A Note on the Orlik–Solomon Algebra

RAUL CORDOVIL AND GWIHEN ETIENNE

Let \(\mathcal{M} = \mathcal{M}(E) \) be a matroid on a linear ordered set \(E \). The Orlik–Solomon \(\mathbb{Z} \)-algebra \(\text{OS}(\mathcal{M}) \) of \(\mathcal{M} \) is the free exterior \(\mathbb{Z} \)-algebra on \(E \), modulo the ideal generated by the circuit boundaries. The \(\mathbb{Z} \)-module \(\text{OS}(\mathcal{M}) \) has a canonical basis called ‘no broken circuit basis’ and denoted \(\text{nbc} \). Let \(e_X = \prod_{e \in X} e \), \(e_X \in \text{OS}(\mathcal{M}) \). We prove that when \(e_X \) is expressed in the \(\text{nbc} \) basis, then all the coefficients are 0 or \(\pm 1 \). We present here an algorithm for computing these coefficients. We prove in appendix a numerical identity involving the dimensions of the algebras of Orlik–Solomon of the minors of a matroid and its dual.

\(\copyright \) 2001 Academic Press

1. INTRODUCTION

Let \(\mathcal{A} \) be an arrangement of hyperplanes (i.e., a finite set of codimension 1 vector subspaces) in \(\mathbb{C}^d \). The intersection lattice \(L(\mathcal{A}) \) is the set of all intersections of the hyperplanes of \(\mathcal{A} \) partially ordered by reversed inclusion. Consider the smooth manifold \(\mathfrak{M}(\mathcal{A}) = \mathbb{C}^d \setminus \bigcup H : H \in \mathcal{A} \). Peter Orlik and Louis Solomon proved that the de Rham cohomology algebra of \(\mathfrak{M}(\mathcal{A}) \) can be described entirely in terms of the geometric lattice \(L(\mathcal{A}) \), see [7, 8]. This algebra has found use in the work of Kazuhiko Aomoto, and Israel M. Gel’fand and coworkers on the systematic study of the general hypergeometric functions, see [9, 10]. We consider here Orlik–Solomon \(\mathbb{Z} \)-algebras, defined over arbitrary matroids as introduced by Gel’fand and Rybnikov, see [5].

Throughout this note \(\mathcal{M} = \mathcal{M}(E) \) denotes a matroid of rank \(r \) on the linear ordered set \(E = \{ e_1 < e_2 < \cdots < e_g \} \). Let \(\mathcal{C}(\mathcal{M}) \) be the set of the circuits of \(\mathcal{M} \). When the smallest element \(e_{\alpha} \) of a circuit \(C < \mathcal{M} \), \(|C| > 1 \), is deleted, the remaining set, denoted \(\text{bc}(C) := C \setminus e_{\alpha} \), is called a broken circuit. In order to abbreviate the notation, the singleton set \(\{ x \} \) is denoted by \(x \). Just as an independent set of a matroid is one which does not contain any circuit, an \textit{internal independent set} of the matroid \(\mathcal{M} \) is one which does not contain a broken circuit. Let \(\text{Inter}_i(\mathcal{M}) \) be the set of the internal independent subsets of cardinal \(i \) of \(\mathcal{M} \). Every element of \(\text{Inter}_i(\mathcal{M}) \) is supposed to be ordered with the ordering induced by \(E \). Set \(\text{Inter}(\mathcal{M}) = \bigcup_{\text{Int} \leq \text{M}} \text{Inter}_i(\mathcal{M}) \). Consider now an independent set \(X \). Let \(\text{cl}(X) \) be the closure of \(X \) in \(\mathcal{M} \). Pick an element \(x \in \text{cl}(X) \). Let \(C(x, x) \) denote the unique circuit of \(\mathcal{M} \) contained in \(X \cup x \). The element \(x \in \text{cl}(X) \) is called \textit{externally active} in the independent set \(X \) if \(x \) is the minimal element of the circuit \(C(x, x) \). Let \(\text{EA}(X) \) denote the set of externally active elements in \(X \). Note that \(X \in \text{Inter}(\mathcal{M}) \) iff \(\text{EA}(X) = \emptyset \). If \(\text{EA}(X) \neq \emptyset \), let \(e_{\alpha}(X) \) denote the smallest element of \(\text{EA}(X) \). If \(B \) is a basis of \(\mathcal{M} \) we say that an element \(x \in B \) is \textit{internally active} in \(B \) if \(x \) is \textit{externally active} in the basis \(B^* = E \setminus B \) of the orthogonal matroid \(\mathcal{M}^* \).

