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a b s t r a c t

Clique separator decomposition, introduced by Whitesides and Tarjan, is one of the most
important graph decompositions. A hole is a chordless cycle with at least five vertices. A
paraglider is a graph with five vertices a, b, c, d, e and edges ab, ac, bc, bd, cd, ae, de. We
show that every (hole, paraglider)-free graph admits a clique separator decomposition into
graphs of three very specific types. This yields efficient algorithms for various optimization
problems in this class of graphs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction, motivation and related work

Graph decompositions play an important role in structural and algorithmic aspects of graph theory. A clique separator
(or clique cutset) of a graph G is a clique K in G such that G \ K has more connected components than G. An atom is a graph
without clique separator. An atom of a graph G is any induced subgraph of G that is an atom. Whitesides [38] proved that
a clique separator decomposition of a graph can be determined in polynomial time; Tarjan [36] improved that result and
showed that the decomposition can be applied to various optimization problems such asminimum fill-in, maximumweight
independent set (MWIS), maximumweight clique, and coloring: if the problem is solvable in polynomial time on the atoms
of a hereditary graph class C, then it is solvable in polynomial time on class C. In this paper, we are going to analyze the
structure of atoms in two subclasses of hole-free graphs.

A hole is a chordless cycle with at least five vertices, and an antihole is the complementary graph of a hole. A graph is hole-
free (antihole free, respectively) if it contains no induced subgraph which is isomorphic to a hole (an antihole, respectively).
The words odd and even, when applied to a hole or antihole, refer to the number of its vertices. For any integer n ≥ 1, let Kn
denote a complete graph with n vertices and Pn denote a chordless path with n vertices. For n ≥ 3, let Cn denote a chordless
cycle with n vertices. So any Cn with n ≥ 5 is a hole. Note that, in our terminology, C4 is not a hole. The graph K4 \ e (i.e., a
clique on four vertices minus one edge) is called diamond. A paraglider is a graph with five vertices a, b, c, d, e and seven
edges ab, ac, bc, bd, cd, ae, de (see Fig. 1). Note that a paraglider contains a diamond. Here we will study the class of (hole,
paraglider)-free graphs (HP-free graphs for short). Some of the results also apply to the subclass of (hole, diamond)-free
graphs (HD-free graphs).
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diamond dart gem paraglider co-C6

Fig. 1. Diamond, dart, gem, paraglider, and co-C6 .

Recall that a graph G is perfect if, for every induced subgraph H of G, the chromatic number of H is equal to themaximum
clique size in H . The celebrated Strong Perfect Graph Theorem proved by Chudnovsky et al. [19] states (as conjectured by
Berge [2]) that a graph is perfect if and only if it is odd-hole free and odd-antihole free.

Cycle properties of graphs and their algorithmic aspects play a fundamental role in combinatorial optimization, discrete
mathematics, and computer science. Various graph classes are characterized in terms of cycle properties — among them
are the classes of chordal graphs, weakly chordal graphs, and perfect graphs, which are of great importance for algorithmic
graph theory and various applications. A graph is chordal (also called triangulated) if it contains no chordless cycle on at least
four vertices. See, for example, [13,23,30] for the many facets of chordal graphs. A famous theorem of Dirac [21] states that
every chordal graph either is a clique or has a clique cutset. It follows that a graph is chordal if and only if it is decomposable
by clique separator decomposition into atoms that are cliques. HP-free graphs obviously generalize chordal graphs.

Recently there has been much work on related classes such as even-hole-free (forbidding also C4) and diamond-free
graphs [28] (see also [37]) and [22] dealing with the structure and recognition of (C4, diamond)-free graphs. The classes
of weakly chordal graphs and chordal bipartite graphs are also of importance here. A graph is weakly chordal (or weakly
triangulated) if it is hole-free and antihole free. The classes of weakly chordal graphs and HP-free graphs are incomparable,
as shown by the examples of the paraglider (which is weakly chordal but not HP-free) and C6 (which is HP-free but not
weakly chordal). A graph is bipartite if it contains no cycle of odd length, and chordal bipartite if it is bipartite and contains
no hole. Chordal bipartite graphs were introduced in [24]. HD-free graphs generalize the class of chordal bipartite graphs;
moreover, diamond-free chordal graphs are the well-known block graphs — see [13] for various characterizations and the
importance of chordal bipartite graphs as well as of block graphs. In [11,17], various characterizations of (dart, gem)-free
chordal graphs are given; among others, it is shown that a graph is (dart, gem)-free chordal if and only if it results from
substituting cliques into the vertices of a block graph.

