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1. Introduction, motivation and related work

Graph decompositions play an important role in structural and algorithmic aspects of graph theory. A clique separator
(or clique cutset) of a graph G is a clique K in G such that G \ K has more connected components than G. An atom is a graph
without clique separator. An atom of a graph G is any induced subgraph of G that is an atom. Whitesides [38] proved that
a clique separator decomposition of a graph can be determined in polynomial time; Tarjan [36] improved that result and
showed that the decomposition can be applied to various optimization problems such as minimum fill-in, maximum weight
independent set (MWIS), maximum weight clique, and coloring: if the problem is solvable in polynomial time on the atoms
of a hereditary graph class G, then it is solvable in polynomial time on class €. In this paper, we are going to analyze the
structure of atoms in two subclasses of hole-free graphs.

A hole is a chordless cycle with at least five vertices, and an antihole is the complementary graph of a hole. A graph is hole-
free (antihole free, respectively) if it contains no induced subgraph which is isomorphic to a hole (an antihole, respectively).
The words odd and even, when applied to a hole or antihole, refer to the number of its vertices. For any integer n > 1, let K,
denote a complete graph with n vertices and P, denote a chordless path with n vertices. For n > 3, let C, denote a chordless
cycle with n vertices. So any G, with n > 5 is a hole. Note that, in our terminology, C, is not a hole. The graph K, \ e (i.e., a
clique on four vertices minus one edge) is called diamond. A paraglider is a graph with five vertices a, b, c, d, e and seven
edges ab, ac, bc, bd, cd, ae, de (see Fig. 1). Note that a paraglider contains a diamond. Here we will study the class of (hole,
paraglider)-free graphs (HP-free graphs for short). Some of the results also apply to the subclass of (hole, diamond)-free
graphs (HD-free graphs).
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Fig. 1. Diamond, dart, gem, paraglider, and co-Cg.

Recall that a graph G is perfect if, for every induced subgraph H of G, the chromatic number of H is equal to the maximum
clique size in H. The celebrated Strong Perfect Graph Theorem proved by Chudnovsky et al. [19] states (as conjectured by
Berge [2]) that a graph is perfect if and only if it is odd-hole free and odd-antihole free.

Cycle properties of graphs and their algorithmic aspects play a fundamental role in combinatorial optimization, discrete
mathematics, and computer science. Various graph classes are characterized in terms of cycle properties — among them
are the classes of chordal graphs, weakly chordal graphs, and perfect graphs, which are of great importance for algorithmic
graph theory and various applications. A graph is chordal (also called triangulated) if it contains no chordless cycle on at least
four vertices. See, for example, [13,23,30] for the many facets of chordal graphs. A famous theorem of Dirac [21] states that
every chordal graph either is a clique or has a clique cutset. It follows that a graph is chordal if and only if it is decomposable
by clique separator decomposition into atoms that are cliques. HP-free graphs obviously generalize chordal graphs.

Recently there has been much work on related classes such as even-hole-free (forbidding also C4) and diamond-free
graphs [28] (see also [37]) and [22] dealing with the structure and recognition of (C4, diamond)-free graphs. The classes
of weakly chordal graphs and chordal bipartite graphs are also of importance here. A graph is weakly chordal (or weakly
triangulated) if it is hole-free and antihole free. The classes of weakly chordal graphs and HP-free graphs are incomparable,
as shown by the examples of the paraglider (which is weakly chordal but not HP-free) and Cg (which is HP-free but not
weakly chordal). A graph is bipartite if it contains no cycle of odd length, and chordal bipartite if it is bipartite and contains
no hole. Chordal bipartite graphs were introduced in [24]. HD-free graphs generalize the class of chordal bipartite graphs;
moreover, diamond-free chordal graphs are the well-known block graphs — see [13] for various characterizations and the
importance of chordal bipartite graphs as well as of block graphs. In [11,17], various characterizations of (dart, gem)-free
chordal graphs are given; among others, it is shown that a graph is (dart, gem)-free chordal if and only if it results from
substituting cliques into the vertices of a block graph.