Let \(\text{IA}(B) \) denote the set of internal active elements in \(B \). We refer to [8] (resp. [11, 12]) as standard sources for arrangements of hyperplanes (resp. matroids).

2. \textit{nbc} BASES

The following definition is due to I. M. Gel’fand and G. L. Rybnikov [5]. It is the ‘combinatorial analogous’ of one proposed in [7].

\textbf{DEFINITION 2.1} ([5, 7]). The \textit{Orlik–Solomon algebra} of the matroid \(\mathcal{M}(E) \) is the \(\mathbb{Z} \)-algebra \(\text{OS}(\mathcal{M}) \) given by the set of generators \(E \), and the relations:

0195–6698/01/020165 + 06 $35.00/0 \hspace{1cm} \copyright \) 2001 Academic Press
o $e^2 = e \cdot e' + e' \cdot e = 0, \forall e, e' \in E$.

o If e is a loop of \mathcal{M}, then we have $e = 0$.

o If $\{e_{i_1}, e_{i_2}, \ldots, e_{i_m}\} \in \mathcal{C}(\mathcal{M}), m > 1, e_{i_1} < \cdots < e_{i_m}$, then

$$\sum_{j=1}^{\ell} (-1)^{j-1} e_{i_1} \cdots \hat{e}_j \cdots e_{i_m} = 0,$$

where \hat{e} indicates an omitted factor.

If $X = \{e_{i_1} < \cdots < e_{i_p}\} \subset E$, set $e_X := e_{i_1} \cdot e_{i_2} \cdots \cdot e_{i_p}$. Set $e_\emptyset := 1$. We say that e_X is a \textit{strongly decomposable element} of the algebra OS.

Remark 2.2. In [3] it is shown that the matroid \mathcal{M} cannot be reconstructed from the abstract algebra $\text{OS}(\mathcal{M})$. In other words, when the algebra $\text{OS}(\mathcal{M})$ is determined by an arbitrary basis \mathcal{B} and the corresponding structure constants. It is an open question (implicit in the Conjecture 5.4 of [3]) to decide when, given an abstract Orlik–Solomon algebra OS, there is an unique loop free matroid \mathcal{M} such that $\text{OS} = \text{OS}(\mathcal{M})$. In the following, for each abstract Orlik–Solomon algebra OS, we fix an associated matroid \mathcal{M} such that $\text{OS} = \text{OS}(\mathcal{M})$.

Let $\bigoplus_{e \in \mathbb{Z}} Z e$ be the free \mathbb{Z}-module, generated by the family of generators e_1, e_2, \ldots, e_n. Consider the \textit{graded exterior algebra} $\Lambda E = \bigoplus_{i \in \mathbb{N}} \Lambda^i E$ of the module $\bigoplus_{e \in \mathbb{Z}} Z e$. Define the graded linear mapping $\partial : \Lambda E \rightarrow \Lambda E$ as a linear extension of the linear maps:

o $\partial_0 : \mathbb{Z} \rightarrow (0)$,

o $\partial_1 : \Lambda^1 E \rightarrow \mathbb{Z}$, where $\partial_1(e) = 1, \forall e \in E$,

o $\forall \ell = 2, 3, \ldots, n$, the maps $\partial_{\ell} : \Lambda^\ell E \rightarrow \Lambda^{\ell-1} E$, where

$$\partial_{\ell}(e_{i_1} \wedge \cdots \wedge e_{i_{2\ell}}) = \sum_{j=1}^{\ell} (-1)^{j-1} e_{i_1} \wedge \cdots \wedge \hat{e}_j \wedge \cdots \wedge e_{i_{2\ell}}.$$

Let \mathcal{I} be the two-sided ideal of the exterior algebra ΛE generated by the set $\{\partial(e_C) : C \in \mathcal{C}(\mathcal{M}), |C| > 1\} \cup \{e : e \text{ is a loop of } \mathcal{M}\}$. Note that $\text{OS}(\mathcal{M}) = \Lambda E / \mathcal{I}$. Set $\text{OS}_i(\mathcal{M}) = \Lambda^i E / (\mathcal{I} \cap \Lambda^i E), \forall i \in \mathbb{N}$.

Proposition 2.3. The grading $\text{OS}(\mathcal{M}) = \bigoplus_{i \in \mathbb{N}} \text{OS}_i(\mathcal{M})$ is canonical, i.e., it is independent of the knowledge of the matroid \mathcal{M}.

