Clique separator decomposition of hole-free and diamond-free graphs and algorithmic consequences

Andreas Brandstädt ${ }^{\text {a,*, }}$, Vassilis Giakoumakis ${ }^{\text {b }}$, Frédéric Maffray ${ }^{\text {c }}$
${ }^{\text {a }}$ Fachbereich Informatik, Universität Rostock, A.-Einstein-Str. 21, D-18051 Rostock, Germany
${ }^{\mathrm{b}}$ MIS (Modélisation, Information \& Systèmes), Université de Picardie Jules Verne, Amiens, France
${ }^{\text {c C.N.R.S., Laboratoire G-SCOP, Grenoble-INP, Université Joseph Fourier, Grenoble Cedex, France }}$

ARTICLE INFO

Article history:

Received 13 May 2011
Received in revised form 19 October 2011
Accepted 27 October 2011
Available online 21 November 2011

Keywords:

Clique separator decomposition
Hole-free and diamond-free graphs
Hole-free and paraglider-free graphs
Perfect graphs
Efficient algorithms

Abstract

Clique separator decomposition, introduced by Whitesides and Tarjan, is one of the most important graph decompositions. A hole is a chordless cycle with at least five vertices. A paraglider is a graph with five vertices a, b, c, d, e and edges $a b, a c, b c, b d, c d, a e, d e$. We show that every (hole, paraglider)-free graph admits a clique separator decomposition into graphs of three very specific types. This yields efficient algorithms for various optimization problems in this class of graphs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction, motivation and related work

Graph decompositions play an important role in structural and algorithmic aspects of graph theory. A clique separator (or clique cutset) of a graph G is a clique K in G such that $G \backslash K$ has more connected components than G. An atom is a graph without clique separator. An atom of a graph G is any induced subgraph of G that is an atom. Whitesides [38] proved that a clique separator decomposition of a graph can be determined in polynomial time; Tarjan [36] improved that result and showed that the decomposition can be applied to various optimization problems such as minimum fill-in, maximum weight independent set (MWIS), maximum weight clique, and coloring: if the problem is solvable in polynomial time on the atoms of a hereditary graph class \mathcal{C}, then it is solvable in polynomial time on class \mathcal{C}. In this paper, we are going to analyze the structure of atoms in two subclasses of hole-free graphs.

A hole is a chordless cycle with at least five vertices, and an antihole is the complementary graph of a hole. A graph is holefree (antihole free, respectively) if it contains no induced subgraph which is isomorphic to a hole (an antihole, respectively). The words odd and even, when applied to a hole or antihole, refer to the number of its vertices. For any integer $n \geq 1$, let K_{n} denote a complete graph with n vertices and P_{n} denote a chordless path with n vertices. For $n \geq 3$, let C_{n} denote a chordless cycle with n vertices. So any C_{n} with $n \geq 5$ is a hole. Note that, in our terminology, C_{4} is not a hole. The graph $K_{4} \backslash e$ (i.e., a clique on four vertices minus one edge) is called diamond. A paraglider is a graph with five vertices a, b, c, d, e and seven edges $a b, a c, b c, b d, c d$, $a e$, de (see Fig. 1). Note that a paraglider contains a diamond. Here we will study the class of (hole, paraglider)-free graphs (HP-free graphs for short). Some of the results also apply to the subclass of (hole, diamond)-free graphs (HD-free graphs).

[^0]

Fig. 1. Diamond, dart, gem, paraglider, and co- C_{6}.
Recall that a graph G is perfect if, for every induced subgraph H of G, the chromatic number of H is equal to the maximum clique size in H. The celebrated Strong Perfect Graph Theorem proved by Chudnovsky et al. [19] states (as conjectured by Berge [2]) that a graph is perfect if and only if it is odd-hole free and odd-antihole free.

Cycle properties of graphs and their algorithmic aspects play a fundamental role in combinatorial optimization, discrete mathematics, and computer science. Various graph classes are characterized in terms of cycle properties - among them are the classes of chordal graphs, weakly chordal graphs, and perfect graphs, which are of great importance for algorithmic graph theory and various applications. A graph is chordal (also called triangulated) if it contains no chordless cycle on at least four vertices. See, for example, [13,23,30] for the many facets of chordal graphs. A famous theorem of Dirac [21] states that every chordal graph either is a clique or has a clique cutset. It follows that a graph is chordal if and only if it is decomposable by clique separator decomposition into atoms that are cliques. HP-free graphs obviously generalize chordal graphs.

Recently there has been much work on related classes such as even-hole-free (forbidding also C_{4}) and diamond-free graphs [28] (see also [37]) and [22] dealing with the structure and recognition of (C_{4}, diamond)-free graphs. The classes of weakly chordal graphs and chordal bipartite graphs are also of importance here. A graph is weakly chordal (or weakly triangulated) if it is hole-free and antihole free. The classes of weakly chordal graphs and HP-free graphs are incomparable, as shown by the examples of the paraglider (which is weakly chordal but not HP-free) and $\overline{C_{6}}$ (which is HP-free but not weakly chordal). A graph is bipartite if it contains no cycle of odd length, and chordal bipartite if it is bipartite and contains no hole. Chordal bipartite graphs were introduced in [24]. HD-free graphs generalize the class of chordal bipartite graphs; moreover, diamond-free chordal graphs are the well-known block graphs - see [13] for various characterizations and the importance of chordal bipartite graphs as well as of block graphs. In [11,17], various characterizations of (dart, gem)-free chordal graphs are given; among others, it is shown that a graph is (dart, gem)-free chordal if and only if it results from substituting cliques into the vertices of a block graph.

Since every hole C_{k} with $k \geq 7$ contains the disjoint union of P_{2} and P_{3}, and the paraglider is the complementary graph of $P_{2} \cup P_{3}$, it follows that HP-free graphs contain no odd hole and no odd antihole. Thus, by the Strong Perfect Graph Theorem, HP-free graphs are perfect. Our structural results for atoms of HP-free graphs, however, will give a more direct way to show perfection of HP-free graphs. It is well known [3,27] that a graph is perfect if and only if its atoms are perfect; and it turns out (as we will show below) that the atoms of HP-free graphs belong to simple classes of perfect graphs.