Since every hole C, with k > 7 contains the disjoint union of P, and P3, and the paraglider is the complementary graph of
P, U Ps, it follows that HP-free graphs contain no odd hole and no odd antihole. Thus, by the Strong Perfect Graph Theorem,
HP-free graphs are perfect. Our structural results for atoms of HP-free graphs, however, will give a more direct way to show
perfection of HP-free graphs. It is well known [3,27] that a graph is perfect if and only if its atoms are perfect; and it turns
out (as we will show below) that the atoms of HP-free graphs belong to simple classes of perfect graphs.

A matched co-bipartite graph is a graph H that consists of two disjoint cliques of size k, with k > 3, such that the edges
between these two cliques form a matching with k edges. Note that Cg is a matched co-bipartite graph.

A complete multipartite graph is a graph whose vertex set can be partitioned into parts S, ..., S; such that any two
vertices are adjacent if and only if they belong to distinct parts.

Our main result is the following theorem.

Theorem 1. A graph G is (hole, paraglider) free if and only if every atom of G is either

- a complete multipartite graph, or
- the join of a chordal bipartite graph and a (possibly empty) clique, or
- the join of a matched co-bipartite graph and a (possibly empty) clique.

The proof of Theorem 1 s given in Section 2. By Tarjan [36], Theorem 1 has various algorithmic consequences; in Section 3,
we describe these and others.

We finish this section by recalling some definitions and notation. Let G be a graph with vertex set V(G) and edge set E(G).
The neighborhood N (x) of a vertex x in G is the set N(x) = {u € V(G) | ux € E}. The neighborhood N (X) of a subset X C V
is the set {u € V(G) | uis adjacent to a vertex of X}. Given a subgraph H of G, let Ny (x) denote the set N(x) N V(H), and let
Ny (X) denote the set N(X) N V(H). Given a set S C V(G) and a vertex x, we say that x is complete to S if it is adjacent to
every vertex of S, and anticomplete to S if it is not adjacent to any vertex of S.

The complementary graph of G is the graph G whose vertex set is V(G) and edge set is {xy | x # y and xy &€ E(G)}.

AsetU C V(G) isindependent if its vertices are pairwise nonadjacent. Aset U C V(G) is a clique if its vertices are pairwise
adjacent.

For any subgraph H of G, we let G \ H denote the subgraph induced by the set of vertices V(G) \ V(H).

Let ¥ be a set of graphs. A graph G is ¥ free if no induced subgraph of G is isomorphic to an element of #. As already
mentioned, G is hole-free (is antihole free, respectively) if no induced subgraph of G is isomorphic to a hole (an antihole,
respectively).
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2. Structure of (hole, paraglider)-free and (hole, diamond)-free atoms

Let ¢, be the class of complete multipartite graphs, §, be the class of graphs that are the join of a chordal bipartite graph
and a clique, and §3 be the class of graphs that are the join of a matched co-bipartite graph and a clique. Let us refer to these
three classes as basic. In view of Theorem 1, we want to show that every HP-free atom is in one of the three basic classes.
Note that every atom is connected (we consider the empty set as a clique, so a disconnected graph has a clique cutset).

The following theorem describes the structure of HP-free atoms that contain a Gg.

Theorem 2. Let G be an HP-free atom that contains an induced Cg. Then G is the join of a matched co-bipartite graph and a
(possibly empty) clique.

Proof. Let G be an HP-free atom. Suppose that G contains a Cs. Let H be a maximal matched co-bipartite graph that extends
aGs in G. Let V(H) be partitioned into two cliquesA = {ay, ..., a;} and B = {bq, ..., b}, with k > 3, where abq, ..., aiby
are the edges between A and B. We claim the following.

For every vertex x of G \ H, either Ny (x) is a clique or Ny (x) = V(H). O (1)

Proof of (1). Suppose that Ny (x) is not a clique, so, up to relabeling, x is adjacent to a; and b,. Then x is adjacent to one of
as and bs, for otherwise {x, a;, as, b3, b,} induces a Cs. Assume, up to symmetry, that x is adjacent to as. Then x is adjacent
to a,, for otherwise {x, ay, a, as, b,} induces a paraglider. Moreover, if k > 4, then x is adjacent to each a; with4 < i < k,
for otherwise either {x, ay, a;, b;, b»} induces a Cs (if x is not adjacent to b;) or {x, ai, as, a;, b;} induces a paraglider (if x
is adjacent to b;). Then x is adjacent to each b; with 1 < j < k, for otherwise {x, ay, b, g;, b;} induces a paraglider. Thus
Ny(x) =V(H). O

