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a b s t r a c t

Complex Langevin dynamics can solve the sign problem appearing
in numerical simulations of theorieswith a complex action. In order
to justify the procedure, it is important to understand the proper-
ties of the real and positive distribution, which is effectively sam-
pled during the stochastic process. In the context of a simplemodel,
we study this distribution by solving the Fokker–Planck equation
as well as by brute force and relate the results to the recently de-
rived criteria for correctness. We demonstrate analytically that it
is possible that the distribution has support in a strip in the com-
plexified configuration space only, in which case correct results are
expected.

© 2013 Elsevier Inc.

1. Introduction

Complex Langevin (CL) dynamics [1,2] provides an approach to circumvent the sign problem in
numerical simulations of lattice field theories with a complex Boltzmann weight, since it does not
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rely on importance sampling. In recent years a number of stimulating results has been obtained in the
context of nonzero chemical potential, in both lower and four-dimensional field theorieswith a severe
sign problem in the thermodynamic limit [3–8] (for two recent reviews, see e.g. Refs. [9,10]). However,
as has been known since shortly after its inception, correct results are not guaranteed [11–16]. This
calls for an improved understanding, relying on the combination of analytical and numerical insight.
In the recent past, the important role played by the properties of the real and positive probability
distribution in the complexified configuration space, which is effectively sampled during the Langevin
process, has been clarified [17,18]. An important conclusion was that this distribution should be
sufficiently localised in order for CL to yield valid results. Importantly, this insight has recently also
led to promising results in nonabelian gauge theories, with the implementation of SL(N, C) gauge
cooling [8,10].

The distribution in the complexified configuration space is a solution of the Fokker–Planck equa-
tion (FPE) associated with the CL process. However, in contrast to the case of real Langevin dynamics,
no generic solutions of this FPE are known (see e.g. Ref. [19]). In fact, even in special cases only a few
results are available [11,20,17,21]. In Refs. [17,18] this problemwas addressed in a constructive man-
ner by deriving a set of criteria for correctness, which have to be satisfied in order for CL to be reliable.
These criteria reflect properties of the distribution and, importantly, can easily be measured numeri-
cally during a CL simulation, also in the case of multi-dimensional models and field theories [6].

A widely used toy model to understand CL is the simple integral

Z =


∞

−∞

dx e−S, S =
1
2
σ x2 +

1
4
λx4, (1.1)

where the parameters in the action are complex-valued. This model had been studied shortly after CL
was introduced [22,11,23], but no complete solution was given. As we will see below, its structure,
with complex σ , is relevant for the relativistic Bose gas at nonzero chemical potential [4,20]. Recently,
a variant of this model (with σ = 0 and λ complex) was studied by Duncan and Niedermaier [21]: in
particular they constructed the solution of the FPE, using an expansion in terms of Hermite functions.
They considered the case of ‘‘complex noise’’, in which both the real and imaginary parts of the
complexified variables are subject to stochastic kicks. Unfortunately, it has been shown in the past
that generically complex noise may not be a good idea, since it leads to broad distributions in the
imaginary direction and hence incorrect results [17,18]. This was indeed confirmed in Ref. [21].

In this paper we aim to combine the insights that can be distilled from the criteria for correctness
discussed above with the explicit solution of the FPE, adapting the method employed in Ref. [21] to
the model (1.1). The paper is organised as follows. In Section 2 we discuss CL and the criteria for
correctness. To keep the paper sufficiently accessible, we first briefly review how to arrive at the
criteria for correctness and subsequently present numerical results, for both real and complex noises.
In Section 3 we study the probability distribution in the complexified configuration space, by solving
the FPE directly as well as by a brute-force construction using the CL simulation, again for complex
and real noises (the latter was not considered in Ref. [21]). In Section 4 we combine our findings
concerning the distribution and the criteria for correctness, and provide a complete characterisation
of the dynamics. Section 5 contains the conclusion. Finally, in order to seewhether the structure found
numerically can be understood analytically, a perturbative analysis of the FPE is given in the Appendix.

2. Complex Langevin dynamics and criteria for correctness

We consider the partition function (1.1). We take λ real and positive, so that the integral exists,
while σ is taken complex. Analytical results are available: a direct evaluation of the integral yields

Z =


4ξ
σ

eξK
−

1
4
(ξ), (2.1)

where ξ = σ 2/(8λ) and Kp(ξ) is the modified Bessel function of the second kind. Moments ⟨xn⟩ can
be obtained by differentiating with respect to σ . Odd moments vanish.
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The aim is to evaluate expectation values numerically, by solving a CL process. We start from the
Langevin equation,

ż = −∂zS(z) + η, (2.2)

where the dot denotes differentiating with respect to the Langevin time t and the (Gaussian) noise
satisfies

⟨η(t)η(t ′)⟩ = 2δ(t − t ′). (2.3)

After complexification,

z = x + iy, η = ηR + iηI , σ = A + iB, (2.4)

the CL equations read

ẋ = Kx(x, y) + ηR, ẏ = Ky(x, y) + ηI , (2.5)

with the drift terms

Kx ≡ −Re ∂zS(z) = −Ax + By − λx

x2 − 3y2


, (2.6)

Ky ≡ −Im ∂zS(z) = −Ay − Bx − λy

3x2 − y2


. (2.7)

The form of the drift terms is similar as in the Bose gas, after a reduction to a single momentum
mode [20].

The normalisation of the real and imaginary noise components follows from Eq. (2.3) and is given
by

⟨ηR(t)ηR(t ′)⟩ = 2NRδ(t − t ′),
⟨ηI(t)ηI(t ′)⟩ = 2NIδ(t − t ′),

⟨ηR(t)ηI(t ′)⟩ = 0, (2.8)

with NR − NI = 1. Here NI ≥ 0 is a free parameter, which can be varied. In principle, expectation
values should be independent of the choice of NI , but in practice they are not. Real noise amounts to
NI = 0.

