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Abstract

We study the relationship between a computably enumerable real and its presentations: ways
of approximating the real by enumerating a pre0x-free set of binary strings. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Much of modern computability theory is concerned with understanding the computa-
tional complexity of sets of positive integers, yet, even in the original paper of Turing
[23], a central topic of interest is e)ectiveness considerations for reals. Of particular
interest to computable analysis (e.g. [24, 17, 18, 12]), and to algorithmic information
theory (e.g. [6, 2, 16, 14]), is the collection of computably enumerable reals.
As in [20], a real � is computably enumerable if we can e)ectively generate it

from, say, below. That is, there is a computable sequence of rationals {qi: i∈N} with
qi+1¿qi converging to �. If we can e)ectively compute the radius of convergence, then
the real is computable, in the sense that we can compute e)ectively the nth bit of its
dyadic expansion. But many interesting computably enumerable reals such as Chaitin’s
halting probability, de0nitely do not have such e)ectively converging sequences.
It is a very natural question to ask, given such a computably enumerable real how

can it be generated? That is what kinds of e)ective sequences can be used to “present”
the real. For simplicity we consider only reals between 0 and 1. Two classical rep-
resentations of reals are Cauchy sequences and Dedekind cuts. Let � be a real. Then
L(�)= {q∈Q: q6�} is the natural Dedekind cut associated with �; this was investi-
gated by Soare [20, 21]. It is clear that � is a computably enumerable real i) L(�) is a
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computably enumerable set of rationals. Soare investigated how L(�) relates to A where
�=�n∈A 2−n for A⊆N. That there exist computably enumerable reals where such A
cannot be computably enumerable had already been observed by C.G. Jockusch. We
will call a real � such that �=�n∈A2−n for a computably enumerable A⊆N strongly
computably enumerable. The other way that one can think of reals is as limits of
Cauchy sequences: that is, �= lims {qs: qs ∈B}:
The situation was recently clari0ed by Calude et al. [4].

Theorem 1 (Calude et al. [4]). The following are equivalent for a real �:
(i) � is computably enumerable.
(ii) The lower Dedekind cut of � is computably enumerable.
(iii) There is an in>nite computably enumerable pre>x-free set W ⊂�∗ such that

�=
∑

x∈W 2−|x|.
(iv) There is a computable pre>x-free set W ⊂�∗ such that �=

∑
x∈W 2−|x|.

(v) There is a computable function f(x; y) of two variables such that
(a) for all k; s; if f(k; s)= 1 and f(k; s + 1)=0; then there exists k ′¡k such

that f(k ′; s)= 0 and f(k ′; s+ 1)=1.
(b) �= a1a2 : : : ; where ai = lims f(i; s).

(vi) There is a computable increasing sequence of rationals with limit �.

Although the apparently stronger (iv) is not explicitly stated in [4], it follows from
(iii), since there are always an in0nite number of strings we can add at any particular
stage in the enumeration. Hence we can rule out larger and larger subsets of {0; 1}∗
thereby making the complement of W computably enumerable as well. We refer to
the approximation in (v.) above as an almost-c.e. representation of �. We remark that
we desire the language W to be pre0x free because convergence is guaranteed by the
Kraft–Chaitin inequality. Pre0x free languages are necessary for a proper treatment of,
say, randomness, as in [16] or [6]. Together with Hirschfeldt, we also examine structural
properties of randomness under randomness preserving reductions in the later paper [7].
In [4], and the later paper [3], the authors investigated the relationship between

possible Cauchy sequences converging to � and L(�). Those authors examined the
cut de0nition of real, and its e)ective content. They de0ned a representation A of a
(c.e.) real a as a computable increasing sequence of rationals qi for i∈A with limit a.
They asked what types of degrees can A have. Already we have seen that A can be
computable. Furthermore, if � is computable that is the best we can do. It is not diMcult
to prove the following.

Lemma 1 (Soare [20], Calude et al. [3]). For a c.e. real �; if A is a representation
of �; A6T L(�):

Here 6T denotes Turing reducibility. Lemma 1 extends earlier work of Soare who
examined, in particular, the relationship between L(�) and deg(B) for �=�n∈B2−n.
In [20], Soare observed that L(�)6T B and B6tt L(�), where 6tt denotes truth table
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reducibility. However, he also proved that there are strongly c.e. �, as above, with
L(�) �6tt B.
Calude et al. asked what is the relationship between degrees of representations of �

and the degree of �, or, equivalently, L(�) and what can be said about the sequences
in these terms. Calude et al. proved the following very interesting generalization of
Lemma 1.

Lemma 2 (Calude et al. [3]). Suppose that A represents �. Then A is an in>nite half
of a splitting of L(�).

The proof is easy: Clearly, if A represents � then A must be an in0nite c.e. subset
of L(�). The thing to note is that L(�)−A is also c.e.. Given rational q, if q occurs in
L(�), we need only wait till either q occurs in A or some rational bigger than q does.
In fact, Calude et al. proved similarly that if B is a c.e. subset of a representation A
of � then B is a representation of � i) it is a half of a splitting of A. These simple
observations lead one to speculate that to understand the representations of � then we
need only understand the splittings. This intuition was borne out by the de0nite results
of Calude et al. [3] and Downey [8], who showed the following.
First not every splitting of L(�) can be a representation because they may not be in-

creasing, for instance. However, Downey [8], improved an earlier result of Calude et al.
to show that this is the answer up to m-degree.