Let R be the set of vertices that are complete to V(H). Then

Ris aclique. (2)
Proof of (2).If R contains non-adjacent vertices u and v, then {u, v, ay, by, b3} induces a paraglider. O

Let F be any component of G \ (V(H) U R). Then Ny (F) is a clique. (3)

Proof of (3). Suppose that there are non-adjacent vertices x and y in Ny (F). Let u be a neighbor of x in F and v be a neighbor
of yin F. Note that u # v by (1), and since u and v are not in R. There is a chordless path P between u and v in F. We choose
X, ¥, u, v and P such that P is as short as possible. Up to relabeling, let x = a; and y = b,. Since u and v are not in R, (1)
implies that ub; and vas are not edges. Any interior vertex w of P is not adjacent to a, or as, for otherwise the subpath of P
between w and v contradicts the choice of P; and similarly, w is not adjacent to b, or bs. Since V (P) U {ay, as, b,, b3} cannot
contain a hole, it must be that uas and vbs are edges and P = uv. Now, since u is adjacent to a; and as, by (1), we have
Ny (u) C A, and similarly, Ny (v) € B. Then u is adjacent to a,, for otherwise {u, ay, a;, by, v} induces a Cs; and if k > 4, u is
adjacent to each a; with 4 < i < k, for otherwise there is a Cs or Cs (depending on the adjacency of v and b;) induced among
u, ai, aj, b;, by, v. So Ny(u) = A, and similarly, Ny (v) = B. But then V(H) U {u, v} induces a matched co-bipartite graph,
which contradicts the maximality of H. O

In conclusion, if G \ (V(H) U R) has a component F, then, by (2) and (3), Ny (F) U R is a clique cutset (that separates F from
H\ Ny (F)), a contradiction to the fact that G is an atom. Therefore we have V(G) = V(H)UR, and so G is the join of a matched
co-bipartite graph and a clique; that is, G is in class 3. This finishes the proof of Theorem 2. O

Note that in a (hole, diamond)-free graph G that contains a Cg, say H, no vertex can be complete to V (H).

Corollary 1. If G is a (hole, diamond)-free atom containing an induced Cg then G is a matched co-bipartite graph.

Now we examine the case when there is no Cs. We first need an easy lemma.

Lemma 1. In a chordal bipartite graph H, let P be a chordless even path and v be a vertex adjacent to the two endvertices of P.
Then v is adjacent to every second vertex of P and not adjacent to the other vertices of P.

Proof. LetP =py—---—pi (k > 2).If the lemma does not hold, there are consecutive vertices p; and p;. of P that are either
(a) both adjacent to v or (b) both not adjacent to v. In case (a), H contains a triangle. In case (b), let h be the largest integer
with 0 < h < iand j be the smallest integer withi + 1 < j < k such that v is adjacent to p, and p;. Then {v, py, ..., p;}
induces a hole, a contradiction to H being chordal bipartite. O

Let K, 4 denote the complete bipartite graph with parts of size p and g respectively, and let K3 3 \ e be obtained from a K3 3
by removing one edge.

Theorem 3. Let G be an HP-free atom that contains no Cg. Suppose that G contains a K33 \ e. Then G is the join of a chordal
bipartite graph and a (possibly empty ) clique.
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Proof. Let H be a bipartite subgraph of G such that H contains a K3 3 \ e, H has no clique cutset, and V (H) is maximal with
this property (G has such a subgraph because K3 5 \ e itself has no clique cutset). If G = H, there is nothing to prove, so let
G # H. Recall that G and H are connected. Let x be any vertex of G \ H. Our aim is to prove claim (6) below, and for that
purpose we need two intermediate steps.

Consider any 6-tuple {vq, ..., vg} C V(H) with edges v;v;; (mod 6) and
v1v4, Where optionally each of v,vs and v3vg may also exist. If {vq, ..., v4} C N(x),
then also {vs, vg} C N(x). O (4)

Proof of (4). Since {v1, v4} is not a cutset of H, there is a shortest path P from {v,, v3} to {vs, vg} in H \ {v1, v4}. We prove
the claim by induction on the length of P. Let P = pg — - - - — py, with k > 1.