Expectation values are obtained by averaging over the noise. After this averaging, holomorphic
observables evolve according to

⟨O⟩P(t) =


dxdy P(x, y; t)O(x + iy), (2.9)

where the distribution P(x, y; t) satisfies the FPE

Ṗ(x, y; t) = LTP(x, y; t), (2.10)

with the FP operator

LT = ∂x (NR∂x − Kx) + ∂y

NI∂y − Ky


. (2.11)

In order to justify the approach, we also consider expectation values with respect to a complexweight
ρ(x, t),

⟨O⟩ρ(t) =


dx ρ(x, t)O(x), (2.12)

which satisfies its (complex) FPE

ρ̇(x, t) = LT0ρ(x, t), LT0 = ∂x [∂x + (∂xS(x))] . (2.13)

This equation has a simple stationary solution, ρ(x) ∼ e−S(x), which is the desired weight.
The task is now to show that the two expectation values ⟨O⟩P(t) and ⟨O⟩ρ(t) are equal,

⟨O⟩P(t) = ⟨O⟩ρ(t), (2.14)
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at least in the limit of large t , making use of the respective FPEs and the Cauchy–Riemann (CR) equa-
tions [17,18]. Here it is essential that only holomorphic observables are considered, which evolve
according to

∂tO(z, t) = L̃O(z, t), (2.15)

with the Langevin operator

L̃ = [∂z − (∂zS(z))] ∂z . (2.16)

We note that for holomorphic observables, L̃ = L, where L is the transpose of LT introduced above.
The equivalence (2.14) can indeed be shown, as discussed in detail in Refs. [17,18], provided that inte-
gration by parts in y is allowed, without the presence of boundary terms at infinity. This construction
involves the products P(x, y; t)O(x+ iy) for ‘all’ observables O(x), and hence it puts severe constraints
on the decay of the distribution at infinity. This will indeed be shown to be crucial below.

From now on we consider only the equilibrium distribution P(x, y), assuming that it exists, and
hence drop the t dependence. In the large t limit, the equivalence (2.14) can then be expressed in
terms of the criteria for correctness [17,18]

CO ≡


L̃O(z)


= 0, (2.17)

which in principle need to be satisfied for a complete set of observables O(z). Here the expectation
value is taken with respect to the equilibrium distribution P(x, y), or equivalently, a noise average.
After separating real and imaginary parts, the criteria take the form

Re L̃O = Re O′′
+ KxRe O′

− KyIm O′, (2.18)

Im L̃O = Im O′′
+ KxIm O′

+ KyRe O′, (2.19)

where the primes denote differentiation with respect to z. We consider as observables

On(z) =
1
n
zn, (2.20)

with n even (the odd powers vanish by symmetry). The associated consistency conditions,

Cn ≡
1
n


L̃zn

= 0, (2.21)

then take the explicit form

C2 = 1 − ⟨σ z2 + λz4⟩, (2.22)

C4 = ⟨3z2 − σ z4 − λz6⟩, (2.23)

C6 = ⟨5z4 − σ z6 − λz8⟩, (2.24)
· · ·

which are of course nothing but the standard Schwinger–Dyson (SD) relations between n-point func-
tions, which should be satisfied in order for the theory to be solved correctly.

We now turn to the numerical solution of the CL process, using the simplest lowest-order discreti-
sationwith an adaptive stepsize [24]. For the results shownhere, the total combined Langevin time for
each parameter set is 2×106 Langevin time units and themaximal stepsize is 5×10−5. We have ver-
ified that finite stepsize corrections are negligible. We have studied various combinations of σ and λ,
keeping Re σ = A > 0. Here we focus on σ = 1 + i and λ = 1. In Fig. 1 CL results are shown for
the real and imaginary parts of the observables 1

n ⟨z
n
⟩ and for the criteria for correctness Cn =

1
n ⟨L̃z

n
⟩,

for n = 2, 4, 6, 8. The figure shows the result for real noise, NI = 0: all expectation values agree with
the exact result, denoted with the horizontal lines, and the criteria for correctness are all consistent
with 0, as it should be.

In Fig. 2 we show how the observables and the criteria for correctness depend on the amount of
complex noise. In the top figures we see that for small NI the observables with n = 2, 4 appear to
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Fig. 1. Real and imaginary parts of the expectation values 1
n ⟨zn⟩ and criteria for correctness Cn =

1
n ⟨L̃zn⟩ versus n at σ = 1+ i

and λ = 1 for real noise (NI = 0). The horizontal lines indicate the exact value.

Fig. 2. Observables minus the exact result (left) and criteria for correctness (right) as a function of NI at σ = 1 + i and λ = 1,
for small n (above) and larger n (below).

be consistent with the exact result, while for larger NI they start to deviate. Perhaps surprisingly, the
lowest-order criterion C2 is consistent with 0 for all NI shown. This implies that even though ⟨z2⟩
and ⟨z4⟩ have converged to the wrong result at larger NI , this occurs in such a way that the condition
(2.22), i.e. the corresponding SD equation, is still satisfied. The possibility of multiple solutions to the
SD equations when solving CL has been observed earlier in Ref. [13] (see also Refs. [25,26]).
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In order to detect problems, it is necessary to consider higher moments. In Fig. 2(below), we
observe that for smallNI the observables (with n ≥ 6) and the criteria (with n ≥ 4) are onlymarginally
consistent with the expected results, while for larger NI they suffer from large fluctuations and can no
longer be sensibly determined. According to the analytical justification [17,18], this implies that the
results from CL cannot be trusted in the presence of complex noise. Below we give an interpretation
of this in terms of the properties of the probability distribution. For nowwe tentatively conclude that,
if we assume that the large fluctuations reflect the slow decay of the distribution in the imaginary
direction, P(x, y) should decay as 1/|y|α , with 5 . α . 7, which will indeed be confirmed below.

3. Probability distributions

A crucial role in the justification of the method is played by the equilibrium distribution P(x, y)
in the complexified space. In Refs. [17,18] it was shown in detail that for CL to give correct results,
it is necessary that the product of the distribution and a suitable basis of observables drops off fast
enough in the imaginary direction. This condition can be translated into the criteria for correctness,
as discussed above. Unfortunately the Fokker–Planck equation, satisfied by the distribution, cannot
be solved easily, except in the case of a noninteracting model (λ = 0); see the Appendix.

