
INFORMATION AND CONTROL 20, 182-187 (1972) 

A Class of Low-Rate Nonlinear Binary Codes 

A. N[. KERDOCK* 

Sperry-Rand Corporation, Great Neck, New York 

Communicated by E. R. Berlekamp 

T h i s  paper  in t roduces  a new  class of  nonl inear  b inary  codes. For  each 
l = 2, 3,... we presen t  a code wi th  2 4z codewords  of  l eng th  N = 4 z and  dis tance 
d ~ (4 z - -  U)]2. Each  code is a supercode  of  the  l s t -o rde r  R e e d - M u l l e r  (RM)  
code and  a subcode  of  the  2nd-order  R M  code. T h e s e  codes are the  "dua l s "  
of  the  ex tended  nonl inear  Preparata  codes in the  sense  tha t  their  weight  
d is t r ibut ions  satisfy the  MacWi l l i ams  identities. 

We assume that the reader is familiar with the Mattson-Solomon polynom- 
ials, linearized polynomials, and affine polynomials as discussed in Sec- 
tions 11.1 and 16.3 of Berlekamp (1968). 

We begin with a lemma which often allows us to calculate the weight of a 
codeword in the 2nd-order RM code from its Mattson-Solomon polynomial. 

LEMMA. Let f (x) be the Mattson-Solomon polynomial of the 2nd-order RM 
codeword [f(O),f(1),f(a), . . . , f(J"-2)],  where a is a primitive element of 
GF(2 ~) and f(~) ~ GF(2) for all ~ c GF(2~). Then the derivative of f (x)  is an 
affine polynomial of the form 

f ' (x)  = t + L(x), 

where t ~ GF(2 ~) and L(x) is a linearized polynomial, and the weight of the 
codeword with 3/lattson-Solomon polynomial f (x) is given by 

t2 ~-1 iff(~) ----- f(O) 4- 1 andL(~) = O for some ~ ~ GF(2~), 
] f I = {2~_1 4_ 2~_1_1~_~/2 otherwise, 

where s is the dimension of the root space of L(x) in GF(2~). 

* T h i s  research was partial ly suppor t ed  by the  Air  Force Office of  Scientific Research  
(AFSC)  u n d e r  Cont rac t  F44620-71-C-0001.  T h i s  paper  is based  u p o n  por t ions  o f  
a disser tat ion submi t t ed  in 1972 to the  Facul ty  of  the  Polytechnic  Ins t i tu te  of  Brooklyn,  
in part ial  fulf i l lment  of  the  r equ i r emen t s  for the  Ph .D .  degree in electrical engineer ing.  
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Proof. According to Dickson's theorem [cf. Theorem 16.35 of Berlekamp 
(1968)], every codeword of the 2nd-order RM code has a Mat tson-Solomon 
polynomial of the form 

f ( x )  -~ A + T(ux) + ~ T(fiix)T(yix ) mod x urn-1 + x, (1) 
i=1 

9Tt--1 
where A ~ GF(2), u ~ GF(2~), T(~) = Zi=0 ~ '  and fi~, ~1, fl~, ~2 ,-..,/~a, 7a 
are certain elements of GF(2 ~) which are linearly independent over GF(2). 
I f  u is linearly independent of/~1, ~1 ,...,/3h, 7~, then I f ]  = 2m-1, but if u 
is a linear combination of/~1,71 ,-..,/3h, 7a ,  then an appropriate affine trans- 
formation of the fi's and 7's can replace u by 0 and give ] f ] = 2 ~'-1 ~ 2 ~-1-~, 
where the sign depends on the binary constant A. 