First, suppose that P is odd. So, up to symmetry, let pg = va, px = vs, and V(P) N {vq, v3, vg, vg} = B.If k = 1 (i.e., vov5
is an edge), then x must be adjacent to vs, for otherwise {x, v, vs3, v4, vs} induces a paraglider; and to vg, for otherwise
{x, v1, v4, vs, Vg} induces a paraglider. Now let k > 3; that is, v,vs and v3vg are not edges. Since H is bipartite, there is no
edge vgp; with i even. If there is an edge vgp; with i odd and i < k, then the path py — - -- — p; — ve is shorter than P, a
contradiction. So there is no such edge, and py — - - - — py — vg is a chordless path P’. By Lemma 1 applied to P’ and v, vertex
vq is adjacent to p,, p4, . . ., Pr—1 (and not adjacent to pq, ps, . . ., Px). Likewise, v3 — pg — - - - — py is a chordless path, and vy
is adjacent to py, ps, - . . , Pk—2 (and not adjacent to py, pa, - - . , Ppr—1)- Then x is adjacent to py, for otherwise {x, v1, v4, po, P1}
induces a paraglider; and to p,, for otherwise {x, v{, v4, p1, p2} induces a paraglider. Then, by the induction hypothesis,
applied to the 6-tuple {p1, p2, v1, va, vs, vg} With path p, — - - - — py, vertex x is adjacent to vs and vg.

Now suppose that P is even, so, up to symmetry, let pg = vy, px = v, k > 2,and V(P) N {v1, v3, v4, v5} = @. By Lemma 1
applied to P and vy, vertex vy is adjacent to p, p4, . . . , Pk—» (and not adjacent to p, ps, ..., pk—1). Since H is bipartite, there
is no edge vsp; with i odd. If there is an edge vsp; with i even and i > 0, then the path v3 — p; — - - - — py is shorter than
P, a contradiction. So there is no such edge, and vs — pg — - -+ — px — vs is a chordless path P’. By Lemma 1 applied to P’
and vy, vertex vy is adjacent to p1, ps, ..., Pr—1 (and not adjacent to p,, pa, . . ., px). Then x is adjacent to pq, for otherwise
{x, v1, v4, Do, p1} induces a paraglider; and to p,, for otherwise {x, v1, v4, p1, p2} induces a paraglider. Then, by the induction
hypothesis, applied to the 6-tuple {p1, p2, v1, V4, Vs, Vg} with path p, — - - - — py, vertex x is adjacent to vs and vg. Thus (4)
holds. O

If there is a P; in H whose three vertices are in N(x), then V(H) € N(x). (5)

Proof of (5). Let W = {a, b, c} be the vertex set of a P; in H, with edges ab and bc, such that W C N(x), and let z be any
vertex in V(H) \ W. Call a W-link any path in H from z to W that contains exactly one vertex from W. Since {b, c} is not a
clique cutset of H, there is a W-link from z to a, and we let p be the length of a shortest such path. Likewise, there is a W-link
from z to c, and we let g be the length of a shortest such path. Note that p and g have the same parity, since H is bipartite. We
define ¢y (z) = min{p, q} and Ly (z) = max{p, q}. We prove that x is adjacent to z by induction on ¢y (z), and also, when
Lw(z) = 1, by induction on Ly (z). We may assume thatp < q,so {w(z) = p.LetP =uy —--- —up beaW-link fromz toa
of length p, withup = aand u, = z,andletQ = vo — - - - — vy be a W-link from z to ¢ of length g, with vy = c and v; = z.

First, suppose that p = 1; that is, z is adjacent to a. It follows that q is odd. Let j be the smallest integer such that there
exists an edge av; j < q). Thena — v; — vj_; — --- — vg is a chordless path R, of length j 4 1, and j is odd, since H is
bipartite. By Lemma 1 applied to R and b, vertex b is adjacent to every second vertex of R (i.e., to vy, vy, ..., vj—1). Suppose
thatj > 3.If x has no neighbor in {vq, v,}, then V(R) U {x} contains a hole (that contains x, c, vy, vz, v3), a contradiction. So
x is adjacent to one of v; and v,; and it must be adjacent to both, for otherwise {x, b, c, v1, v} induces a paraglider. For each
even hwithh < j— 1, this argument can be repeated with vy, instead of c and {vy1, vn42} instead of {vq, v,}; thus we obtain
by induction on h that x is adjacent to every vertex of R. Then we set W' = {a, b, vj_;} and observe that £,/(z) = 1 and

