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The interaction of methylamine with chloroplasts' photosystem II (PSII) was studied in isolated thylakoid
membranes. Low concentration of methylamine (mM range) was shown to affect water oxidation and the
advancement of the S-states. Modified kinetics of chlorophyll fluorescence rise and thermoluminescence in
the presence of methylamine indicated that the electron transfer was affected at both sides of PSII, and in
particular the electron transfer between YZ and P680+. As the concentration of methylamine was raised
above 10 mM, the extrinsic polypeptides associated with the oxygen-evolving complex were lost and energy
transfer between PSII antenna complexes and reaction centers was impaired. It was concluded that
methylamine is able to affect both extrinsic and intrinsic subunits of PSII even at the lowest concentrations
used where the extrinsic polypeptides of the OEC are still associated with the luminal side of the
photosystem. As methylamine concentration increases, the extrinsic polypeptides are lost and the interaction
with intrinsic domains is amplified resulting in an increased F0.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

In bacteria, plants and animals, polyamines are required for cell
proliferation and growth. Through their binding to biological
molecules, polyamines are considered to take part in the regulation
of basic plant physiological processes such as cell division and
morphogenesis, as well as responses to environmental and stress
conditions [1,2]. Several studies have reported the interaction of
polyamines with proteins of photosystem II (PSII1) leading to the
inhibition of electron transport activity [3–5]. This photosystem is
responsible for water oxidation and the consequent oxygen evolu-
tion in oxygenic photosynthetic prokaryotes and chloroplasts of
higher plants [6]. PSII contains multiple intrinsic and extrinsic
subunits. A tetranuclear manganese (Mn) cluster and cofactors such
as Ca2+ and Cl− form the oxygen-evolving complex (OEC) together
with three extrinsic polypeptides of 17, 23 and 33 kDa [7]. The OEC is
associated with the intrinsic proteins D1 and D2, which cross the
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thylakoid membrane and form the heterodimeric core of PSII that
binds the redox-active cofactors involved in electron transfer [8].
Among the pigment–protein complexes in charge of light harvesting,
CP47 and CP43 compose the inner light-harvesting complex of PSII.
Both subunits have been revealed to interact with the oxygen-
evolving site and participate in the stabilization of electron transfer
reactions [9].

The photochemical events in PSII are initiated by the capture of
incident photons by the antenna complexes. The energy absorbed is
quickly transferred to the photochemical reaction centers (RC) where
the excited singlet state of the special chlorophyll (Chl) a, P680,
reduces a pheophytin (Pheo) molecule. Stabilization of the charge
separated state occurs with the electron transfer from Pheo− to QA,
the primary plastoquinone of PSII, forming P680+QA

−. The P680+

radical oxidizes tyrosine YZ (Tyrosine 161 of D1). The latter is re-
reduced by electrons originating from the Mn cluster. At this site,
water oxidation is performed through the so-called S-state cycle, S0→
S1 → S2 → S3 → (S4) → S0, requiring four successive quanta of
excitation. Concurrent with the release of dioxygen fromwater, the S4-
state decays to the S0-state after the 4th step. At the acceptor side, QA

−

reduces the secondary plastoquinone, QB, in a two step process
leading to the formation of plastoquinol (PQH2).

Polyamines such as spermine and spermidine were shown to
strongly interact with the luminal side of PSII causing the release of
the three extrinsic polypeptides of 17, 23 and 33 kDa associated with
the OEC. The release of the 33 kDa in the presence of polyamines did
not affect the content of theMn cluster but the S-state advancement of
the OEC was compromised together with the following electron
transfer reactions [5]. Similarly, diamines such as putrescine and
cadaverine interacted with PSII proteins (H-bonding) through
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polypeptides C=O groups with no major perturbation of protein
secondary structure. This was sufficient to strongly inhibit oxygen
evolution and electron transfer was inadequate to reduce the quinone
acceptors of PSII thus decreasing the maximum fluorescence yield [4].

The PSII subunits CP47, D1 and D2 contain reactive groups, which
covalently bind monoamines such as methylamine and buthylamine
[10–12]. Monoamines could represent an interesting simplified model
to better understand the action of polyamines. Several monoamines
such as Tris, ammonia, methylamine and buthylamine are known to
reversibly inhibit water oxidation in PSII and affect the distribution of
higher S-states of the OEC [13]. Ammonia induced inhibition involved
binding at two sites: the chloride site in a competitive manner and the
substrate water binding site at or near the tetranuclear Mn cluster
[13,14]. However, it has been reported that amines larger than
ammonia do not bind to the Mn cluster directly because of steric
reasons [13].

