + 1, Fi is a gen-
eralized Cohen–Macaulay filtration. For the case s = j + 1, that is, dj+1 = dj + 1, it remains to
prove that (Mj+1 +xiM)/(Mj−1 +xiM) is generalized Cohen–Macaulay. This is immediate by
Lemma 2.9(ii) and the short exact sequence

0 → Mj/Mj−1 → (Mj+1 + xiM)/(Mj−1 + xiM) → (Mj+1 + xiM)/(Mj + xiM) → 0,

where Mj/Mj−1, (Mj+1 + xiM)/(Mj + xiM) are generalized Cohen–Macaulay modules of
dimension dj . �

We say that M is a sequentially Cohen–Macaulay module if each quotient module Di/Di−1
of the dimension filtration D0 ⊂ D1 ⊂ · · · ⊂ Dt = M of M is a Cohen–Macaulay module, i =
1, . . . , t . M is called a locally sequentially Cohen–Macaulay module if for all p ∈ SuppM,p 
= m,
Mp is sequentially Cohen–Macaulay. By Lemma 2.9, a generalized Cohen–Macaulay module is
locally Cohen–Macaulay and the converse holds if R is a factor of a Cohen–Macaulay ring and
M is equidimensional. There is a similar result for sequentially generalized Cohen–Macaulay
modules, however, there is no requirement concerning the equidimensional property of M .

Proposition 3.7. A sequentially generalized Cohen–Macaulay module is locally sequentially
Cohen–Macaulay. The converse is true provided R is a factor of a Cohen–Macaulay ring.

Proof. Let D : D0 ⊂ D1 ⊂ · · · ⊂ Dt = M be the dimension filtration of M and p ∈ SuppM ,
p 
= m. Assume that SuppM is catenary. Using Proposition 2.4 of [15] we imply that there
are a sequence of non-negative integers 0 � i0 < i1 < · · · < is � t defined recursively by



724 N.T. Cuong, D.T. Cuong / Journal of Algebra 317 (2007) 714–742
is = min{j : (Dj )p = Mp} and ik = min{j : (Dj )p = (Dik+1−1)p} for k = s − 1, . . . ,1,0 such
that the filtration

(Di0)p ⊂ (Di1)p ⊂ · · · ⊂ (Dis )p = Mp (�)

is the dimension filtration of Mp.
Assume that M is a sequentially generalized Cohen–Macaulay module and p ∈ SuppM ,

p 
= m. So SuppM = ⋃
i SuppDi/Di−1 is catenary and Mp has the dimension filtration as in (�).

Since Dik/Dik−1 is locally Cohen–Macaulay, (Dik /Dik−1)p = (Dik /Dik−1)p is Cohen–Macaulay
and Mp is sequentially Cohen–Macaulay. For the converse, assume in addition that R is a factor
of a Cohen–Macaulay ring. Then R is catenary and Mp has the dimension filtration as in (�)
for p ∈ SuppM , p 
= m. If p ∈ SuppDi/Di−1 or equivalently, (Di)p 
= (Di−1)p, then i = ik for
some k and (Di/Di−1)p = (Dik /Dik−1)p is Cohen–Macaulay since Mp is a sequentially Cohen–
Macaulay module. Combining this with the fact that Di/Di−1 is equidimensional and R is a
factor of a Cohen–Macaulay ring we imply that Di/Di−1 is a generalized Cohen–Macaulay
module. So M is a sequentially generalized Cohen–Macaulay module. �

The next result, though its proof is simple, is the starting point for our study of sequentially
generalized Cohen–Macaulay modules in the rest of the paper.

Theorem 3.8. Let M be a sequentially generalized Cohen–Macaulay module with a generalized
Cohen–Macaulay filtration F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M and x = (x1, . . . , xd) a good system
of parameters with respect to F . Then IF ,M(x(n)) is a constant for all n1, . . . , nd large enough
(n1, . . . , nd  0 for short).

Proof. Since IF ,M(x(n)) is non-decreasing by Lemma 2.4, it suffices to prove that IF ,M(x(n))

is bounded above by a constant. Put di = dimMi . We have

�
(
M/x(n)M

) = �
(
M/x(n)M + Mt−1

) + �
(
x(n)M + Mt−1/x(n)M

)
� �

(
M/x(n)M + Mt−1

) + �
(
Mt−1/(x

n1
1 , . . . , x

ndt−1
dt−1

)Mt−1
)
.

Note that (x
n1
1 , . . . , x

ndi

di
) is a good system of parameters of Mi with respect to the filtration M0 ⊂

M1 ⊂ · · · ⊂ Mi , i = 1,2, . . . , t . By induction on t we have

�
(
M/x(n)M

)
�

t∑
i=1

�
(
Mi/

(
x

n1
1 , . . . , x

ndi

di

)
Mi + Mi−1

) + �(M0).

Since Mi/Mi−1 is generalized Cohen–Macaulay, there exists an integer c � 0 such that

�
(
Mi/(x

n1
1 , . . . , x

ndi

di
)Mi + Mi−1

)
� e

(
x

n1
1 , . . . , x

ndi

di
;Mi/Mi−1

) + c

= e
(
x

n1
1 , . . . , x

ndi

di
;Mi

) + c

for all n1, . . . , nd > 0 and i = 1, . . . , t . Hence,
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�
(
M/x(n)M

)
�

t∑
i=1

e
(
x

n1
1 , . . . , x

ndi

di
;Mi

) + �(M0) + tc

and so IF ,M(x(n)) � tc for all n1, . . . , nd > 0. �
A consequence of Theorem 3.8 is the existence of a dd-sequence on a sequentially generalized

Cohen–Macaulay module following Remark 2.3(iii) and Proposition 2.7. Roughly speaking, dd-
sequence is another version of p-standard system of parameters defined in [4], see also [13,14].
In the case of generalized Cohen–Macaulay module, dd-sequence coincides with the notion of
standard system of parameters defined in [20]. Standard system of parameters is a powerful
tool in studying generalized Cohen–Macaulay modules. p-standard systems of parameters or
dd-sequences themselves also have many nice properties and provide a useful tool for studying
the structure of non-generalized Cohen–Macaulay modules, see [4–6,13,14]. However, there are
examples of modules of which no system of parameters is a dd-sequence. As far as we know,
there are only some sufficient conditions for the existence of these systems of parameters, for
instance, when the ground ring is a homomorphic image of a Gorenstein ring. The following
consequence of Theorem 3.8 provides another condition.

Corollary 3.9. Let M be a sequentially generalized Cohen–Macaulay module with a gener-
alized Cohen–Macaulay filtration F and x = (x1, . . . , xd) a good system of parameters of M

with respect to F . Then x is a dd-sequence if and only if IF ,M(x(n)) is a constant for all
n1, . . . , nd > 0. In particular, for a sequentially generalized Cohen–Macaulay module M there
always exist systems of parameters, which are dd-sequences on M .