Vi1 —Vj—---—vgisaW’'-link, so Ly(z) < Lw(z), and, by the induction hypothesis, x is adjacent to z. Therefore j = 1. Then
x is adjacent to v, for otherwise {x, a, b, ¢, v;} induces a paraglider. If ¢ = 1, we are done; therefore let ¢ > 3. By Lemma 1
applied to Q and g, vertex a is adjacent to vs, vs, ..., Vg—z (and not to vy, ..., vg—1). Foreachodd hwith3 < h < q—2,we
have ¢y (vy) = 1and Ly (vy) < g, So x is adjacent to v,; moreover, x is adjacent to v,_1, for otherwise {x, a, vy_3, va_1, Vp}
induces a paraglider. By (4) applied to the 6-tuple {a, v4_4, . . ., vq}, we obtain that x is adjacent to z.

Now suppose that p > 2. By the induction hypothesis, x is adjacent to uq, because £y (u;) < p. Set W' = {uy, a, b}, and
observe thatu, — - - - — uy is a W’-link from z to uy, so £y (z) < £w(z), and, by the induction hypothesis, x is adjacent to z.
Thus (5) holds. O

If x is any vertex of G \ H, then either Ny (x) is a (possibly empty) clique or Ny (x) = V(H). (6)

Proof of (6). Suppose that x has two non-adjacent neighbors u and v in H. Let H, be the subgraph induced by V(H) U {x}.
Suppose that Hy has a clique cutset K. If x € K, then K \ {x} is a clique cutset of H, a contradiction. So x ¢ K. Let C be the
component of Hy \ K that contains x, and let D be another component of Hy \ K. Since u and v are not adjacent, at least one
of them, say u, is not in K; so u € C.But then K is a clique cutset of H (that separates u from D), a contradiction. Thus Hy
has no clique cutset. The maximality of V (H) implies that H, is not bipartite; and so H, contains a triangle, which contains
x. Let a and b be two neighbors of x in H that are adjacent. One of u and v, say u, is not in {a, b}. Let T = {a, b, u}, and let
T* be the vertex set of a connected subgraph of H that contains T. Choose T such that T* is as small as possible. If T* = T
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then T induces a Ps, and (5) implies that Ny (x) = V(H). Now let us assume that T* # T; i.e., u is not adjacent to any of a
and b. Since {a} is not a cutset of H, there is a shortest path P frombtouinH \ {a}. Let P = py — --- — py, withpg = b
and p, = u. Then x is not adjacent to pq, for otherwise we could take T = {a, b, p,}; and x is adjacent to p,, for otherwise
V(P) U {x} contains a hole (that contains x, b, p1, p2, p3). Then we can assume that u = p, and T* = {a, b, p1, p>}. Since
{b, p1} is not a cutset of H, there is a shortest path Q fromatouinH \ {b,p;}.LetQ = qo — - - - — q¢, with qo = a and
qe = u. The bipartiteness of H implies that ¢ is odd, b is not adjacent to any g; with i odd, and p; is not adjacent to any g;
with j even. Then x is not adjacent to q;, for otherwise we could take T = {a, b, q1}; and x is adjacent to g, for otherwise
V(Q) U {x} contains a hole (that contains x, a, q1, g2, g3). Then b is not adjacent to q,, for otherwise {x, a, b, q1, g»} induces
a paraglider; and b is not adjacent to any q; with j even (j > 4), for otherwise {b, a, ¢, ..., gj} induces a hole. Then p; is not
adjacent to g4, for otherwise {x, a, q1, p1, u} induces a hole. But then, letting i be the largest integer such that p; is adjacent
toq; (i < ¢), we see that {p1, b, a, q1, q2, . .., q;} induces a hole, a contradiction. Thus (6) holds. O

Let R be the set of vertices that are complete to V(H). Then
Ris a clique. (7)

Proof of (7). Since H contains a K3 3 \ e, there are three vertices a, b, ¢ in H that induce a subgraph with exactly one edge. If
R contains two non-adjacent vertices x and y, then {a, b, c, x, y} induces a paraglider. Thus (7) holds. O

If F is any component of G \ (V(H) U R), then Ny (F) is a clique. (8)

Proof of (8). Suppose to the contrary that there are non-adjacent vertices u and v in Ny (F). Let x be a neighbor of u in F and
y be a neighbor of v in F. There is a chordless path P between x and y in F. We choose u, v, X, y and P such that P is as short
as possible. By (6), P has length at least 1. Since H has no clique cutset, it is 2-connected, and by Menger’s theorem [31,33]
there are two paths Q and Q' between u and v in H such that V(Q) N V(Q’) = {u, v}. The choice of P implies that u has no
neighbor in P \ {x} and v has no neighbor in P \ {y}. It must be that some interior vertex s of Q has a neighbor z in P, for
otherwise V(P) U V(Q) induces a hole.