Proof. We know that $\text{OS}_r = (0)$, for all $i > r$. If $\text{OS} = \text{OS}_0 = \mathbb{Z}$ (i.e., $r = 0$) the result is clear. Suppose that $\text{OS} \neq \mathbb{Z}$. Note that

$$\text{OS}_r = \{x \in \text{OS} : x \cdot y = 0, \forall y \in \text{OS} \setminus \mathbb{Z}\}.$$

If we know the modules $\text{OS}_{r}, \ldots, \text{OS}_{r-i}$ and $\text{OS}^{i+1} := \text{OS}_r \oplus \cdots \oplus \text{OS}_{r-i} \neq \text{OS}$, (i.e., $r - i > 1$) the module $\text{OS}_{r-i-1}, i = 0, \ldots, r - 2$, can be defined recursively as follows

$$\text{OS}_{r-i-1} = \{x \in \text{OS} : x \cdot y = 0, \forall y \in \text{OS} \setminus \mathbb{Z}\}/\text{OS}^{i+1}.$$

The following basic theorem was independently discovered by Orlik and Solomon in 1980, Björner in 1982 and Jambu and Leborgne in 1986. See in [2] for a historical note.

Theorem 2.4 ([1, 6, 7]). The set $\text{nbh} := \{e_l : l \in \text{Int}^i(\mathcal{M})\}$ is a linear basis of the free \mathbb{Z}-module $\text{OS}_i(\mathcal{M}), \forall i \in \mathbb{N}$.

\[\square\]
Set $\text{nbc} := \sum_{i=0}^{t} \text{nbc}^i = \{e_I : I \in \text{Int}(\mathcal{M})\}$. \text{nbc} is termed the no broken circuit basis of the free \mathbb{Z}-module $\text{OS}(\mathcal{M})$.

Theorem 2.5. Let e_X be a strongly decomposable element of $\text{OS}(\mathcal{M})$. If e_X is express in the nbc basis of the \mathbb{Z}-module $\text{OS}(\mathcal{M})$, then all the coefficients are 0 or ± 1.

Theorem 2.5 is a consequence of the following technical lemma. Let G be the direct graph such that:

- Its vertex set $V(G)$ is the set of all the independent sets of the matroid \mathcal{M}.
- $X \cap \alpha \subseteq e(G)$ is a directed edge of G iff there is a pivotable pair (α, x) such that $X = X \cup \alpha$ and $x \in C(X, \alpha)\backslash \alpha$.

Lemma 2.6. For every pair of vertices X, X' of the graph G, there is at most one directed path from X to X'.

Proof of Lemma 2.6. Suppose that there is in G a directed path containing exactly the $k + 1$ vertices, X_1, \ldots, X_{k+1}. For every $i = 1, \ldots, k$ set $\alpha_i = \alpha(X_i)$, $C_i = C(X_i, \alpha_i)$, and set $x_i = X_i \cap X_{i+1}$. We show first that:

- $\alpha_{i+1} \neq x_i$, \hspace{1cm} (2.6.1)
- $\alpha_i \notin \text{bc}(C_{i+1})$, \hspace{1cm} (2.6.2)
- $\alpha_i < \cdots < \alpha_k$, \hspace{1cm} (2.6.3)
- $C_i = C(X_1, \alpha_i)$, \hspace{1cm} (2.6.4)
- $X_{i+1} = X_i \setminus \{x_1, \ldots, x_i\} \cup \{\alpha_1, \ldots, \alpha_i\}$, \hspace{1cm} (2.6.5)
- $C_i = C(X_i \setminus \{x_1, \ldots, x_{i-1}\}, \alpha_i)$. \hspace{1cm} (2.6.6)

(2.6.1). Suppose for a contradiction that $\alpha_{i+1} = x_i (\neq \alpha_i)$. Then

$\alpha_i, \alpha_{i+1} \in C_i = C_{i+1} \subseteq X_i \cup \alpha_i = X_{i+1} \cup \alpha_{i+1},$

and we find the contradiction $\alpha_i < \alpha_{i+1}$ and $\alpha_{i+1} < \alpha_i$.

(2.6.2). Suppose for a contradiction that $\alpha_i \notin \text{bc}(C_{i+1})$. So $\alpha_{i+1} = \alpha(X_{i+1}) < \alpha_i$. From the circuit elimination axiom we know that there is a circuit C'_{i+1} such that

$\alpha_{i+1} \in C'_{i+1} \subseteq \{C_i \cup C_{i+1}\} \alpha_i \subseteq X_i \cup \{X_i \cup \alpha_{i+1}\} \subset X_i \cup \alpha_{i+1}$.