Proof. If IF ,M(x(n)) is a constant then x is a dd-sequence by Proposition 2.7. Vice versa, any
dd-sequence is a good system of parameters and IF ,M(x(n)) is a polynomial in n1, . . . , nd .
Then IF ,M(x(n)) must be a constant for all n1, . . . , nd > 0 by Theorem 3.8. Moreover, if x is a
good system of parameters of M , then IF ,M(x(n)) is non-decreasing and is bounded above by
a constant, so it coincides with a constant for n1, . . . , nd  0. Therefore the existence of a dd-
sequence on M follows from the first conclusion and the existence of good system of parameters
of M . �
4. The invariant IF (M)

Let M be an arbitrary module with a filtration F satisfying the dimension condition. We put

IF (M) = sup
x

IF ,M(x),

where the supremum is taken over the set of good systems of parameters of M with respect to F .
By Theorem 3.8, if F is a generalized Cohen–Macaulay filtration and x is a good system of pa-
rameters with respect to F then IF ,M(x(n)) is a constant for all n1, . . . , nd  0. The aim of this
section is to show that this constant does not depend on the choice of good systems of parame-
ters and is exactly IF (M). Moreover we can compute it by lengths of certain local cohomology
modules. It should be noticed that when M is a generalized Cohen–Macaulay module and F is
the filtration 0 ⊂ M , IF (M) is exactly the Buchsbaum invariant I (M), which is defined as the
supremum of �(M/xM) − e(x;M) taking over all systems of parameters of M (see [17]). So
IF (M) < ∞ in this case.
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Proposition 4.1. Let M be a sequentially generalized Cohen–Macaulay module and F : M0 ⊂
M1 ⊂ · · · ⊂ Mt = M a generalized Cohen–Macaulay filtration of M . We have

IF (M) �
t−1∑
i=0

I (Mi+1/Mi).

In particular, IF (M) < ∞.

Proof. Let x = (x1, . . . , xd) be a good system of parameters of M with respect to F . Put
di = dimMi . From the proof of Theorem 3.8 we obtain

�(M/xM) �
t−1∑
i=0

�
(
Mi+1/(x1, . . . , xdi+1)Mi+1 + Mi

) + �(M0).

Hence,

IF ,M(x) �
t−1∑
i=0

(
�(Mi+1/(x1, . . . , xdi+1)Mi+1 + Mi) − e(x1, . . . , xdi+1;Mi+1)

)

�
t−1∑
i=0

I (Mi+1/Mi).

Taking the supremum of the left-hand side over all good systems of parameters with respect to
F we get the result. �

In the next, we will present a computation of IF (M) by means of lengths of certain local
cohomology modules. First we need an auxiliary lemma. Recall that a sequence (x1, . . . , xs) of
elements in m is said to be a strong d-sequence on M if (x

n1
1 , . . . , x

ns
s ) is d-sequence for any

n1, . . . , ns > 0 (see [10]).

Lemma 4.2. Let x = (x1, . . . , xd) be a system of parameters of M and N ⊂ M a submodule.
Assume that x is a strong d-sequence on M and N ⊆ 0 :M xd . Then we have the following exact
sequence for i < d − 1 and n � 3:

0 → Hi
m(M/N) → Hi

m

(
M/xn

dM + N
) → Hi+1

m (M/0 : xd) → 0.

Proof. Since x is a strong d-sequence, the proof of Lemma 2.9 of [4] implies that
xjH

i
m(M/(x1, . . . , xh)M) = 0 for j = 1, . . . , d, h+ i < j . So in our case we have xdH i

m(M) = 0
for all i < d . By then from the long exact sequence

· · · → Hi
m(M) → Hi

m(M/0 :M xd) → Hi+1
m (0 :M xd) → ·· ·

we obtain x2
dH i

m(M/0 :M xd) = 0 for all i < d . On the other hand, since 0 : xn
d = 0 : xd , we have

a commutative diagram
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0 M/0 :M xd

.xn
d

.x2
d

M/N M/xn
dM + N

p

0

0 M/0 :M xd

.xn−2
d

M/N M/xn−2
d M + N 0,

where p is the natural projection. The above diagram derives the following commutative diagram

· · · Hi
m(M/0 :M xd)

ψi

.x2
d

H i
m(M/N) Hi

m(M/xn
dM + N) · · ·

· · · Hi
m(M/0 :M xd)

ϕi

H i
m(M/N) Hi

m(M/xn−2
d M + N) · · · ,

where ψi,ϕi are maps derived from the maps

M/0 :M xd

.xn
d−−→ M/N and M/0 :M xd

.xn−2
d−−−→ M/N,

respectively. It implies that ψi = 0 for all i < d since x2
2Hi

m(M/0 :M xd) = 0. So we obtain a
short exact sequence for each i < d − 1,

0 → Hi
m(M/N) → Hi

m

(
M/xn

dM + N
) → Hi+1

m (M/0 :M xd) → 0. �
Theorem 4.3. Let M be a sequentially generalized Cohen–Macaulay module with a generalized
Cohen–Macaulay filtration F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M . Put di = dimMi . We have

IF (M) = �
(
H 0

m(M/M0)
) +

t−1∑
i=0

di+1−1∑
j=1

cij �
(
H

j
m(M/Mi)

)
,

where cij = ∑di+1−1
k=di

(
k−1
j−1

)
and we stipulate that

(
k−1
j−1

) = 0 if k < j .

Proof. Let x = (x1, . . . , xd) be a good system of parameters of M with respect to F . Since
IF ,M(x(n)) is non-decreasing, it suffices to prove that

IF ,M

(
x(n)

) = �
(
H 0

m(M/M0)
) +

t−1∑
i=0

di+1−1∑
j=1

di+1−1∑
k=di

(
k − 1

j − 1

)
�
(
H

j
m(M/Mi)

)
,

for all n1, . . . , nd  0. We prove this by induction on the dimension d of M . Let d = 1. Since x1
is a system of parameters of M , x

n1
1 M ∩ H 0

m(M) = 0 for n1  0. So

�
(
M/x

n1
1 M

) = �
(
M/

(
x

n1
1 M + H 0

m(M)
)) + �

(
H 0

m(M)
) = e

(
x

n1
1 ,M

) + �
(
H 0

m(M)
)
.

This implies that IF ,M(x
n1
1 ) = �(H 0

m(M))− �(M0) = �(H 0
m(M/M0)), for all n1  0. Let d > 1.

By Lemma 3.6, the following filtration is generalized Cohen–Macaulay
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Fd : (M0 + x
nd

d M
)
/x

nd

d M ⊂ · · · ⊂ (
Ms + x

nd

d M
)
/x

nd

d M ⊂ M/x
nd

d M,

where s = t − 1 if dt−1 < d − 1, s = t − 2 if dt−1 = d − 1. Note that Mi ∩ x
nd

d M = 0, then
(x

nd

d M + Mi)/x
nd

d M � Mi for i = 0,1, . . . , s and (x1, . . . , xd−1) is a good system of parameters
of M/x

nd

d M with respect to Fd . Thus

IFd ,M/x
nd
d M

(
x

n1
1 , . . . , x

nd−1
d−1

) = �
(
M/x(n)M

) − e
(
x

n1
1 , . . . , x

nd−1
d−1 ;M/x

nd

d M
)

−
s∑

i=0

e
(
x

n1
1 , . . . , x

ndi

di
;Mi

)
.