Since every hole Ck with k ≥ 7 contains the disjoint union of P2 and P3, and the paraglider is the complementary graph of
P2 ∪ P3, it follows that HP-free graphs contain no odd hole and no odd antihole. Thus, by the Strong Perfect Graph Theorem,
HP-free graphs are perfect. Our structural results for atoms of HP-free graphs, however, will give a more direct way to show
perfection of HP-free graphs. It is well known [3,27] that a graph is perfect if and only if its atoms are perfect; and it turns
out (as we will show below) that the atoms of HP-free graphs belong to simple classes of perfect graphs.

A matched co-bipartite graph is a graph H that consists of two disjoint cliques of size k, with k ≥ 3, such that the edges
between these two cliques form a matching with k edges. Note that C6 is a matched co-bipartite graph.

A complete multipartite graph is a graph whose vertex set can be partitioned into parts S1, . . . , Sk such that any two
vertices are adjacent if and only if they belong to distinct parts.

Our main result is the following theorem.

Theorem 1. A graph G is (hole, paraglider) free if and only if every atom of G is either

– a complete multipartite graph, or
– the join of a chordal bipartite graph and a (possibly empty) clique, or
– the join of a matched co-bipartite graph and a (possibly empty) clique.

The proof of Theorem1 is given in Section 2. By Tarjan [36], Theorem1has various algorithmic consequences; in Section 3,
we describe these and others.

We finish this section by recalling some definitions and notation. Let G be a graphwith vertex set V (G) and edge set E(G).
The neighborhood N(x) of a vertex x in G is the set N(x) = {u ∈ V (G) | ux ∈ E}. The neighborhood N(X) of a subset X ⊆ V
is the set {u ∈ V (G) | u is adjacent to a vertex of X}. Given a subgraph H of G, let NH(x) denote the set N(x) ∩ V (H), and let
NH(X) denote the set N(X) ∩ V (H). Given a set S ⊂ V (G) and a vertex x, we say that x is complete to S if it is adjacent to
every vertex of S, and anticomplete to S if it is not adjacent to any vertex of S.

The complementary graph of G is the graph Gwhose vertex set is V (G) and edge set is {xy | x ≠ y and xy ∉ E(G)}.
A setU ⊆ V (G) is independent if its vertices are pairwise nonadjacent. A setU ⊆ V (G) is a clique if its vertices are pairwise

adjacent.
For any subgraph H of G, we let G \ H denote the subgraph induced by the set of vertices V (G) \ V (H).
Let F be a set of graphs. A graph G is F free if no induced subgraph of G is isomorphic to an element of F . As already

mentioned, G is hole-free (is antihole free, respectively) if no induced subgraph of G is isomorphic to a hole (an antihole,
respectively).
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2. Structure of (hole, paraglider)-free and (hole, diamond)-free atoms

Let G1 be the class of complete multipartite graphs, G2 be the class of graphs that are the join of a chordal bipartite graph
and a clique, and G3 be the class of graphs that are the join of a matched co-bipartite graph and a clique. Let us refer to these
three classes as basic. In view of Theorem 1, we want to show that every HP-free atom is in one of the three basic classes.
Note that every atom is connected (we consider the empty set as a clique, so a disconnected graph has a clique cutset).

The following theorem describes the structure of HP-free atoms that contain a C6.

Theorem 2. Let G be an HP-free atom that contains an induced C6. Then G is the join of a matched co-bipartite graph and a
(possibly empty) clique.

Proof. Let G be an HP-free atom. Suppose that G contains a C6. Let H be a maximal matched co-bipartite graph that extends
a C6 in G. Let V (H) be partitioned into two cliques A = {a1, . . . , ak} and B = {b1, . . . , bk}, with k ≥ 3, where a1b1, . . . , akbk
are the edges between A and B. We claim the following.