So $C'_{i+1} \backslash \alpha_{i+1}$ is a broken circuit contained in X_i, and $\alpha_i = \alpha(X_i) < \alpha_{i+1}$, a contradiction.

(2.6.3). From (2.6.3), we see that bc$(C_{i+1}) \subset X_i$. We conclude that $\alpha_i < \alpha_{i+1}$.

(2.6.4). From the definitions we know that

$\alpha_i \in C_i \subset X_i \cup \alpha_i \subset X_i \cup \{\alpha_1, \ldots, \alpha_i\}$.

By our hypothesis we know that $C_i \backslash \alpha_i$ is a broken circuit. We have proved in (2.6.3) that $\alpha_1 < \cdots < \alpha_{i-1} < \alpha_i$ so $C_i \cap \{\alpha_1, \ldots, \alpha_{i-1}\} = \emptyset$, and (2.6.4) follows.

(2.6.5). It is clear that $|X_1 \Delta X_2| = 2$. Suppose inductively that

$X_i = X_i \setminus \{x_1, \ldots, x_{i-1}\} \cup \{\alpha_1, \ldots, \alpha_{i-1}\}$, \hspace{1cm} and \hspace{1cm} $|X_1 \Delta X_i| = 2(i - 1)$.

From (2.6.4) we know that $x_i \notin \{\alpha_1, \ldots, \alpha_{i-1}\}$. So (2.6.5) follows.

(2.6.6). From (2.6.5) we know that $X_i \cap \{x_1, \ldots, x_{i-1}\} = \emptyset$, so C_i is disjoint of $\{x_1, \ldots, x_{i-1}\}$. Making use of (2.6.4) we conclude that

$C_i = C(X_i \setminus \{x_1, \ldots, x_{i-1}\}, \alpha_i)$.

We are now able to complete the proof of Lemma 2.6. We prove by induction on the length of the paths. Suppose that the Lemma 2.6 is true for all paths of length \(\ell \leq k \). Consider a new directed path \(X'_1 = X'_1 \rightarrow \cdots \rightarrow X'_i \rightarrow \cdots \rightarrow X'_{k' + 1} = X_{k'} \). From (2.6.5) we know that \(k' = k \). For every \(i = 1, \ldots, k \), set \(a'_i := \alpha(X'_i) \), \(x'_i := X'_{i + 1} \setminus X'_i \) and \(C'_i = C(X'_i, a'_i) \). As \(X'_{k + 1} = X'_{k + 1} \), we know

\[
\{a_1, \ldots, a_k\} = \{a'_1, \ldots, a'_k\} \quad \text{and} \quad \{x_1, \ldots, x_k\} = \{x'_1, \ldots, x'_k\}.
\]

From (2.6.3) we get \(a_1 < \cdots < a_k \) and \(a'_1 < \cdots < a'_k \), so \(a_i = a'_i \) for every \(i = 1, \ldots, k \). From (2.6.4) we conclude that \(C_k = C(X_1, a_k) = (X_k, a_k) = C_k \). (2.6.6) entails that

\[
x_k, x'_k \in C_k = C(X_1 \setminus \{x_1, \ldots, x_k - 1\}, a_k) = C_k' = C(X_1 \setminus \{x'_1, \ldots, x'_{k - 1}\}, a_k),
\]

so \(x_k = x'_k \) and \(X_k = X'_k \). By the induction hypothesis we conclude that \(X_i = X'_i, \forall i = 2, \ldots, k - 1 \).

Proof of Theorem 2.5. If \(C \in \mathcal{C}(M) \), \(|C| > 1 \), then we have \(e_C = 0 \). Indeed pick an element \(e \in C \). Then \(e_C = e \cdot \partial(C) = 0 \). So \(e_D = 0 \), for every dependent set \(D \) of \(M \). It is clear that \(e_{X'} \in \text{nbc} \) iff \(X' \) is a sink of \(G \). We see \(G \) as an edge-labelled graph:

- Let \(Y_i \) be an arbitrary edge where \(\alpha = \alpha(Y) = Y_i \setminus Y \), and set \(C = C(Y, \alpha) \). Suppose that \(bc(C) = \{y_1, \ldots, y_l, \ldots, y_m\} \) and \(Y_i = Y \setminus y_i \cup \alpha \). Consider the expansion of the element \(\partial(e_y \cdot e_Y) \in \Lambda E \). The elements \(\partial(e_y \cdot e_Y) \) and \(e_C \cdot \partial(e_C) \) are members of the ideal \(\mathcal{I} \), so

\[
e_Y = \sum_{i=1}^{m} \zeta_i e_{Y_i}, \quad \text{with} \quad \zeta_i = \pm 1 \quad \text{and} \quad Y_i = Y \setminus y_i \cup \alpha. \tag{2.1}
\]

We label the edge \(Y_i \) with the scalar \(\zeta_i \).