Theorem 2 (Downey [8]). a is the m-degree of a c.e. splitting of L(�) i? a is the
m-degree of a representation of �.

In the present paper, we will examine the relationship between dyadic representations
of a real � (i.e. �=

∑
�∈W 2−|�|) and �, coming from the Calude et al. characterization

in Theorem 1. We are led to the following basic de0nition.

De�nition 1. For any W ⊆{0; 1}∗, we say W is a presentation of a c.e. real � if W
is a pre0x-free c.e. set such that �=

∑
�∈W 2−|�|.

Now it is an immediate consequence of the theorems above that a c.e. noncomputable
real has in0nitely many di)erent representations, one of each c.e. m-degree below that
of L(�). The situation for presentations is surprisingly di)erent, as we see in our 0rst
theorem.

Theorem 3. There is a c.e. real � which is not computable; but such that if W presents
�; then W is computable.

We will prove Theorem 3 in Section 3. We remark that the proof itself is quite
interesting and fairly complex. It involves the use of a 0′′ or “in0nite injury” priority
argument, an argument of a type hitherto not found in computable analysis.
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The remainder of the paper is devoted to trying to understand what sorts of reals are
“nearly computable” in the sense that they only have computable presentations; and
what can be said about the types of presentations that a real might have.
As an illustration, one might expect that a real of high complexity, measured by,

say, Turing degree might not be able to have only computable presentations. This is
not the case. We are able to show the following.

Theorem 4. There is a c.e. real � with �′ ≡T ∅′′ such that if W presents �; then W
is computable.

This is but one example of a general collection of theorems of this type. One could
no doubt prove that every jump class has such a c.e. real. Now the manner of the proof
of Theorem 3 is somewhat reminiscent of that of a lattice embedding result (1-3-1)
into the computably enumerable degrees. This suggests that it is not the complexity of
the real which is important but the “dynamic speed of formation”. One notion capturing
this idea is that of “prompt simplicity” introduced by Maass [15]. Roughly speaking
(precise de0nitions are given in Section 4), a degree is prompt if in0nitely often, it is
demonstrated to be noncomputable “quickly”. The degree 0′ is prompt in this sense.
We prove the following.

Theorem 5. Suppose � has promptly simple degree. Then there is a presentation; A;
of � that is noncomputable.

The exact classi0cation of degrees containing only reals with noncomputable presen-
tations seems diMcult.
Our last section tries to examine the question: Suppose we have a noncomputable

presentation of a real �. What other sorts of presentations can � have? As with several
other questions arising from computable mathematics, the answer seems to lie in strong
reducibilities. Speci0cally, we use weak truth table reducibility. Thus A6wtt B i) there
exists a Turing procedure � and a computable function � such that �B =A and for all x,
the maximum element queried in the computation �B(x), is 6 �(x). Wtt reducibility
has proven useful in other parts of computable mathematics, notably Calude and Nies
[5] proved that � Chaitin’s number is wtt-complete but not tt-complete, and Downey
and Remmel [9], showed that the degrees of c.e. bases of a c.e. vector space V are
precisely the wtt-degrees below degwttV .
In our setting, in Section 5, we prove the following.

Theorem 6. Let � be a computably enumerable real; with �= :�A for some set A.
Suppose that B is any presentation of �. Then B6wtt A with use function the
identity.

Theorem 7. If A is a presentation of a c.e. real � and C6wtt A is computably
enumerable; then there is a presentation B of � with B≡wtt C.
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Note that if � is strongly c.e., so that �= :�A for some c.e. set A, then L(�)≡tt A and
hence the degrees of presentations of � are exactly the c.e. wtt degrees below that of A.
Because of this, it is possible to completely classify the degrees of presentations of such
reals. Because there are sets, such as K , the halting problem, where for all C6T K ,
C6wtt K , we see that there are reals with presentations of each possible c.e. degree.
So we can have the two extremes. A c.e. real can be only computably presentable, and
at the other extreme, a c.e. real can have presentations of each c.e. degree.
We remark that there are a number of questions left open by this paper. First, we

have seen that wtt-reducibility seems the correct one to use for presentations. The wtt-
degrees of c.e. presentations of a real clearly form an uppersemilattice. What can be
said about this semilattice? For instance, does it always have a top element? Is any
�0
3 semilattice realizable as the structure? Another question is to look at this material

for reals that are the limits of computable, but not necessarily increasing, sequences of
rationals. Ho [10] has proven that these are exactly the 0′-presentable reals, but what
can be said about their possible presentations and representations? The smallest real
closed 0eld containing the c.e. reals turns out to be the set of weakly computable reals;
these are d.c.e. reals—those with sequences obtained from di)erences of c.e. sets. That
this set forms a 0eld is not obvious, but was established by Weihrauch and Zheng
[25]. What more can be said about such reals?
Finally, there are other reducibilities better tailored to study c.e. reals and their

relative randomness such as Solovay’s domination reducibility. What can be said about
reals analysed under such reducibilities? Some results in this context can be found in
[4, 7].