For every vertex x of G \ H, either NH(x) is a clique or NH(x) = V (H). � (1)

Proof of (1). Suppose that NH(x) is not a clique, so, up to relabeling, x is adjacent to a1 and b2. Then x is adjacent to one of
a3 and b3, for otherwise {x, a1, a3, b3, b2} induces a C5. Assume, up to symmetry, that x is adjacent to a3. Then x is adjacent
to a2, for otherwise {x, a1, a2, a3, b2} induces a paraglider. Moreover, if k ≥ 4, then x is adjacent to each ai with 4 ≤ i ≤ k,
for otherwise either {x, a1, ai, bi, b2} induces a C5 (if x is not adjacent to bi) or {x, a1, a2, ai, bi} induces a paraglider (if x
is adjacent to bi). Then x is adjacent to each bj with 1 ≤ j ≤ k, for otherwise {x, a2, b2, aj, bj} induces a paraglider. Thus
NH(x) = V (H). �

Let R be the set of vertices that are complete to V (H). Then

R is a clique. (2)

Proof of (2). If R contains non-adjacent vertices u and v, then {u, v, a1, b2, b3} induces a paraglider. �

Let F be any component of G \ (V (H) ∪ R). Then NH(F) is a clique. (3)

Proof of (3). Suppose that there are non-adjacent vertices x and y in NH(F). Let u be a neighbor of x in F and v be a neighbor
of y in F . Note that u ≠ v by (1), and since u and v are not in R. There is a chordless path P between u and v in F . We choose
x, y, u, v and P such that P is as short as possible. Up to relabeling, let x = a1 and y = b2. Since u and v are not in R, (1)
implies that ub3 and va3 are not edges. Any interior vertex w of P is not adjacent to a1 or a3, for otherwise the subpath of P
between w and v contradicts the choice of P; and similarly, w is not adjacent to b2 or b3. Since V (P)∪ {a1, a3, b2, b3} cannot
contain a hole, it must be that ua3 and vb3 are edges and P = uv. Now, since u is adjacent to a1 and a3, by (1), we have
NH(u) ⊆ A, and similarly, NH(v) ⊆ B. Then u is adjacent to a2, for otherwise {u, a1, a2, b2, v} induces a C5; and if k ≥ 4, u is
adjacent to each ai with 4 ≤ i ≤ k, for otherwise there is a C6 or C5 (depending on the adjacency of v and bi) induced among
u, a1, ai, bi, b2, v. So NH(u) = A, and similarly, NH(v) = B. But then V (H) ∪ {u, v} induces a matched co-bipartite graph,
which contradicts the maximality of H . �

In conclusion, if G \ (V (H) ∪ R) has a component F , then, by (2) and (3), NH(F) ∪ R is a clique cutset (that separates F from
H \NH(F)), a contradiction to the fact that G is an atom. Thereforewe have V (G) = V (H)∪R, and so G is the join of amatched
co-bipartite graph and a clique; that is, G is in class G3. This finishes the proof of Theorem 2. �

Note that in a (hole, diamond)-free graph G that contains a C6, say H , no vertex can be complete to V (H).

Corollary 1. If G is a (hole, diamond)-free atom containing an induced C6 then G is a matched co-bipartite graph.

Now we examine the case when there is no C6. We first need an easy lemma.

Lemma 1. In a chordal bipartite graph H, let P be a chordless even path and v be a vertex adjacent to the two endvertices of P.
Then v is adjacent to every second vertex of P and not adjacent to the other vertices of P.

Proof. Let P = p0−· · ·−pk (k ≥ 2). If the lemma does not hold, there are consecutive vertices pi and pi+1 of P that are either
(a) both adjacent to v or (b) both not adjacent to v. In case (a), H contains a triangle. In case (b), let h be the largest integer
with 0 ≤ h < i and j be the smallest integer with i + 1 < j ≤ k such that v is adjacent to ph and pj. Then {v, ph, . . . , pj}
induces a hole, a contradiction to H being chordal bipartite. �

Let Kp,q denote the complete bipartite graph with parts of size p and q respectively, and let K3,3 \ e be obtained from a K3,3
by removing one edge.

Theorem 3. Let G be an HP-free atom that contains no C6. Suppose that G contains a K3,3 \ e. Then G is the join of a chordal
bipartite graph and a (possibly empty) clique.
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Proof. Let H be a bipartite subgraph of G such that H contains a K3,3 \ e, H has no clique cutset, and V (H) is maximal with
this property (G has such a subgraph because K3,3 \ e itself has no clique cutset). If G = H , there is nothing to prove, so let
G ≠ H . Recall that G and H are connected. Let x be any vertex of G \ H . Our aim is to prove claim (6) below, and for that
purpose we need two intermediate steps.

Consider any 6-tuple {v1, . . . , v6} ⊂ V (H) with edges vivi+1 (mod 6) and
v1v4, where optionally each of v2v5 and v3v6 may also exist. If {v1, . . . , v4} ⊂ N(x),
then also {v5, v6} ⊂ N(x). � (4)

Proof of (4). Since {v1, v4} is not a cutset of H , there is a shortest path P from {v2, v3} to {v5, v6} in H \ {v1, v4}. We prove
the claim by induction on the length of P . Let P = p0 − · · · − pk, with k ≥ 1.