Suppose that Q has length at least 3. Then, up to symmetry, s is not adjacent to v. If z # x, then the subpath P[z, y]
contradicts the choice of P. So z = x. By (6), and since x & R, {u, s} is a clique; i.e., s is the neighbor of u on Q. Then it must
be that some interior vertex t of Q \ {u} has a neighbor in P, for otherwise V(P) UV(Q) \ {u} induces a hole. As above (with
s), we obtain that the only neighbor of t in P is y, and consequently {t, v} is a clique; i.e., t is the neighbor of v on Q. Now
V(P)UV(Q) \ {u, v} induces a chordless cycle, so it must have length 4, so st and xy are edges of H. ThusQ = u—s—t —v.
Since Q' has length at least 3, we also have Q' = u — s’ — t’ — v, where s’ is adjacent to x and not to y, and t’ is adjacent to
y and not to x. Note that ss’ and tt" are not edges, because H is bipartite. Then st’ is not an edge, for otherwise {x, u, s, s’, t'}
induces a paraglider; and similarly s't is not an edge. But then {u, s, t, v, t’, s’} induces a hole in H, a contradiction. Therefore
Q and Q' have length 2. ThusQ = u — s — vand Q' = u — s’ — v, where we know already that s has a neighbor in P, and,
similarly, s’ has a neighbor in P. Note that ss’ is not an edge, since H is bipartite. There is a subpath P’ of P whose endvertices
are adjacent to s and s’ respectively, and the choice of P implies that P" = P; i.e., up to symmetry, s is adjacent to x, s’ is
adjacent to y, and there is no other edge between P and {s, s'}. If P has length at least 2, then V(P) U {u, s’} induces a hole, a
contradiction. So P has length 1. But then {x, y, u, v, s, s’} induces a Cg, a contradiction. Thus (8) holds. O

In conclusion, if G \ (V(H) U R) has a component F, then, by (7) and (8), Ny (F) U R is a clique cutset (that separates F from
H\ Ny (F)), a contradiction to the fact that G is an atom. Therefore we have V(G) = V(H) UR, and so G is the join of a chordal
bipartite graph and a clique; i.e., G is in class §,. This finishes the proof of Theorem 3. O

Theorem 4. Let G be an HP-free atom that contains no Cg and no K33 \ e. Suppose that G contains a C4. Then G is a complete
multipartite graph.

Proof. Let ] be an induced subgraph of G that is the complete join of k non-empty stable sets Sy, ..., Sg, with k > 2, such
that at least two of these stable sets have size at least 2. Note that a C, is such a graph. We assume also that J is such that
V(J) is maximal with this property. If G = ], then G is a complete multipartite graph, so let us assume that G # J. Let F be
any component of G \ J. We claim that

N;(F) isaclique. O 9)

Proof of (9). Suppose that there are non-adjacent vertices x and y in N (F). Let u be a neighbor of x in F and v be a neighbor
of y in F. There is a chordless path P between u and v in F. We choose x, y, u, v and P such that P is as short as possible. Up
to relabeling, let x, y € S;. By the definition of J, there are non-adjacent verticesaand binJ \ Sj.