In this section we study the distribution following two approaches. Firstly, it is possible to collect
histograms of the (partially integrated) distribution during the CL evolution. Note that very long
runs are required, in order to sample the configuration space properly. Here we will in particular
be interested in the partially integrated distributions

Px(x) =


∞

−∞

dy P(x, y), Py(y) =


∞

−∞

dx P(x, y). (3.1)

We note that this approach can easily be extended to multi-dimensional integrals and field theories.
We refer to this as the brute force method.

Secondly, for the zero-dimensionalmodelwe consider here, it is possible to expand the distribution
in terms of a truncated set of basis functions and solve the resulting matrix problem numerically,
following Duncan and Niedermaier [21]. We discuss this approach in the next subsection.

3.1. Solving the Fokker–Planck equation

We consider the eigenvalue problem

− LTPκ(x, y) = κPκ(x, y), (3.2)

where the FP operator LT was given in Eq. (2.11) and takes the explicit form

LT = NR∂
2
x + (Ax − By)∂x + NI∂

2
y + (Ay + Bx)∂y + 2A

+ λ

x3 − 3xy2


∂x + λ


3x2y − y3


∂y + 6λ


x2 − y2


. (3.3)

We denote the eigenvalues of −LT with κ and the eigenfunctions with Pκ(x, y). If there is a unique
ground state P0 with eigenvalue κ = 0, and for all other eigenvalues Re κ > 0, the time-dependent
distribution can be written as

P(x, y; t) = P0(x, y) +


κ≠0

e−κtPκ(x, y), (3.4)

and the equilibrium distribution is given by P0(x, y). In the CL simulations we observe convergence
to well-defined expectation values (at least for the low moments, n = 2, 4) and hence we are certain
that an equilibrium distribution exists.

In order to solve the eigenvalue problem, we follow closely Ref. [21]. The FP operator is invari-
ant under x → −x, y → −y, which implies that eigenfunctions have a definite parity, Pκ(x, y) =

±Pκ(−x, −y). The ground state is expected to satisfy P0(x, y) = P0(−x, −y), such that observables of
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the type ⟨(x+ iy)n⟩, with n odd, vanish. If Pκ is an eigenfunction of LT with eigenvalue κ , then so is P∗
κ

with eigenvalue κ∗. It is expected that P0 is real.
In Ref. [21] P(x, y) was doubly expanded in a basis of Hermite functions, i.e.

P(x, y) =

NH−1
k=0

NH−1
l=0

cklHk
√

wx

Hl
√

wy

, (3.5)

where ω is a variational parameter appearing in the harmonic oscillator eigenfunctions, and NH
indicates the number of Hermite functions included in the truncated basis. The coefficients ckl have to
be determined.

In order to do so, we introduce creation and annihilation operators, satisfying

[a, aĎ] = [b, bĎ] = 1, (3.6)

and write

x =
1

√
2ω


a + aĎ


, px = −i∂x = i


ω

2


aĎ − a


, (3.7)

y =
1

√
2ω


b + bĎ


, py = −i∂y = i


ω

2


bĎ − b


. (3.8)

In terms of these, −LT reads

− LT = NRp2x + NIp2y − i (Ax − By) px − i (Ay + Bx) py − 2A

− 6λ

x2 − y2


+

λ

4ω
[X(x, y) − X(y, x)] , (3.9)

with the quartic terms

X(x, y) = −4iω

x3 − 3xy2


px, X(y, x) = −4iω


y3 − 3x2y


py. (3.10)

Note that X is independent of ω. Finally, in terms of the creation/annihilation operators, the FP
operator reads

−
2
ω
LT = −NR


aĎ + a2 − 2aĎa − 1


− NI


bĎ + b2 − 2bĎb − 1


+ Ā


aĎ2 − a2 + bĎ2 − b2 + 2


+ 2B̄


bĎa − aĎb


− 4Ā

− λ̄

aĎ2 + a2 + 2aĎa


−

bĎ2 + b2 + 2bĎb


+

λ̄

12
[X(a, b) − X(b, a)] , (3.11)

where

X(a, b) =

a + aĎ

3 aĎ − a

− 3


aĎ + a

 
aĎ − a

 
bĎ + b

2
, (3.12)

and we introduced the rescaled parameters,

Ā =
A
ω

, B̄ =
B
ω

, λ̄ =
6λ
ω2

. (3.13)

In Ref. [21], where A = B = 0, ω was chosen to be proportional to
√

λ, and no adjustable parameters
were left on the RHS of Eq. (3.11). As we see below, there is a great advantage in keeping ω arbitrary.

We can now compute the matrix elements with respect to the Hermite functions, using the
notation

|mn⟩ =
1

√
m!n!

aĎmbĎn|0⟩, a|0⟩ = b|0⟩ = 0, (3.14)
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where

Hm(
√

ωx) = ⟨x|m⟩, Hn(
√

ωy) = ⟨y|n⟩. (3.15)

The matrix elements are

−
2
ω

⟨kl|LT |mn⟩ =

NR − λ̄


(2m + 1) +


NI + λ̄


(2n + 1) − 2Ā


δk,mδl,n

−

NR + λ̄ − Ā


fkmδk,m+2 +


NR + λ̄ + Ā


fmkδk,m−2


δl,n

−

NI − λ̄ − Ā


flnδl,n+2 +


NI − λ̄ + Ā


fnlδl,n−2


δk,m

+ 2B̄
√

mlδk,m−1δl,n+1 −
√
knδk,m+1δl,n−1


+

λ̄

12


Xkl,mn − Xlk,nm


, (3.16)

with

Xkl,mn =


fkmδk,m+4 + (2m + 3 − 6n)fkmδk,m+2 + 6(m − n)δk,m

− (2m − 7 − 6n)fmkδk,m−2 − fmkδk,m−4


δl,n

− 3

fkmδk,m+2 − fmkδk,m−2 + δk,m

 
flnδl,n+2 + fnlδl,n−2


, (3.17)

and

fkm =


k!
m!