Differentiating Eq. (1) gives 

2m--1 f ' ( x )  = u + E (fi~T(y~x) + yiT(~,x)(fi,y~) ) 
i=1  

h - u + ~ ' °  ~ - ~  
- -  t~ i~ i  + L ( x ) ) ,  

i=1 

where L(x) is a linearized polynomial. 
The  equation L(~) =- 0 is equivalent to 

h 

(fi, T(yg:) + ~,,T(/3g:)) = 0. (2) 
i=1 

I f  ~ ~ GF(Zm), then T(~,,~) and T([3i~ ) e GF(2). Since ]~1, ~11 . . . .  , ]3,~, 77, are 
linearly independent over GF(2), Eq. (2) holds iff 

T(y,~) = T(fi,~) = 0 for i = 1, 2,..., h. (3) 

Let  71, fl~ ,..., ~'h, flu, 31,32 ..... 3~_2~ be a basis of GF(2 m) over GF(2). 
Then  ~: is uniquely specified by the m binary values T(yi~), T(fii~), T(3f ) ,  
where i = 1, 2,..., h a n d j  = 1, 2,..., m - -  2h. Hence there are 2 ~-2t~ solutions 
of Eq. (3), corresponding to the 2 ~-2a choices of T(3f ) .  Thus  s = m - -  2h 
and h = (m --  s)/2. The  proof is completed with the observation that u is 
linearly independent of 7i,  fii, (i = 1,..., h) iff there exists a solution of the 
equations T(u~) = 1; T(~,i~) = T(/3~:) = 0 for i ~ 1 .... , h. Q.E.D. 

COROLLARY. I f  ~ is the "unique" nonzero root of L(x) in GF(2m), then 

t2 m-1 i f f (~)  = f ( 0 )  + 1, 
I f l  -= {2m_l ~ 2(m-1)/2 i f f (~)  = f(O). 
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CODE CONSTRUCTION 

We now construct our code of length 2 s~. Each codeword is defined in 
terms of two Mat t son-Solomon polynomials, one of which specifies the left 
half Of the codeword and the other of which specifies the right half of the 
codeword. Each half has length 2% where m = 2l - -  1. The  left half has 
Mat tson-Sotomon polynomial of the form 

f~(x) = T(Tx ) + Q(gx) + n 

and the right half of the same codeword has Mat tson-Solomon polynomial  
of the form 

fr(x) -= T(7x + 9x) + Q(gx) + B, 

where A, B ~ GF(2); ~/, 9 ~ GF(2m) and 

Q(y) =_ T(y3 + y5 + yO + ... + y l + ~  (~-~/2) modyS~- i  _{_y 

We notice in passing that  

qn--1 
Q'(y) = ~ y ~ ' =  y + T(y)  = (Tm_~(y)) s, 

i = l  

where 
m-2 

T,~_I(y) = 2 f . 
i=0 

PROOF THAT CONSTRUCTION WORKS 

Since there are 2 choices for A, 2 for B, 2 m for 7, and 2 ~ for 9, it is obvious 
that  the construction gives a code with 24t codewords of length 2 s~. 

We now show that  the difference of any two codewords has weight at least 
2 ~ - -  2 ( m - 1 ) / s .  Let  the first codeword have parameters 71 , 91 , A1 , B1 ; the 
second, ~s ,  9s ,  A s ,  B 2. We define 9 3 = 9 1 + 9 3 ,  ~ 7 a = ~ 1 + 7 2 ,  
A 3 = A 1 + A s , B 8 = B 1 + B s . The  left half of the difference then has 
Mat tson-Solomon polynomial 

A~(x) = Q(91x) + Q(9~x) + T(~x)  + & (4) 

and the right half has Mat tson-Solomon polynomial 

AXx ) = ,~(x) + T(%x) + & + B 3 . (5) 
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T h e  case q~ = 0 is trivial, because the difference of the two codewords then 
has weight 0, 2% or 2~+L (In fact, the difference belongs to the lst-order RM 
code of length 2 ~+~ and min imum distance 2~.) We therefore assume that 
% v 5 0. Since (~ol + %) /% = 1 and m is odd, it follows that 

Furthermore,  since 

it follows that 

whence 

T(gd~a) + T(9~/%) = T(1) - -  1. 

