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Xheorem. Let X be a TI space. The following are equivalent: 
(1)X has a v-disjoint base. 
(2) X is qrlasi-developable and has a base that is thi union of a sequence of rank 1 collecGons. 
(3) X has a quasi-development (%!I,, ) with the l’roperty that for each x, {st”(x, (;e, ) : x E 

st*(x, %” ), zt a positive integer) is a base for J\r(x 3. 

Zzeorern. Let X be: a T, space. The following are equivalent: 
(1) X has a u-point finite base. 
(2) X has a quasi-development (3, )I with each Y& well ranked. 
(3) X has a quasi-development (3” )I with each %,, Noetherian of sub-infinite rank. 
(4) X has a quasi-develop:nent (%,, ) with each %,,, Noetherian of point finite rank. 
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1. Introduction 

Au11 [2] has shown that a space with a o -point finite base is qL:asi-developable. 

Lutzer [13] proved the converse of this result for ang space wilose topology is 

generated by a liniear order; however, Example 2.6 of IS] is a quasi-developable 

space that does no? have a a-point finite base. Bennett and Lutzer [16] characterized 

quasi-developabiiity in terms of a “point finiteness” condition by showing that a 

space is quasi-developable if, and only if, it has a @base. This note investigates 

what kinds of quasi-developme~;? exist for spaces having o-point nite %“a 

ses. Arhangelskii [I] has showr~ that every perfectly normal co!iil:ction- 
oint finite ip62: ? is 

information an r is M+rred to 

spaces are assllmed to be T,, and N denotes the s& of all positive integers. 

229 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82056151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


230 W.N. Hwsaker, W.F. Lindgren 

A topological space X is screenable [7] if every open cover has a a-disjoint open 

refinement that covers X. A collection Yt of subsets of X is a point-star-refinement 
[ 1 I] of a collection %’ if for each p E X, st @, x) is a subset of some element of %‘* A 
cokction %f’ of subsets of X is of rank 1 [14] provided that or any sets A, B in R, if 
A n B # $J then either A C.i? or B CA obtains. A space .X is quasi-devetbpabje [5] 
if there exists a sequence (%,, ) of collections of open subsets of X SU& that for each 

X, (st (x, 9” ) : x E sl (x, %,, ), n E N) is a base for N (Q The sequence (5% ) is called a 
quasi-development. The: authors owe a substantial debt to IKeath whose paper [ll] 
provides the central icka of the proof of (iii) implies (i) in the following theorem. 

heorem 2.1 b Let ,Y be a &space. The following are equivalent: 
(i) IY has a cr-disjoint base. 

(ii) X is quasi-developable and has a base that is the union of a sequewe of rank 
1 co Ilections. 

(iii) X has a quasi-development (5% ) with the property that for each x, 
(St’@, 4$” ) : x E s?(x, S,, ), n E N) is a base fos .V (x ). 

Broc7id. (i) Implies (ii). If X h(as a base 8 = LIZ=1 a*, whefe each 9, is a disjoint 

t:olleci~-N, then Theorem 3 of [3] shows that X is quasi-dctielopable. It is obvious 

that e;ich 9,, is a rank 1 collecrion. 
(ii) impies (iiij. Let (3, ) be a quasi-development for X anId ll=t 9? = UZzl 63, be 

a base for X where each 59, is a rank 1 collection. For each m, n E N, set 

x m.n = [I3 E %m : for some G E 9?,, B C G). 

Let p E X and R E N(p). Then there exist nz, n E N, B E 3, and G E 5% such 
that p :: B Cc’; :I st @, 5% ) CR. Let y E st’(p, SV,,,,, ). Then there exist B’, B” E [a, 
such tM y E B ‘, p E B” and BP n B” # @. Since 9,” is a ralnk 1 collection either 

B’CB” or WCB’ If B’CB”, then y E: B”‘Cst(p, %‘,,,,,)Cst(p, %,,)CR. If R”CB’ 

then ~~B’Cst@,~~,,)Cst@,~“)cR. 