On the other hand, since M/Mt−1 is generalized Cohen–Macaulay, (0 :M x
nd

d )/Mt−1 is of finite
length. Therefore, if dt−1 = d − 1 then

e
(
x

n1
1 , . . . , x

nd−1
d−1 ;M/x

nd

d M
) = e

(
x(n);M) + e

(
x

n1
1 , . . . , x

nd−1
d−1 ;0 :M x

nd

d

)
= e

(
x(n);M) + e

(
x

n1
1 , . . . , x

nd−1
d−1 ;Mt−1

)
.

Otherwise, if dt−1 < d − 1, e(x
n1
1 , . . . , x

nd−1
d−1 ;M/x

nd

d M) = e(x(n);M). So in both cases,
IFd ,M/x

nd
d M

(x
n1
1 , . . . , x

nd−1
d−1 ) = IF ,M(x(n)) and we have by the inductive hypothesis,

IF ,M

(
x(n)

) = �
(
H 0

m

(
M/

(
x

nd

d M + M0
))) +

d−2∑
j=1

d−2∑
k=ds

(
k − 1

j − 1

)
�
(
H

j
m

(
M/

(
x

nd

d M + Ms

)))

+
s−1∑
i=0

di+1−1∑
j=1

di+1−1∑
k=di

(
k − 1

j − 1

)
�
(
H

j
m

(
M/

(
x

nd

d M + Mi

)))
,

for all n1, . . . , nd−1  0. By Theorem 3.8, IF ,M(x(n)) is a constant for all n1, . . . , nd  0, hence
from Corollary 3.9, x(n) is a dd-sequence on M for all n1, . . . , nd  0. For nd > 2 we can apply
Lemma 4.2 to M and N = Mi to get the following short exact sequence for i = 0,1, . . . , t − 1,
j < d − 1,

0 → H
j
m(M/Mi) → H

j
m

(
M/x

nd

d M + Mi

) → H
j+1
m (M/0 :M xd) → 0.

Note that H
j+1
m (M/0 :M xd) ∼= H

j+1
m (M/Mt−1) because (0 :M xd)/Mt−1 is of finite length.

Hence

�
(
H

j
m

(
M/x

nd

d M + Mi

)) = �
(
H

j
m(M/Mi)

) + �
(
H

j+1
m (M/Mt−1)

)
for i = 0,1, . . . , t − 1, j < di+1. Therefore, for all n1, . . . , nd  0,

IF ,M

(
x(n)

) = �
(
H 0

m(M/M0)
) + �

(
H 1

m(M/Mt−1)
)

+
d−2∑ d−2∑ (

k − 1

j − 1

)(
�
(
H

j
m(M/Ms)

) + �
(
H

j+1
m (M/Mt−1)

))

j=1 k=ds
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+
s−1∑
i=0

di+1−1∑
j=1

di+1−1∑
k=di

(
k − 1

j − 1

)(
�
(
H

j
m(M/Mi)

) + �
(
H

j+1
m (M/Mt−1)

))

= �
(
H 0

m(M/M0)
) +

t−1∑
i=0

di+1−1∑
j=1

di+1−1∑
k=di

(
k − 1

j − 1

)
�
(
H

j
m(M/Mi)

)
. �

It is proved in [6, Theorem 3.9] (and Proposition 4.1) that M is a sequentially Cohen–
Macaulay module if and only if ID,M(x) = 0 for all good systems of parameters x and D is
the dimension filtration of M . In other words, M is a sequentially Cohen–Macaulay module if
and only if ID(M) = 0. Hence the following characterization of sequentially Cohen–Macaulay
modules in terms of local cohomology modules is an immediate consequence of Theorem 4.3.

Corollary 4.4. Let D : D0 ⊂ D1 ⊂ · · · ⊂ Dt = M be the dimension filtration of M . M is a
sequentially Cohen–Macaulay module if and only if H

j
m(M/Di−1) = 0 for all j < dimDi , i =

1, . . . , t .

Corollary 4.5. Let M be a sequentially generalized Cohen–Macaulay module, F a general-
ized Cohen–Macaulay filtration and x = (x1, . . . , xd) a good system of parameters of M with
respect to F . Then IF ,M(x(n)) � IF (M) for all n1, . . . , nd > 0 and the equality holds for
n1, . . . , nd  0. In particular, x is a dd-sequence on M if and only if IF ,M(x) = IF (M).

Corollary 4.6. Let M be a sequentially generalized Cohen–Macaulay module and F : M0 ⊂
M1 ⊂ · · · ⊂ Mt = M and F ′ : N0 ⊂ N1 ⊂ · · · ⊂ Nt = M two generalized Cohen–Macaulay
filtrations of M . Then

IF (M) − IF ′(M) = �
(
H 0

m(M/M0)
) − �

(
H 0

m(M/N0)
)
.

Proof. First note that all generalized Cohen–Macaulay filtrations of M have the same length. Let
D0 ⊂ D1 ⊂ · · · ⊂ Dt = M be the dimension filtration of M . From Lemma 3.3, Di/Mi , Di/Ni

are of finite length for i = 0,1, . . . , t . Hence H
j
m(M/Mi) � H

j
m(M/Di) � H

j
m(M/Ni) for all

j > 0, i = 0,1, . . . , t − 1, and the conclusion follows from Theorem 4.3. �
Corollary 4.7. Let M be a sequentially generalized Cohen–Macaulay module with
depth(M) > 0. Then IF (M) = IF ′(M) for two arbitrary generalized Cohen–Macaulay filtra-
tions F , F ′ of M .

If M is a generalized Cohen–Macaulay module and F : M0 ⊂ M1 = M is a generalized
Cohen–Macaulay filtration then it is obvious that IF (M) = I (M/M0). Moreover, we showed
in [6] that if F is a Cohen–Macaulay filtration, this means that each Mi+1/Mi is Cohen–
Macaulay for i = 0, . . . , t − 1, then IF (M) = ∑t−1

i=0 I (Mi+1/Mi) = 0. So one might expect
that the inequality in Proposition 4.1 becomes an equality in general. Unfortunately, the answer
is negative even F is the dimension filtration of M . We have the following example.

Example 4.8. Let R = k[[X1,X2,X3,X4,X5,X6]] be the ring of all formal power series over a
field k. We consider the ideals I = (X1,X2,X3) ∩ (X4,X5,X6) and J = (X2,X3,X4,X5). Put
M = R/I ∩ J , then dimM = 3. The following filtration is the dimension filtration of M ,
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D : 0 = D0 ⊂ D1 ⊂ D2 = M,

where D1 = I/I ∩ J � (I + J )/J � X1X6(R/J ) is Cohen–Macaulay with dimD1 = 2 and
M/D1 = R/I is a generalized Cohen–Macaulay module. Therefore M is a sequentially gener-
alized Cohen–Macaulay module. Let x1 = X1 + X5, x2 = X3 + X6, x3 = X2 + X4. It could be
verified directly that (x1, x2, x3) is a good system of parameters of M and

�
(
M/

(
x

n1
1 , x

n2
2 , x

n3
3

)
M

) = 2n1n2n3 + n1n2 + 1,

�
(
(M/D1)/

(
x

n1
1 , x

n2
2 , x

n3
3

)
(M/D1)

) = 2n1n2n3 + 2,

for all n1, n2, n3 > 0. So (x1, x2, x3) is a dd-sequence on both M and M/D1. Hence, ID(M) =
ID,M(x1, x2, x3) = 1 and I (M/D1) = 2. Therefore

ID(M) = 1 < 0 + 2 = I (D1) + I (M/D1).