First, suppose that u = v. For any two distinct integers i,j € {2, ..., k}, vertex u must be complete to S; or to S;, for
otherwise there are non-neighbors s, t of u with s € S;and t € §;, and {u, x, y, s, t} induces a paraglider. Therefore we may
assume that u is complete to S; U - - - U S;_1. Suppose that u is complete to Si. If u is also complete to Sy, then the subgraph
induced by V (J) U{u} is the join of k+ 1 stable sets Sy, . . ., Sk, {u}, which contradicts the choice of J. So u has a non-neighbor
zin S1. Then {a, b, u, x, z} induces a paraglider. Therefore u is not complete to S;. Moreover, if u has a neighbor s and a non-
neighbor t with s, t € S, then {u, x, y, s, t} induces a paraglider. So u is anticomplete to Sy. If u is complete to S;, then the
subgraph induced by V (J) U {u} is the join of k stable sets Sy, ..., Sx_1, S U {u}, which contradicts the choice of J. So u has
anon-neighbor z in S.If a, b € S; withj < k, then {a, b, u, x, z} induces a paraglider. So a, b € Si. But then {a, b, u, x, y, z}
induces a K3 3 \ e, a contradiction.
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Now suppose that u # v. The choice of P implies that x has no neighbor in P \ {u} and y has no neighbor in P \ {v}. Then
a must have a neighbor in P, for otherwise V(P) U {a, x, y} induces a hole; and similarly b has a neighbor in P. So there is
a subpath P’ of P whose endvertices are adjacent to a and b respectively, and the choice of P implies that P’ = P. Thus, up
to symmetry, a is adjacent to u, b is adjacent to v, and there is no other edge between P and {a, b}. If P has length at least 2,
then V(P) U {a, y} induces a hole. So P has length 1, but then {u, v, x, y, a, b} induces a Cg. Thus (9) holds. O

In conclusion, if G\ J has a component F, then, by (9), N, (F) is a clique cutset (that separates F from J \ N;(F)), a contradiction
to the fact that G is an atom. Therefore we have G = J, so G is a complete multipartite graph; i.e. G € 4. This finishes the
proof of Theorem 4. O

Proof of Theorem 1. First, suppose that G has an induced subgraph H that is either a hole or a paraglider. Since H has no
clique cutset, H must be an induced subgraph of some atom of G. So if every atom is HP-free, then G is HP-free.

Conversely, suppose that G is an HP-free graph, and let A be any atom of G. If A contains no C4, then A is chordal, so Dirac’s
theorem [21] implies that A is a clique (which is a complete multipartite graph). If A contains a C4 but no Cs and no K3 3 \ e,
then Theorem 4 implies that A is a complete multipartite graph. If A contains a K3 3 \ e but no Cg, then Theorem 3 implies
that A is the join of a chordal bipartite graph and a clique. If A contains a Cg, then Theorem 2 implies that A is the join of a
matched co-bipartite graph and a clique. This finishes the proof of Theorem 1. O

3. Algorithmic consequences

It was shown in [36] that, for various optimization problems such as minimum fill-in, maximum independent set,
maximum clique, and coloring, whenever these problems are efficiently solvable on the atoms of a graph class, they are
efficiently solvable on all graphs of the class. More precisely, given a graph G with n vertices and m edges, the algorithm
from [36] finds in time ©® (nm) a clique separator decomposition of G with at most n atoms. For each optimization problem,
the problem is solved on the atoms and the optimal solutions are combined to produce an optimal solution for G (the way
they are combined depends on the problem). If the complexity of solving the problem for any atom of G is @ (f (n, m)), then
the total complexity for G is @ (nm + nf (n, m)).

For perfect graphs, maximum independent set, maximum clique, and coloring are known to be solvable in polynomial
time [25,26] using the ellipsoid method (but from a practical point of view, this is not an efficient solution of the problems).
(Hole, paraglider)-free graphs are perfect because of the Strong Perfect Graph Theorem (a simpler and more direct way to
prove this uses Theorem 1 and the fact that a graph is perfect if its atoms are perfect). The clique separator approach gives
direct combinatorial algorithms for the problems mentioned above in the case of HP-free graphs, as we show now.

Recognition. Chordal bipartite graphs can be recognized in time @ (min{m log n, n®}) [29,32,35]. The recognition of complete
multipartite graphs and of matched co-bipartite graphs can be easily done in linear time. We can decide if a graph G is HP-
free as follows. Use the method of [36] to find a clique separator decomposition of G into at most n atoms. For each atom
A, check whether A belongs to one of the three basic classes 41, 2, $3. If not, then the input graph is not (hole, paraglider)
free. The total complexity is @ (min{nmlogn, n3}).

Maximum weight independent set. For matched co-bipartite graphs and complete multipartite graphs, MWIS is trivial. For
bipartite graphs, MWIS can be solved in time © (n?) [33]. Thus, the time bound for MWIS on HP-free graphs is O (n*).

