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Theorem. Let X be a T, space. The following are equivalent:

(1)X has a o-disjoint base.

(2) X is quasi-developable and has a base that is thc union of a sequence of rank 1 collections.

(3) X has a quasi-clevelopment (%,) with the property that for each x, {st’(x,%.):x €
st’(x, %. ), n a positive integer} is a base for ¥ (x).

Theoremn. Let X be a T, space. The following are equivalent:

(1) X has a o-point finite base.

(2) X has a quasi-development (%, ) with each ‘4, well ranked.

(3) X has a quasi-development (%, ) with each %, Noetherian of sub-infinite rank.
(4) X has a quasi-develop:aent (%,) with each 4§, Noetherian of point finite rank.

AMS Subj. Class.: Primary 54E99

o-disjoint base rank 1 collection
o-point finite base point finite rank
quasi-development sub-infinite rank
Noetherian screenable

1. Introduction

Aull [2] has shown that a space with a ¢ -point finite base is quasi-developable.
Lutzer [13] proved the converse of this result for any space wiiose topology is
generated by a linear order; however, Example 2.6 of {5] is a quasi-developable
space that does not have a o-point finite base. Bennett and Lutzer [6] characterized
quasi-developabiiity in terms of a “‘point finiteness’ condition by showing that a
space is quasi-developable if, and only if, it has a @-base. This note investigates
what kinds of quasi-developmeiis exist for spaces having o-point finite and
o-disjoint bases. Arhangelskii [1] has shown that ev=ry perfectly normal coliection-
wise norma! T, space with a o-point finite bare is metnzable For further
information and references the reader is referred to [2) and |3). In what follows all
spaces are assumed to be T,, and N der.otes the szt of all positive integers.
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2. o-disjoint bases

A topological space X is screenable [7] if every open cover has a o -disjoint open
refinement that covers X. A collection ) of subsets of X is a point-star-refinement
[11] of a collection ¥ if for each p € X, st{p, ¥} is a subset of some element of #. A
collection % of subsets of X is of rank 1[14] provided that for any sets A, B in ¥, if
A N B# @ then either A CB or B C A obtains. A space X is quasi-developable [5]
if there exists a sequence (¥, ) of collections of open subsets of X such that for each
x, {st(x, 4,): x E€st(x, %), n € N} is a base for ¥ {x). The sequence (¥, ) is called a
quasi-development. The authors owe a substantial debt to Heath whose paper [11]
provides the central idea of the proof of (iii) implies (i) in the following theorem.

Theorem 2.1. Let X be a T,-space. The follewing are equivalent:
(1) X has a o-disjoint base.
(i) X is quasi-developable and has a base that is the union of a sequence of rank
1 collections.
(i) X has a quasi-development (%.) with the property that for each x,
{st’(x,%.):x Est’(x.%,), n €N} is a base for ¥ (x).

Proof. (i) implics (ii). If X has a base B = U, _, B. wheie each @, is a disjoint
colleciion, then Theorem 3 of [3] shows that X is quasi-dcvelopable. It is obvious
that each @, is a rank 1 colleciion.

(ii) impaes (iit). Let (9. ) be a quasi-development for X and lst B = U1 93, be
a base for X where each 4, is a rank 1 collection. For each m, n € N, set

Hpn =B ERB, .forsome GEY, BCG}.

Let p € X and R € ¥ (p). Then there exist m,n €N, B € 3., and G € %, such
that p :: BCG Cst{p, 9. )CR. Let y € st*(p, #... ). Then there exist B, B" € B,
such that y € B’, p € B” and B’ N B" # 6. Since %,, is a rank 1 collection either
B'CB"orB"CB' If B'CB",then y € B"Cst(p, #.. )Cst(p, % )CR.If B"CB'
then y € B' Cst(p, #m.n ) Cst(p, %, )CR.

(iii) implies (i). We show first that if X satisfies conditicn (iii), then it satisfies:

(*) Any collection & of open subsets of X has an open o-point star refinement
that covers U %.

