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Some oscillation criteria for even order functional differential equations 
s’~‘(/) + q(t)f(x(t), s(g,(t)) ,__., .r(g,,,(t))) = 0 and .r’“‘(t) + p(/)xl”-l’(t) + 

4(t).f(.~(g,(f)),..., X(8,,(t))) =o arc given. These criteria are an extension of some 
recent results established by S. R. Grace and B. S. Lalli. ( 19X7 Academic Press. Inc. 

Recently, Grace and Lalli [l] considered 

-+Yt) + q(t)J‘b(t), x(g(t))) = 0, (1) 

where n is an even positive integer. They established an oscillation criterion 
for (I). In this note we extend Grace and Lalii’s work to the nth-order 
equations 

-mf) + q(r)f(x(t), -4g,(t)L x(g,,(t))) = 0 Pa) 

and obtain results that are an improvement over their work. By applying 
the same method to 

x’“‘(t) + p(t) x(“- ‘) (t) + q(t)f(x(g,(t)L x(g,(t))) =o, (2b) 
we obtain a result that is better than results in presented recently in [6]. 
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In what follows we restrict our discussion to nontrivial solutions of (1) 
which are indefinitely continuable to the right. A solution x(t) of (1) is said 
to be oscillatory if it has arbitrarily large zeros, and nonoscillatory if it is 
eventually of constant sign. Equation (1) is said to be oscillatory if every 
solution of (1) is oscillatory. 

The proof of our main result, Theorem 1, is based on the proof of 
Theorem 1 in [ 11. 

THEOREM 1. Assume that 

(i) q, gie C[t,, + co), i= 1, 2 ,..., m, f~ C(Rm+‘), and v,.f’(~~ ,,..., 
ym+,)>Owhenyi#Ohas thesamesignfor i=l,2,...,m+l; 

(ii) there exists a continuously differentiable function o E C[ t,, + nj) 
such thatO<a(t)<g,(t), l>ti(t)>O,fort>Tanda(t)+x as tAcC; 

(iii) there exists a positive number c > 0 such that for every increasing 
function / y( t)l 

lim inf f(YIY> Ymtl) >c>o 
Il.1 +x Y ” 

where / yi( 2 / yl, i = 1, 2 ,..., m + 1; 
(iv) q(t) > 0 and q(t) is not eventually identically equal to zero on any 

subinterval (t 1, CE ); 

(v) there exists a positive continuously differentiable ,finction p(t) on 
[to, +co) such that 

lim 
1 

ml s 
’ (t-s)“~‘(p(s)(t -s)- (m- 1) p(.~))‘~~< co 

I-i*: t to cqs) dm2(s) p(s) L (3) 

1 1 
ll:\ f+ ’ ,. -I (t-s)“’ ‘p(s)q(s)ds= +CD, 

where m > 2 is some integer number. Then every solution of (2a) oscillates. 

Proof Let x(t) be a nonoscillatory solution of (2a). Assume that 
x(t)>0 for tat, and choose a t,>t, so that gi(t)3to for tat,, 
i = 1 , 2 ,..., m. By Lemma 1 of [ 11, there exists a t, 3 t, such that 
x’“-‘)(t) > 0 and i(t) > 0 for t 3 t,. Choose a t, 3 t, so that u(t) 3 2t, for 
t > t,. We apply Lemma 2 of [l] for u = 1, 2 = 4 and conclude that there 
exist M, > 0 and t4 3 t, such that 

~[fa(t)]~M,a”~-2(t)x’“~“[a(t)]>,M,u”~2(t)x”*~”(t), t> 1,. 
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Let w(t) = x ‘“p”(t)/x[$(t)]. Thus w(t) satisfies 

G(t) = _ q(t)fw’ x(g1(t)L X(&l(~))) 
xCt4N 

.?(&a( t)) 
+(t) w(t) ~ 

xG4N 

Since Z(t)>0 for tat,, lim,,, x(t) exists either as a finite or an infinite 
limit. 