. (3.18)

FollowingRef. [21], the double indices k, l andm, n (all taking values from0 toNH−1) are converted
into single ones, via

i = kNH + l + 1, j = mNH + n + 1, (3.19)

and the inverse

ki = (i − 1 − mod(i − 1,NH))/NH , li = mod(i − 1,NH), (3.20)

mj = (j − 1 − mod(j − 1,NH))/NH , nj = mod(j − 1,NH), (3.21)

with i, j = 1, . . . ,N2
H . The matrix elements are denoted as LTij = ⟨kl|LT |mn⟩, and the eigenvalue

problem is written as

− LTijv
(κ)
j = κv

(κ)
i . (3.22)

We have solved this matrix problem with a FORTRAN90 code using subroutines provided by the
LAPACK library [27]. Since the matrix size is N2

H × N2
H , there is an upper limit of what is practically

feasible. For the maximal number of Hermite functions we have considered, NH = 150, the numerical
computation takes around 36 h on a standard work station. Convergence can be tested by increasing
NH and varying ω (see the detailed discussion below). Considering the eigenvalue at (or closest to) 0,
the distribution P0(x, y) can be reconstructed from the corresponding eigenvector, as

P0(x, y) =

N2
H

i=1

v
(0)
i Hki

√
wx

Hli

√
wy

. (3.23)

Below we drop the subscript ‘0’.
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Table 1
Values of NI and ω used, with σ = 1 + i, λ = 1, and 30 ≤ NH ≤ 150.

NI ω

0 3, 4, 5, 10, 40, 50, 60
0.01 1.5, 2, 4, 8, 12, 16, 20
1 0.5, 1, 1.5, 2, 5, 10

Fig. 3. Eigenvalues of the FP operator−LT for complex noise, withNI = 1 (left) and 0.01 (right), magnified around the smallest
eigenvalues, for various values of ω, at σ = 1 + i, λ = 1, and NH = 150.

3.2. Complex noise

We start with the case of complex noise. The parameters in the action are taken as σ = 1 + i and
λ = 1, and we consider a basis with 30 ≤ NH ≤ 150 Hermite functions. The values of ω we used are
listed in Table 1. In the limit of large NH the results are expected to be independent of the value of ω.
In practice however, we find that for finite NH the parameter ω plays the role of a tuning parameter:
in particular, when ω is too small, there are eigenvalues with a negative real part. This becomes more
prominent asNI is reduced; see below. Obviously, in this application this wouldmean that the FP evo-
lution would not thermalise and display runaway behaviour. Since the CL evolution thermalises (and
is obviously independent of the choice ofω), we expect the real parts of all eigenvalues to be nonnega-
tive.When the value ofω is increased, we observe that the eigenvalues with a real negative part move
into the positive half-plane and the spectrum around the origin converges. Convergence can also be
seen by studying the reconstructed probability distribution P(x, y), using Eq. (3.23). Interestingly, we
always find an eigenvalue consistent with 0. When ω is increased even more, convergence properties
worsen again. We find therefore that there is an ω interval for which:

1. there is an eigenvalue consistent with 0;
2. the other eigenvalues are in the right half-plane;
3. the reconstructed ground state distribution is stable under variation of NH and ω.

The ω interval depends on the parameters and is pushed to larger values as NI is reduced. We have
not found a special role for the ω value used in Ref. [21], namely ω =

√
3λ (in our conventions).

We first consider NI = 1, as in Ref. [21]. The smallest 15 eigenvalues are shown in Fig. 3(left),
for several values of ω. For the ω values shown here, all eigenvalues are in the right half-plane and
the spectrum around the origin is to a good extent independent of ω. The reconstructed distribution
P(x, y), obtained using the eigenvector corresponding to the eigenvalue at (or closest to) the origin, is
shown in Fig. 4(top).We find a smooth distributionwith a double peak structure, similar as in Ref. [21].

Next we reduce the amount of complex noise and consider NI = 0.01. The spectrum is shown in
Fig. 3(right) and the reconstructeddistribution in Fig. 4(below). The findings are similar aswithNI = 1,
but ω has to be increased more in order to find convergence and even then the larger eigenvalues are
hard to establish. The distribution has again two peaks, which are nowmore pronounced and rotated
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Fig. 4. Distribution P(x, y) in the xy-plane for complex noise, with NI = 1 (top, withω = 1.5) and 0.01 (bottom,ω = 8). Other
parameters as in Fig. 3.

Fig. 5. Partially integrated distributions Px(x) (left) and Py(y) (right) for different values ofω with complex noise,NI = 1. Other
parameters as in Fig. 3. In both cases the noisy (black) data was obtained by a CL simulation.

in the xy-plane. We note the symmetry P(−x, −y) = P(x, y). Importantly, the distribution is more
squeezed in the y direction and the main features are contained in the interval −0.45 < y < 0.45.

In order to clarify the relevance of these findings, we show in Fig. 5 the partially integrated distri-
butions Px(x) and Py(y), see Eq. (3.1), on a logarithmic scale, for the case of NI = 1. Besides presenting
results for variousω values, we also show the histogram obtained during a CL simulation. We observe
an acceptable agreement between the CL results and the solution of the FPE for ω ∼ 1.5, 2, down to a
relative size of 10−6, after which the FP solution can no longer cope. We interpret this as a manifesta-
tion of the truncation.Whenω is taken too large, the disagreement occurs for smaller values of x and y.

The distributions do not go to zero rapidly but decay as a power,which is clearly visible on a log–log
plot. In Fig. 6 we show the distributions multiplied by xk and yk respectively, for k = 4.8, 5, and 5.2,
using the CL data. At large |x| and |y|, we observe a power decay with power 5, i.e.

Px(x) ∼
1

|x|5
, Py(y) ∼

1
|y|5

. (3.24)
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Fig. 6. As above, for xkPx(x) and ykPy(y) with k = 4.8, 5, 5.2, using the CL data. The dotted horizontal line is meant to guide
the eye.

Fig. 7. As in Fig. 3, for real noise (NI = 0).

This suggests that the distribution decays as

P(x, y) ∼
1

(x2 + y2)3
, (3.25)

which we have verified by studying the decay of

Pr(r) =

 2π

0
dφ rP(r cosφ, r sinφ), (3.26)

which indeed decays as 1/r5. We note that this power decay is in agreement with the conclusions
from the moments above: ⟨z2⟩ and ⟨z4⟩ are well-defined and can be numerically determined without
any problems, while the higher moments diverge, which in the CL simulation is reflected in large
fluctuations.