First, suppose that P is odd. So, up to symmetry, let p0 = v2, pk = v5, and V (P) ∩ {v1, v3, v4, v6} = ∅. If k = 1 (i.e., v2v5
is an edge), then x must be adjacent to v5, for otherwise {x, v2, v3, v4, v5} induces a paraglider; and to v6, for otherwise
{x, v1, v4, v5, v6} induces a paraglider. Now let k ≥ 3; that is, v2v5 and v3v6 are not edges. Since H is bipartite, there is no
edge v6pi with i even. If there is an edge v6pi with i odd and i < k, then the path p0 − · · · − pi − v6 is shorter than P , a
contradiction. So there is no such edge, and p0 −· · ·−pk −v6 is a chordless path P ′. By Lemma 1 applied to P ′ and v1, vertex
v1 is adjacent to p2, p4, . . . , pk−1 (and not adjacent to p1, p3, . . . , pk). Likewise, v3 − p0 −· · ·− pk is a chordless path, and v4
is adjacent to p1, p3, . . . , pk−2 (and not adjacent to p2, p4, . . . , pk−1). Then x is adjacent to p1, for otherwise {x, v1, v4, p0, p1}
induces a paraglider; and to p2, for otherwise {x, v1, v4, p1, p2} induces a paraglider. Then, by the induction hypothesis,
applied to the 6-tuple {p1, p2, v1, v4, v5, v6} with path p2 − · · · − pk, vertex x is adjacent to v5 and v6.

Now suppose that P is even, so, up to symmetry, let p0 = v2, pk = v6, k ≥ 2, and V (P)∩{v1, v3, v4, v5} = ∅. By Lemma 1
applied to P and v1, vertex v1 is adjacent to p2, p4, . . . , pk−2 (and not adjacent to p1, p3, . . . , pk−1). Since H is bipartite, there
is no edge v3pi with i odd. If there is an edge v3pi with i even and i > 0, then the path v3 − pi − · · · − pk is shorter than
P , a contradiction. So there is no such edge, and v3 − p0 − · · · − pk − v5 is a chordless path P ′. By Lemma 1 applied to P ′

and v4, vertex v4 is adjacent to p1, p3, . . . , pk−1 (and not adjacent to p2, p4, . . . , pk). Then x is adjacent to p1, for otherwise
{x, v1, v4, p0, p1} induces a paraglider; and to p2, for otherwise {x, v1, v4, p1, p2} induces a paraglider. Then, by the induction
hypothesis, applied to the 6-tuple {p1, p2, v1, v4, v5, v6} with path p2 − · · · − pk, vertex x is adjacent to v5 and v6. Thus (4)
holds. �

If there is a P3 in H whose three vertices are in N(x), then V (H) ⊆ N(x). (5)

Proof of (5). Let W = {a, b, c} be the vertex set of a P3 in H , with edges ab and bc , such that W ⊆ N(x), and let z be any
vertex in V (H) \ W . Call a W -link any path in H from z to W that contains exactly one vertex from W . Since {b, c} is not a
clique cutset ofH , there is aW -link from z to a, andwe let p be the length of a shortest such path. Likewise, there is aW -link
from z to c , and we let q be the length of a shortest such path. Note that p and q have the same parity, sinceH is bipartite. We
define ℓW (z) = min{p, q} and LW (z) = max{p, q}. We prove that x is adjacent to z by induction on ℓW (z), and also, when
ℓW (z) = 1, by induction on LW (z). We may assume that p ≤ q, so ℓW (z) = p. Let P = u0 − · · · − up be aW -link from z to a
of length p, with u0 = a and up = z, and let Q = v0 − · · · − vq be aW -link from z to c of length q, with v0 = c and vq = z.