If lim,,, x(t) = b is finite, then 

lim ftxtf), x(g,(t)L xtgmtt))) J-V, b,..., b) > o 

,-CC -+m) 
b 

If lim,, m x(t)= +oo, then 

.0x(t), x(g,(t)L x(&l(t))) 
xtt4t)) 

>f>O 

for sufficiently large t. On the other hand, 

; 6(t) w(t) 
i(+T(t)) 1 ->-c!(t) w(t) 
x(&a(t)) 2 ( MlcJ”-2(t) x’“-“(t) 

XW)) ) 
=:6(t) a”-2(t) w2(t). 

So, we have 

k,(t)< -+q(t)-$%(t)o”-‘(t) w2(t), 

where c0 = min(c, f(b ,..., b)/b). 
Therefore, 

?y(t)p(t)S -p(t)ti(r)-~d-(t)cT-2(r)p(t)w2(z), t>t,. 

Or 



OSCILLATION CRITERIA 143 

-+ j,: (r-s)“-%(s)d-*(s)p(s) w*(s) ds 

= (2 - f4Y lP(f4) W(h) 

J-C 
I ~(4-W’J - - 6(s) on-2(s)&) w(s) 
I.4 

1 ,/5 (t--S)@-3)‘2 

WJ 
(P(sNr-s)-(m- ~)P(s)) ‘ds c?(s) 8 -2(s) p(s) 

1 1 
+2M 1 5 14 $kJ[f!;; ;ls, (ds)(t - s) - (m - 1) P(S))’ ds 

G (t- f4YW4) W(f4) 

1 f 

+2M s 
(t-syp3 

1 r4 6(s) #-2(s) P(S) 
(fi(s)(t - s) - (m - 1) p(s))’ ds. 

But, for every t 3 fq, 

f’ (t -s)‘- ‘p(s) q(s) ds - 1’ (t-s)“- ‘p(s) q(s) ds 
10 14 

= “(r-s)“-‘p(s)q(s)ds~(r-to)m-1)p’4p(~)q(~)ds 
f 10 0 

SO 

co ’ 
2t”- to I 

(r - s)” ~ ‘p(s) q(s) ds 

p(s) q(s) ds + 

1 
+ f 

’ (t-s)“-3(p(s)(l-S)-(m-l)p(s))*ds 

2M,tmp1 to 6(s) C2(s) p(s) 

for all t 2 f4. This gives 

409/127/l-10 
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CO 

,‘2 2t”-’ s 
‘(t-s)*-1p(s)q(s)ds 
r0 

+ lim 
1 

I--tee 2M,t”-’ s 
‘(t-~)~~~(P(~)(t-~)-(m-ll)~(s))~~~, (5) 
lo c+(s) fr2(s) p(s) 

which contradicts condition (4). 

A similar proof holds if x(t) < 0, for t > to. 

COROLLARY 1. Under the conditions of Theorem 1 and the assumptions 
that 12 ti(t) > k > 0 and that there exists an a E [0, n - 1) such that 

lim 
1 1 

ml (t-s)m-‘sXq(s)ds=co, 
t+m t i‘ 10 

(6) 

every solution of (2a) oscillates. 

Proof: We choose p(s) = 9. By direct computations one can show that 
for c( E [0, n - 1 ), p(t) satisfies condition (3). By application of Theorem 1 
we obtain the conclusion of Corollary 1. 

Remark 1. Let p(t) s 1, 1 2 6(t) 3 k > 0. Then Corollary 1 leads to 
Grace and Lalli’s Theorem 1 in [ 11. This shows that conditions (3) and (4) 
are more widely applicable than the existing ones. 

EXAMPLE 1. Consider the equation 

x@)(t) + f (x(ln t)) = 0, n even; t> 1, (7) 

where 

x exp[(x( 1 + sin x)], 
fH=i, 

for x30 
for x < 0 

q(t) = 1, a(t) = In t, q(t) = l/t. 

(8) 

The theorem of Grace and Lalli is not valid for Eq. (7). But Theorem 1 is 
valid for (7). In fact, p(t) = tea, 0 < tl < 1, satisfies conditions (3) and (4) 
so all solutions of (7) are oscillatory according to Theorem 1. 
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EXAMPLE 2. Consider the equation 

x’“‘(t)+ t-“f x f ([I) = 0, neven, t>O, 1 <cr<n-1. (9) 

f(x) is defined in (8). 