3.3. Real noise

We now turn to the case where CL appears to work well, i.e. with real noise (NI = 0). The eigen-
values are shown in Fig. 7 for a number of ω values. For ω < 4 eigenvalues with negative real part are
present (not shown in the figure). We note that in all cases there is an eigenvalue at (or close to) the
origin, but in general convergence is much harder to establish from a study of the eigenvalues alone.
In order to have a handle on this we also analyse the partially integrated distributions Px and Py under
variation of NH and ω, and also compare those with the histograms obtained with CL. The results are
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Fig. 8. Above: partially integrated distribution Py(y) for several values of NH and ω = 50 (left) and several values of ω and
NH = 150 (right). Below: partially integrated distribution Px(x) on a logarithmic scale as a function of x (left) and x4 (right) for
several values of ω and NH = 150. The dotted line on the RHS represents Px(x) ∼ exp(−ax4) with a = 0.295. In both cases the
black line was obtained by a CL simulation. Other parameters as in Fig. 7.

shown in Fig. 8 for Py(y) (top) and Px(x) (bottom). In the case of Py, convergence as NH is increased is
clearly visible (top, left). We note that for the largest NH values the distribution agrees with the result
obtained by direct Langevin simulation, indicated with the black line. The distribution is very well
localised and appears to drop to 0 around y = 0.28. We come back to this below. Convergence as ω
is increased is demonstrated in Fig. 8(top, right) and we observe that a large value of ω is required,
ω ∼ 50. It is of course expected that the chosen value of ω eventually becomes irrelevant, but for
finite NH keeping ω as a tuning parameter is essential.

The distribution Px(x) is shown in Fig. 8(below) as a function of x (left) and x4 (right), on a
logarithmic scale. In contrast to the case of complex noise, we now find an exponential rather than
a power decay. Results from the FPE agree with the CL histogram, independently of the value of ω in
this case, but only down to a relative size of 10−4; varying ω does not help in this case (increasing NH
probably will). From the CL result, we see that the distribution falls off as

Px(x) ∼ e−ax4 , a ∼ 0.295. (3.27)
Naively this behaviour can be expected, since for large |x| the original weight behaves as ∼ exp(−λ
x4/4). We note that the prefactor is 0.295, which is slightly larger than λ/4 = 0.25. Interestingly this
seems to be understandable from a perturbative analysis; see the Appendix.

The reconstructed distribution is shown in Fig. 9. This distribution has similar characteristics as at
NI = 0.01, except that the two peaks are now very pronounced and the saddle around the origin is
much deeper. The peaks liemostly in the y direction and they are therefore clearly visible in Py(y). The
distribution is squeezed even more than before and its main support is in the region −0.3 < y < 0.3.
The ripples visible for larger y values are an artefact of the truncation. In fact, in the next section we
will demonstrate that the distribution is strictly 0 when |y| > 0.3029.

We conclude that for this choice of parameters (σ = 1 + i and λ = 1) the decay in the case of
real noise is manifestly different compared to complex noise. In the latter we found a power decay,
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Fig. 9. Distribution P(x, y) in the xy-plane for real noise (NI = 0) at σ = 1 + i and λ = 1, using NH = 150 and ω = 50.

Fig. 10. Classical flow in the xy-plane, for σ = 1 + i and λ = 1. The attractive/repulsive fixed points are indicated with the
open/filled circles. The full lines indicate where Ky(x, y) = 0. The horizontal dashed lines indicate the strip in which the CL
process takes place in the case of real noise.

resulting in ill-defined moments ⟨zn⟩ when n > 4, while here we find exponential decay in the x
direction and, as we will see below, in the y direction support only inside a strip. As a result there is
no problem in computing higher moments, since they are all well-defined.

4. Interpretation

From the solution of the FPE and the CL process, we conclude tentatively that for real noise the
distribution is localised in the y direction and has support in a strip around the origin only, with
−0.3 . y . 0.3. This conclusion can be made more precise by studying the classical flow diagram
and properties of the FPE. This analysis can also be used to find parameter values for which CL breaks
down for real noise (see Section 4.3).

4.1. Classical flow

The classical flow diagram is shown in Fig. 10, for σ = 1 + i and λ = 1. We show the direction of
the classical force by an arrow pointing in the direction (Kx(x, y), Ky(x, y)). The arrows are normalised
to have the same length. The classical force is of course independent ofNI . There are three fixed points,
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where Kx = Ky = 0: an attractive point at the origin and two repulsive fixed points, determined by
σ + λz2 = 0, or

x2 − y2 = −
A
2
, xy = −

B
2λ

, (4.1)

yielding (x, y) = (±0.455, ∓1.10) in this case. The flow is directed towards the origin, provided that
|y| is not too large. This can be made more precise by studying where Ky(x, y) changes sign. We find
that Ky(x, y) = 0 at

yp(x) = 2


B
3λ

+ x2
 1

2

cos


α + pπ
3


, p = 1, 3, 5, (4.2)

where

α = − arctan

2λ
Ax


B
3λ

+ x2
3

−


Ax
2λ

2
 1

2
+ πΘ(x), (4.3)

with Θ(x) the step function. These lines are indicated in the classical flow diagramwith full lines. For
the parameter values we consider here, the upper and lower curves have extrema at x = ±0.1749,
y = ∓0.9530, while the curve in the centre has its extrema at x = ±0.5502, y = ∓0.3029.

We now realise that along the horizontal dashed lines, which are determined by the extrema of
the centre curve where Ky = 0 (y = ±0.3029 in this case), the flow is always pointing inwards,
i.e. towards the real axis. In the absence of a noise component in the vertical direction, this creates a
barrier for the Langevin evolution beyond which it cannot drift. Note that the repulsive fixed points
actually help to establish this. Hence, provided that the process starts within this strip, it will never
be able to leave (in the case of real noise and in the limit of zero stepsize). We have verified that if
the dynamics starts out outside of the strip, it quickly finds its way into it, due to the mostly restoring
properties of the classical flow. We conclude therefore that in the case of real noise the process takes
place in the strip determined by

− 0.3029 < y < 0.3029. (4.4)

This is consistent with the conclusions drawn above from the histograms and the FPE solution of the
distribution P(x, y). In the presence of complex noise, this conclusion no longer holds and the entire
xy-plane can be explored.