A matched co-bipartite graph is a graph H that consists of two disjoint cliques of size k, with $k \geq 3$, such that the edges between these two cliques form a matching with k edges. Note that $\overline{C_{6}}$ is a matched co-bipartite graph.

A complete multipartite graph is a graph whose vertex set can be partitioned into parts S_{1}, \ldots, S_{k} such that any two vertices are adjacent if and only if they belong to distinct parts.

Our main result is the following theorem.
Theorem 1. A graph G is (hole, paraglider) free if and only if every atom of G is either

- a complete multipartite graph, or
- the join of a chordal bipartite graph and a (possibly empty) clique, or
- the join of a matched co-bipartite graph and a (possibly empty) clique.

The proof of Theorem 1 is given in Section 2. By Tarjan [36], Theorem 1 has various algorithmic consequences; in Section 3, we describe these and others.

We finish this section by recalling some definitions and notation. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The neighborhood $N(x)$ of a vertex x in G is the set $N(x)=\{u \in V(G) \mid u x \in E\}$. The neighborhood $N(X)$ of a subset $X \subseteq V$ is the set $\{u \in V(G) \mid u$ is adjacent to a vertex of $X\}$. Given a subgraph H of G, let $N_{H}(x)$ denote the set $N(x) \cap V(H)$, and let $N_{H}(X)$ denote the set $N(X) \cap V(H)$. Given a set $S \subset V(G)$ and a vertex x, we say that x is complete to S if it is adjacent to every vertex of S, and anticomplete to S if it is not adjacent to any vertex of S.

The complementary graph of G is the graph \bar{G} whose vertex set is $V(G)$ and edge set is $\{x y \mid x \neq y$ and $x y \notin E(G)\}$.
A set $U \subseteq V(G)$ is independent if its vertices are pairwise nonadjacent. A set $U \subseteq V(G)$ is a clique if its vertices are pairwise adjacent.

For any subgraph H of G, we let $G \backslash H$ denote the subgraph induced by the set of vertices $V(G) \backslash V(H)$.
Let \mathcal{F} be a set of graphs. A graph G is \mathcal{F} free if no induced subgraph of G is isomorphic to an element of \mathcal{F}. As already mentioned, G is hole-free (is antihole free, respectively) if no induced subgraph of G is isomorphic to a hole (an antihole, respectively).

2. Structure of (hole, paraglider)-free and (hole, diamond)-free atoms

Let g_{1} be the class of complete multipartite graphs, g_{2} be the class of graphs that are the join of a chordal bipartite graph and a clique, and g_{3} be the class of graphs that are the join of a matched co-bipartite graph and a clique. Let us refer to these three classes as basic. In view of Theorem 1, we want to show that every HP-free atom is in one of the three basic classes. Note that every atom is connected (we consider the empty set as a clique, so a disconnected graph has a clique cutset).

The following theorem describes the structure of HP-free atoms that contain a $\overline{C_{6}}$.
Theorem 2. Let G be an HP-free atom that contains an induced $\overline{C_{6}}$. Then G is the join of a matched co-bipartite graph and a (possibly empty) clique.
Proof. Let G be an HP-free atom. Suppose that G contains a $\overline{C_{6}}$. Let H be a maximal matched co-bipartite graph that extends a $\overline{C_{6}}$ in G. Let $V(H)$ be partitioned into two cliques $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $B=\left\{b_{1}, \ldots, b_{k}\right\}$, with $k \geq 3$, where $a_{1} b_{1}, \ldots, a_{k} b_{k}$ are the edges between A and B. We claim the following.

For every vertex x of $G \backslash H$, either $N_{H}(x)$ is a clique or $N_{H}(x)=V(H)$.
Proof of (1). Suppose that $N_{H}(x)$ is not a clique, so, up to relabeling, x is adjacent to a_{1} and b_{2}. Then x is adjacent to one of a_{3} and b_{3}, for otherwise $\left\{x, a_{1}, a_{3}, b_{3}, b_{2}\right\}$ induces a C_{5}. Assume, up to symmetry, that x is adjacent to a_{3}. Then x is adjacent to a_{2}, for otherwise $\left\{x, a_{1}, a_{2}, a_{3}, b_{2}\right\}$ induces a paraglider. Moreover, if $k \geq 4$, then x is adjacent to each a_{i} with $4 \leq i \leq k$, for otherwise either $\left\{x, a_{1}, a_{i}, b_{i}, b_{2}\right\}$ induces a C_{5} (if x is not adjacent to b_{i}) or $\left\{x, a_{1}, a_{2}, a_{i}, b_{i}\right\}$ induces a paraglider (if x is adjacent to b_{i}). Then x is adjacent to each b_{j} with $1 \leq j \leq k$, for otherwise $\left\{x, a_{2}, b_{2}, a_{j}, b_{j}\right\}$ induces a paraglider. Thus $N_{H}(x)=V(H)$.
Let R be the set of vertices that are complete to $V(H)$. Then
R is a clique.
Proof of (2). If R contains non-adjacent vertices u and v, then $\left\{u, v, a_{1}, b_{2}, b_{3}\right\}$ induces a paraglider.
Let F be any component of $G \backslash(V(H) \cup R)$. Then $N_{H}(F)$ is a clique.
Proof of (3). Suppose that there are non-adjacent vertices x and y in $N_{H}(F)$. Let u be a neighbor of x in F and v be a neighbor of y in F. Note that $u \neq v$ by (1), and since u and v are not in R. There is a chordless path P between u and v in F. We choose x, y, u, v and P such that P is as short as possible. Up to relabeling, let $x=a_{1}$ and $y=b_{2}$. Since u and v are not in R, (1) implies that $u b_{3}$ and $v a_{3}$ are not edges. Any interior vertex w of P is not adjacent to a_{1} or a_{3}, for otherwise the subpath of P between w and v contradicts the choice of P; and similarly, w is not adjacent to b_{2} or b_{3}. Since $V(P) \cup\left\{a_{1}, a_{3}, b_{2}, b_{3}\right\}$ cannot contain a hole, it must be that $u a_{3}$ and $v b_{3}$ are edges and $P=u v$. Now, since u is adjacent to a_{1} and a_{3}, by (1), we have $N_{H}(u) \subseteq A$, and similarly, $N_{H}(v) \subseteq B$. Then u is adjacent to a_{2}, for otherwise $\left\{u, a_{1}, a_{2}, b_{2}, v\right\}$ induces a C_{5}; and if $k \geq 4, u$ is adjacent to each a_{i} with $4 \leq i \leq k$, for otherwise there is a C_{6} or C_{5} (depending on the adjacency of v and b_{i}) induced among $u, a_{1}, a_{i}, b_{i}, b_{2}, v$. So $N_{H}(u)=A$, and similarly, $N_{H}(v)=B$. But then $V(H) \cup\{u, v\}$ induces a matched co-bipartite graph, which contradicts the maximality of H.
In conclusion, if $G \backslash\left(V(H) \cup R\right.$) has a component F, then, by (2) and (3), $N_{H}(F) \cup R$ is a clique cutset (that separates F from $\left.H \backslash N_{H}(F)\right)$, a contradiction to the fact that G is an atom. Therefore we have $V(G)=V(H) \cup R$, and so G is the join of a matched co-bipartite graph and a clique; that is, G is in class \mathcal{G}_{3}. This finishes the proof of Theorem 2.
Note that in a (hole, diamond)-free graph G that contains a $\overline{C_{6}}$, say H, no vertex can be complete to $V(H)$.
Corollary 1. If G is a (hole, diamond)-free atom containing an induced $\overline{C_{6}}$ then G is a matched co-bipartite graph.
Now we examine the case when there is no $\overline{C_{6}}$. We first need an easy lemma.
Lemma 1. In a chordal bipartite graph H, let P be a chordless even path and v be a vertex adjacent to the two endvertices of P. Then v is adjacent to every second vertex of P and not adjacent to the other vertices of P.
Proof. Let $P=p_{0}-\cdots-p_{k}(k \geq 2)$. If the lemma does not hold, there are consecutive vertices p_{i} and p_{i+1} of P that are either (a) both adjacent to v or (b) both not adjacent to v. In case (a), H contains a triangle. In case (b), let h be the largest integer with $0 \leq h<i$ and j be the smallest integer with $i+1<j \leq k$ such that v is adjacent to p_{h} and p_{j}. Then $\left\{v, p_{h}, \ldots, p_{j}\right\}$ induces a hole, a contradiction to H being chordal bipartite.