2. Notational niceties

In the following sections, we generally use notation that is standard from descrip-
tive complexity theory and computability theory. In particular, when we construct c.e.
sets to be presentations of reals with various computational properties, we generally
follow the terminology of Soare [22]. An important abbreviation that deserves special
note is the following: We 0x in advance an enumeration of all c.e. sets 〈x∈We〉 as
the output of some suitably-universal Turing machine such that exactly one pair 〈e; x〉
with x∈We is listed at each stage s. We can then use “[s]” to relativize entire ex-
pressions involving computable dynamic processes with the meaning that the state of
each such process is evaluated at stage s. This saves a considerable amount of nota-
tional clutter, with the cost of a small period of adjustment for the reader new to this
convention.

3. A noncomputable real with only computable presentations

We restate Theorem 3 below.
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Theorem 8. There is a c.e. real � which is not computable; but such that if W presents
�; then W is computable.

Proof. We will construct an increasing computable sequence of rationals converging
to � by de0ning a computable function �(x; y) such that
(i) for all k; s, if �(k; s)= 1 and �(k; s + 1)=0, then there exists k ′¡k such that

�(k ′; s)= 0 and �(k ′; s+ 1)=1.
(ii) �=0:a1a2; : : : ; where ai = lims �(i; s).
We write �[s] for the approximation to � at stage s, that is, �[s] = 0:b1b2 : : : where

bi = �(i; s).
The real � must satisfy two seemingly incompatible properties: � must itself be non-

computable, yet every presentation of � must be computable. We 0x in advance some
computable one-to-one enumeration of the set {0; 1}∗. In this way, we can naturally
identify 0nite binary strings with natural numbers. We can therefore treat c.e. sets
of binary inputs to machines as sets of natural numbers, and hence the descriptions
involved in our construction can be a little simpler.
Notice that if � were computable, there would be some n indexing a program "n

which halted on input x exactly when the xth digit of � turned out to be 1. Hence, a
natural way to ensure the noncomputability of � is to satisfy the in0nite sequence of
requirements:

Pn: ∃x(x ∈ Wn if and only if �(x) = 0):

We write Wn for the domain of the nth partial computable function "n, and �(x) for
the xth digit of �. By the convention mentioned above, we can overlook the fact that
Wn is a set of strings, not one of the numbers. To ensure the computability of all of
�’s presentations, we must also satisfy another in0nite sequence of requirements:

Ne:
∑

x∈We

2−|x| = � → We is computable:

The basic strategy for satisfying Pn is simple: we choose some large number x, and
set the xth digit of � equal to 1 by setting �(x; s)= 1. We then wait until x enters
Wn[s′] at some s′¿s, and then set �(x − 1; s′)= 1, but �(x; s′)= 0.
The strategy for satisfying the Ne requirements is, in some sense, even simpler,

whenever we see that
∑

x∈We
2−|x| gets closer in value to our current approximation

to �, �[s], we promise to never again change � enough to allow a string of length
greater than the least di)erence between

∑
x∈We

2−|x| and �[s] to enter We. Below, it will
become clear that this involves slowing down the convergence of our approximation
to � in order to slow down the convergence of

∑
x∈We

2−|x| so much that We becomes
computable. Notice that, almost-paradoxically, this speeds up the convergence of We

when it is viewed as an in0nite sequence of 0s and 1s indexed by a computable listing
of all 0nite strings. Of course, speeding up the convergence of We enough makes We

computable.



R.G. Downey, G.L. LaForte / Theoretical Computer Science 284 (2002) 539–555 545

It should be clear that, as usual, the two kinds of requirements are in direct conRict
with each other, since the strategy for Pn wishes to change �(x) at some noncomputable
stage of the construction, whereas Ne wishes to guarantee at some computable stage
that �(x) will never change again. The algorithm for specifying � must therefore be
a priority construction, one which we organize using the tree-of-strategies architecture
due to Lachlan.
Because the P-type strategies only require 0nite action, the main problem is to

coordinate lower priority P-type strategies with higher priority N -type strategies. First
we must describe in more detail the strategy for satisfying Ne. We de0ne a length-of-
agreement function

l(e)[s] =




s if �[s] =
∑

x∈We; s

2−|x|;

min

{
n: �[s]− ∑

x∈We; s

2−|x|¿2−n

}
otherwise:

If s¿0, we let m(e)[s] = max{l(e)[t]: t¡s}, and de0ne a stage to be e-expansionary
if l(e)[s]¿m(e)[s].
Notice that we may assume that �[s]¿

∑
x∈We; s

2−|x|, since otherwise we can create a
permanent disagreement between � and the real presented by We by simply refusing to
change � by more than 1

2 (
∑

x∈We; s
2−|x| − �[s]). Hence, we can satisfy Ne by refusing

to change �(x; s) on any x¡m(e)[s].
Now, suppose we have reached a stage s such that some lower-priority requirement

Pn does need to change � on some x¡m(e)[s]. Our approach is to gradually change �
in tiny steps that add up to a change on x. First we change � on m(e)[s], increasing �
by 1=2m(e)[s]. This forces (�−∑x∈We