4.2. Strips in the complexified configuration space

It is possible to make the argument based on classical flow presented above rigorous and show
directly from the FPE that the equilibrium distribution P(x, y) is strictly zero in strips in the xy-plane,
assuming sufficient decay, i.e.

Kx,y(x, y)P(x, y) → 0 (4.5)

as x and/or y → ±∞. To achieve this, we note that the FPE takes the form of a conservation law, i.e.,

Ṗ(x, y; t) = ∂xJx(x, y; t) + ∂yJy(x, y; t), (4.6)

with

Jx = (NR∂x − Kx) P, Jy =

NI∂y − Ky


P, (4.7)

which allows us to consider the charge,

Q (y, t) =


∞

−∞

dx Jy(x, y; t). (4.8)
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Specialising now to the equilibrium distribution (and hence dropping the t dependence), we find that
Q (y) is independent of y, provided that the product of the drift Kx(x, y) and the distribution P(x, y)
drops to zero at large |x|, since

∂yQ (y) =


∞

−∞

dx ∂yJy(x, y) = −


∞

−∞

dx ∂xJx(x, y) = −Jx(x, y)
∞
x=−∞

= 0. (4.9)

Wenote that the required condition is always satisfied in our case, even in the case of the power decay.
Since Q (y) vanishes as y → ±∞ (because Jy(x, y) does, again relying on the sufficient decay), we find
that

Q (y) =


∞

−∞

dx

NI∂y − Ky(x, y)


P(x, y) = 0. (4.10)

For real noise, this yields therefore the condition

Q (y) =


∞

−∞

dx Ky(x, y)P(x, y) = 0, (4.11)

for all y. Since P(x, y) is nonnegative, this condition allows us to derive the following useful property:
if Ky(x, y) has a definite sign as a function of x for given y, P(x, y) has to vanish for this y value. As a
function of x, Ky(x, y) is a parabola with an extremum at

x0 = −
B

6λy
(4.12)

and a curvature of 6λy. The value at the extremum is given by

F(y) ≡ Ky(x0, y) = −
λ

y


y2 −

A
2λ

2

−
3A2

− B2

12λ2


. (4.13)

Consider now the case that y is positive (negative). In that case, when F(y) > 0 (F(y) < 0), Ky(x, y) is
strictly positive (negative) and hence P(x, y) has to vanish. The zeros of F(y) are given by

y2
±

=
A
2λ


1 ±


1 −

B2

3A2


, (4.14)

provided that 3A2
− B2 > 0. Inspection shows that F(y) > 0 when y− < y < y+ and F(y) < 0 when

−y+ < y < −y−: hence for these y values, P(x, y) = 0. When 3A2
− B2 < 0, F(y) has no zeros and

F(y) and y have opposite signs. In that case, Ky(x, y) has no definite sign and the reasoning cannot be
followed.

To summarise, we find the following:
1. when 3A2 > B2, P(x, y) = 0 when y2

−
< y2 < y2

+
, as illustrated in Fig. 11;

2. when B2 > 3A2, there are no restrictions on P(x, y).

In the first case the distribution can in principle be nonzero in the outer region, y2 > y2
+
. However,

once the process is in the inner strip determined by y2 < y2
−
, it will not be able to leave this strip,

due to the nature of the drift terms. Hence there is no objection to putting the distribution to zero
also when y2 > y2

+
. We conclude therefore that the equilibrium distribution has support in the strip

determined by y2 < y2
−
only, in agreement with the reasoning above. Note that P(x, y) is therefore

a nonanalytic function of y. Of course the value of y− agrees with the boundary determined in the
example in the previous section, i.e. with the position of the dashed lines in Fig. 10, as it should be.

For vanishing B, the action is real and the distribution is (for real noise) strictly localised on the real
axis, y = 0. For small B, the width of the allowed region around y = 0 is nonzero and set by

y2
−

∼
B2

12λA
. (4.15)

Hence increasing the amount of complexity by increasing B results in a broadening of the distribution
with awidth∼2B. The importance of this controlled increase has been emphasised earlier in Ref. [28].
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Fig. 11. The distribution P(x, y) is strictly zero in the strips bounded by ±y− and ±y+ , provided that 3A2 > B2 and NI = 0.

Fig. 12. Distribution Py(y) for different values of NI (left, with B = 1) and B (right, with NI = 0) at σ = 1 + iB and λ = 1,
obtained with CL. On the left the vertical line at x = 0.3029 indicates the boundary determined analytically for real noise; on
the right the vertical line indicates the boundary of the strip for B = 1.7. For larger B values, there is no longer a boundary.

4.3. Absence of strips

The argument presented above breaks down in the presence of complex noise. In that case, the pro-
cess is pushed out in the y direction and the repulsive fixed points come into play. Once the repulsive
fixed point is crossed, large excursions in the y direction take place and the distribution is no longer
localised.When the amount of complex noise is small, it takes time to notice this, but eventually it will
happen. There are therefore no strips for complex noise, which also follows from the formal deriva-
tion above. This is demonstrated in Fig. 12(left), where Py(y) is shown for the values of NI considered
above. As shown above, this leads to power decay, Py(y) ∼ 1/|y|5.

Interestingly, the derivation above demonstrates that strips are only present when 3A2 > B2. For
larger B values, one may therefore expect a breakdown of CL with real noise, similar as with complex
noise. This is indeed what happens. The distribution Py(y) as B is increased is shown in Fig. 12(right),
for real noise. Note the similaritywith the figure on the left. The delocalisation has a detrimental effect
on the results of the CL process. This is demonstrated in Fig. 13, where the moments minus the exact
result are shown on the left and the criteria for correctness on the right. We observe that increasing
B has a similar effect as increasing NI ; cf. Fig. 2.

The distributions for the case that σ = 1 + 3i and λ = 1 are shown in Fig. 14. The top figure
shows P(x, y), obtained with the FPE. We note that the distribution still appears to be mostly con-
tained within a strip. However, a closer look at the partially integrated distributions obtained with CL,
see Fig. 14(bottom), shows that again power decay is present, with the same power as before. This
power decay sets in once the process has crossed the repulsive fixed points, which for this choice
of parameters are located at x = ±1.04 and y = ∓1.44. The weight of the power tails is clearly
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Fig. 13. Observables minus the exact result (left) and criteria for correctness (right) as a function of B at σ = 1+ iB, λ = 1 and
NI = 0.