Let $K_{p, q}$ denote the complete bipartite graph with parts of size p and q respectively, and let $K_{3,3} \backslash e$ be obtained from a $K_{3,3}$ by removing one edge.

Theorem 3. Let G be an HP-free atom that contains no $\overline{C_{6}}$. Suppose that G contains a $K_{3,3} \backslash e$. Then G is the join of a chordal bipartite graph and a (possibly empty) clique.

Proof. Let H be a bipartite subgraph of G such that H contains a $K_{3,3} \backslash e, H$ has no clique cutset, and $V(H)$ is maximal with this property (G has such a subgraph because $K_{3,3} \backslash e$ itself has no clique cutset). If $G=H$, there is nothing to prove, so let $G \neq H$. Recall that G and H are connected. Let x be any vertex of $G \backslash H$. Our aim is to prove claim (6) below, and for that purpose we need two intermediate steps.

Consider any 6-tuple $\left\{v_{1}, \ldots, v_{6}\right\} \subset V(H)$ with edges $v_{i} v_{i+1}(\bmod 6)$ and
$v_{1} v_{4}$, where optionally each of $v_{2} v_{5}$ and $v_{3} v_{6}$ may also exist. If $\left\{v_{1}, \ldots, v_{4}\right\} \subset N(x)$,
then also $\left\{v_{5}, v_{6}\right\} \subset N(x)$.
Proof of (4). Since $\left\{v_{1}, v_{4}\right\}$ is not a cutset of H, there is a shortest path P from $\left\{v_{2}, v_{3}\right\}$ to $\left\{v_{5}, v_{6}\right\}$ in $H \backslash\left\{v_{1}, v_{4}\right\}$. We prove the claim by induction on the length of P. Let $P=p_{0}-\cdots-p_{k}$, with $k \geq 1$.

First, suppose that P is odd. So, up to symmetry, let $p_{0}=v_{2}, p_{k}=v_{5}$, and $V(P) \cap\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}=\emptyset$. If $k=1$ (i.e., $v_{2} v_{5}$ is an edge), then x must be adjacent to v_{5}, for otherwise $\left\{x, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ induces a paraglider; and to v_{6}, for otherwise $\left\{x, v_{1}, v_{4}, v_{5}, v_{6}\right\}$ induces a paraglider. Now let $k \geq 3$; that is, $v_{2} v_{5}$ and $v_{3} v_{6}$ are not edges. Since H is bipartite, there is no edge $v_{6} p_{i}$ with i even. If there is an edge $v_{6} p_{i}$ with i odd and $i<k$, then the path $p_{0}-\cdots-p_{i}-v_{6}$ is shorter than P, a contradiction. So there is no such edge, and $p_{0}-\cdots-p_{k}-v_{6}$ is a chordless path P^{\prime}. By Lemma 1 applied to P^{\prime} and v_{1}, vertex v_{1} is adjacent to $p_{2}, p_{4}, \ldots, p_{k-1}$ (and not adjacent to $p_{1}, p_{3}, \ldots, p_{k}$). Likewise, $v_{3}-p_{0}-\cdots-p_{k}$ is a chordless path, and v_{4} is adjacent to $p_{1}, p_{3}, \ldots, p_{k-2}$ (and not adjacent to $p_{2}, p_{4}, \ldots, p_{k-1}$). Then x is adjacent to p_{1}, for otherwise $\left\{x, v_{1}, v_{4}, p_{0}, p_{1}\right\}$ induces a paraglider; and to p_{2}, for otherwise $\left\{x, v_{1}, v_{4}, p_{1}, p_{2}\right\}$ induces a paraglider. Then, by the induction hypothesis, applied to the 6-tuple $\left\{p_{1}, p_{2}, v_{1}, v_{4}, v_{5}, v_{6}\right\}$ with path $p_{2}-\cdots-p_{k}$, vertex x is adjacent to v_{5} and v_{6}.