Let & be au open collection of subsets of X. Set ¥, = {st(p, 9. ):for some
He X, p €st’(p,9.)CH}. Then ¥ = U, ., 7. is an open o-point star refinement
covering U .

We complete the proof by showing that a quasi-developable space satisfyiiig (*)
is hereditarily screenable. Since (*) is an open hereditary condition, it suffices to
show that X is screenable.

Let X be a space satisfyir.  *) and let ¥ be an open cover of X. Let (%) be a
quasi-development inr X such that each G ¢ %, is contained in some clement of 5.
Note that there exists a sequence &, = {A(H,i}: H € ¥] of collections of subsets
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of X such that
{A) For each i, no element of ¥ meets two elements of &/,
(B) For each i and each H € ¥, st(A(H, i), )CH and

WY e D

{C) For each x € X, there exists H € # and an integer i such that x e A(Hi)C
H, and x €st(x,%).
t_--
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In order to construct the sequence (& ), well order #. For each H € %, let

A(H,i)={x:if x € H' € ¥ then H' follows H and x Est(x, %, )CH}. Let &, be as
above, then & satisfies (A), (B) and (C). For each i, let 9, = J_. 9., bean open
o-point star refipement of “. If A(M,i)# A(N,i) then for each n,
st(A(M, i), D, )Nst(A(N,i),D;,,)=0. Therefore for each in ¥€,=
{st(A{H,i}, D ): A(H,i)E o} is a collection of pairwise disjoint open sets. It
follows from (B) and (C) above that U, U, 4., covers X and refines . This
completes the proof.

The referee has noted that there is a close connection between the sequence ()
constructed above and the sequence (%.) constructed in {6, Proposition 7).

It is ratural to inquire whether certain weakenings of condition (ii) imply that X
has a o-disjoint base. For instance suppcse X has a base 8 = U, 3, where each
A, has rank 1. [12, Example 5.3] shows that such a space need not be iirst
couatable, and Gruenhage {J] gives an example of a first countable space with a
rank 1 base that does not have a o-point finite base since it is not quasi-metrizabie.
Aull [3] gives an example of a quasi-metrizable space with a rank 1 base that does
not have a o -point finite base. Heath [11, Example 1] gives an example of a non
screenable space with quasi-development (%, ) where eack (%, ) 1s of rank 2

3. o-point finite bases

A collection & of subsets of a set X has rank nat x € X, denoted by r. (4) = n if
every collection of n + 1 elements of o each containing x has a pair related uncier
inclusion, and & contains an incomparable subcollection of » members, each of
which contains x. & is of rank n if max{r. (£): x € X} = n. o is of point finite raak
if for each x € X, r, () is finite. &7 is of sub-infinite rank at x if every coiiection cf
incomparable raembers of & ccntaining x is finite. & is Noetheriar ° /¢
nonempty subcollection has a muximal elemeni (relative to set inclu. = #
well-ranked if = U o, where cach o, is a Noetherian collzction of su’ -, .e
rank. For a detailed discussion of these concepts, see [16] anc [12].

Thecreim 3.i. Let X be a T, space. The following are equivaient:
(i) X has a o-point finite base.
(ii) X has a quasi-development (4,) with each %, well-rarked.
(ii) X has a quasi-development ($,) with each %, Noetherian of sub-infinite
rank.
(iv) X has a quasi-development (4, ) with each G, Noetherian of point finite rc nk.
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Proof (iv) 1mphes (iii) and (iii) 1mphes (11) are obvmus _

(ii) impiies (i). It follows from the proof of [12 Theorem 3. ‘3; that X is
hereditarily o-metaconipact. (Every open cover has an open o-point finite
refinement.) Clearly a hereditarily o-metacompact quasi-developable space has a

o-point finite base. ‘ ‘ ‘

(i) implies (iv). Since a o-pcint finite base for X is a 6-base, X has a
quasi-development (%, ) such that each (%) is point finite. This completes the
prcof.
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