2−|x|¿2−m(e))[s]. There are two possibilities: either
We never changes enough to converge again to within 2−m(e)[s] of �, or eventually it
does. In the 0rst case, we can forever ignore requirement Ne, and we do so by starting
over again at some point very far out in � and working to satisfy all the requirements
there, viewing the part of � below m(e)[s] as dead except insofar as it plays a role
in permanently satisfying Ne. On the other hand, if We does change enough at some
stage t¿s to approach �[s + 1], then it can only do so by enumerating some string
with length greater than m(e)[s]− 1. For if We had some shorter string added to it at
stage t, we would have

∑
x∈We; t

2−|x|¿
∑

x∈We; s

2−|x| + 2−m(e; s)+1 ¿ �[s] + 2−m(e)[s] = �[t]:

As pointed out above, once the approximation derived from We is greater than �[t] at
some stage t, the requirement Ne can be satis0ed forever with only a single large re-
straint. But then, once again �[s]−∑x∈We; s

2−|x|¡2−m(e)[s], and we can again increase
the approximation to � by 2−m(e)[s] and wait for We to respond again by enumer-
ating some string longer than m(e)[s] − 1. Once it does, we have actually changed
�(m(e))[s]− 1, and continuing the process will enable us to change � on smaller and
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smaller numbers while forcing the enumeration into We to always be on very long
strings as required.
Of course, while waiting for all the appropriate changes to take place in We, we

must prevent lower-priority strategies from acting, even though they may be compatible
with the 0nal outcome that We is a presentation of �. To arrange this, we equip each
strategy � with a counter c(�) to indicate how many enumerations must occur before
these lower-priority strategies can legitimately take action. At the beginning of our
attempt to change � on some small number x, we set c(�) equal to the total number
of changes on longer strings which we need in order to change �’s value on x. Each
time

∑
x∈We; s

2−|x| gets close enough to the current approximation for us to enumerate
a new string, we do so and decrement the counter. Once the counter reaches 0, we
allow the lower-priority strategies to act before increasing the restraint m associated to
� again. This gives these strategies the opportunity to take action at some later step in
the process, in the matter familiar from other in0nite-injury priority constructions.
Construction: We use the tree T=¡!2 as our tree of strategies, assigning Pe and

Ne to each string of length e. Let

g(e) =



0 if � =

∑
x∈We

2−|x|;

1 if � �= ∑
x∈We

2−|x|:

g is the true path through T, and encodes for each set We, whether or not We is
a representation of �. At each stage s, we will have an approximation g[s] with the
property that lim infs g[s] = g. For any string �∈T, a stage s is a �-stage if either
s=0 or s¿0 and �⊆ g[s]. Each string � has several functionals and parameters used
in its strategies for satisfying the requirements assigned to it. A strategy associated
to a string is initialized by setting all of its associated parameters and functionals to
diverge, except for its counter function c, which we set to 0.
To coordinate the actions taken during the computation correctly, we must specify

when one of our strategies has higher priority than another. If � and + are two strings
in T, let ,= �∩ +; then we de0ne �¡L + if and only if ,˙〈0〉⊆ � and ,˙〈1〉⊆ +. We
can then de0ne �¡+ if and only if �¡L + or �⊂ +. In this case, the strategy assigned
to � has higher priority than that assigned to +.
The construction proceeds in stages.
Stage 0: All strategies are initialized and g[0]= ., the empty string. For every x,

�(x)[0]= 0.
Stage s¿0: We de0ne g[s] of length less than or equal to s by recursion and let the

strategies associated to each �⊆ g[s] act as follows in order of increasing length of �.
Any parameter or functional value not explicitly set, or caused to diverge, at stage s
gets the same value assigned to it at the end of stage s as it had at stage s+ 1.
Positive requirements: If x(�) ↑ [s−1], then set x(�)[s] equal to 3 plus the least num-

ber greater than any yet mentioned in the construction. Let �(x(�))[s] = 1, and initialize
all strategies associated to any +¿� and the negative strategy associated to �. Notice
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that in this case �(x(�) − 1)[s] = 0. If x(�) ↓ [s − 1], then let x(�)[s] = x(�)[s − 1].
If (x(�)∈We)[s], then initialize all strategies associated to any +¿� and the nega-
tive strategy associated to �. Let �⊂ � be the longest initial segment of � such that
�˙〈0〉⊆ � and r(�)¿x(�))[s]. Notice that c(�)[s − 1]= 0, since otherwise �˙〈0〉 can-
not act. Let (c(�)= 2r(�)−x(�))[s]. This will be a new counter that indicates how many
�-expansionary stages there must be before �˙〈0〉 can act again. If there does not exist
any such �, then we set a(x(�))[s] = 0 and a(x(�)− 1)[s] = 1.
Negative requirements: If Ne has already been permanently satis0ed by

∑
x∈We

2−|x|

growing above �[s] since �’s negative strategy was last initialized, then we let �˙〈1〉
act at stage s. Otherwise, we 0rst test whether or not (