Fig. 14. Above: distribution P(x, y) obtained from the FPE, with ω = 6 and NH = 150. Below: partially integrated distribution
Px(x) and Py(y) on a log–log scale, obtained from CL. The dotted line shows a power law 1/x5 . The vertical lines indicate the x
and y coordinate of the repulsive fixed point. In both plots, σ = 1 + 3i, λ = 1, and NI = 0 (real noise).

small, yet it is enough to give rise to fluctuations for the highermoments when solving the CL process.
We conclude that in the absence of strips a universal power law decay is present, which results in a
breakdown of the formal justification [17,18] and wrong or wildly fluctuating results in practice.

Finally wewill show that it is possible to understand the universal decay directly from the FPE.We
start from the assumption that the distribution is of the form

P(x, y) =
c

(x2 + y2)α
(4.16)

at large x and y, where we found numerically that the power α is consistent with 3. Substituting this
Ansatz in the FPE (2.10), we find, after some algebra and the removal of common factors, that

α
x2 − y2 + 2α(NRx2 + NIy2)

(x2 + y2)2
+ A(1 − α) + λ(3 − α)(x2 − y2) = 0. (4.17)
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At large x and/or y the final term dominates: requiring that this term vanishes yields indeed α = 3.
This construction assumes that the behaviour at large distance is approximately rotationally invariant
in the xy-plane and that there are no preferred directions, which would invalidate the Ansatz and the
power counting above. Based on our numerical evidence, this seems to be the case. We note that the
final term in Eq. (4.17) is independent of σ = A + iB and NI ; hence the decay at large distance is
independent of the parameters in the action and of the amount of complex noise. We also note that
B has disappeared from Eq. (4.17): the reason is that B breaks the invariance under x → −x and
independently y → −y, while the Ansatz is invariant under those.

The conclusion is therefore that the decay at large x and y is universal. Of course the presence of
complex noise and/or a large value of B2 > 3A2 is essential in catalysing large excursions, which
lead to the power decay. Notably, the power decay appears to be unavoidable unless its appearance
is strictly forbidden, as in the case of the strips for real noise and B2 < 3A2.

5. Conclusion

In order to justify the results obtained with complex Langevin dynamics, it is necessary that the
probability distribution is sufficiently localised in the complexified configuration space. Here we have
studied the properties of this distribution via a number of methods, in the case of a simple model. Us-
ing the insights gathered from classical flow, histograms obtained during the CL process, the criteria
for correctness and the explicit solution of the FPE, a complete characterisation of the distribution can
be given.

In the case of real noise and provided that B2 < 3A2, where σ = A+ iB, we found that the distribu-
tion is strictly localised, i.e. it has support in a strip in the configuration space only, with exponential
decay in the real direction. In this case all moments are well-defined and, relying on the analytical
proof of the method, correct results are expected. We also found that the criteria for correctness are
satisfied. In contrast, when the noise is complex or when B2 > 3A2, the entire configuration space is
explored. Large excursions are possible due to the presence of repulsive fixed points and the decay
of the distribution changes dramatically. We found strong indications that for large |x| and |y|, the
distribution decays as a power, according to

P(x, y) ∼
1

(x2 + y2)3
. (5.1)

A consequence of this slow decay is that highermoments are no longer well-defined. As a result, these
and the criteria for correctness suffer from large fluctuations during the CL process, an important sig-
nal of failure. Here it is important to emphasise that the inclusion of higher moments is essential to
observe the breakdown.

In thismodel the FPE can be solved explicitly, via an expansion in a truncated set of basis functions.
However, it is still a nontrivial problem and perhaps the best way to find the distribution is by brute
force, i.e. during the CL simulation. This also has the benefit of being applicable to higher dimensional
models. In the case of the localised distribution in the strip, the used basis set may not be the one that
is best adapted to the problem and, in hindsight, once it has been demonstrated that the distribution
has support in a strip only, a more suitable basis can be used. This would however limit the generality
of the approach.

As an outlook, we note that in the more realistic cases of multi-dimensional models and field the-
ories, the luxury of solving the FPE is typically not available. However, we have demonstrated that
the essential insight can already be obtained from a combination of histograms of partially integrated
distributions and the criteria for correctness, which gives a consistent picture of the dynamics. These
tools are readily available in field theory. Finally, our conclusions are also immediately applicable to
nonabelian SU(N) gauge theories, forwhich gauge cooling provides ameans to control the distribution
in SL(N, C), a possibility not present in simpler models.
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Appendix. Perturbative solution of the FP equation

In order to understand the numerical solution for the distribution P(x, y) found above further, we
discuss in this appendix the perturbative solution of the FP equation (2.10) in the stationary limit.
Although it is only of limited use, it provides some insight, especially along the x axis.

A.1. Lowest-order solution

We write the FP operator (2.11) as

LT = LT0 + λLT1, (A.1)

with

LT0 = NR∂
2
x + (Ax − By)∂x + NI∂

2
y + (Ay + Bx)∂y + 2A, (A.2)

and

LT1 =

x3 − 3xy2


∂x +


3x2y − y3


∂y + 6


x2 − y2


. (A.3)

The (normalisable) solution of the lowest-order equation,

LT0P
(0)

= 0, (A.4)

is given by

P (0)(x, y) = N0 exp

−αx2 − βy2 − 2γ xy


, (A.5)

with

α =
A
D


(NR + NI)(A2

+ B2) − A2 , (A.6)

β =
A
D


(NR + NI)(A2

+ B2) + A2 , (A.7)

γ =
A2B
D

, (A.8)

where

D = (NR + NI)
2(A2

+ B2) − A2, (A.9)

and N0 is the normalisation constant,

1
N0

=


dxdy e−αx2−βy2−2γ xy

=
π

αβ − γ 2
. (A.10)

This solution is similar to the one found in the relativistic Bose gas at nonzero chemical potential [20].
It is easy to see that it is the correct solution at leading order, by computing (recall that NR − NI = 1
and σ = A + iB)

(x + iy)2

P =


dxdy P (0)(x, y)(x + iy)2 =

1
σ

. (A.11)

More generally, one may equate the two expectation values

⟨O(x)⟩ρ =


dx ρ(x)O(x), (A.12)

⟨O(x + iy)⟩P =


dxdy P(x, y)O(x + iy), (A.13)
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which, assuming that it is possible to shift x → x − iy, yields the relation [29,30]

ρ(x) =


dy P(x − iy, y), (A.14)

where the LHS should be independent of NR,I . Evaluating the y integral yields in this case

ρ(0)(x) = N ′

0 e
−S(x), S(x) =

1
2
σ x2, (A.15)

with

N ′

0 =


σ

2π
, (A.16)

which is indeed the expected answer.