Now suppose that P is even, so, up to symmetry, let $p_{0}=v_{2}, p_{k}=v_{6}, k \geq 2$, and $V(P) \cap\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}=\emptyset$. By Lemma 1 applied to P and v_{1}, vertex v_{1} is adjacent to $p_{2}, p_{4}, \ldots, p_{k-2}$ (and not adjacent to $p_{1}, p_{3}, \ldots, p_{k-1}$). Since H is bipartite, there is no edge $v_{3} p_{i}$ with i odd. If there is an edge $v_{3} p_{i}$ with i even and $i>0$, then the path $v_{3}-p_{i}-\cdots-p_{k}$ is shorter than P, a contradiction. So there is no such edge, and $v_{3}-p_{0}-\cdots-p_{k}-v_{5}$ is a chordless path P^{\prime}. By Lemma 1 applied to P^{\prime} and v_{4}, vertex v_{4} is adjacent to $p_{1}, p_{3}, \ldots, p_{k-1}$ (and not adjacent to $p_{2}, p_{4}, \ldots, p_{k}$). Then x is adjacent to p_{1}, for otherwise $\left\{x, v_{1}, v_{4}, p_{0}, p_{1}\right\}$ induces a paraglider; and to p_{2}, for otherwise $\left\{x, v_{1}, v_{4}, p_{1}, p_{2}\right\}$ induces a paraglider. Then, by the induction hypothesis, applied to the 6 -tuple $\left\{p_{1}, p_{2}, v_{1}, v_{4}, v_{5}, v_{6}\right\}$ with path $p_{2}-\cdots-p_{k}$, vertex x is adjacent to v_{5} and v_{6}. Thus (4) holds.

If there is a P_{3} in H whose three vertices are in $N(x)$, then $V(H) \subseteq N(x)$.
Proof of (5). Let $W=\{a, b, c\}$ be the vertex set of a P_{3} in H, with edges $a b$ and $b c$, such that $W \subseteq N(x)$, and let z be any vertex in $V(H) \backslash W$. Call a W-link any path in H from z to W that contains exactly one vertex from W. Since $\{b, c\}$ is not a clique cutset of H, there is a W-link from z to a, and we let p be the length of a shortest such path. Likewise, there is a W-link from z to c, and we let q be the length of a shortest such path. Note that p and q have the same parity, since H is bipartite. We define $\ell_{W}(z)=\min \{p, q\}$ and $L_{W}(z)=\max \{p, q\}$. We prove that x is adjacent to z by induction on $\ell_{W}(z)$, and also, when $\ell_{W}(z)=1$, by induction on $L_{W}(z)$. We may assume that $p \leq q$, so $\ell_{W}(z)=p$. Let $P=u_{0}-\cdots-u_{p}$ be a W-link from z to a of length p, with $u_{0}=a$ and $u_{p}=z$, and let $Q=v_{0}-\cdots-v_{q}$ be a W-link from z to c of length q, with $v_{0}=c$ and $v_{q}=z$.

First, suppose that $p=1$; that is, z is adjacent to a. It follows that q is odd. Let j be the smallest integer such that there exists an edge $a v_{j}(j \leq q)$. Then $a-v_{j}-v_{j-1}-\cdots-v_{0}$ is a chordless path R, of length $j+1$, and j is odd, since H is bipartite. By Lemma 1 applied to R and b, vertex b is adjacent to every second vertex of R (i.e., to $v_{2}, v_{4}, \ldots, v_{j-1}$). Suppose that $j \geq 3$. If x has no neighbor in $\left\{v_{1}, v_{2}\right\}$, then $V(R) \cup\{x\}$ contains a hole (that contains $\left.x, c, v_{1}, v_{2}, v_{3}\right)$, a contradiction. So x is adjacent to one of v_{1} and v_{2}; and it must be adjacent to both, for otherwise $\left\{x, b, c, v_{1}, v_{2}\right\}$ induces a paraglider. For each even h with $h<j-1$, this argument can be repeated with v_{h} instead of c and $\left\{v_{h+1}, v_{h+2}\right\}$ instead of $\left\{v_{1}\right.$, $\left.v_{2}\right\}$; thus we obtain by induction on h that x is adjacent to every vertex of R. Then we set $W^{\prime}=\left\{a, b, v_{j-1}\right\}$ and observe that $\ell_{W^{\prime}}(z)=1$ and $v_{j-1}-v_{j}-\cdots-v_{q}$ is a W^{\prime}-link, so $L_{W^{\prime}}(z)<L_{W}(z)$, and, by the induction hypothesis, x is adjacent to z. Therefore $j=1$. Then x is adjacent to v_{1}, for otherwise $\left\{x, a, b, c, v_{1}\right\}$ induces a paraglider. If $q=1$, we are done; therefore let $q \geq 3$. By Lemma 1 applied to Q and a, vertex a is adjacent to $v_{3}, v_{5}, \ldots, v_{q-2}$ (and not to v_{2}, \ldots, v_{q-1}). For each odd h with $3 \leq h \leq q-2$, we have $\ell_{W}\left(v_{h}\right)=1$ and $L_{W}\left(v_{h}\right)<q$, so x is adjacent to v_{h}; moreover, x is adjacent to v_{h-1}, for otherwise $\left\{x, a, v_{h-2}, v_{h-1}, v_{h}\right\}$ induces a paraglider. $\operatorname{By}(4)$ applied to the 6 -tuple $\left\{a, v_{q-4}, \ldots, v_{q}\right\}$, we obtain that x is adjacent to z.

Now suppose that $p \geq 2$. By the induction hypothesis, x is adjacent to u_{1}, because $\ell_{W}\left(u_{1}\right)<p$. Set $W^{\prime}=\left\{u_{1}, a, b\right\}$, and observe that $u_{p}-\cdots-u_{1}$ is a W^{\prime}-link from z to u_{1}, so $\ell_{W^{\prime}}(z)<\ell_{W}(z)$, and, by the induction hypothesis, x is adjacent to z. Thus (5) holds.