∑
x∈We

2−|x|¿�)[s]. If so, we let
k be the least number greater than − log2(

∑
x∈We

2−|x| − �)[s]), such that �(k)[s] = 0
and �(k−1)[s] = 0. We initialize all + such that �¡+, and declare Ne to be permanently
satis0ed. Notice that after this stage, all lower-priority positive strategies will start over
with witnesses larger than k, and so will never be able to increase � above

∑
x∈We

2−|x|.
Otherwise, suppose

∑
x∈We

2−|x| is still less than or equal to � at s. For each string
� of length e, let l(�)[s] = l(e)[s] and let

m(�)[s] = max{l(�)[t]: t ¡ s and t is a �-stage}:

A �-stage s is �-expansionary if l(�)[s]¿m(�)[s]. If s is not �-expansionary, then we
let �˙〈1〉 act at stage s, and we initialize all strategies associated to any + such that
�¡L+. If s is �-expansionary, we initialize all strategies associated to +¿�˙〈1〉. There
are two main cases:
1. If c(�)[s− 1]¿0, then let c(�)[s] = c(�)[s− 1]− 1. Let �⊂ � be the longest initial

segment of � such that �˙〈0〉⊆ � and r(�)¿r(�))[s]. Notice that c(�)[s − 1]= 0,
since otherwise �˙〈0〉 cannot act. Let c(�)= 2r(�)−r(�))[s]. Again, this is a counter
indicating how many �-expansionary stages there must be before �˙0 can act again.
If there does not exist any such �, then we add 2−r(�)[s] to �, resetting the appropri-
ate values of �(y)[s] for y6r(�)[s]. (If y6r(�) is greatest such that for all z with
y6z6r(�)[s], �(z)[s−1]= 1, we let �(y−1)[s] = 1 and for all such z, �(z)[s] = 0.
If no such y exists, that is, �(r(�))[s− 1]= 0, then we simply let a(r(�))[s] = 1.)

2. If c(�)[s− 1]= 0, then let (r(�)= l(�))[s] and let �˙〈0〉 act.
This completes the construction.
Veri>cation: The key fact about our construction is the following.

Lemma 3. Suppose s is a �-expansionary stage such that �’s negative strategy is
never initialized after s and c(�)[s]¿0. Then if t is the next �-expansionary stage
after s;

2−r(�)[s] 6 �[t]− �[s− 1]6 �[t]− �[s]6 2−r(�)[s]+1:

Proof. This follows by induction. By construction, the only thing that can prevent
�[s] = �[s − 1] + 2−r(�)[s] is the existence of some longest �⊂ � such that �˙〈0〉⊆ �
and r(�)¿r(�))[s]. Since c(�)[s−1]= 0, we have c(�)= 2r(�)−r(�))[s]. By construction,
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this is a counter indicating how many �-expansionary stages there must be before �˙〈0〉
can act again—that is, before the next �-stage, which must be 6t. By induction, then

�[t]¿ �[s− 1] +
2r(�)−r(�)∑

1
2−r(�) = a[s− 1] + 2r(�)−r(�)2−r(�) = a[s− 1] + 2−r(�):

Because � is never intialized before t, the only increase in � due to some strategy
assigned to a string compatible with �˙〈0〉 is just the addition of 2−r(�)[s]. On the
other hand, notice that only positive strategies assigned to strings + with �˙〈1〉6+
can act at any s′ between stages s and t, and all these strategies were initialized at s
and hence have witnesses x(+)[s′] greater than r(�)[s] + 2. Since any of these at most
wishes to add 2−x(+)[s′]−1 to a, the total increase due to � itself and all these + by
stage t is at most

2−r(�)[s] + 2−r(�)[s]−2

(
∞∑
j=0

2−1

)
= 2−r(�)[s] + 2−r(�)[s]−1 ¡ 2−r(�)[s]+1

as required.

We can now show by induction that all requirements are satis0ed. Assume �⊂ g and
we have reached a stage such that g[s] is never to the left of � again, and furthermore,
that no strategy assigned to +⊂ � ever initializes either of �’s strategies again. Let
e= |�|.
First we show that Pe is satis0ed and that �’s positive strategy initializes lower-

priority strategies at most two more times. Clearly, at the 0rst � stage after which
� is never initialized, a witness x= x(�) is chosen permanently and all lower-priority
strategies are initialized. This action sets �(x)[s] = 1 and �(x − 1)[s] = 0. Since all
lower-priority strategies are initialized at this point, no value of � on any number less
than or equal to x can ever change after s unless the positive strategy for � itself
changes a(x) or a(x − 1). Hence, if x =∈We, Pe is satis0ed. Else x enters We at some
stage after s. At the next �-stage after this point, the strategy for � initializes all lower
priority strategies and attempts to change �(x− 1) to 1 and �(x) to 0 by incrementing
�[s′] by 2−x. Notice that any +¡L � would have initialized � at any +-stage—hence
any such + must have a restraint lower than x. Therefore, if there is no +⊂ � with
+˙〈0〉⊆ � and r(+)[s]¿x, �(x)[s′] = 0. Otherwise, the longest such + gets its counter
c(+)[s′] set to 2r(+)[s]−x). By Lemma 3, and the action assigned to negative strategies,
there cannot be another +˙〈0〉-stage until � has been incremented to at least