In the next we will give a necessary and sufficient condition for the inequality mentioned in
Lemma 4.1 becomes an equality.

Proposition 4.9. Let M be a sequentially generalized Cohen–Macaulay module with a
generalized Cohen–Macaulay filtration F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M . Then IF (M) =∑t−1

i=0 I (Mi+1/Mi) if and only if we have the following short exact sequences

0 → H
j
m(Mi+1/Mi) → H

j
m(M/Mi) → H

j
m(M/Mi+1) → 0,

for i = 0,1, . . . , t − 1, j = 0,1, . . . ,dimMi+1 − 1.

Proof. Denote di = dimMi , i = 0,1, . . . , t . From the long exact sequence

· · · → H
j
m(Mi+1/Mi) → H

j
m(M/Mi) → H

j
m(M/Mi+1) → ·· ·

we imply for j < di+1 that �(H
j
m(Mi+1/Mi)) � �(H

j
m(M/Mi)) − �(H

j
m(M/Mi+1)). So

t−1∑
i=0

I (Mi+1/Mi) =
t−1∑
i=0

di+1−1∑
j=0

(
di+1 − 1

j

)
�
(
H

j
m(Mi+1/Mi)

)

�
t−1∑
i=0

di+1−1∑
j=0

(
di+1 − 1

j

)(
�
(
H

j
m(M/Mi)

) − �
(
H

j
m(M/Mi+1)

))

=
t−1∑
i=0

di+1−1∑
j=0

((
di+1 − 1

j

)
−

(
di − 1

j

))
�
(
H

j
m(M/Mi)

)
= IF (M).
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Therefore, IF (M) = ∑t−1
i=0 I (Mi+1/Mi) if and only if �(H

j
m(Mi+1/Mi)) = �(H

j
m(M/Mi)) −

�(H
j
m(M/Mi+1)) for all j < di+1, i = 0,1, . . . , t − 1. From the above long exact sequence of

local cohomology modules again, this is equivalent to the exactness of the following sequences

0 → H
j
m(Mi+1/Mi) → H

j
m(M/Mi) → H

j
m(M/Mi+1) → 0,

for all j < di+1, i = 0,1, . . . , t − 1. �
Remark 4.10. In Theorem 4.3, the assumption that F is a generalized Cohen–Macaulay filtration
is quite important. For instance, keep all hypothesis in Theorem 4.3, let F ′ be the filtration
0 ⊂ M . Assume that x is a good system of parameters of M such that IF ,M(x(n)) is constant for
all n1, . . . , nd > 0. We have

IF ′,M
(
x(n)

) = �
(
M/x(n)M

) − e
(
x(n);M) =

t−1∑
i=0

n1 . . . ndi
e(x1, . . . , xdi

;Mi) + IF (M).

So IF ′(M) = ∞ if t > 1.

5. Parametric characterizations

In the previous sections we have proved the existence of dd-sequence on a sequentially gen-
eralized Cohen–Macaulay module and used it to study some properties of these modules. It is
shown that IF (M) = supx{IF ,M(x)} is finite provided F is a generalized Cohen–Macaulay fil-
tration of M , where the supremum is taken over all good systems of parameters with respect
to F . In this section, we will show that the sequentially generalized Cohen–Macaulayness of M

can be characterized by the condition IF (M) < ∞, where the filtration F is not necessarily a
generalized Cohen–Macaulay filtration. Moreover, we will prove several characterizations of se-
quentially generalized Cohen–Macaulay property in terms of good systems of parameters. We
begin with the following technical lemma.

Lemma 5.1. Suppose that there exist a filtration F satisfying the dimension condition and a good
system of parameters x = (x1, . . . , xd) of M with respect to F such that IF ,M(x(n)) is a constant
for all n1, . . . , nd > 0. Then (xdM : xi)/(xdM + 0 :M xi) is of finite length for i = 1, . . . , d − 1.

Proof. It suffices to prove that (x)(xdM : xi) ⊆ xdM + 0 :M xi . Let D : D0 ⊂ D1 ⊂ · · ·
⊂ Dt = M be the dimension filtration of M with di = dimDi , i = 0,1, . . . , t . Since IF ,M(x(n))

is a constant for all n1, . . . , nd > 0, we imply by Proposition 2.7 that x is a dd-sequence
on M . Therefore ID,M(x(n)) is a polynomial in n1, . . . , nd . It is clear by Remark 2.3(ii) and
Lemma 2.4 that 0 � ID,M(x(n)) � IF ,M(x(n)). Thus ID,M(x(n)) = c is also a constant for all
n1, . . . , nd > 0. We prove the lemma by induction on the length t of the dimension filtration
D. Note that the case i = 1 is trivial since (x1, . . . , xd−1) is a d-sequence on M/xdM . If t = 1
then ID,M(x(n)) = �(M/x(n)M) − e(x(n);M) − �(D0) is constant for all n1, . . . , nd > 0. Thus
(x1, . . . , xd) is a dd-sequence in any order. Hence xdM : xi = xdM : xj for all i, j < d and
(x)(xdM : xi) ⊆ xdM ⊆ xdM + 0 :M xi .

For each t > 1 we prove the assertion by induction on d1. Let d1 = 1. Since D1 = 0 :M x2 and
(x1, x2) is a strong d-sequence, it follows by Lemma 2.8 that
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D1 ∩ x(n)M = D1 ∩ x
n1
1 M = x

n1
1 D1.

Hence

�
(
M/x(n)M + D1

) = �
(
M/x(n)M

) − �
(
D1/x

n1
1 D1

) =
t∑

i=2

e
(
x

n1
1 , . . . , x

ndi

di
;Di

) + c.