(iii) implies (i). We show first that if X satisfies condition (iii.), then it satisfies: 

(*) Any collection Z of open subsets of X has an Open (T-point star refinement 
that covers U t?f’. 

lLe:t X be ‘a11 open collection of subsets of X. Set yfl =: 1st @, 5!& ) : for some 
H E 2, p E st’(p, %,, ) C H}. Then ‘V = Urel T’ ‘,, is an open o-point star re!Frlement 
covering U ZV. 

we complete the proof by showing that a quasi-developable space saGsfyiil:g (*) 
is hereditarily screenable. Since ( * ) is an open hereditery condition, it suffices to 
show that X is screenable. 

Le:t X be a spa.ce sa et %? be an open cover o 
quas!‘-develoyilmeat iq,r G E %i is contained in s 

me exist; a sequence &, -= (A ( 
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of X such that 

(,2) For each i, no element of Si meets two elements of tii 

(B) For each i and each ly E 2V, st (A (II, i), Si ) C H and 

(6) For each x E X, there exists H E % and an integer i such that x E A (ITi, i) c 
H, and x E st (x, %i ). 

6n order to construct the sequence (4 ), well order 2%‘. For each E:i E %‘, let 

A @I, i) = {x : if x E H’ E B? then H’ follows E? and x E st (x, 5!& j e H}. Let .J& be as 

above, then &i satisfies (A), (B) and (C). For each i, let 9i = iJZ=, 9in be an open 

cr**point star refinement of 5&. If A (M, i) # ,4 (N, i) then for each n, 
st (A (M, i), IBin ) n st (A (IV, i), .Di” 1) = 8. Therefore for each ,i, n %in = 
(st (A (H, i), 9i” ): A (H, i) E ~4 } is a collection of pairwise disjoint open sets. It 

follows fro.m (B) and (Cl above that LJi U” %in covers X and refines Z’. This 

completes the proof. 

The referee has noted t/hat there is a close connection between the sequence (J& ) 
{constructed above and tl:e sequence (9”) constructed in [6, Proposition 71, 

It is riatural to inquire whether certain weakenings of condition (ii) imply that X 

has a! u-disjoint base. For instance Fuppose X has a base 9 = U, 9, where each 
9, has rrank I. [12, Example 5.31 shows that such a space need not be :?lrst 

cou*Itable:, and Gruenhage [9] z;ives an example of a first countable space with a 
rank 1 base that does not have a o-point finite base since it is not quasi-metrizable. 

Au11 [3] gives an example of a quasi-metrizable. s~dce with 3 rank 1 base that does 

not have a g-point finite base. Heath [ 11, Ex;imple l] gives an example of a non 

:screenable space with quasi-development (<%” ) where each @ ) 1s of rank 2. 

A collection J&’ of subsets of a set X has rank n at x E X, denoted by I-.~ (~4’) - II if 

every collection of n + 1 elements of d each containing x has a pair related ‘umier 

inclusion, and c99 contains an incomparable subcolIection of 2 members, eacBj sf 
which contains x. s& is of rank n if max (r, (&): x E X] = rz. ~;le is of point finite ro:2k 
if for each x E X, rx (&) is finite. .s;1 is of sub-infinite rank at x if every r,o’tlection cf 

incomparable members of s& cc!ntaining x is finite. lp4 is Noetheriar. ’ :E 

nonempty subcollection has a mthximal element (relative tot set inclu: + (i;’ 

well -ranked if d = U d,, where r:ach z& is a Noetherian colif-zc-&n cif su! ‘81 L.., % -I e 

rank. For a detailed discussion of these concepts, see [lo] aqc- [t2]. 

Thesmii 3.1. Let X be a T1 space. The following are equivai”ent: 
(i) X has Q cr-point finite base. 

(ii) X has a c;!uasi-development (5% ) with each 5% well-rarked. 
(iii) X has a qua&development ($I,, ) wi:h each 9% Noetharinn of s~~~)-~pl.~~~~it~~ 

rank. 
(iv) X has Q Qwasi-deueiopment (Y$, ) with each 5% Noerherian of poittt finite rd nk. 
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Proof. (iv) imphes (iii) and (iii) implies (ii) are obvious. 
(ii) implies (i). It follows from the proof of [12, Theorem 3.3’i that X is . . 

hereditarily cr-metaconipact. (Every open cover has an open a-point finite 
refinement.) Clearly a hereditarily c-metacompact quasi-developable space has a 
a-point finite base. 

(i) imphes (ivj. Since a a-point finite base for X is a B-base, X has a 
quasi-development ($.% ) such that each (9% ) is point finite. This completes the 
prclof e 
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