In order to examine how methylamine can interact with extrinsic
and intrinsic components of PSII, we have analyzed the interaction of
this monoamine with isolated thylakoid membranes. Water oxidation
and the advancement of the S-states, the kinetics of Chl fluorescence
rise, and the electron transfer at both sides of PSII were affected. We
concluded from the experimental data that inhibition of the OEC and
the following electron transfer resulted from interaction of methyla-
mine with both extrinsic and intrinsic subunits of the photosystem.

2. Materials and methods

2.1. Materials

Methylamine (40 wt.% solution in water) was purchased from
Sigma Chemical Co. (St-Louise, MO) and used as supplied.

2.2. Thylakoid membrane preparation

Thylakoid membranes were isolated from fresh market spinach
(Spinacia oleracea L.) as described elsewhere [15] and kept in the dark.
Chl concentration was calculated following the procedure outlined in
Porra et al. [16].

2.3. Isolation of PSII submembrane fractions

PSII submembrane fractions were isolated from thylakoid mem-
branes according to Berthold [17] with minor modifications. After
incubation for 90 min in the dark at ice-cold temperature, Triton X-
100 was added while gently shaking for 1 min to obtain a final
concentration of 2.35% (v/v) and 1 mg Chl ml−1. This solution was
incubated 1 min in the dark and centrifuged for 4 min at 600 ×g. The
supernatants were further centrifuged for 15 min at 35,300 ×g. The
resulting pellet was suspended in a buffer containing 20 mM Mes–
NaOH (pH 6.2), 15 mM NaCl, 10 mM MgCl2, and 400 mM sucrose. The
homogenate was centrifuged for 4 min at 4960 ×g. The supernatants
were centrifuged for 15 min at 35,300 ×g and the pellets were
suspended in the same buffer. This new homogenate was centrifuged
for 15 min at 35,300 ×g. Finally the pellet was suspended in the same
buffer and the Chl content was determined as described previously
[16].

2.4. Polyacrylamide gel electrophoresis

To determine the polypeptides released by methylamine, PSII
preparations (100 μg Chl ml−1) were incubated for 1 min at room
temperature in the presence of methylamine and harvested immedi-
ately by a 5-min centrifugation (12,400 rpm) in an Eppendorf
microcentrifuge. The pellets were washed twice in 20 mM Mes–
NaOH (pH 6.2) and used for polypeptide analysis. The first super-
natants were further centrifuged (12,400 rpm for 5 min) to remove
remaining membrane fragments. Tris-alkali extraction of the 17, 23
and 33 kDa polypeptides was carried out following the standard
procedure of Nakatani [18]. The supernatants of the methylamine or
Tris-alkali treated PSII submembrane fractions were concentrated
against sucrose using Spectra/Por Molecularporous membranes
(Spectrum Laboratories, Inc., Rancho Dominguez, CA, USA) before
analysis by polyacrylamide gel electrophoresis. The latter was
performed at room temperature using miniature slab gels (Bio-Rad
Laboratories, Hercules, California) containing 13% acrylamide and 6 M
urea. The gels were stained with Coomassie brilliant blue and the
polypeptide content was analyzed with the Gel-Doc 2000 system
(Bio-Rad Laboratories, Hercules, CA, USA).

2.5. Oxygen evolution

Flash-induced oxygen evolution was measured in the thylakoid
membranes at 22 ° C using a laboratory built instrument. A complete
description of the oxygen electrode system can be found elsewhere
[19]. The electrode consists of two compartments separated by a
cellophane membrane. The silver anode is filled by an electrolyte
buffer containing 400 mM sucrose, 40 mM Hepes–NaOH (pH 7.6),
100 mM KCl, 10 mM NaCl, and 5 mM MgCl2. Thylakoid membranes
deposited in the cathode chamber were diluted to 200 μg Chl ml−1 in
a medium containing 400 mM sucrose, 40 mMHepes–NaOH (pH 7.6),
10 mM NaCl, 5 mM MgCl2 and the specified concentrations of
methylamine in the total volume of 100 μl. After a 3-min incubation,
the sample was illuminated by a train of 12 saturating (4J) single turn-
over flashes (10 μs). The quantitative estimation of photosynthetic
oxygen production and the S-state transitions were measured using
an analytical solution for the fitting of experimental data as described
previously [20].