Note that M/D1 has the dimension filtration

D′ : 0 ⊂ D2/D1 ⊂ · · · ⊂ Dt/D1 = M/D1

and e(x
n1
1 , . . . , x

ndi

di
;Di) = e(x

n1
1 , . . . , x

ndi

di
;Di/D1), i > 1. Thus ID′,M/D1(x(n)) = c. Applying

the inductive hypothesis to D′ we obtain

(x1, . . . , xd−1)
[
xd(M/D1) : xi

] ⊆ xd(M/D1) + (0 : xi)M/D1

for all 1 < i < d . Thus

(x1, . . . , xd−1)
[
(xdM + D1) : xi

] ⊆ xdM + D1 : xi = xdM + 0 :M xi,

since x is a d-sequence on M . So (x1, . . . , xd)(xdM : xi) ⊆ xdM + 0 :M xi .
Assume d1 > 1. It is easy to check that the following filtration of M/x

n1
1 M satisfies the di-

mension condition

D1 : (xn1
1 M + D0

)
/x

n1
1 M ⊂ · · · ⊂ (

x
n1
1 M + Dt−1

)
/x

n1
1 M ⊂ M/x

n1
1 M,

where (x
n1
1 M + Di)/x

n1
1 M � Di/Di ∩ x

n1
1 M = Di/x

n1
1 Di . Hence

e
(
x

n2
2 , . . . , x

ndi

di
; (xn1

1 M + Di

)
/x

n1
1 M

) = e
(
x

n2
2 , . . . , x

ndi

di
;Di/x

n1
1 Di

)
= e

(
x

n1
1 , . . . , x

ndi

di
;Di

)
.

Therefore ID1,M/x
n1
1 M

(x
n2
2 , . . . , x

nd

d ) = ID,M(x(n)) = c for all n1, . . . , nd . Note that

dim
(
x

n1
1 M + D1

)
/x

n1
1 M = dimD1/x

n1
1 D1 = d1 − 1.

Using the inductive hypothesis we obtain

(x2, . . . , xd)
[
xd

(
M/x

n1
1 M

) : xi

] ⊆ xd

(
M/x

n1
1 M

) + (0 : xi)M/x
n1
1 M

.

In other words, (x2, . . . , xd)[(xd, x
n1
1 )M : xi] + x

n1
1 M ⊆ xdM + x

n1
1 M : xi . Moreover, since x

is a dd-sequence it is easy to show that xn
1 M : xi ⊆ xn−1

1 M + 0 :M xi for all n > 0. By Krull’s
Intersection Theorem we have
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(x2, . . . , xd)(xdM : xi) ⊆
⋂
n1

(
(x2, . . . , xd)

[(
xd, x

n1
1

)
M : xi

] + x
n1
1 M

)

⊆
⋂
n1

(
xdM + x

n1
1 M : xi

)

⊆
⋂
n1

(
xdM + x

n1−1
1 M + 0 :M xi

) = xdM + 0 :M xi.

We also have ID,M(x
n2
2 , x

n1
1 , x

n3
3 , . . . , x

nd

d ) = c since d1 � 2. Applying the same method to the
sequence (x2, x1, x3, . . . , xd) we get (x1, x3, . . . , xd)(xdM : xi) ⊆ xdM + 0 :M xi . So (x)(xdM :
xi) ⊆ xdM + 0 :M xi as required. �
Theorem 5.2. Let M be a finitely generated R-module of dimension d . The following statements
are equivalent:

(i) M is a sequentially generalized Cohen–Macaulay module.
(ii) There exists a filtration F of submodules of M satisfying the dimension condition such that

IF (M) < ∞.
(iii) There exists a filtration F of submodules of M satisfying the dimension condition and a

good system of parameters x = (x1, . . . , xd) of M with respect to F such that IF ,M(x(n))

is a constant for all n1, . . . , nd > 0.

Proof. (i) ⇒ (ii) is the content of Theorem 4.3.
(ii) ⇒ (iii) is straightforward since IF ,M(x(n)) is non-decreasing.
(iii) ⇒ (i). Let D : D0 ⊂ · · · ⊂ Dt = M be the dimension filtration of M . By the same argu-

ment as in the proof of Lemma 5.1 we get that ID,M(x(n)) is a constant for all n1, . . . , nd > 0.
Now, we argue the statement by induction on d . The case d = 1 is trivial since M is a generalized
Cohen–Macaulay module. Assume that d > 1. Consider the following filtration of M/xdM

Dd : (xdM + D0)/xdM ⊂ · · · ⊂ (xdM + Ds)/xdM ⊂ M/xdM,

where s = t − 1 if dt−1 < d − 1 and s = t − 2 if dt−1 = d − 1. Since x is a good system of
parameters of M , Di ∩ xdM = 0 and (Di + xdM)/xdM � Di for all i = 0,1, . . . , t − 1. So
dim(Di + xdM)/xdM = di and Dd satisfies the dimension condition. Since (x1, . . . , xd−1) is
a dd-sequence on M/xdM , it is a good system of parameters of M/xdM by Lemma 2.6. It
is not difficult to verify that IDd ,M/xdM(x

n1
1 , . . . , x

nd−1
d−1 ) = ID,M(x(n)) = c for a non-negative

constant c and all n1, . . . , nd−1 > 0, nd = 1. Therefore, from the inductive hypothesis M/xdM

is a sequentially generalized Cohen–Macaulay module. By Remark 2.3(iv), there is a sequence
of integers l0 < l1 < · · · < lr such that the filtration

D : D0 = (0 : x1)M/xdM ⊂ D1 = (0 : xl1+1)M/xdM ⊂ · · ·
⊂ Dr = (0 : xlr+1)M/xdM ⊂ M/xdM

is the dimension filtration of M/xdM with dimDk = lk . By Remark 2.3(ii), for each 0 � i � s

there is a k such that lk = di and (Di + xdM)/xdM ⊆ Dk . Hence,
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e(x1, . . . , xlk ;Dk) � e
(
x1, . . . , xdi

; (Di + xdM)/xdM
)
.

On the other hand, since

0 � ID,M/xdM

(
x

n1
1 , . . . , x

nd−1
d−1

)
� IDd ,M/xdM

(
x

n1
1 , . . . , x

nd−1
d−1

) = c

for all n1, . . . , nd−1 > 0, it follows that

r∑
k=0

n1 . . . nlk e(x1, . . . , xlk ;Dk) � c +
s∑

i=0

n1 . . . ndi
e
(
x1, . . . , xdi

; (Di + xdM)/xdM
)
.

Therefore we obtain r = s and ik = dk for k = 0,1, . . . , s. It should be noted that

Di/(xdM + Di/xdM) � (xdM : xdi+1)/(xdM + Di) = (xdM : xdi+1)/(xdM + 0 :M xdi+1)

is of finite length by Lemma 5.1, and so Dd is a generalized Cohen–Macaulay filtration by
Lemma 3.3. Thus each quotient Di/Di−1 for i = 1, . . . , s and M/xdM + Ds are generalized
Cohen–Macaulay modules. Now, replace xd by x3

d . We have to consider two cases.

Case 1. dt−1 < d − 1, then s = t − 1 and it remains to prove that M/Dt−1 is a generalized
Cohen–Macaulay module. Applying Lemma 4.2 to the module M with N = Dt−1 and the dd-
sequence x, we have the following short exact sequence for i < d ,

0 → Hi−1
m (M/Dt−1) → Hi−1

m

(
M/x3

dM + Dt−1
) → Hi

m(M/Dt−1) → 0.

We have just proved that M/x3
dM + Dt−1 is a generalized Cohen–Macaulay module. There-

fore �(H i
m(M/Dt−1)) � �(H i−1

m (M/x3
dM + Dt−1)) < ∞, i = 1,2, . . . , d − 1, and M/Dt−1 is a

generalized Cohen–Macaulay module.