If x is any vertex of $G \backslash H$, then either $N_{H}(x)$ is a (possibly empty) clique or $N_{H}(x)=V(H)$.
Proof of (6). Suppose that x has two non-adjacent neighbors u and v in H. Let H_{x} be the subgraph induced by $V(H) \cup\{x\}$. Suppose that H_{x} has a clique cutset K. If $x \in K$, then $K \backslash\{x\}$ is a clique cutset of H, a contradiction. So $x \notin K$. Let C be the component of $H_{x} \backslash K$ that contains x, and let D be another component of $H_{x} \backslash K$. Since u and v are not adjacent, at least one of them, say u, is not in K; so $u \in C$. But then K is a clique cutset of H (that separates u from D), a contradiction. Thus H_{x} has no clique cutset. The maximality of $V(H)$ implies that H_{x} is not bipartite; and so H_{x} contains a triangle, which contains x. Let a and b be two neighbors of x in H that are adjacent. One of u and v, say u, is not in $\{a, b\}$. Let $T=\{a, b, u\}$, and let T^{*} be the vertex set of a connected subgraph of H that contains T. Choose T such that T^{*} is as small as possible. If $T^{*}=T$
then T induces a P_{3}, and (5) implies that $N_{H}(x)=V(H)$. Now let us assume that $T^{*} \neq T$; i.e., u is not adjacent to any of a and b. Since $\{a\}$ is not a cutset of H, there is a shortest path P from b to u in $H \backslash\{a\}$. Let $P=p_{0}-\cdots-p_{k}$, with $p_{0}=b$ and $p_{k}=u$. Then x is not adjacent to p_{1}, for otherwise we could take $T=\left\{a, b, p_{1}\right\}$; and x is adjacent to p_{2}, for otherwise $V(P) \cup\{x\}$ contains a hole (that contains $x, b, p_{1}, p_{2}, p_{3}$). Then we can assume that $u=p_{2}$ and $T^{*}=\left\{a, b, p_{1}, p_{2}\right\}$. Since $\left\{b, p_{1}\right\}$ is not a cutset of H, there is a shortest path Q from a to u in $H \backslash\left\{b, p_{1}\right\}$. Let $Q=q_{0}-\cdots-q_{\ell}$, with $q_{0}=a$ and $q_{\ell}=u$. The bipartiteness of H implies that ℓ is odd, b is not adjacent to any q_{i} with i odd, and p_{1} is not adjacent to any q_{j} with j even. Then x is not adjacent to q_{1}, for otherwise we could take $T=\left\{a, b, q_{1}\right\}$; and x is adjacent to q_{2}, for otherwise $V(Q) \cup\{x\}$ contains a hole (that contains $x, a, q_{1}, q_{2}, q_{3}$). Then b is not adjacent to q_{2}, for otherwise $\left\{x, a, b, q_{1}, q_{2}\right\}$ induces a paraglider; and b is not adjacent to any q_{j} with j even $(j \geq 4)$, for otherwise $\left\{b, a, q_{1}, \ldots, q_{j}\right\}$ induces a hole. Then p_{1} is not adjacent to q_{1}, for otherwise $\left\{x, a, q_{1}, p_{1}, u\right\}$ induces a hole. But then, letting i be the largest integer such that p_{1} is adjacent to $q_{i}(i \leq \ell)$, we see that $\left\{p_{1}, b, a, q_{1}, q_{2}, \ldots, q_{i}\right\}$ induces a hole, a contradiction. Thus (6) holds.
Let R be the set of vertices that are complete to $V(H)$. Then
R is a clique.
Proof of (7). Since H contains a $K_{3,3} \backslash e$, there are three vertices a, b, c in H that induce a subgraph with exactly one edge. If R contains two non-adjacent vertices x and y, then $\{a, b, c, x, y\}$ induces a paraglider. Thus (7) holds.

If F is any component of $G \backslash(V(H) \cup R)$, then $N_{H}(F)$ is a clique.
Proof of (8). Suppose to the contrary that there are non-adjacent vertices u and v in $N_{H}(F)$. Let x be a neighbor of u in F and y be a neighbor of v in F. There is a chordless path P between x and y in F. We choose u, v, x, y and P such that P is as short as possible. By (6), P has length at least 1 . Since H has no clique cutset, it is 2-connected, and by Menger's theorem [31,33] there are two paths Q and Q^{\prime} between u and v in H such that $V(Q) \cap V\left(Q^{\prime}\right)=\{u, v\}$. The choice of P implies that u has no neighbor in $P \backslash\{x\}$ and v has no neighbor in $P \backslash\{y\}$. It must be that some interior vertex s of Q has a neighbor z in P, for otherwise $V(P) \cup V(Q)$ induces a hole.

Suppose that Q has length at least 3. Then, up to symmetry, s is not adjacent to v. If $z \neq x$, then the subpath $P[z, y]$ contradicts the choice of P. So $z=x$. By (6), and since $x \notin R,\{u, s\}$ is a clique; i.e., s is the neighbor of u on Q. Then it must be that some interior vertex t of $Q \backslash\{u\}$ has a neighbor in P, for otherwise $V(P) \cup V(Q) \backslash\{u\}$ induces a hole. As above (with s), we obtain that the only neighbor of t in P is y, and consequently $\{t, v\}$ is a clique; i.e., t is the neighbor of v on Q. Now $V(P) \cup V(Q) \backslash\{u, v\}$ induces a chordless cycle, so it must have length 4 , so st and $x y$ are edges of H. Thus $Q=u-s-t-v$. Since Q^{\prime} has length at least 3, we also have $Q^{\prime}=u-s^{\prime}-t^{\prime}-v$, where s^{\prime} is adjacent to x and not to y, and t^{\prime} is adjacent to y and not to x. Note that $s s^{\prime}$ and $t t^{\prime}$ are not edges, because H is bipartite. Then $s t^{\prime}$ is not an edge, for otherwise $\left\{x, u, s, s^{\prime}, t^{\prime}\right\}$ induces a paraglider; and similarly $s^{\prime} t$ is not an edge. But then $\left\{u, s, t, v, t^{\prime}, s^{\prime}\right\}$ induces a hole in H, a contradiction. Therefore Q and Q^{\prime} have length 2 . Thus $Q=u-s-v$ and $Q^{\prime}=u-s^{\prime}-v$, where we know already that s has a neighbor in P, and, similarly, s^{\prime} has a neighbor in P. Note that $s s^{\prime}$ is not an edge, since H is bipartite. There is a subpath P^{\prime} of P whose endvertices are adjacent to s and s^{\prime} respectively, and the choice of P implies that $P^{\prime}=P$; i.e., up to symmetry, s is adjacent to x, s^{\prime} is adjacent to y, and there is no other edge between P and $\left\{s, s^{\prime}\right\}$. If P has length at least 2 , then $V(P) \cup\left\{u, s^{\prime}\right\}$ induces a hole, a contradiction. So P has length 1 . But then $\left\{x, y, u, v, s, s^{\prime}\right\}$ induces a \bar{C}_{6}, a contradiction. Thus (8) holds.
In conclusion, if $G \backslash\left(V(H) \cup R\right.$) has a component F, then, by (7) and (8), $N_{H}(F) \cup R$ is a clique cutset (that separates F from $H \backslash N_{H}(F)$), a contradiction to the fact that G is an atom. Therefore we have $V(G)=V(H) \cup R$, and so G is the join of a chordal bipartite graph and a clique; i.e., G is in class \mathcal{g}_{2}. This finishes the proof of Theorem 3.
Theorem 4. Let G be an HP-free atom that contains no $\overline{C_{6}}$ and no $K_{3,3} \backslash e$. Suppose that G contains a C_{4}. Then G is a complete multipartite graph.
Proof. Let J be an induced subgraph of G that is the complete join of k non-empty stable sets S_{1}, \ldots, S_{k}, with $k \geq 2$, such that at least two of these stable sets have size at least 2 . Note that a C_{4} is such a graph. We assume also that J is such that $V(J)$ is maximal with this property. If $G=J$, then G is a complete multipartite graph, so let us assume that $G \neq J$. Let F be any component of $G \backslash J$. We claim that