2.6. Chl fluorescence induction (FI)

FI measurements were performed at room temperature using the
Plant Efficiency Analyser (Hanasatech, King' Lynn, Norfolk, UK). The
assay medium contained 250 mM sorbitol, 20 mM Tricine KOH (pH
7.8), 10 mM KCl, 10 mM NaCl, 5 mM MgCl2, 25 μg Chl ml−1 and the
specified concentrations of methylamine (1 min incubation). Samples
were excited with saturating red actinic light (655 nm and an
intensity of 3000 μmolm−2 s−1) provided by light emitting diodes. As
the fluorescence signal during the first 40 μs is ascribed to artifacts due
to delay in response time of the instrument, these data were not
included in the analyses of FI traces. The signal at 40 μs was taken as
F0, the initial fluorescence. Variable fluorescence, Fv (the difference
between F0 and the maximal fluorescence, Fm, in dark adapted
samples), was used to calculate the Fv/Fm and Fv/F0 ratios.

2.7. Thermoluminescence (TL)

TL measurements were carried out with a laboratory built
instrument. The description of the design and functional aspects are
presented elsewhere [21,22]. Thylakoid membranes were diluted to
200 μg Chl ml−1 in a medium containing 20 mM Tricine–NaOH (pH
7.8), 400 mM sucrose, 10 mM KCl, 10 mM NaCl, 5 mM MgCl2 and the
specified concentrations of methylamine. About 200 μl of the
suspensionwas added to the sample compartiment (15mmdiameter)
positioned just above the Peltier plate and coveredwith a Hellma 202-
OS disc window. The sample chamber was closed with a holder
bearing the light guide connected to the photomultiplier. The
sequence of pre-incubation periods and flash illumination of thyla-
koids is presented below. First, samples were incubated for 120 s at
20 °C. Following this step, the temperature was brought down to 2 ° C
within 5–8 s and kept for 60 s. This incubation temperature was
selected in order to avoid freezing induced damages to the OEC that
may give rise to artefacts in thylakoid membranes without



Fig. 1. (A) Period-four oscillation of the yield of oxygen evolution in thylakoid
membranes using a train of 12 saturating (4J) single turn-over flashes (10 μs) after
a 3-min incubation with various concentrations of methylamine: (1) control; (2)
4 mM; (3) 8 mM; (4) 12 mM; (5) 16 mM; (6) 20 mM. All traces were normalized at
the third flash of the control. Assays were carried out in media containing 400 mM
sucrose, 40 mM Hepes–NaOH (pH 7.6), 10 mM NaCl, and 5 mM MgCl2. Details are
given in Materials and methods. (B) Inhibition of oxygen evolution in thylakoid
membranes after a 3-min incubation with various concentrations of methylamine.
Each point represents the total yield of the first four flashes from the experiment of
panel A given as the percent of oxygen evolution of the untreated sample (100%). (C)
Depletion of extrinsic polypeptides in PSII submembrane fractions after a 1-min
incubation in the presence of methylamine. Lane 1, molecular weight standards; lane
2, control PSII; lane 3, 10 mM methylamine-treated PSII; lane 4, supernatant of 10 mM
methylamine-treated PSII; lane 5, 20 mM methylamine-treated PSII; lane 6, super-
natant of 20 mM methylamine-treated PSII; lane 7, supernatant of the Tris-alkali-
treated PSII. Numbers on the left indicate apparent molecular masses (kDa) of the
markers.
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cryoprotectant [22]. An actinic single turn-over saturating white flash
of about 1 μs width (setting 10, XE-STC, Walz, Germany) was applied
to initiate charge separation in PSII. During the last step, linear
warming of samples in total darkness activated the recombination of
PSII charge pairs that can be detected by the appearance of emission
bands with characteristic temperature optima [21,22].