First, suppose that p = 1; that is, z is adjacent to a. It follows that q is odd. Let j be the smallest integer such that there
exists an edge avj (j ≤ q). Then a − vj − vj−1 − · · · − v0 is a chordless path R, of length j + 1, and j is odd, since H is
bipartite. By Lemma 1 applied to R and b, vertex b is adjacent to every second vertex of R (i.e., to v2, v4, . . . , vj−1). Suppose
that j ≥ 3. If x has no neighbor in {v1, v2}, then V (R) ∪ {x} contains a hole (that contains x, c, v1, v2, v3), a contradiction. So
x is adjacent to one of v1 and v2; and it must be adjacent to both, for otherwise {x, b, c, v1, v2} induces a paraglider. For each
even hwith h < j−1, this argument can be repeatedwith vh instead of c and {vh+1, vh+2} instead of {v1, v2}; thus we obtain
by induction on h that x is adjacent to every vertex of R. Then we set W ′

= {a, b, vj−1} and observe that ℓW ′(z) = 1 and
vj−1 −vj −· · ·−vq is aW ′-link, so LW ′(z) < LW (z), and, by the induction hypothesis, x is adjacent to z. Therefore j = 1. Then
x is adjacent to v1, for otherwise {x, a, b, c, v1} induces a paraglider. If q = 1, we are done; therefore let q ≥ 3. By Lemma 1
applied to Q and a, vertex a is adjacent to v3, v5, . . . , vq−2 (and not to v2, . . . , vq−1). For each odd hwith 3 ≤ h ≤ q− 2, we
have ℓW (vh) = 1 and LW (vh) < q, so x is adjacent to vh; moreover, x is adjacent to vh−1, for otherwise {x, a, vh−2, vh−1, vh}

induces a paraglider. By (4) applied to the 6-tuple {a, vq−4, . . . , vq}, we obtain that x is adjacent to z.
Now suppose that p ≥ 2. By the induction hypothesis, x is adjacent to u1, because ℓW (u1) < p. Set W ′

= {u1, a, b}, and
observe that up − · · · − u1 is aW ′-link from z to u1, so ℓW ′(z) < ℓW (z), and, by the induction hypothesis, x is adjacent to z.
Thus (5) holds. �

If x is any vertex of G \ H , then either NH(x) is a (possibly empty) clique or NH(x) = V (H). (6)

Proof of (6). Suppose that x has two non-adjacent neighbors u and v in H . Let Hx be the subgraph induced by V (H) ∪ {x}.
Suppose that Hx has a clique cutset K . If x ∈ K , then K \ {x} is a clique cutset of H , a contradiction. So x ∉ K . Let C be the
component of Hx \ K that contains x, and let D be another component of Hx \ K . Since u and v are not adjacent, at least one
of them, say u, is not in K ; so u ∈ C . But then K is a clique cutset of H (that separates u from D), a contradiction. Thus Hx
has no clique cutset. The maximality of V (H) implies that Hx is not bipartite; and so Hx contains a triangle, which contains
x. Let a and b be two neighbors of x in H that are adjacent. One of u and v, say u, is not in {a, b}. Let T = {a, b, u}, and let
T ∗ be the vertex set of a connected subgraph of H that contains T . Choose T such that T ∗ is as small as possible. If T ∗

= T
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then T induces a P3, and (5) implies that NH(x) = V (H). Now let us assume that T ∗
≠ T ; i.e., u is not adjacent to any of a

and b. Since {a} is not a cutset of H , there is a shortest path P from b to u in H \ {a}. Let P = p0 − · · · − pk, with p0 = b
and pk = u. Then x is not adjacent to p1, for otherwise we could take T = {a, b, p1}; and x is adjacent to p2, for otherwise
V (P) ∪ {x} contains a hole (that contains x, b, p1, p2, p3). Then we can assume that u = p2 and T ∗

= {a, b, p1, p2}. Since
{b, p1} is not a cutset of H , there is a shortest path Q from a to u in H \ {b, p1}. Let Q = q0 − · · · − qℓ, with q0 = a and
qℓ = u. The bipartiteness of H implies that ℓ is odd, b is not adjacent to any qi with i odd, and p1 is not adjacent to any qj
with j even. Then x is not adjacent to q1, for otherwise we could take T = {a, b, q1}; and x is adjacent to q2, for otherwise
V (Q ) ∪ {x} contains a hole (that contains x, a, q1, q2, q3). Then b is not adjacent to q2, for otherwise {x, a, b, q1, q2} induces
a paraglider; and b is not adjacent to any qj with j even (j ≥ 4), for otherwise {b, a, q1, . . . , qj} induces a hole. Then p1 is not
adjacent to q1, for otherwise {x, a, q1, p1, u} induces a hole. But then, letting i be the largest integer such that p1 is adjacent
to qi (i ≤ ℓ), we see that {p1, b, a, q1, q2, . . . , qi} induces a hole, a contradiction. Thus (6) holds. �

Let R be the set of vertices that are complete to V (H). Then
R is a clique. (7)