Maximum clique and coloring. On each of the three basic classes the two problems are very simple and can be solved in time
O (n + m). Here combining the solutions obtained on the atoms means simply taking the largest of them; this operation
does not add a factor in the complexity. So these problems can be solved in time @ (n + m) on HP-free graphs if a clique
separator decomposition of the input graph is given. For maximum clique on diamond-free graphs, however, there is an
even simpler way to solve the problem efficiently. Since the neighborhood of every vertex is P3-free, it consists of pairwise
disjoint cliques. So there are at most m maximal cliques, and we can list them explicitly and find an optimal clique.

Minimum fill-in. On graphs in classes §; and 43 Minimum fill-in is very simple and can be solved in time @ (n + m). For
chordal bipartite graphs, a @ (n#) algorithm is given in [34]. Here, combining the solutions obtained on the atoms means
simply taking the union of the fill-in sets; this operation does not add a factor in the complexity. So minimum fill-in can be
solved in time © (n*) on HP-free graphs.

Maximum weight induced matching (MWIM). A set M of edges is an induced matching in G if the pairwise distance of the edges
in M is at least two in G. The MWIM problem asks for an induced matching of maximum weight. In [15], it is shown that, for
a hereditary class € of graphs, MWIM is solvable in polynomial time if MWIM is solvable in polynomial time on the atoms
of C. For chordal bipartite graphs, a polynomial-time solution is given in [18]. In a complete multipartite graph there is no
induced matching of size 2, and in a matched co-bipartite graph there is no induced matching of size 3, so in either class the
search for a maximum weight induced matching is trivial.

4. Conclusion
We have described here the structure of (hole, paraglider)-free atoms and some algorithmic consequences. In a

forthcoming paper [4] we will analyze the structure of (hole, diamond)-free graphs and its algorithmic consequences in
more detail.
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There are various other aspects and papers which are related to our work as described below.

4.1. Related results for subclasses of Ps-free graphs

In [1], Alekseev showed that (Ps, paraglider)-free atoms are 3K,-free, which leads to a polynomial-time algorithm
for the MWIS problem, since 3K;-free graphs contain at most ©(n*) inclusion-maximal independent sets. In [12], we
improved this result by generalizing the forbidden paraglider subgraph. In [7], we give a more detailed structural analysis
of (Ps, paraglider)-free atoms. In [16], we describe the structure of prime (Ps, co-chair)-free graphs and give algorithmic
applications. The complexity of the MWIS problem for Ps-free graphs is an open problem. It is also open for (Ps, Cs)-free
graphs; such graphs are hole-free. Thus, it is interesting to study subclasses of Ps-free graphs (subclasses of (Ps, Cs)-free
graphs, respectively).

4.2. Clique-width

In [6], we describe the simple structure of (Ps, diamond)-free graphs; such graphs can contain Cs, and thus (Ps, diamond)-
free graphs are in general not perfect and their class is incomparable with the class of (hole, diamond)-free graphs. (Ps,
diamond)-free graphs have bounded clique-width — see, e.g., [20] for the notion and algorithmic implications of bounded
clique-width, which has tremendous consequences for efficiently solving hard problems on such graph classes. For the more
general class of (Ps, gem)-free graphs, the situation is similar: by the Strong Perfect Graph Theorem, (hole, gem)-free graphs
are perfect, since antiholes with at least seven vertices contain a gem. The structure of (Ps, gem)-free graphs and some
algorithmic applications were described in [5,10]. In [9], it was shown that (Ps, gem)-free graphs have bounded clique-
width.

The clique-width of (hole, diamond)-free graphs, however, is unbounded, since, for example, the subclass of chordal
bipartite graphs (which are the (hole, triangle)-free graphs) has unbounded clique-width [14]. This illustrates that
corresponding subclasses of hole-free graphs are more interesting than those of Ps-free graphs.

4.3. Open problems

It would be interesting to describe the structure of (hole, gem)-free graphs. In particular, how can one avoid to use the
Strong Perfect Graph Theorem for showing that (hole, gem)-free graphs are perfect?

In [8], we give a polynomial-time algorithm for the MWIS problem on (hole, co-chair)-free graphs. It would be interesting
to obtain better structural results on these graphs.
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