It is easy to see that the oscillation theorem of paper [l] cannot be 
applied to Eq. (9), but if we take p(t) = P, (9) satisfies the condition of 
Corollary 1. Therefore, all solutions of (9) are oscillatory. 

Under the modification of the hypotheses of Theorem 1, we can obtain 
the following result: 

THEOREM 2. In Theorem 1, condition (v) is replaced by the following 
condition: 

(v)’ There exists a positive continuously differentiable function p(t) on 
[to, $00) such that 

s 
n; p(t) q(r) dr= 00 (10) 

and 

s 
m P’(s) 

p(s) 6(s) C2(s) 
ds < co. (11) 

Then the conclusion of Theorem 1 is true. 

COROLLARY 2. Under the conditions of Theorem 1 and the assumption 
that 1 > 6(t) 3 k > 0, if 

s 
cc 

t=q( t) dt = co, GLE [0, n- l), (l-2) 

then every solution of (1) oscillates. 

Remark 2. Theorem 2 includes some results of paper [S]. 

EXAMPLE 3. We consider 

yc4)(t) f tr4 In ty1j3 (;) y2/3 (;)=o. 

It does not satisfy condition (12), but we can choose p(t) = t’/(ln t)‘, which 
satisfies conditions (10) and (11). Therefore all solutions of (13) oscillate. 
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The results of paper [S] are not applicable for (13). 

Remark 3. Let n = 2,f(x, y) = F(X), xF(x) > 0, F(x) > k > 0. Then q(t) 
need not be a positive function to ensure the oscillation of (2). In that case 
Theorem 1 includes Philos’ theorem [2] as a special case. Theorem 1 also 
includes Theorem 1 in [3] as a particular case. 

Now we apply the above method to a more general equation, 

x’“‘(t) + p(t) x(- I) (f) + 4(~)S(x(gl(~)L x(&n(t))) = 03 (14) 

where n is even, f~ C(R”‘), g,, p, q E C( R, , R), and i = 1,2 ,..., m and such 
that 

(i) ~(t)30, q(t)>0 on R, and q(t) f 0 on any ray[T, co); 

(ii) ify,<z,, i= 1, 2 ,..., n7, thenf(y,, y, ,..., y,)df(z,,z, ,..., zm) and 

f(Y, > Y2Y.9 Y,) > 0 if y, > 0 for all i, 

Sly,, Y,>..., Y,)<O if yj < 0 for all i; 

(iii) g,(t)+ cc, i= 1, 2 ,..., ~7, and there exists ~,EC’[R+, R+], 
i = 1, 2,..., m, such that 

O<cr,(t)=fnf;minjs, g,(s)), 

cfi( t ) > 0, a,(t) + co as t-*co; 

(iv) aflay, exist and @/a~,> ai> 0 for y,#O, i= 1, 2,..., m; 

(v) lim,, 3. J: exp( -j; p(r) &) ds = co for any a 2 t,; 

(vi) there exists a positive continuously differentiable function p(t) 
on R, such that 

lim 
1 ’ 

ml r-cc t s 
(t - s)” - ‘p(s) q(s) ds = GO 

10 

and 

lim +J’ (t-s)“-3p(s)-l (f aio:-‘(s)f5i(i))-’ 
,-cc t hl i=l 

for some integer m 2 3. 

THEOREM 3. Under conditions (i)-(vi) every solution of (14) oscillates. 
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Proof. Let x(t) be a nonoscillatory solution of (14), and without loss of 
generality, assume that x(t) > 0 for t 2 t,. Then t, 3 to exists so that 
x[ai(t)] > 0 for t Z ti, i= 1, 2 ,..., m. 