Case 2. dt−1 = d − 1, then s = t − 2. We need to prove that M/Dt−1 and Dt−1/Dt−2 are
generalized Cohen–Macaulay. Using Lemma 4.2 for M and N = Dt−2 we have a short exact
sequence

0 → Hi−1
m (M/Dt−2) → Hi−1

m

(
M/x3

dM + Dt−2
) → Hi

m(M/Dt−1) → 0

for all i < d . Since M/x3
dM + Dt−2 is generalized Cohen–Macaulay, �(H i

m(M/Dt−1)) �
�(H i−1

m (M/x3
dM + Dt−2)) < ∞. Therefore M/Dt−1 is generalized Cohen–Macaulay. It should

be noted that Dt−1 ∩ xdM = 0. We have a short exact sequence

0 → Dt−1/Dt−2 → M/xdM + Dt−2 → M/xdM + Dt−1 → 0.

Since M/xdM + Dt−1 and M/xdM + Dt−2 are both generalized Cohen–Macaulay of dimen-
sion d − 1, so is Dt−1/Dt−2, and the proof of Theorem 5.2 is complete. �
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It is known that M is a generalized Cohen–Macaulay module if and only if for every system
of parameters x = (x1, . . . , xd), (x

n1
1 , . . . , x

nd

d ) is a d-sequence for all n1, . . . , nd  0. This result
raises a nature question: whether M is a sequentially Cohen–Macaulay module if there is a
filtration F such that for every good system of parameters x with respect to F , (x

n1
1 , . . . , x

nd

d )

is a dd-sequence on M for all n1, . . . , nd  0. Unfortunately the answer is negative as in the
following example.

Example 5.3. Let S = k[[x, y, z, t,w]] be the ring of formal power series with coefficients in a
field k. Put R = S/(yt, yw, zt, zw). Then dimR = 3 and the non-Cohen–Macaulay locus of R

is

NCM(R) = {p ∈ SpecR: Rp is not Cohen–Macaulay} = V (y, z, t,w).

Put M1 = R/(y, z, t,w) and M = M1 ⊕ R. M has the dimension filtration D : 0 ⊂
M1 ⊂ M . D is not a generalized Cohen–Macaulay filtration since M/M1 � R is not a
generalized Cohen–Macaulay ring (dim NCM(R) = 1). Let x = (x1, x2, x3) be a good sys-
tem of parameters of M . Then x2, x3 ∈ AnnM1 = (y, z, t,w) = Rad(a(R)) where a(R) =
AnnH 0

m(R)AnnH 1
m(R)AnnH 2

m(R). By [5, Corollary 3.9], (x
n1
1 , x

n2
2 , x

n3
3 ) is a dd-sequence for

all n1, n2, n3  0.

In the next example, we want to clarify that the filtration F mentioned in Theorem 5.2 does
not need to be a generalized Cohen–Macaulay filtration.

Example 5.4. Let R = k[[x, y, z,w]] be the ring of formal power series over a field k. We put
M = R/(xy, xz) and M1 = (xy, xz, xw)/(xy, xz). Then dimM = 3, dimM1 = 2 and the filtra-
tion F : 0 ⊂ M1 ⊂ M satisfies the dimension condition. Note that M/M1 � R/(xy, xz, xw) =
R/(x) ∩ (y, z,w) is not a generalized Cohen–Macaulay module, thus F is not a generalized
Cohen–Macaulay filtration. On the other hand, it is easy to verify that (w,x + y, z) is a good
system of parameters of M with respect to F and

�
(
M/

(
wl, (x + y)m, zn

)
M

) = lmn + lm = lmne(w,x + y, z;M) + lme(w,x + y;M1).

In other words, IF ,M(wl, (x + y)m, zn) = 0 for all l,m,n > 0. Thus M is a sequentially gener-
alized Cohen–Macaulay module by Theorem 5.2.

More general, let M be a sequentially generalized Cohen–Macaulay module with the di-
mension filtration D : D0 ⊂ D1 ⊂ · · · ⊂ Dt = M . By Lemma 3.3, D is a generalized Cohen–
Macaulay filtration. Let x = (x1, . . . , xd) be a good system of parameters of M . We consider the
following filtration F : 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = M where Mi = x1Di for all 0 < i < t . Put
di = dimDi . Since (x1, . . . , xdi

) is a system of parameters of Di , dimDi/x1Di = di − 1 for all
i > 0. So by Lemma 3.3, F is not a generalized Cohen–Macaulay filtration if t � 3 or t = 2 � d1.
On the other hand, e(x1, . . . , xdi

;Mi) = e(x1, . . . , xdi
;Di) for all i > 0 and

IF ,M

(
x(n)

) = ID,M

(
x(n)

) + �(D0)

which is bounded above by a constant for all n1, . . . , nd > 0.
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The following theorem gives a finite criterion for the sequentially generalized Cohen–
Macaulay property.

Theorem 5.5. A finitely generated R-module M is a sequentially generalized Cohen–Macaulay
module if and only if there exist a filtration F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M satisfying the dimen-
sion condition and a good system of parameters x = (x1, . . . , xd) with respect to F such that
IF ,M(x1, . . . , xd) = IF ,M(x2

1 , . . . , x2
d).

Proof. Put IF ,M(x1, . . . , xd) = c. By Theorem 5.2 it suffices to prove that IF ,M(x(n)) = c for
all n1, . . . , nd > 0. The proof is established by induction on the dimension of M . The case d = 1
is immediate because M is a generalized Cohen–Macaulay module. Assume d > 1. Since the
function IF ,M(x(n)) is non-decreasing, we have IF ,M(x(n)) = c for all 1 � n1, . . . , nd � 2. We
first prove that IF ,M(x(n)) does not depend on nd for a fixed (d − 1)-tuple (n1, . . . , nd−1) with
1 � n1, . . . , nd−1 � 2. We have

�
(
M/x(n)M

) − e
(
x(n);M) = IF ,M

(
x(n)

) +
t−1∑
i=0

e
(
x

n1
1 , . . . , x

ndi

di
;Mi

)
,

which is independent of nd for nd ∈ {1,2} by the hypothesis. Applying Corollary 4.3 of [1] to M

and the system of parameters (x
nd

d , x
n1
1 , . . . , x

nd−1
d−1 ) we have

�
(
M/x(n)M

) − e
(
x(n);M) =

d−1∑
i=1

nde
(
xd, x

n1
1 , . . . , x

ni−1
i−1 ; (0 : xni

i

)
M/(x

ni+1
i+1 ,...,x

nd−1
d−1 )M

)
+ �

((
0 : xnd

d

)
M/(x

n1
1 ,...,x

nd−1
d−1 )M

)
,

which is non-decreasing in nd . Let nd vary in {1,2}, we get

e
(
xd, x

n1
1 , . . . , x

ni−1
i−1 ; (0 : xni

i

)
M/(x

ni+1
i+1 ,...,x

nd−1
d−1 )M

) = 0

for all 0 < i < d and

(
0 : x2

d

)
M/(x

n1
1 ,...,x

nd−1
d−1 )M

= (0 : xd)
M/(x

n1
1 ,...,x

nd−1
d−1 )M

.