A.2. First-order correction

To compute higher-order corrections, we expand

P(x, y) =

∞
k=0

λkP (k)(x, y). (A.17)

Higher-order corrections are determined by the inhomogeneous partial differential equation,

LT0P
(k)

+ LT1P
(k−1)

= 0. (A.18)

The homogeneous equation is solved by P (0). To find the particular solution, we factor out the leading
order solution,

P (k)
= P (0)p(k), (A.19)

(with p(0)
= 1), and write

LT0P
(k)

= P (0)L′ T
0 p(k), LT1P

(k)
= P (0)L′ T

1 p(k), (A.20)

with

L′ T
0 = NR [∂x − 4(αx + γ y)] ∂x + (Ax − By)∂x

+NI

∂y − 4(βy + γ x)


∂y + (Ay + Bx)∂y, (A.21)

L′ T
1 =


x3 − 3xy2


(−2αx − 2γ y + ∂x)

+

3yx2 − y3

 
−2βy − 2γ x + ∂y


+ 6


x2 − y2


. (A.22)

Higher-order corrections are then determined by

L′ T
0 p(k)

= −L′ T
1 p(k−1). (A.23)

For the first-order correction, this yields

L′ T
0 p(1)

= 2αx4 + 8γ x3y − 6(α − β)x2y2 − 8γ xy3 − 2βy4 − 6

x2 − y2


. (A.24)

The RHS of Eq. (A.24) is a fourth-order polynomial with only even powers. As a particular solution we
may therefore attempt a polynomial of fourth degree, with only even terms appearing and containing
8 unknown coefficients,

p(1)(x, y) = c40x4 + c31x3y + c22x2y2 + c13xy3 + c04y4 + c20x2 + c11xy + c02y2. (A.25)

Inserting this Ansatz in Eq. (A.24) yields a set of linear equations for the coefficients which can be
solved. Since the expressions become rather unwieldy, we give here the results for real noise only,
since this is the case of interest.
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For real noise (NR = 1,NI = 0), the parameters in the lowest-order solution (A.5) simplify, and

α = A, β = A

1 +

2A2

B2


, γ =

A2

B
. (A.26)

The coefficients of the first-order correction (A.25) are given by

c20 = 0, c02 =
12A(2A2

− B2)

B2(4A2 + B2)
, (A.27)

c11 = −
6(A2

+ B2)

B(4A2 + B2)
, c22 = −

9A2(4A2
− B2)

B2(4A2 + B2)
, (A.28)

c40 = −
3A2

2(4A2 + B2)
, c04 = −

A2(36A2
− 5B2)

2B4
, (A.29)

c31 = −
2A(5A2

− B2)

B(4A2 + B2)
, c13 = −

2A(36A4
− 7A2B2

− B4)

B3(4A2 + B2)
. (A.30)

Hence, to first order, the (normalised) distribution is given by

P(x, y) = N1P (0)(x, y)

1 + λp(1)(x, y)


, (A.31)

with

1
N1

= 1 −
(7A4

+ 3A2B2
+ 2B4)

2(A2 + B2)2(4A2 + B2)
λ. (A.32)

This distribution satisfies the FP equation to order O(λ). It can be checked that it yields the correct
moments to this order, e.g.

(x + iy)2

P =


dxdy P(x, y)(x + iy)2 =

1
σ

−
3λ
σ 3

+ O(λ2). (A.33)

One may also verify that evaluating

ρ(x) =


dy P(x − iy, y) (A.34)

yields in this case

ρ(x) = N ′

1 e
−

1
2 σ x2


1 −

λ

4
x4


+ O(λ2), (A.35)

with

N ′
=


σ

2π


1 −

3λ
4σ 2


, (A.36)

as it should be.
It is clear that the perturbative distribution is not positive definite and strictly speaking only applies

when the perturbative correction λp(1)(x, y) is small with respect to 1, i.e. around the origin. However,
it can be made positive definite by a simple exponentiation,

P(x, y) = P (0)(x, y) exp

λp(1)(x, y)


, (A.37)

which has the same leading order λ dependence. This distribution is normalisable since the coeffi-
cients of the quartic terms are all negative. An example is shown in Fig. A.15. We observe a double
peak structure, as in the main text.
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Fig. A.15. Distribution P(x, y) in the xy-plane, at first nontrivial order in a perturbative expansion, at σ = 1 + i and λ = 1, for
real noise.

Fig. A.16. Comparison between the perturbative distribution and the solution of the FPE, for P(x, 0) (left) and P(0, y) (right),
at σ = 1 + i and λ = 1, for real noise. For the solution of the FPE, ω = 50 and NH = 150.

At large y values, the exponentiated construction cannot be correct, since it decays exponentially
rather than be 0 outside the strip found above. In the x direction, however, the perturbative solution
gives a surprisingly good description of the decay. Taking y = 0, we find

P(x, 0) ∼ exp(−Ax2 + c40λx4), (A.38)

where, for A = B = 1, c40 = −3/10. This result is compared with the solution of the FP equation in
Fig. A.16(left), and is seen to agree better than expected. We note that the prefactor 0.3 is also close to
whatwas observed for the integrated distribution Px(x). In Fig. A.16(right), we also show a comparison
with the perturbative expression

P(0, y) ∼ exp[−(β − c02λ)y2 + c04λy4], (A.39)

where β = 3, c02 = 12/5 and c04 = −31/2 (again for A = B = 1). Even though c02 is positive, it is
not large enough to change the curvature. Note that the oscillations visible in the solution of the FPE
are due to the finite number of basis functions (NH = 150).
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