Proof of (7). Since H contains a K3,3 \ e, there are three vertices a, b, c in H that induce a subgraph with exactly one edge. If
R contains two non-adjacent vertices x and y, then {a, b, c, x, y} induces a paraglider. Thus (7) holds. �

If F is any component of G \ (V (H) ∪ R), then NH(F) is a clique. (8)
Proof of (8). Suppose to the contrary that there are non-adjacent vertices u and v in NH(F). Let x be a neighbor of u in F and
y be a neighbor of v in F . There is a chordless path P between x and y in F . We choose u, v, x, y and P such that P is as short
as possible. By (6), P has length at least 1. Since H has no clique cutset, it is 2-connected, and by Menger’s theorem [31,33]
there are two paths Q and Q ′ between u and v in H such that V (Q ) ∩ V (Q ′) = {u, v}. The choice of P implies that u has no
neighbor in P \ {x} and v has no neighbor in P \ {y}. It must be that some interior vertex s of Q has a neighbor z in P , for
otherwise V (P) ∪ V (Q ) induces a hole.

Suppose that Q has length at least 3. Then, up to symmetry, s is not adjacent to v. If z ≠ x, then the subpath P[z, y]
contradicts the choice of P . So z = x. By (6), and since x ∉ R, {u, s} is a clique; i.e., s is the neighbor of u on Q . Then it must
be that some interior vertex t of Q \ {u} has a neighbor in P , for otherwise V (P) ∪ V (Q ) \ {u} induces a hole. As above (with
s), we obtain that the only neighbor of t in P is y, and consequently {t, v} is a clique; i.e., t is the neighbor of v on Q . Now
V (P)∪ V (Q ) \ {u, v} induces a chordless cycle, so it must have length 4, so st and xy are edges of H . Thus Q = u− s− t − v.
Since Q ′ has length at least 3, we also have Q ′

= u − s′ − t ′ − v, where s′ is adjacent to x and not to y, and t ′ is adjacent to
y and not to x. Note that ss′ and tt ′ are not edges, because H is bipartite. Then st ′ is not an edge, for otherwise {x, u, s, s′, t ′}
induces a paraglider; and similarly s′t is not an edge. But then {u, s, t, v, t ′, s′} induces a hole inH , a contradiction. Therefore
Q and Q ′ have length 2. Thus Q = u − s − v and Q ′

= u − s′ − v, where we know already that s has a neighbor in P , and,
similarly, s′ has a neighbor in P . Note that ss′ is not an edge, since H is bipartite. There is a subpath P ′ of P whose endvertices
are adjacent to s and s′ respectively, and the choice of P implies that P ′

= P; i.e., up to symmetry, s is adjacent to x, s′ is
adjacent to y, and there is no other edge between P and {s, s′}. If P has length at least 2, then V (P) ∪ {u, s′} induces a hole, a
contradiction. So P has length 1. But then {x, y, u, v, s, s′} induces a C6, a contradiction. Thus (8) holds. �

In conclusion, if G \ (V (H) ∪ R) has a component F , then, by (7) and (8), NH(F) ∪ R is a clique cutset (that separates F from
H \NH(F)), a contradiction to the fact that G is an atom. Therefore we have V (G) = V (H)∪R, and so G is the join of a chordal
bipartite graph and a clique; i.e., G is in class G2. This finishes the proof of Theorem 3. �

Theorem 4. Let G be an HP-free atom that contains no C6 and no K3,3 \ e. Suppose that G contains a C4. Then G is a complete
multipartite graph.
Proof. Let J be an induced subgraph of G that is the complete join of k non-empty stable sets S1, . . . , Sk, with k ≥ 2, such
that at least two of these stable sets have size at least 2. Note that a C4 is such a graph. We assume also that J is such that
V (J) is maximal with this property. If G = J , then G is a complete multipartite graph, so let us assume that G ≠ J . Let F be
any component of G \ J . We claim that

NJ(F) is a clique. � (9)

Proof of (9). Suppose that there are non-adjacent vertices x and y in NJ(F). Let u be a neighbor of x in F and v be a neighbor
of y in F . There is a chordless path P between u and v in F . We choose x, y, u, v and P such that P is as short as possible. Up
to relabeling, let x, y ∈ S1. By the definition of J , there are non-adjacent vertices a and b in J \ S1.