2.8. Flash-induced fluorescence

Flash-induced Chl fluorescence was measured by a double-
modulation fluorometer (Photon Systems Instruments, Brno, Czech
Republic). Thylakoid membranes were diluted to 25 μg Chl ml−1 in a
medium containing 250 mM sorbitol, 20 mM Tricine KOH (pH 7.8),
10mMKCl, 10mMNaCl, 5 mMMgCl2 and the specified concentrations
of methylamine. After 1 min incubation, an actinic flash of about 50 μs
duration was applied and fluorescence measurements were taken
each 1 μs during the flash.

3. Results

The influence of methylamine (added as free methylamine) on the
OEC of thylakoidmembranes isolated from spinach is shown in Fig.1A.
Samples were illuminated by a group of saturating single turn-over
flashes. A periodicity of four in the yield of oxygen evolution is
observed in relation to the advancement of the S-states (Sn, where
n=0, 1, 2, 3, 4) of the OEC [23]. Oxygen evolution after each flash
strongly declined in the presence of methylamine and the oscillation
pattern was also modified. In the presence of up to 10 mM of
methylamine, the largest oxygen evolution yield was observed after
the third flash. This maximum was progressively shifted toward the
fourth flash as the concentration of methylamine was raised (see Fig.
1A, 16 mM). This shift was accompanied by an increase in the percent
of misses (zero-step advance) and a decrease in the percent of hits
(one-step advance) (Table 1).

Fig. 1B shows that methylamine inhibits oxygen evolution in the
mM range and about 50% of the activity was lost with 10 mM. The
inhibitory action is maximal within less than 1min incubation. Similar
observations could be made with PSII submembrane fractions using a
Clark-type electrode (result not shown). Inhibition of oxygen evolu-
tion by methylamine was previously explained by its interaction with
the OEC [11]. In order to establish the site of action of methylamine
more precisely, various techniques were used as described below.

Polyacrylamide gel electrophoresis was used to clarify the
interaction of methylamine with the extrinsic polypeptides asso-
ciated with the OEC (Fig. 1C). PSII submembrane fractions were
incubated for 1 min with methylamine and then centrifuged to
separate the submembrane fractions from free polypeptides. In lane 5
(Fig. 1C) it is shown that incubation for 1 min of the PSII
submembrane fractions in the presence of 20 mM methylamine,
three polypeptides were depleted at the position that corresponded
to the extrinsic polypeptides of 17, 23 and 33 kDa associated with the
OEC as compared to the control (lane 2). These polypeptides were
recovered in the supernatant of the treated samples (lane 6). This set
of polypeptides coincided with the polypeptides released by the
incubation of PSII submembrane fractions for 1 min with Tris-alkali
(pH 9.2) (lane 7), a treatment known to release the three extrinsic
polypeptides of the OEC. At 10 mM, no polypeptide was removed
significantly (see lanes 3 and 4). The methylamine concentration that
caused polypeptide depletion corresponded to the almost complete
inhibition of oxygen evolution observed in thylakoid membranes
(Fig. 1B) or in PSII submembrane fractions using a Clark-type
electrode (results not shown).

The action of methylamine on Chl fluorescence properties of
thylakoid membranes was studied. The results are shown in Fig. 2. The
initial fluorescence level F0 observed with the reaction center (RC) in
an open state was strongly increased with methylamine (Fig. 2A). The



Table 1
Values of parameters determined from the oxygen yields induced by a train of single
turn-over flashes in the presence of various concentrations of methylamine.

Parameters Methylamine, mM

0 4 8 12 16 20

Misses, % 18 14 12 20 25 40
Hits, % 74 77 77 71 69 59
Double-hits, % 1.6 2.1 3 2.8 3.6 1

Remaining fraction is due to inactivations and backward-transitions.

1226 S. Hamdani, R. Carpentier / Biochimica et Biophysica Acta 1787 (2009) 1223–1229
increase in F0 was mainly observed above 15 mM of methylamine,
which coincided with a decrease in the maximal PSII photochemical
yield, Fv/Fm, where Fv=Fm−F0, (Fig. 2B). The maximal fluorescence
Fm observed with the RC in closed state, was also greatly decreased
(data not shown). The decline in Fm corresponded with a decrease in
Fv/F0 observed above 5 mM (Fig. 2C), a parameter that accounts for
Fig. 2. Effect of increasing methylamine concentration in thylakoid membranes on the
Chl fluorescence parameters (A) F0, (B) Fv/Fm, (C) Fv/F0. Each point is the average of 3
independent experiments (6–9 assays per point).