The last equality implies

(
0 : xnd

d

)
M/(x

n1
1 ,...,x

nd−1
d−1 )M

= (0 : xd)
M/(x

n1
1 ,...,x

nd−1
d−1 )M

for all nd > 0. So we have

�
(
M/x(n)M

) − e
(
x(n);M) = �

(
(0 : xd)

M/(x
n1
1 ,...,x

nd−1
d−1 )M

)
= �

(
M/

(
x

n1
1 , . . . , x

nd−1
d−1 , xd

)
M

) − e
(
x

n1
1 , . . . , x

nd−1
d−1 , xd ;M)

= c +
t−1∑

e
(
x

n1
1 , . . . , x

ndi

di
;Mi

)
,

i=0
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and IF ,M(x(n)) = c for all 1 � n1, . . . , nd−1 � 2 and all nd > 0.
Put x′(n) = (x

n1
1 , . . . , x

nd−1
d−1 ). It is not difficult to verify that the following filtration satisfies

the dimension condition

Fd : (M0 + x
nd

d M
)
/x

nd

d M ⊂ · · · ⊂ (
Ms + x

nd

d M
)
/x

nd

d M ⊂ M/x
nd

d M,

where s = t − 1 if dt−1 < d − 1 and s = t − 2 if dt−1 = d − 1, and

c = IF ,M

(
x(n)

) = IFd ,M/x
nd
d M

(
x′(n)

) + e
(
x′(n);0 :M x

nd

d /Mt−1
)

for all n1, . . . , nd−1 ∈ {1,2}, nd > 0. Note that each term in the right of this equality is non-
decreasing in n1, . . . , nd−1, thus e(x′(n);0 :M x

nd

d /Mt−1) = 0 and IFd ,M/x
nd
d M

(x′(n)) = c

for all n1, . . . , nd−1 ∈ {1,2}. So by the inductive hypothesis IFd ,M/x
nd
d M

(x ′(n)) = c for all

n1, . . . , nd−1 > 0. Therefore IF ,M(x(n)) = IFd ,M/x
nd
d M

(x′(n)) = c for all n1, . . . , nd > 0. �
In many cases, it is not easy to verify that a system of parameters is a dd-sequence or not. To

do this we usually use one of the equivalent conditions stated in Proposition 2.7. Theorem 5.5
and its proof provide another finite criterion for examining whether a system of parameters is a
dd-sequence on a sequentially generalized Cohen–Macaulay module.

Corollary 5.6. Let M be a sequentially generalized Cohen–Macaulay module. A system of
parameters x = (x1, . . . , xd) of M is a dd-sequence on M if and only if there exists a filtra-
tion F satisfying the dimension condition such that x is good with respect to F and IF ,M(x) =
IF ,M(x2

1 , . . . , x2
d).

6. Hilbert–Samuel function

It has been shown in Section 3 that any sequentially generalized Cohen–Macaulay mod-
ule M admits a dd-sequence, i.e., a good system of parameters x = (x1, . . . , xd) such that
ID,M(x(n)) is a constant for all n1, . . . , nd > 0, where D is the dimension filtration of M . Denote
q = (x1, . . . , xd)R. The aim of this section is to study the Hilbert–Samuel function of M with
respect to q. We show that when M is a sequentially generalized Cohen–Macaulay module and
x is a dd-sequence on M , this function coincides with the Hilbert–Samuel polynomial. More-
over, the coefficients of this polynomial might be expressed in terms of lengths of certain local
cohomology modules.

Lemma 6.1. Let M be a sequentially generalized Cohen–Macaulay module with a generalized
Cohen–Macaulay filtration F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M . Let x = (x1, . . . , xd) be a good sys-
tem of parameters of M with respect to F , which is a dd-sequence. Then we have the following
short exact sequences

0 → Hi
m(M) → Hi

m(M/x1M) → Hi+1
m (M) → 0,

for 0 � i � dimM1 − 2.
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Proof. Put d1 = dimM1. It is obvious that (x2, x3, . . . , xd1, x1, xd1+1, . . . , xd) is also a good
system of parameters of M with respect to F , and

IF ,M

(
x

n2
2 , x

n3
3 , . . . , x

nd1
d1

, x
n1
1 , x

nd1+1

d1+1 , . . . , x
nd

d

) = IF ,M

(
x(n)

)
is a constant for all n1, . . . , nd > 0 by Theorem 3.8. It follows from Corollary 3.9 that
(x2, x3, . . . , xd1 , x1, xd1+1, . . . , xd) is a dd-sequence on M , and hence it is a strong d-sequence
on M . Then x1H

i
m(M) = 0 for all i < d1 (see [4, Lemma 2.9]) and 0 :M x1 = 0 :M (x)R ⊆ H 0

m(M)

is of finite length. Therefore from the long exact sequence of local cohomology modules

0 → H 0
m(M) → H 0

m(M/x1M) → H 1
m(M)

.x1−−→ H 1
m(M) → ·· ·

→ Hi(M)
.x1−−→ Hi

m(M) → Hi
m(M/x1M) → Hi+1

m (M)
.x1−−→ · · ·

we obtain the short exact sequences

0 → Hi
m(M) → Hi

m(M/x1M) → Hi+1
m (M) → 0,

for 0 � i � d1 − 2. �
Theorem 6.2. Let M be a sequentially generalized Cohen–Macaulay module with a generalized
Cohen–Macaulay filtration F : M0 ⊂ M1 ⊂ · · · ⊂ Mt = M and x = (x1, . . . , xd) a system of
parameters of M . Assume that x is a dd-sequence on M . Put di = dimMi and q = (x1, . . . , xd)R.
Then for all n � 0 we have

�
(
M/qn+1M

) =
d∑

i=0

(
n + i

i

)
ed−i (q;M), (1)

where ed(q;M) = �(H 0
m(M)),

ed−dk
(q;M) = e(x1, . . . , xdk

;Mk) +
dk∑

j=1

(
dk − 1

j − 1

)
�
(
H

j
m(M/Mk)

)
, (2)

for k = 1, . . . , t , and

ed−i (q;M) =
i∑

j=1

(
i − 1

j − 1

)
�
(
H

j
m(M/Mk)

)
(3)

for dk < i < dk+1,0 � k � t − 1.

Proof. For a positive integer h we set x(h) = (xh
1 , . . . , xh

d ) and q(h) = (xh
1 , . . . , xh

d )R. Since
x(h) is a d-sequence, it was shown by Trung in [19, Theorem 4.1] that

�
(
M/q(h)n+1M

) =
d∑(

n + i

i

)
ed−i

(
q(h);M)

,

i=0
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where by a slight modification, ed(q(h);M) = �(H 0
m(M)) and

ed−i

(
q(h);M) = �

(
H 0

m

(
M/

(
xh

1 , . . . , xh
i

)
M

)) − �
(
H 0

m

(
M/

(
xh

1 , . . . , xh
i−1

)
M

))
, i > 0.