Let \(Y_1, \ldots, Y_L \) be the list of the maximal length directed paths of \(G \), beginning with the vertex \(X \). We denote by \(T_l \) the last vertex of the path \(Y_l \). \(T_l \) is a sink of \(G \), so \(e_{T_l} \in \text{nbc} \). From Eqn. (2.1) and Lemma 2.6 we conclude that

\[
e_{X_1} = \sum_{i=1}^{L} \xi_i e_{T_i}, \quad e_{T_l} \in \text{nbc}, \quad \xi_i \pm 1, \tag{2.2}
\]

where \(\xi_i \) is the product of the labels of all the edges of the path \(Y_i \).

The following corollary provides an useful algorithm to compute the support set of \(e_X \), \(\text{supp}(e_X) := \{e_{T_1}, \ldots, e_{T_l}\} \).

Corollary 2.7. On the conditions of Theorem 2.5, \(e_{T_l} \in \text{supp}(e_X) \) iff there is a maximal sequence of pairs \((a_1, x_1), (a_2, x_2), \ldots, (a_k, x_k) \) in \(\text{EA}(X) \times X \), satisfying the following three conditions:

- \(x_i \in C(X, \alpha_i), \forall i \in \{1, \ldots, k\} \).
- \(a_1 = \alpha(X_1) \) and \(\forall i \in \{2, \ldots, k\}, \alpha_i \) is the smallest element of \(\text{EA}(X) \) such that \(C(X, \alpha_i) \cap \{x_1, \ldots, x_{i-1}\} = \emptyset \).
- \(T_l = X \setminus \{x_1, \ldots, x_k\} \cup \{x_1, \ldots, x_k\} \).
Given a subset S of E, M the rank 2 uniform matroid. Note that $\text{basis of } 0$ or $\pm x$. As by hypothesis S we make use of the following two results: F Note that S (3.1.1). Fix a subset $cyclic flat associated to M such that $B \in S \cup \text{EA}(B)$, see [1, Proposition 7.3.6]:

(a) Given a subset S of E, there exists one and only one basis B of M such that $B \setminus \text{IA}(B) \subset S \subset B \cup \text{EA}(B)$, see [1, Proposition 7.3.6]:

(b) Given a basis B of M, there is one and only one cyclic flat F of M such that $(B \setminus F, F \setminus B) \in \text{Inter}(M/F) \times \text{Inter}(M^*/(E \setminus F))$, see [4].

(3.1.1). Fix a subset $S \subset E$. Let B be the basis of M associated to S by (a). Let F be the cyclic flat associated to B by (b). By hypothesis $B \setminus F \in \text{Inter}(M/F)$, so $B \setminus F$ is a basis of M/F. We claim that $S \setminus F \subset B \setminus F$. It is clear that this inclusion imply (3.1.1). From (a) we se that $S \setminus F \subset (B \setminus F) \cup (\text{EA}(B) \setminus F)$. So it is enough to prove that $\text{EA}(B) \subset F$. Suppose for a contradiction that $x \in \text{EA}(B) \setminus F \subset B^* \setminus F$. Note that $B^* \setminus F = (E \setminus F) \setminus (B \setminus F)$. So $C_{M/F}(B \setminus F, x) \subset C_{M/B}(x, B \setminus F)$. As by hypothesis $x \in \text{EA}(B)$, x is the smallest element of $C_{M/B}(x, B \setminus F)$ and hence it is also the smallest element of $C_{M/F}(B \setminus F, x)$. So $B \setminus F \not\subset \text{Inter}(M/F)$ a contradiction.

\begin{acknowledgement}

The first author’s research was partially supported by FCT and PRAXIS XXI through the Research Units Pluriannual Funding Program, and by the project PRAXIS/PCEX/C/MAT/39/96.
\end{acknowledgement}
REFERENCES

Received 2 June 1999 and accepted 10 July 2000. Published electronically 1 December 2000

RAUL CORDOVIL
Departamento de Matemática,
Instituto Superior Técnico,
Av. Rovisco Pais,
1049-001 Lisboa,
Portugal
E-mail: cordovil@math.ist.utl.pt

AND

GWIHEN ETIENNE
Université Pierre et Marie Curie,
Case 189, Combinatoire# 4, Place Jussieu,
75005 Paris,
France
E-mail: gwi@easynet.fr