First, suppose that u = v. For any two distinct integers i, j ∈ {2, . . . , k}, vertex u must be complete to Si or to Sj, for
otherwise there are non-neighbors s, t of u with s ∈ Si and t ∈ Sj, and {u, x, y, s, t} induces a paraglider. Therefore we may
assume that u is complete to S2 ∪ · · · ∪ Sk−1. Suppose that u is complete to Sk. If u is also complete to S1, then the subgraph
induced by V (J)∪{u} is the join of k+1 stable sets S1, . . . , Sk, {u}, which contradicts the choice of J . So u has a non-neighbor
z in S1. Then {a, b, u, x, z} induces a paraglider. Therefore u is not complete to Sk. Moreover, if u has a neighbor s and a non-
neighbor t with s, t ∈ Sk, then {u, x, y, s, t} induces a paraglider. So u is anticomplete to Sk. If u is complete to S1, then the
subgraph induced by V (J) ∪ {u} is the join of k stable sets S1, . . . , Sk−1, Sk ∪ {u}, which contradicts the choice of J . So u has
a non-neighbor z in S1. If a, b ∈ Sj with j < k, then {a, b, u, x, z} induces a paraglider. So a, b ∈ Sk. But then {a, b, u, x, y, z}
induces a K3,3 \ e, a contradiction.
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Now suppose that u ≠ v. The choice of P implies that x has no neighbor in P \ {u} and y has no neighbor in P \ {v}. Then
a must have a neighbor in P , for otherwise V (P) ∪ {a, x, y} induces a hole; and similarly b has a neighbor in P . So there is
a subpath P ′ of P whose endvertices are adjacent to a and b respectively, and the choice of P implies that P ′

= P . Thus, up
to symmetry, a is adjacent to u, b is adjacent to v, and there is no other edge between P and {a, b}. If P has length at least 2,
then V (P) ∪ {a, y} induces a hole. So P has length 1, but then {u, v, x, y, a, b} induces a C6. Thus (9) holds. �

In conclusion, if G\ J has a component F , then, by (9), NJ(F) is a clique cutset (that separates F from J \NJ(F)), a contradiction
to the fact that G is an atom. Therefore we have G = J , so G is a complete multipartite graph; i.e. G ∈ G1. This finishes the
proof of Theorem 4. �

Proof of Theorem 1. First, suppose that G has an induced subgraph H that is either a hole or a paraglider. Since H has no
clique cutset, H must be an induced subgraph of some atom of G. So if every atom is HP-free, then G is HP-free.

Conversely, suppose that G is an HP-free graph, and let A be any atom of G. If A contains no C4, then A is chordal, so Dirac’s
theorem [21] implies that A is a clique (which is a complete multipartite graph). If A contains a C4 but no C6 and no K3,3 \ e,
then Theorem 4 implies that A is a complete multipartite graph. If A contains a K3,3 \ e but no C6, then Theorem 3 implies
that A is the join of a chordal bipartite graph and a clique. If A contains a C6, then Theorem 2 implies that A is the join of a
matched co-bipartite graph and a clique. This finishes the proof of Theorem 1. �

3. Algorithmic consequences

It was shown in [36] that, for various optimization problems such as minimum fill-in, maximum independent set,
maximum clique, and coloring, whenever these problems are efficiently solvable on the atoms of a graph class, they are
efficiently solvable on all graphs of the class. More precisely, given a graph G with n vertices and m edges, the algorithm
from [36] finds in time O(nm) a clique separator decomposition of Gwith at most n atoms. For each optimization problem,
the problem is solved on the atoms and the optimal solutions are combined to produce an optimal solution for G (the way
they are combined depends on the problem). If the complexity of solving the problem for any atom of G is O(f (n,m)), then
the total complexity for G is O(nm + nf (n,m)).

For perfect graphs, maximum independent set, maximum clique, and coloring are known to be solvable in polynomial
time [25,26] using the ellipsoid method (but from a practical point of view, this is not an efficient solution of the problems).
(Hole, paraglider)-free graphs are perfect because of the Strong Perfect Graph Theorem (a simpler and more direct way to
prove this uses Theorem 1 and the fact that a graph is perfect if its atoms are perfect). The clique separator approach gives
direct combinatorial algorithms for the problems mentioned above in the case of HP-free graphs, as we show now.
Recognition. Chordal bipartite graphs can be recognized in time O(min{m log n, n2

}) [29,32,35]. The recognition of complete
multipartite graphs and of matched co-bipartite graphs can be easily done in linear time. We can decide if a graph G is HP-
free as follows. Use the method of [36] to find a clique separator decomposition of G into at most n atoms. For each atom
A, check whether A belongs to one of the three basic classes G1, G2, G3. If not, then the input graph is not (hole, paraglider)
free. The total complexity is O(min{nm log n, n3