$$
\begin{equation*}
N_{J}(F) \text { is a clique. } \tag{9}
\end{equation*}
$$

Proof of (9). Suppose that there are non-adjacent vertices x and y in $N_{J}(F)$. Let u be a neighbor of x in F and v be a neighbor of y in F. There is a chordless path P between u and v in F. We choose x, y, u, v and P such that P is as short as possible. Up to relabeling, let $x, y \in S_{1}$. By the definition of J, there are non-adjacent vertices a and b in $J \backslash S_{1}$.

First, suppose that $u=v$. For any two distinct integers $i, j \in\{2, \ldots, k\}$, vertex u must be complete to S_{i} or to S_{j}, for otherwise there are non-neighbors s, t of u with $s \in S_{i}$ and $t \in S_{j}$, and $\{u, x, y, s, t\}$ induces a paraglider. Therefore we may assume that u is complete to $S_{2} \cup \cdots \cup S_{k-1}$. Suppose that u is complete to S_{k}. If u is also complete to S_{1}, then the subgraph induced by $V(J) \cup\{u\}$ is the join of $k+1$ stable sets $S_{1}, \ldots, S_{k},\{u\}$, which contradicts the choice of J. So u has a non-neighbor z in S_{1}. Then $\{a, b, u, x, z\}$ induces a paraglider. Therefore u is not complete to S_{k}. Moreover, if u has a neighbor s and a nonneighbor t with $s, t \in S_{k}$, then $\{u, x, y, s, t\}$ induces a paraglider. So u is anticomplete to S_{k}. If u is complete to S_{1}, then the subgraph induced by $V(J) \cup\{u\}$ is the join of k stable sets $S_{1}, \ldots, S_{k-1}, S_{k} \cup\{u\}$, which contradicts the choice of J. So u has a non-neighbor z in S_{1}. If $a, b \in S_{j}$ with $j<k$, then $\{a, b, u, x, z\}$ induces a paraglider. So $a, b \in S_{k}$. But then $\{a, b, u, x, y, z\}$ induces a $K_{3,3} \backslash e$, a contradiction.

Now suppose that $u \neq v$. The choice of P implies that x has no neighbor in $P \backslash\{u\}$ and y has no neighbor in $P \backslash\{v\}$. Then a must have a neighbor in P, for otherwise $V(P) \cup\{a, x, y\}$ induces a hole; and similarly b has a neighbor in P. So there is a subpath P^{\prime} of P whose endvertices are adjacent to a and b respectively, and the choice of P implies that $P^{\prime}=P$. Thus, up to symmetry, a is adjacent to u, b is adjacent to v, and there is no other edge between P and $\{a, b\}$. If P has length at least 2 , then $V(P) \cup\{a, y\}$ induces a hole. So P has length 1 , but then $\{u, v, x, y, a, b\}$ induces a \bar{C}_{6}. Thus (9) holds.
In conclusion, if $G \backslash J$ has a component F, then, by (9), $N_{J}(F)$ is a clique cutset (that separates F from $J \backslash N_{J}(F)$), a contradiction to the fact that G is an atom. Therefore we have $G=J$, so G is a complete multipartite graph; i.e. $G \in \mathcal{G}_{1}$. This finishes the proof of Theorem 4.
Proof of Theorem 1. First, suppose that G has an induced subgraph H that is either a hole or a paraglider. Since H has no clique cutset, H must be an induced subgraph of some atom of G. So if every atom is HP-free, then G is HP-free.

Conversely, suppose that G is an HP-free graph, and let A be any atom of G. If A contains no C_{4}, then A is chordal, so Dirac's theorem [21] implies that A is a clique (which is a complete multipartite graph). If A contains a C_{4} but no $\overline{C_{6}}$ and no $K_{3,3} \backslash e$, then Theorem 4 implies that A is a complete multipartite graph. If A contains a $K_{3,3} \backslash e$ but no $\overline{C_{6}}$, then Theorem 3 implies that A is the join of a chordal bipartite graph and a clique. If A contains a $\overline{C_{6}}$, then Theorem 2 implies that A is the join of a matched co-bipartite graph and a clique. This finishes the proof of Theorem 1.

3. Algorithmic consequences

It was shown in [36] that, for various optimization problems such as minimum fill-in, maximum independent set, maximum clique, and coloring, whenever these problems are efficiently solvable on the atoms of a graph class, they are efficiently solvable on all graphs of the class. More precisely, given a graph G with n vertices and m edges, the algorithm from [36] finds in time $\mathcal{O}(\mathrm{nm})$ a clique separator decomposition of G with at most n atoms. For each optimization problem, the problem is solved on the atoms and the optimal solutions are combined to produce an optimal solution for G (the way they are combined depends on the problem). If the complexity of solving the problem for any atom of G is $\mathcal{O}(f(n, m))$, then the total complexity for G is $\mathcal{O}(n m+n f(n, m))$.