Since x(h) is a dd-sequence, we can show by using Lemma 4.2 of [5] that

�
(
H 0

m

(
M/

(
xh

1 , . . . , xh
i

)
M

)) =
i∑

j=0

(−1)i−j

(
d − j − 1

d − i − 1

)
�
(
Hd−j

(
xh

1 , . . . , xh
d ;M))

.

Thus by [5, Corollary 4.3] �(H 0
m(M/(xh

1 , . . . , xh
i )M)) is a polynomial in h for all h � 1 and

i = 0,1, . . . , d . Therefore ed−i (q(h);M) is a polynomial in h for all h � 1 and i = 0,1, . . . , d .
On the other hand, if we replace q by q(h) in (2), (3), then the right terms of these equalities
can be considered as polynomials in h. So the theorem follows, if instead of the system of pa-
rameters x we can prove the conclusion for systems of parameters x(h) with h  0. Next, we
note that M/Mk , k = 0,1, . . . , t −1 are sequentially generalized Cohen–Macaulay modules with
a generalized Cohen–Macaulay filtration 0 ⊂ Mk+1/Mk ⊂ · · · ⊂ Mt−1/Mk ⊂ M/Mk and x is a
good system of parameters of M/Mk with respect to this filtration. It follows by Theorem 3.8
and Corollary 3.9 that x(h) are dd-sequences on M/Mk for all h  0 and k = 0,1, . . . , t − 1.
Therefore, without any loss of generality, we only have to prove the theorem under the additional
assumption that x is a dd-sequence on M/Mk for k = 0,1, . . . , t − 1. Indeed, we argue (2), (3)
by induction on d . The case d = 1 is trivial. Let d > 1. Firstly assume that d1 > 1. We have

ed−1(q;M) = �
(
H 0

m(M/x1M)
) − �

(
H 0

m(M)
)
.

From Lemma 6.1 there is a short exact sequence

0 → H 0
m(M) → H 0

m(M/x1M) → H 1
m(M) → 0.

Then ed−1(q;M) = �(H 1
m(M)) = �(H 1

m(M/M0)). By Lemma 3.6 the following filtration

F1 : (M0 + x1M)/x1M ⊂ (M1 + x1M)/x1M ⊂ · · · ⊂ M/x1M

is a generalized Cohen–Macaulay filtration of M/x1M . Hence from the inductive hypothesis we
get the following equality for k = 1, . . . , t ,

ed−dk
(q;M) = ed−dk

(x2, . . . , xd ;M/x1M)

= e
(
x2, . . . , xdk

; (Mk + x1M)/x1M
)

+
dk−1∑
j=1

(
dk − 2

j − 1

)
�
(
H

j
m

(
M/(x1M + Mk)

))
,

and

ed−i (q;M) = ed−i (x2, . . . , xd;M/x1M) =
i−1∑(

i − 2

j − 1

)
�
(
H

j
m

(
M/(x1M + Mk)

))

j=1
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for dk < i < dk+1, 0 � k � t − 1. Using Lemma 6.1 again we obtain

ed−dk
(q;M) = e(x1, x2, . . . , xdk

;Mk) +
dk∑

j=1

(
dk − 1

j − 1

)
�
(
H

j
m(M/Mk)

)
,

and

ed−i (q;M) =
i∑

j=1

(
i − 1

j − 1

)
�
(
H

j
m(M/Mk)

)

for dk < i < dk+1,0 � k � t − 1.
Now, let d1 = 1. We have

�
(
M/qn+1M

) = �
(
M/qn+1M + M1

) + �
(
M1/q

n+1M ∩ M1
)
.

By Artin–Rees Lemma and the fact that (x2, . . . , xd)M1 = 0, there is an n0 > 0 such that
qn+1M ∩ M1 = qn+1−n0(qn0M ∩ M1) = x

n+1−n0
1 (qn0M ∩ M1) for all n + 1 � n0. Hence,

�
(
M/qn+1M

) = �
(
M/qn+1M + M1

) + �
(
M1/q

n0M ∩ M1
)

+ �
((

qn0M ∩ M1
)
/x

n+1−n0
1

(
qn0M ∩ M1

))
.

This implies that

ed−1(q;M) = ed−1(q;M/M1) + e
(
x1;qn0M ∩ M1

) = ed−1(q;M/M1) + e(x1;M1)

and ed−i (q;M) = ed−i (q;M/M1) for all i > 1. Observe that M/M1 has a generalized Cohen–
Macaulay filtration 0 ⊂ M2/M1 ⊂ · · · ⊂ Mt/M1 = M/M1 with dimM2/M1 = d2 > 1. Then
applying the previous argument for d1 > 1 to the module M/M1 we get the conclusion. �
Corollary 6.3. Keep all notations and hypotheses in Theorem 6.2. Then the difference

�
(
M/qn+1M

) −
t∑

k=1

(
n + dk

dk

)
e(x1, . . . , xdk

;Mk) = In(M)

is independent of the choice of systems of parameters, which are dd-sequences of M , and of the
generalized Cohen–Macaulay filtrations of M . Moreover,

In(M) =
t−1∑
k=0

dk+1−1∑
i=dk

(
n + i

i

) i∑
j=1

(
i − 1

j − 1

)
�
(
H

j
m(M/Dk)

) + �
(
H 0

m(M)
)
.
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Proof. It is clear from Theorem 6.2 that

In(M) =
t−1∑
k=0

dk+1−1∑
i=dk

(
n + i

i

) i∑
j=1

(
i − 1

j − 1

)
�
(
H

j
m(M/Mk)

) + �
(
H 0

m(M)
)
.

Let D : D0 ⊂ D1 ⊂ · · · ⊂ Dt = M be the dimension filtration of M . By Lemma 3.3, Di/Mi is of
finite length for i = 0,1, . . . , t . Hence H

j
m(M/Mi) � H

j
m(M/Di) for all j > 0 and

In(M) =
t−1∑
k=0

dk+1−1∑
i=dk

(
n + i

i

) i∑
j=1

(
i − 1

j − 1

)
�
(
H

j
m(M/Dk)

) + �
(
H 0

m(M)
)

does not depend on the system of parameters x and the filtration F . �
The following immediate consequence of Theorem 6.2 is a well-known result in the theory of

generalized Cohen–Macaulay modules (see [17]).

Corollary 6.4. Let M be a generalized Cohen–Macaulay module and x = (x1, . . . , xd) a stan-
dard system of parameters of M . Set q = (x1, . . . , xd). Then

�
(
M/qn+1M

) =
(

n + d

d

)
e(x;M) +

d−1∑
i=1

(
n + i

i

) i∑
j=1

(
i − 1

j − 1

)
�
(
H

j
m(M)

) + �
(
H 0

m(M)
)
.

Moreover, the difference

�
(
M/qn+1M

) −
(

n + d

d

)
e(x;M) =

d−1∑
i=1

(
n + i

i

) i∑
j=1

(
i − 1

j − 1

)
�
(
H

j
m(M)

) + �
(
H 0

m(M)
)

is independent of the choice of the standard systems of parameters x.
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