( ~  + ~ ) / % ~  = ~1/% 

T(1o~2/% 2) + T(~9,J% 2) = T(~odga), 

(6) 

r ( ~ d ~ d )  = 0. (7) 

From Eqs. (4) and (5) we obtain 

A~'(x) = 91(cpzx + r(91x)) + 9~(~2x + T(~o2x)) + '13 

and 

,Jr'(x) = ~(~o~x + T(~x)) + ~2(~x + T(%x)) + ~ + %. 

Both derivatives have linearized part  given by 

L(x) = %~x + ~T(vlx) + v~T(~2x). 

We have L(~) = 0 iff 

= [ ~ T ( ~ )  + ~T(~2~)]/,d. 

I f  ~ ~ GF(2~), then T(9~)  and T(%~) E GF(2). Hence 

i 0 if T(gx~:) = T(92{: ) = 0, 
91/%2 if T(91~:) = 1 and T(92~) = 0, 

= ~ 9a/932 if T(91~: ) = 0 and T(9a~) = 1, (8) 
1/% if T(gxQ = 1 and T(c&Q = 1. 

The  final possibility, ~ = 1 /%,  cannot be realized because it leads to an 
immediate contradiction of Eq. (6). 
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If  T(~01~ ) = 1, then ~: = Vl/~O32 and T(~2~ ) = 0 by Eq. (7). Similarly, 
T(~0u~:) ~ 1 implies that T(~q~) = 0. Hence Eq. (8) may be rewritten as 

{ 0 and 
= l~ql% ~ if T(cp~l~oa) = 1, 

[~o~/% ~ if T(c~/~0a) = 1. 

From Eq. (6) we deduce that there is always a unique nonzero solution for 
~, which we may write in the form 

= T(~oU~)(~Uv,,')+ T(~U%)(~U%~). 

According to the Corollary, the weights ]A,I and I Ar I depend on A,(~) 
and A~(~:) which we now compute. 

A~(~) 4- A;(O) = Ar(~) 4- A~(O) 4- T(s¢%), 

T(~%) = [T(91/%)] 2 4- [T(~02/?a)] 2 

= T ( ~ U % ) +  T ( ~ U ~ )  = 1. 

I t  follows that either IAzl = 2  m-1 and I Ar [ = 2  m-: 4- 2 (m-:)/~ or 
t A~] = 2 "~-1 :E 2 (m-1)/z and ] d r I = 2 m-1. In  either case, I A~ [ 4- I Ar I = 
2 m -4- 2 (m-11/2. Q.E.D. 

The  preceding proof also shows that all codewords with weight 2"* or 
2 m+x lie in the lst-order RM code; all other nonzero codewords have weight 
2 m ± 2(~-1)/~. Hence, the weight enumerator of our code of length 2 ~z is 
given by the polynomial 

a~f'(z) = 1 4- K w z  w 4- (2 u+* - -  2)z 2'~-1 4- K~oz 2~'-w q-  z 2'z, 

where w = 2 ~z-* - -  2 ~-1 and Kw = 22~(22z-1 - -  1). 
Goethals (1971) has observed that the weight distributions of our codes 

are the "duals" of the weight distributions of the extended Preparata (1968) 
codes, in the sense that they satisfy the identities of MacWilliams (1963), 
namely 

@(z) = 2-'~(1 + z ) 2 ~  ( l ~ z Z ) ,  

where ~ (z )  is the weight enumerator of the extended Preparata code which 
has 2 ~ codewords of length 2 =~ and distance 6. The  weight enumerator of the 
Preparata codes was first given by Semakov and Zinoviev (1969). The  sym- 
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metry groups of our codes are not yet known, except in case l = 2, when our 
construction and Preparata 's  construction both give the extended Nord -  

s t rom-Robinson (1968) code of length 16, whose symmetry  group is among 
those studied by Berlekamp (1971). 

Welch (1971) has shown that the linear space spanned by  any one of our 
codes is the full 2nd-order  Reed-Mul le r  code of the same length. Mykkeltveit  
(1972) has demonstrated that  the codes are systematic, and that the first 21 
bits in the right and left halves of the code can be used for the 4l information 
bits. 
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