Fig. 3. (A) Chl fluorescence induction traces of thylakoid membranes treated with
various concentrations of methylamine: (1) control; (2) 5 mM; (3) 10 mM; (4) 15 mM;
(5) 20 mM; (6) 30 mM. (B) Thermoluminescence glow curves (B-band) from thylakoid
membranes after treatment with different concentrations of methylamine: (1) control;
(2) 3 mM; (3) 7 mM; (4) 10 mM; (5) 15 mM. The samples were heated from 2 °C to
62 °C at a rate of 0.5 °C/s. Inset: Relative intensity of the B-band at various methylamine
concentrations. (C) Chl fluorescence induction provided by a single saturating flash in
the presence of methylamine: (1) control; (2) 5 mM; (3) 10 mM; (4) 20 mM; (5)
30 mM. The arrow indicates the onset of the flash. Fluorescence measurements were
taken each 1 μs during the flash (50 μs). The points are the average of 3 independent
experiments (9 assays per point).
the simultaneous variations in Fm and F0 in determinations of the
maximum quantum yield of PSII [24,25]. Thus, the drop of Fv/F0
observed above 5 mM methylamine and of Fv/Fm above 15 mM was
correlated, respectively, with the pattern of inhibition of oxygen
evolution and the depletion of the three extrinsic polypeptides of the
OEC (Fig. 1B and C).
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In order to havemore information on FI properties ofmethylamine-
treated samples, we analyzed the O–J–I–P induction traces. These
traces display the progressive reduction of the plastoquinones located
at the acceptor side of PSII with threemainphases corresponding toOJ,
JI and IP [26–28] (Fig. 3A). Fig. 3A shows the progressive damping of FI
upon treatment with methylamine suggesting that the OEC failed to
provide electrons for PSII to reduce the quinone acceptors. Addition of
calcium chloride (CaCl2, up to 10 mM) or the artificial electron donor
diphenylcarbazide (2–5 mM) could not restore the kinetics of Chl
fluorescence in methylamine-treated samples (data not shown),
despite the loss of the extrinsic polypeptides associated with the OEC
and the dysfunctional Mn cluster.

Thermoluminescence was used to determine the effect of
methylamine on charge recombination processes in PSII. Fig. 3B
shows the TL glow curves supplied with a linear increase in
temperature from 2 °C to 62 °C at the rate of 0.5 °C/s following a 1-
μs single turn-over white flash. The amplitude of TL signal attains its
maximum (Tm) at 37 °C in control thylakoid samples (Fig. 3B trace 1).
This major TL emission band corresponds to the temperature
optimum of the B-band (30 °C–40 °C) attributable to charge
recombination between the oxidized Mn cluster predominantly in
the S2 state and QB

− [29]. This band was progressively decreased as the
concentration of methylamine was raised (Fig. 3B traces 2–4). About
50% of the TL intensity was abolished with 7–10 mM methylamine
(see inset of Fig. 3B). Above 15 mM methylamine the B-band was
totally suppressed (Fig. 3B trace 5). The effect of methylamine on the
intensity of the B-band was also accompanied by a small shift of the
Tm toward lower temperatures that reached 2.5 °C at 10 mM
methylamine. Probably, the strong inhibitory effect of methylamine
on charge recombination was due to the loss of the donor side
partners for the radiative recombination pathways.

Fig. 3C shows the flash-induced Chl fluorescence measured at a 1-
μs time resolution simultaneously with the duration of an actinic
saturating flash of about 50 μs. In this experiment, the electron
transfer between QA

− and QB
− is not observed because the time needed

for this transfer is greater than 50 μs [30]. The shape of this
fluorescence rise contains information concerning the fluorescence
when RCs are opened (F0) and the variable fluorescence during the
flash (Fv 50 μs) pertaining to electron transport between P680 and QA.
These traces display the progressive reduction of QA, which was
slowed as the concentration of methylamine increased (Fig. 3C, traces
1–5). Indeed, with 20 mM methylamine Fv 50 μs was diminished by
approximately 25%. In parallel with this loss, F0 was increased by
nearly 70% compared to control (Fig. 3C traces 4). At 30 mM
methylamine, F0 was augmented by about 100% compared to control
while Fv 50 μs was completely abolished (Fig. 3C traces 5).