For perfect graphs, maximum independent set, maximum clique, and coloring are known to be solvable in polynomial time [25,26] using the ellipsoid method (but from a practical point of view, this is not an efficient solution of the problems). (Hole, paraglider)-free graphs are perfect because of the Strong Perfect Graph Theorem (a simpler and more direct way to prove this uses Theorem 1 and the fact that a graph is perfect if its atoms are perfect). The clique separator approach gives direct combinatorial algorithms for the problems mentioned above in the case of HP-free graphs, as we show now.
Recognition. Chordal bipartite graphs can be recognized in time $\mathcal{O}\left(\min \left\{m \log n, n^{2}\right\}\right)$ [29,32,35]. The recognition of complete multipartite graphs and of matched co-bipartite graphs can be easily done in linear time. We can decide if a graph G is HPfree as follows. Use the method of [36] to find a clique separator decomposition of G into at most n atoms. For each atom A, check whether A belongs to one of the three basic classes $\mathcal{g}_{1}, \mathcal{g}_{2}, \mathcal{g}_{3}$. If not, then the input graph is not (hole, paraglider) free. The total complexity is $\mathcal{O}\left(\min \left\{n m \log n, n^{3}\right\}\right)$.
Maximum weight independent set. For matched co-bipartite graphs and complete multipartite graphs, MWIS is trivial. For bipartite graphs, MWIS can be solved in time $\mathcal{O}\left(n^{3}\right)$ [33]. Thus, the time bound for MWIS on HP-free graphs is $\mathcal{O}\left(n^{4}\right)$.
Maximum clique and coloring. On each of the three basic classes the two problems are very simple and can be solved in time $\mathcal{O}(n+m)$. Here combining the solutions obtained on the atoms means simply taking the largest of them; this operation does not add a factor in the complexity. So these problems can be solved in time $\mathcal{O}(n+m)$ on HP-free graphs if a clique separator decomposition of the input graph is given. For maximum clique on diamond-free graphs, however, there is an even simpler way to solve the problem efficiently. Since the neighborhood of every vertex is P_{3}-free, it consists of pairwise disjoint cliques. So there are at most m maximal cliques, and we can list them explicitly and find an optimal clique.
Minimum fill-in. On graphs in classes g_{1} and g_{3} Minimum fill-in is very simple and can be solved in time $\mathcal{O}(n+m)$. For chordal bipartite graphs, a $\mathcal{O}\left(n^{4}\right)$ algorithm is given in [34]. Here, combining the solutions obtained on the atoms means simply taking the union of the fill-in sets; this operation does not add a factor in the complexity. So minimum fill-in can be solved in time $\mathcal{O}\left(n^{4}\right)$ on HP-free graphs.
Maximum weight induced matching (MWIM). A set M of edges is an induced matching in G if the pairwise distance of the edges in M is at least two in G. The MWIM problem asks for an induced matching of maximum weight. In [15], it is shown that, for a hereditary class \mathcal{C} of graphs, MWIM is solvable in polynomial time if MWIM is solvable in polynomial time on the atoms of \mathcal{C}. For chordal bipartite graphs, a polynomial-time solution is given in [18]. In a complete multipartite graph there is no induced matching of size 2 , and in a matched co-bipartite graph there is no induced matching of size 3 , so in either class the search for a maximum weight induced matching is trivial.

4. Conclusion

We have described here the structure of (hole, paraglider)-free atoms and some algorithmic consequences. In a forthcoming paper [4] we will analyze the structure of (hole, diamond)-free graphs and its algorithmic consequences in more detail.

There are various other aspects and papers which are related to our work as described below.

4.1. Related results for subclasses of P_{5}-free graphs

In [1], Alekseev showed that (P_{5}, paraglider)-free atoms are $3 K_{2}$-free, which leads to a polynomial-time algorithm for the MWIS problem, since $3 K_{2}$-free graphs contain at most $\mathcal{O}\left(n^{4}\right)$ inclusion-maximal independent sets. In [12], we improved this result by generalizing the forbidden paraglider subgraph. In [7], we give a more detailed structural analysis of (P_{5}, paraglider)-free atoms. In [16], we describe the structure of prime (P_{5}, co-chair)-free graphs and give algorithmic applications. The complexity of the MWIS problem for P_{5}-free graphs is an open problem. It is also open for $\left(P_{5}, C_{5}\right)$-free graphs; such graphs are hole-free. Thus, it is interesting to study subclasses of P_{5}-free graphs (subclasses of (P_{5}, C_{5})-free graphs, respectively).

4.2. Clique-width

In [6], we describe the simple structure of (P_{5}, diamond)-free graphs; such graphs can contain C_{5}, and thus (P_{5}, diamond)free graphs are in general not perfect and their class is incomparable with the class of (hole, diamond)-free graphs. (P_{5}, diamond)-free graphs have bounded clique-width - see, e.g., [20] for the notion and algorithmic implications of bounded clique-width, which has tremendous consequences for efficiently solving hard problems on such graph classes. For the more general class of (P_{5}, gem)-free graphs, the situation is similar: by the Strong Perfect Graph Theorem, (hole, gem)-free graphs are perfect, since antiholes with at least seven vertices contain a gem. The structure of (P_{5}, gem)-free graphs and some algorithmic applications were described in [5,10]. In [9], it was shown that (P_{5}, gem)-free graphs have bounded cliquewidth.

The clique-width of (hole, diamond)-free graphs, however, is unbounded, since, for example, the subclass of chordal bipartite graphs (which are the (hole, triangle)-free graphs) has unbounded clique-width [14]. This illustrates that corresponding subclasses of hole-free graphs are more interesting than those of P_{5}-free graphs.

4.3. Open problems

It would be interesting to describe the structure of (hole, gem)-free graphs. In particular, how can one avoid to use the Strong Perfect Graph Theorem for showing that (hole, gem)-free graphs are perfect?

In [8], we give a polynomial-time algorithm for the MWIS problem on (hole, co-chair)-free graphs. It would be interesting to obtain better structural results on these graphs.