}).
Maximum weight independent set. For matched co-bipartite graphs and complete multipartite graphs, MWIS is trivial. For
bipartite graphs, MWIS can be solved in time O(n3) [33]. Thus, the time bound for MWIS on HP-free graphs is O(n4).
Maximum clique and coloring. On each of the three basic classes the two problems are very simple and can be solved in time
O(n + m). Here combining the solutions obtained on the atoms means simply taking the largest of them; this operation
does not add a factor in the complexity. So these problems can be solved in time O(n + m) on HP-free graphs if a clique
separator decomposition of the input graph is given. For maximum clique on diamond-free graphs, however, there is an
even simpler way to solve the problem efficiently. Since the neighborhood of every vertex is P3-free, it consists of pairwise
disjoint cliques. So there are at mostmmaximal cliques, and we can list them explicitly and find an optimal clique.
Minimum fill-in. On graphs in classes G1 and G3 Minimum fill-in is very simple and can be solved in time O(n + m). For
chordal bipartite graphs, a O(n4) algorithm is given in [34]. Here, combining the solutions obtained on the atoms means
simply taking the union of the fill-in sets; this operation does not add a factor in the complexity. So minimum fill-in can be
solved in time O(n4) on HP-free graphs.
Maximumweight inducedmatching (MWIM). A setM of edges is an inducedmatching in G if the pairwise distance of the edges
inM is at least two in G. The MWIM problem asks for an induced matching of maximumweight. In [15], it is shown that, for
a hereditary class C of graphs, MWIM is solvable in polynomial time if MWIM is solvable in polynomial time on the atoms
of C. For chordal bipartite graphs, a polynomial-time solution is given in [18]. In a complete multipartite graph there is no
induced matching of size 2, and in a matched co-bipartite graph there is no induced matching of size 3, so in either class the
search for a maximum weight induced matching is trivial.

4. Conclusion

We have described here the structure of (hole, paraglider)-free atoms and some algorithmic consequences. In a
forthcoming paper [4] we will analyze the structure of (hole, diamond)-free graphs and its algorithmic consequences in
more detail.
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There are various other aspects and papers which are related to our work as described below.

4.1. Related results for subclasses of P5-free graphs

In [1], Alekseev showed that (P5, paraglider)-free atoms are 3K2-free, which leads to a polynomial-time algorithm
for the MWIS problem, since 3K2-free graphs contain at most O(n4) inclusion-maximal independent sets. In [12], we
improved this result by generalizing the forbidden paraglider subgraph. In [7], we give a more detailed structural analysis
of (P5, paraglider)-free atoms. In [16], we describe the structure of prime (P5, co-chair)-free graphs and give algorithmic
applications. The complexity of the MWIS problem for P5-free graphs is an open problem. It is also open for (P5, C5)-free
graphs; such graphs are hole-free. Thus, it is interesting to study subclasses of P5-free graphs (subclasses of (P5, C5)-free
graphs, respectively).

4.2. Clique-width

In [6], we describe the simple structure of (P5, diamond)-free graphs; such graphs can contain C5, and thus (P5, diamond)-
free graphs are in general not perfect and their class is incomparable with the class of (hole, diamond)-free graphs. (P5,
diamond)-free graphs have bounded clique-width — see, e.g., [20] for the notion and algorithmic implications of bounded
clique-width, which has tremendous consequences for efficiently solving hard problems on such graph classes. For themore
general class of (P5, gem)-free graphs, the situation is similar: by the Strong Perfect Graph Theorem, (hole, gem)-free graphs
are perfect, since antiholes with at least seven vertices contain a gem. The structure of (P5, gem)-free graphs and some
algorithmic applications were described in [5,10]. In [9], it was shown that (P5, gem)-free graphs have bounded clique-
width.

The clique-width of (hole, diamond)-free graphs, however, is unbounded, since, for example, the subclass of chordal
bipartite graphs (which are the (hole, triangle)-free graphs) has unbounded clique-width [14]. This illustrates that
corresponding subclasses of hole-free graphs are more interesting than those of P5-free graphs.

4.3. Open problems

It would be interesting to describe the structure of (hole, gem)-free graphs. In particular, how can one avoid to use the
Strong Perfect Graph Theorem for showing that (hole, gem)-free graphs are perfect?

In [8], we give a polynomial-time algorithm for theMWIS problem on (hole, co-chair)-free graphs. It would be interesting
to obtain better structural results on these graphs.
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