�[s′] +
2r(+)[s

′ ]−x∑
j=1

2−r(+)[s′] = �[s′] + 2−x:

Since no other strategies can change a below x, �(x) is set permanently to 0 after this
point. Thus, Pe is satis0ed. Clearly, this strategy initializes all lower priority strategies
at most two more times after s.
Now we can show Ne is satis0ed, since we know the �-strategy for Ne is only

initialized at most twice after s. Since r(�)[t] is a computable function increasing
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monotonically with the stage t, this is straightforward. After any stage t, only strategies
assigned to +¿� can attempt to change � below r(�)[t]− 1. Hence, if some string of
length less than r(�)[t] were added to We at t′¿t, this would increase

∑
x∈We

2−|x|[t′]
by at least 2−r(�)+1, in which case by Lemma 3,

�[t] ¡ �[s] + 2−r(�)+1 6

( ∑
x∈We

2−|x|
)
[t′]:

By the construction, all lower priority strategies below � would be initialized at the
next �-stage, and Ne would be permanently satis0ed.
This completes the veri0cation.

It turns out that using a standard technique, we can improve our result to show that
a real with only computable presentations can even have high Turing degree.

Theorem 9. There is a c.e. real � with �′ ≡T ∅′′ such that if W presents �; then W
is computable.

Sketch. This has the same relationship to Theorem 3 as the existence of a high
minimal pair does to the mere existence of a minimal pair. (See [22, 13.2].) We use
the same tree to control the enumeration of A, but assign strategies for the negative
requirement Ne, as above, to all strings of length 2e+1. We have a di)erent sequence
of positive requirements. Let g : N × N→N be any one-to-one computable function
such that for every x0; y0; x1; y1; |g(x0; y0) − g(x1; y1)|¿3. (Multiplying the usual
pairing function by 4 will obviously work.) We will satisfy the in0nite sequence of
positive requirements

Pe: ∃y0(e ∈ ∅′′ ⇔ ∀y ¿ y0 �(g(e; y)) = 1):

If Pe is satis0ed, then we can use the jump of � to search for the least such y0 for
each e; clearly, then, e∈∅′′ if and only if �(y0 + 1). Since �6T ∅′, it is of course
immediate that �′6T ∅′′. We assign Pe to each string in T of length 2e.
Because ∅′′ is c.e. relative to ∅′, it has a �0

2 de0nition—in other words, there is a
computable function c(x; y; z) such that

x ∈ ∅′′ if and only if ∃y∀z c(x; y; z) = 1:

The idea for ensuring ∅′′6T �′ is that after � with Pe stops being initialized by
� below it at some stage s0, the strategy will start trying to change � beyond s0.
Originally, we set �(g(y; e))= 1. If, later we 0nd that for all y06y there is a z
with c(y0; z; e)= 0, then we must change �(g(y; e))= 0. We do this as before, by
changing �(g(y; e)− 1) to 1, adding strings that have to wait to get past the restraints
due to higher-priority strategies. To allow all positive strategies to get a chance to
be satis0ed, we must prevent higher priority positive requirements from enumerating
at stages where they get an in0nitary outcome. (In other words, once a strategy has
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successfully changed � on the argument that was its goal, it will have to wait until the
next stage before trying to change � again.)

Ne is satis0ed almost as before—we set restraints which prevent lower-priority strate-
gies from changing our real directly on small values. However, strategies for higher-
priority positive requirements must in general take in0nite action. We are therefore
prevented from protecting the strategy for Ne from them by merely assuming that the
negative strategy starts acting after all higher-priority positive requirements are satis-
0ed. Instead, we must guess at the in0nite behaviour of each positive strategy assigned
to some Pa. Letting f be the true path, this means we set f(2a)[s] = 0 if the strategy
associated to f[s] �2a has just 0nished changing � because some c(y0; z; a)= 0, and set
f(2a)[s] = 1 otherwise. In this case, if the strategy for Ne is assigned to a string ex-
tending f[s] �2a+1, its length-of-agreement function must assume that �(g(y; a)−1)=1
and �(g(y; a))= 0 for every y such that g(y; a) is below any restraint that the strategy
for Ne might wish to set. In other words, if

∑
x∈We

2−|x| does not agree with these
values, then the length-of-agreement function is reduced accordingly, even if these are
not the current values. If in fact f(2a)= 0, then eventually these values will change
and the real presented by We will agree with � enough to allow the restraint to grow.
Furthermore, since the strategy for Pa will already have changed � as much as it ever
will below this new restraint, the requirement Ne will be satis0ed as before.
For every e; Pe is satis0ed, since we can eventually change any value we want by

changing � repeatedly on small values and waiting for all necessary agreements for
negative strategies to be restored. So, if e∈∅′′, there is some y0 such that every z
has c(y0; z; e)= 1 �=0, and so, for all y¿y0, �(g(y; e))= 1. If e =∈∅′′, then for every
y, there is a z with c(y; z; e)= 0. So, of course, for every y beyond the stage where
the strategy is last initialized, we put �(g(y; e))= 0. This shows every presentation of
� is computable, and ∅′′6T �′, as required.
We leave the details to the enterprising reader.