4. Discussion

In the present study, we have shown that methylamine is able to
affect PSII activity in the mM range of concentration and within only a
minute of incubation. Indeed, below 10 mM, up to 50% of the oxygen
yield was lost. At these methylamine concentrations, no significant
perturbation in the advancement of the S-states of the Mn cluster
was observed in the OECs that were still unaffected by the inhibitor
(Fig. 1A and B). Similar results were obtained with several anions or
Lewis bases [31,32]. This inhibitory effect is explained by the
interaction between methylamine and the OEC at or near to the Mn
cluster. The loss of oxygen yield was accompanied by the inhibition of
electron transfer to the acceptor side that was reflected in a decreased
Fv/F0 ratio. Hence, the incapacity of PSII to reduce adequately the
plastoquinone pool resulted in seriously damped fluorescence induc-
tion kinetics (Fig. 3A).

In the early work of Sandusky and Yocum [13,14], it was concluded
that methylamine competed with chloride for the binding site but was
not directly ligated to theMn cluster. It was proposed that this sitewas
accessible only to ammonia. In addition, a previous study had shown
that bulkier amines such as Tris, AEPD, andmethylamine did not affect
the S2 state multiline EPR signal [33]. In contrast, another report [34]
suggested that methylamine competed with substrate water and did
not bind to the chloride binding site due to steric effects. Our results
indicate that the action of methylamine is more deleterious than
simple binding to the chloride site because the addition of calcium
chloride had no effect on the degree of inhibition by methylamine.

A recent FTIR study showed that small amines (including ammonia
andmethylamine) canmodify the structural and electronic properties
of the Mn cluster [35]. Accordingly, TL measurements revealed a
progressive loss of the B-band emission after incubation with raising
concentrations of methylamine (Fig. 3B). This decrease is explained
by the strong disruption of the back-flow of electrons from QB

− to the
S2/S3 states of the Mn cluster. In parallel, a shift of Tm by about 2.5 °C
towards lower temperatureswas observed. This shift is opposite to the
shift observed in the presence of polyamines [5]. The upshift observed
with polyamines was proposed to be due to partial disorganization of
the Mn4Ca complex and stabilization of the S2 state during an
intermediate step of this disorganization [5]. In the present case, such
an intermediate step is probably not observed as methylamine may
interact further with the donor side of PSII (see below). A decline in
Tm in the presence of inhibitors, such as observed here, was previously
interpreted by a faster inhibition of the PSII centers having a greater
activation energy requirement for charge recombination and thus a
higher Tm [22]. This is likely to reflect the heterogeneity in the
populations of PSII centers (e.g. spatially segregated in stromal and
granal membranes or QB non-reducing centers) and their differential
sensitivity toward inhibitory effects [36].

During our experiments we have observed that the addition of
5 mM diphenylcarbazide did not restore the slower electron transfer
from YZ to the PQ pool inhibited by methylamine. Diphenylcarbazide
is an efficient electron donor to YZ when the OEC is perturbed [37] and
1 mM diphenylcarbazide could indeed restore significantly the
photoreduction of the plastoquinone pool in PSII affected by
polyamines such as spermine, spermidine [5] or by diamines [4].
The inefficient electron donation by diphenylcarbazide observed in
the present study suggests that methylamine exerts a deeper effect in
the OEC compared to polyamines. As the inhibition by methylamine
can be overcome by neither calcium chloride nor diphenylcarbazide,
methylamine is likely to interact either directlywith YZ (Tyr 161 of D1)
or with amino acids located nearby thus causing a dysfunctional
electron transfer from YZ to P680+. Specific conformational char-
acteristics are required for the active electron transfer between YZ to
P680+ as the photooxidation of YZ requires the simultaneous proton
exchange with His190 of D1 [38,39]. Perturbation of the OEC, even
milder than that observed with methylamine, was shown to disturb
this electron transfer reaction [32]. Also, the oxidation of YZ is
pH-dependent and much slower in Mn-depleted PSII [40,41]. Thus,
the binding of methylamine with amino acids at or near the OEC not
only affects oxygen evolution but also the direct reduction of P680+.