References

[1] V.E. Alekseev, On easy and hard hereditary classes of graphs with respect to the independent set problem, Discrete Appl. Math. 132 (2004) 17-26.
[2] C. Berge, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961) 114.
[3] C. Berge, Les problèmes de coloration en théorie des graphes, Publ. Inst. Stat. Univ. Paris 9 (1960) 123-160.
[4] A. Berry, A. Brandstädt, V. Giakoumakis, F. Maffray, The atomic structure of hole-and diamond-free graphs, Manuscript, 2011.
[5] H. Bodlaender, A. Brandstädt, D. Kratsch, M. Rao, J.P. Spinrad, On algorithms for (P_{5}, gem)-free graphs, Theoret. Comput. Sci. 349 (2005) 2-21.
[6] A. Brandstädt, (P_{5}, diamond)-free graphs revisited: structure and linear time optimization, Discrete Appl. Math. 138 (2004) 13-27.
[7] A. Brandstädt, Chính T. Hoàng, On clique separators, nearly chordal graphs and the Maximum Weight Stable Set problem, in: M. Jünger, V. Kaibel (Eds.), Extended Abstract, in: LNCS, vol. 3509, 2005, pp. 265-275. IPCO 2005; Theoret. Comput. Sci. 389 (2007) 295-306.
[8] A. Brandstädt, V. Giakoumakis, Maximum weight independent sets in hole- and co-chair-free graphs, Inf. Process. Lett. (2011) Manuscript (in press).
[9] A. Brandstädt, Le Hoàng-Oanh, R. Mosca, Chordal co-gem-free graphs and (P_{5}, gem)-free graphs have bounded clique-width, Discrete Appl. Math. 145 (2005) 232-241.
[10] A. Brandstädt, D. Kratsch, On the structure of (P_{5}, gem)-free graphs, Discrete Appl. Math. 145 (2005) 155-166.
[11] A. Brandstädt, V.B. Le, Simplicial powers of graphs, Theoret. Comput. Sci. 410 (2009) 5443-5454.
[12] A. Brandstädt, V.B. Le, S. Mahfud, New applications of clique separator decomposition for the Maximum Weight Stable Set problem, Theoret. Comput. Sci. 370 (2007) 229-239.
[13] A. Brandstädt, V.B. Le, J.P. Spinrad, in: Graph Classes: A Survey, in: SIAM Monographs on Discrete Math. Appl., vol. 3, Philadelphia, 1999.
[14] A. Brandstädt, V.V. Lozin, On the linear structure and clique width of bipartite permutation graphs, Ars Combin. LXVII (2003) $273-281$.
[15] A. Brandstädt, R. Mosca, On distance-3 matchings and induced matchings, Discrete Appl. Math. 159 (2011) 509-520.
[16] A. Brandstädt, R. Mosca, On the structure and stability number of P_{5} - and co-chair-free graphs, Discrete Appl. Math. 132 (2004) 47-65.
[17] A. Brandstädt, P. Wagner, Characterising (k, l)-leaf powers, Discrete Appl. Math. 158 (2010) 110-122.
[18] K. Cameron, R. Sritharan, Y. Tang, Finding a maximum induced matching in weakly chordal graphs, Discrete Math. 266 (2003) 133-142.
[19] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. of Math. 164 (2006) 51-229.
[20] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs of bounded clique width, Theory Comput. Syst. 33 (2000) 125-150.
[21] G.A. Dirac, On rigid circuit graphs, Abhandlungen Math. Seminar Univ. Hamburg 25 (1961) 71-76.
[22] E.M. Eschen, C.T. Hoàng, J.P. Spinrad, R. Sritharan, On graphs without a C_{4} or a diamond, Discrete Appl. Math. 159 (2011) $581-587$.
[23] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, second ed., in: Annals of Discrete Mathematics, vol. 57, Elsevier, 2004.
[24] M.C. Golumbic, C.F. Goss, Perfect elimination and chordal bipartite graphs, J. Graph Theory 2 (1978) 155-163.
[25] M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981) 169-197; Combinatorica 4 (1984) 291-295 (Corrigendum).
[26] M. Grötschel, L. Lovász, A. Schrijver, Polynomial algorithms for perfect graphs, Ann. Discrete Math. 21 (1984) 325-356.
[27] A. Hajnal, J. Surányi, Über die Auflösung von Graphen in vollständige Teilgraphen, Ann. Univ. Sc. Budapest. 1 (1958) 113-121.
[28] T. Kloks, H. Müller, K. Vušković, Even-hole-free graphs that do not contain diamonds: a structure theorem and its consequences, J. Combin. Theory Ser. B 99 (2009) 733-800.
[29] A. Lubiw, Doubly lexical orderings of matrices, SIAM J. Comput. 16 (1987) 854-879.
[30] T.A. McKee, F.R. McMorris, Topics in Intersection Graph Theory, in: SIAM Monographs on Discrete Math. and Appl., vol. 2, Philadelphia, 1999.
[31] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.
[32] R. Paige, R.E. Tarjan, Three partition refinement algorithms, SIAM J. Comput. 16 (1987) 973-989.
[33] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer-Verlag, New York, 2003.
[34] M.-Sh. Chang, Algorithms for maximum matching and minimum fill-in on chordal bipartite graphs, Lect. Notes Comput. Sci. 1178 (1996) 146-155.
[35] J.P. Spinrad, Doubly lexical ordering of dense 0-1 matrices, Inf. Process. Lett. 45 (1993) 229-235.
[36] R.E. Tarjan, Decomposition by clique separators, Discrete Math. 55 (1985) 221-232.
[37] K. Vušković, Even-hole-free graphs: a survey, Appl. Anal. Discrete Math. (2010) (electronically available).
[38] S.H. Whitesides, A method for solving certain graph recognition and optimization problems, with applications to perfect graphs, in: C. Berge, V. Chvátal (Eds.), Topics on Perfect Graphs, North-Holland, Amsterdam, 1984.

[^0]: * Corresponding author.

 E-mail addresses: ab@informatik.uni-rostock.de (A. Brandstädt), vassilis.giakoumakis@u-picardie.fr (V. Giakoumakis), frederic.maffray@inpg.fr (F. Maffray).