4. Promptly simple presentations of reals

A coin0nite computably enumerable set D is promptly simple if there is a computable
function p such that for every in0nite c.e. set W; there exists a stage s¿0 and number
x such that x∈ (W [s]−W [s−1])∩D[p(s)]. It is clear that no generality is lost by also
requiring that for every s, p(s)¿s: the intuitive meaning is therefore that p enables
D to eventually guess correctly about some immediate change in W: This notion was
introduced by Maass in [15], and general technical methods for working with promptly
simple sets were developed in [1]. The discussion in [22, XIII] is a useful one. We
now show that if a c.e. real a has promptly simple degree, it has a noncomputable
presentation.
Constructions involving promptly simple sets are simpli0ed by the use of the fol-

lowing technical result due to Ambos-Spies et al. [1]:
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Theorem 10 (Slowdown lemma). Let Ue[s] be a computable sequence of >nite sets
such that for all e Ue[s]⊆Ue[s + 1] and Ue =

⋃∞
s=0 Ue[s]. Then there exists a com-

putable function g such that for all e;
(i) Wg(e) =Ue; and
(ii) if x∈Ue[s]− Ue[s− 1]; then x =∈Wg(e)[s].

Condition (ii) on Wg(e) means that every element enumerated into Ue appears strictly
later in Wg(e).

Theorem 11. Suppose � has promptly simple degree. Then there is a presentation; A;
of � that is noncomputable.

Proof. Let �≡T D, where D is promptly simple, and suppose � is given to us with an
almost-c.e. approximation—that is, there is a computable function �(i; s) such that
(i) for all i, �(i)= lims→∞ �(i; s),
(ii) for all i and s, if �(i; s)= 1 and �(i; s+ 1)=0, then there exists some j¡i such

that �(j; s)= 0 and �(j; s+ 1)=1.

In particular, let D=�(�). We must give an algorithm to enumerate a pre0x-free
set of strings A so that

∑
x∈A 2

−|x|= �, and for every program index e,

Pe: We in0nite ⇒ TA �= We:

This ensures A is noncomputable, since TA is not c.e.
The following result shows that we can always assume we have some strings of the

proper length available to add to our set. It is worth noting that this result does not
enable us to choose the particular strings we intend to add, however: this is one feature
that makes working with presentations of a c.e. real di)erent from working with the
Dedekind-cut type representations.

Theorem 12 (Chaitin–Kraft [6]). Given any computable sequence 〈si; ni〉 of elements
of si ∈{0:1}∗ ×N; such that

∑∞
i=0 2

−ni¡1; there exists a one-to-one computable enu-
meration 〈xi〉 of elements of {0; 1}∗ and a Turing machine M such that
(1) {xi: i∈N} is pre>x-free;
(2) for all i∈N; |xi|= ni;
(3) for all i∈N; M (xi)= si; and
(4) for all x∈{0; 1}∗ − {xi: i∈N}; M (x) ↑.

In fact, we only need (1) and (2).
We will build A in stages, enumerating at most one binary string at each stage, in

such a way that there are in0nitely many stages s such that (
∑

x∈A 2
−|x|= �)[s].

In order to diagonalize against all c.e. sets, we need to add strings to A at various
stages which have relatively short lengths. The strategy for satisfying Pe will involve
a 0nite sequence of attempts to enumerate a short string from We into A, at least one
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of which will work if We is in0nite. Very brieRy the idea is the following: Because �
must compute the promptly simple set D, we can use the function p giving the prompt
simplicity of D to search for a stage at which � must change on some relatively small
value, enabling us to enumerate a string from We into A. The key fact is that the
search can be computably bounded by p and is guaranteed to eventually succeed by
the prompt simplicity which p witnesses for D.
Construction: At stage 0, A[0]= ∅.
We now specify the actions at stage s¿0: Notice that by Chaitin–Kraft, since �61,

we can enumerate a string of any length we wish into A at a given stage and si-
multaneously preserve pre0x-freeness as long as we guarantee that (

∑
x∈A 2

−|x|6�)[s].
At any stage s where we are not in the process of making some attempt on a re-
quirement Pe, we simply add enough strings of the proper length into A to ensure
(
∑

x∈A 2−|x|= �)[s].
First, suppose there is some least e¡s for which Pe has an active witness x= x(e; i)[s]

such that D(x)[s] =�(�; x)[s] = 0 with the use of y and TA[s] and We[s] are equal on
all strings of length less than or equal to y. Then we enumerate x into the auxiliary
set Ue. Using the appropriate function g giving an index for a Wg(e) which slows
down the enumeration into Ue, we let t¿s be least such that x∈Wg(e)[t]. We now
freeze all action for our construction until stage p(t) is reached, and then check to
see whether x∈D[p(t)]. If so, then �[p(t)] must have increased below 2−y, so that
we may add a new string of length y into A at stage p(t) and satisfy Pe permanently.
Otherwise we release A, enumerate suMcient strings of the proper length to restore
(
∑

x∈A 2−|x|= �)[p(t)], and declare attempt i on Pe to have ended in failure.
Finally, let j¡s be least such that Pj is unsatis0ed and there is no active witness