At 20 mM, methylamine almost totally suppressed the oxygen
yield (Fig. 1A and B). This inhibitionwas correlated with the release of
the three extrinsic polypeptides of 17, 23 and 33 kDa associated with
the OEC (Fig. 1C). The polyamines spermine and spermidine, and
several cations such as Ni2+, Hg2+, Cu2+, Zn2+ and Pb2+ were also
shown to release the extrinsic polypeptides of PSII to various extents
[5,32,42,43]. Removal of the two extrinsic polypeptides of 17, 23 kDa
decreases the binding affinity of Ca2+ and Cl− for the OEC [44]. These
cofactors are essential to maintain the active conformation of the OEC
preserving the proper advancement of the S-states [13,45,46]. The
other extrinsic polypeptide of 33 kDa is known as the manganese
stabilizing protein (MSP). In its absence, two or four Mn ions are
released and the oxygen-evolving activity is abolished [47]. At this
concentration of methylamine, we have observed an almost complete
loss of the electron transfer from donor side to acceptor side of PSII.



Fig. 4. Proposed model of interaction of methylamine with PSII (A) at a low concentration (b20 mM) and (B) at a high concentration of methylamine (N20 mM). Arrows indicate the
sites of interaction of methylamine. At low concentration, methylamine interacts with extrinsic proteins of the OEC, the Mn4 cluster, and TyrZ. At high concentration, extrinsic
proteins of the OEC are removed. Methylamine interacts with TyrZ and possibly with the hydrophilic loop of CP43 and/or CP47 on the luminal side of PSII. D1 (red), D2 (pink), CP43
(blue), CP47 (light blue), and PsbO (cyan) subunit structures from Thermosynechococcus elongatus are drawn from coordinates obtained from Guskov et al. [52] (PDB entry: 3BZ1).
PsbP (orange) and PsbQ (green) subunit structures from Spinacea oleracea and Nicotiana tabacum obtained from Ifuku et al. [53] (PDB entry: 1V2B) and Balsera et al. [54] (PDB entry:
1VYK), respectively, were placed to their approximate position using UCSF Chimera software [55].
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This was shown by the drastic decrease in Fv/Fm ratio, damped FI and
the totally suppressed TL emission (Figs. 2B, 3A and B). The total
dysfunction of the OEC above 20 mM methylamine corresponds with
the loss of QA reduction by the primary electrons observed during the
50 μs flash-induced fluorescence induction (Fig. 3C). This loss is
attributable to the formation of P680+, which is known to occur with
the inhibition of electron transfer from YZ to P680+ [48] and provides
for the fast charge recombination. PSII centers with P680+ are thus
characterized by a fluorescence yield close to F0 [49].

Interestingly, after incubation with 20 mM methylamine, a strong
raise of F0 (nearly 70%) was observed compared to the control
(Fig. 3A). The increase of F0 was further confirmed by experiments
using flash-induced Chl fluorescence at a 1-μs resolution (Fig. 3C),
which was previously used to provide information regarding the
heterogeneity of light harvesting in PSII, with α-centers having large
and interconnected antenna systems and β-centers having smaller
isolated antenna [50,51]. In our study, the raise of F0 is suggested to
originate from a decreased energy transfer from the antenna
complexes to the reaction centers. This idea is supported by an
increase in the percent of misses and a decrease in the percent of hits
calculated from the yield of flash-induced oxygen evolution (see
Table 1, Fig. 1A) that were observed in parallel with the rise of F0. We
propose that, owing to the depletion of extrinsic polypeptides, the
interaction between methylamine and the amino acids of the large
hydrophilic loops of the proximal antenna protein of CP47 and/or
CP43 produces a conformational change perturbing the transfer of
excitation energy from these complexes to the reaction centers (see
Fig. 4).

In conclusion, methylamine at low concentration (mM range) was
shown to affect oxygen evolution and inhibit electron transfer
between YZ and P680+ (Fig. 4). As the concentration of methylamine
was raised, the extrinsic polypeptides of the OEC were lost and energy
transfer between PSII antenna complexes and RCs was impaired.
These actions indicate that methylamine is able to affect both extrinsic
and intrinsic subunits of PSII even at the lowest concentrations used
where the extrinsic polypeptides of the OEC are still associated with
the luminal side of the photosystem (Fig. 4A). The extrinsic
polypeptides are depleted at higher methylamine concentration.
This facilitates the interaction with the proximal antenna resulting
in an increased F0 (Fig. 4B).
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