Define 

x(“- l’(t) 
w(z) =f(x($J@)),..., x(&,(t)) 

according to the procedure of paper [6]; we have 

21-2” 

G(t) G -4(t) - P(l) w(t) - (n _ 1 )! ___ w2(t) f a;o; -2(t) cti(f) 

,=I 

so 

P(f) 4(t) G -P(f) k(f) -P(t) At) w(t) 

--&(,) w*(t) 2 a,o:‘-2(t) cti(t). (15) 
i= I 

Integrating (15), we get 

5 ’ (t-s)‘+‘p(s)q(s)ds 
f5 

< -/’ (t-s)“-‘p(s) i+(s) ds- j-’ (t-s)“-‘p(s) p(s) w(s) ds 
15 f5 

-&j-l (t-s)‘+‘p(s) w*(s) (2 ap;-‘(s)lir(s)) ds 
r=l 

= (t- w-‘P(b) w(t,) 

+ 
i 

’ (t-s)“~*w(s)(~(s)(t-s)- (m- 1) p(s)) ds 
15 

- I (1 (t-s)“-’ p(s)&) w(s) ds- 

x 
( 

ic, aicy-* 6,(s)) ds= (t- t5)“-‘p(t5) w(ts) 

-~,~{w(s)~~(~-s)ln.~1~i2i)(S)112(~~a,n~~2(s)lii(s)j1’2 

- 
J-- 

- (t-~)~-~)~*p(s)~~/~ 2 aigrp2(s) ei(s) (n - l)! -I’* 
23L2n 

( i= 1 > 
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+(n-l)! t 

~ (t-s)m-3p(S)-' 23-2~ s 
15 

"-*(s) eits))-el ((~(s)-P(s) P(s))(~-s)-(~- 1) P(S))' d 

(t-s)“-‘p(s)-’ 

x ,;, ~,a:- ‘(s) h(s)) -’ ((P(s) -P(S) P(s))(~ - $1 - (m - 1) P(S))’ & 

where t, >, t,, is some constant. We have 

j’(f-s)‘+‘p(.~)q(s)ds-~i(t-s)‘“~’p(s)q(s)ds 
IO 1s 

= 
I 

” (t - s)” ~ ‘p(s) q(s) ds < (t - to)” - ’ I” p(s) q(s) ds 
70 10 

~j~:(t-.~)“~‘~(s)q(s)ds 

+yj,; P(S) q(s) ds + ( ~~)m-lP(li)ii(li) 1 - 7 

+(A)! 1 
yxrfml s 

,: (I-sy-‘p(s)-‘X ( f cr,ay-*(s) 6,(s)))’ 
i=l 

x {(P(s)-p(s)p(s))(t-s)-(m-l)p(s)}*ds. 

Therefore 

lim 
1 1 

m--l I-00 t s 
(t -s)“- ‘p(s) q(s) ds 

10 

<C+ lim (‘-l)! ’ ’ (f-s)“~‘~(s) ’ ,doc-y33Tyz-i 1. I 

’ 

x j(P(s) - P(s)P(s))(~-s) - Cm - 1) P(S))’ ds. 

This is a contradiction. The proof is complete. 
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If we integrate ( 15) directly, we have the following conclusion. 

THEOREM 4. In Theorem 3 condition (vi) is replaced by conditions 

I 
‘w (P(s) - P(S) p(s))’ 

P(S)(CyE L cciaY-2(s) 6i(s)) 

ds<co. 

Then every solution of (14) oscillates. 

Remark 4. If p(t) z t, then Theorem 3 becomes Theorem 1 of paper 
[6]. The other results of paper [6] can be improved with the above 
method also. 

The following example shows that Theorem 3 is an improvement of 
Theorem 1 in [6]. 

EXAMPLE 4. We consider 

t>1, (18) 

where p(t) = t-‘, q(t) = te4 In t. 
It is easy to see that (18) does not satisfy condition (8) of Theorem 1 in 

[6]. We choose p(t) = t’/(ln t)‘; then 

On the other hand. 

s I (P(s) - P(S) p(s))’ 
s 

’ d(ln S) 

1o ~(s)(Cf= 1 aicT2(s) f+h)) 
ds< C, ,o(In< ~0, 

where C, is some positive number. That is, (18) satisfies the conditions of 
Theorem 4. Therefore, every solution of ( 18) oscillates. 
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