de0ned for requirement Pj at s. Choose a new witness x(j; k)[s], where k is the least
number for which all previous attempts at satisfying Pj have ended in failure.
This ends the construction.
Veri>cation: We just need to show that every requirement Pe is eventually satis0ed

and we only freeze A 0nitely often for the associated strategy.
Since D is coin0nite, if We is in0nite and all our attempts at satisfying Pe were

to end in failure, then the set Ue =Wg(e) would be in0nite. But then, since D is
promptly simple, this means there would be some x in (Wg(e)[t]−Wg(e)[t−1])∩D[p(t)].
By de0nition of Wg(e) =Ue, this means D must have changed value on x between the
stage s¡t at which TA[s] appeared to equal We[s] and p(t). But then some element from
We[s] is enumerated into A at stage p(t) by construction, satisfying the requirement.
Since each Pe can be satis0ed after a 0nite number of attempts, it is a straightforward
induction to show that each associated strategy only freezes A 0nitely often. Thus all
requirements can be satis0ed, and

lim
s→∞

∑
x∈A[s]

2−|x| = �

as required.
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5. Weak-truth-table reducibility and presentations of reals

We start by pointing out the following:

Theorem 13. Let � be a computably enumerable real; with �= :�A for some set A.
Suppose that B is any presentation of �. Then B6wtt A with use function the identity.

Proof. We use the enumeration of B to approximate � at stage s, de0ning �[s] =∑
�∈B[s] 2

−|�|. Let n be any natural number, and let t(n) be the least stage such that
for all i6n, �(i)[t(n)]=A(i). Notice this only checks � up to n itself. Clearly, if + is
any string of length less than n, and +∈B− B[t(n)], then∑

�∈B
2−|�| ¿ 2−|+| +

∑
�∈B[t(n)]

2−|�|:

This implies that there exists some i6n such that A(i)= 1 and �(i)[t(n)]= 0. This is
a contradiction.

Theorem 14. If A is a presentation of a c.e. real � and C6wtt A is computably
enumerable; then there is a presentation B of � with B≡wtt C.

Proof. Suppose �(X ) is a computable functional with a computable use function � such
that �(A)=C. We can assume � is monotonically increasing. Let 〈n; m〉 :N×N→N
be a computable one-to-one function such that for all n, m, max{n; m}¡〈n; m〉. (Adding
1 to the usual pairing function 1

2 ((n + m)2 + 3n + n) gives such a function.) Notice
that, since A presents �, using the Chaitin–Kraft theorem we can enumerate strings of
any length we wish into B[s] at as long as we ensure∑

�∈B[s]
2−|�| 6

∑
�∈A[s]

2−|�|:

We 0x enumerations of �, C and A so that at each stage s, exactly one element enters
C; exactly one element enters A; and for every x¡s, (�(A; x)=C(x))[s]. We may
assume A is in0nite, since there is nothing to prove if A is computable. We construct
B in stages, using the function 〈n; m〉 as follows.
At stage 0, let B[0]= ∅.
At stage s + 1, we 0rst 0nd the unique number ns and string �s that enter C and

A; respectively at stage s+1. If |�s|¡�(ns), then we enumerate 2〈|�s|; ns〉−|�s| strings of
length 〈|�s|; ns〉 into B[s+1]. If |�s|¿�(ns), then we enumerate 2〈|�s|; |�|+s〉−|�s| strings
of length 〈|�s|; |�s|+ s〉 into B[s].
This ends the construction of B.
Notice that either of the actions taken at stage s+ 1 merely serves to ensure that∑

�∈B[s+1]
2−|�| =

∑
�∈A[s+1]

2−|�|;

hence, we always have enough strings available to keep B pre0x-free.
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Suppose n∈N. Let s(n) be least so that B[s(n)] agrees with B on all strings less
than or equal to length 〈�(n); n〉. Now, suppose there exists t¿s(n) such that n∈C[t]−
C[t − 1]. In this case, because for every s and x¡s, C(x)[s] =�(A; x)[s], there must
be some � with |�|¡�(n) which enters A at t. By construction, then, since �= �t and
n= nt , we have 2〈|�t |; nt〉−|�t |¿1 strings of length 〈|�t |; nt〉 entering B at stage t¿s(n),
which is a contradiction. Hence we can compute C(n) from B(n) with a use bounded
by the number of strings of length less than or equal to 〈�(n); n〉, which is a computable
function. This gives C6wtt B.
Next, consider any binary string +. Using the computability of 〈i; n〉 and the fact that

max{i; n}¡〈i; n〉 we can ask whether there exist i and n such that |+|= 〈i; n〉. If not,
then + =∈B. In this case, let t(n)= 0. Otherwise, suppose |+|= 〈i; n〉, If, i¿�(n) then +
can only enter B at stage s if s= n− i. If, on the other hand, i¡�(n). Then if + enters
B at stage s + 1, this can only be because |+|= 〈|�s|; ns〉. We enumerate 2〈|�s|; ns〉−|�s|

strings of length 〈|�s|; ns〉 into B[s+1]. In either case, if we let t(n) be the least number
greater than n− i so that C[t(n)] �n+1 =C �n+1, we have B(+)=B(+)[t(n)]. Since n is
computable from |+|, B6wtt C, as required.
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