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Abstract

For any n � 2 we provide an explicit example of an n-axially symmetric map u ∈ H 1(B2, S2) ∩
C0(B̄2 \ B̄1), where Br = {p ∈ R

3: |p| < r}, with degu|∂B2 = 0, “strictly minimizing in B1” the relaxed
Dirichlet energy of Bethuel, Brezis and Coron

F(u,B2) := 1

2

∫
B2

|∇u|2 dx dy dz + 4πΣ(u,B2),

and having Σ(u,B2) > 0, u|B1 �≡ const. Here Σ(u,B2) is (in a generalized sense) the lenght of a min-
imal connection joining the topological singularities of u. By “strictly minimizing in B1” we intend that
F(u,B2) < F(v,B2) for every v ∈ H 1(B2, S2) with v|B2\B1 = u|B2\B1 and v �≡ u. This result, which we
shall also rephrase in terms of Cartesian currents (following Giaquinta, Modica and Souček) stands in sharp
contrast with a results of Hardt, Lin and Poon for the case n = 1, and partially answers a long standing
question of Giaquinta, Modica and Souček. In particular it is a first example of a minimizer of the relaxed
energy having non-trivial minimal connection. We explain how this relates to the regularity of minimizers
of F .
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. The relaxed energy of Bethuel, Brezis and Coron

Consider a map u ∈ H 1(B2, S
2) = {v ∈ H 1(B2,R

3): |v| = 1 a.e.} such that u|∂B2 ∈
C0(∂B2, S

2) ∩ H 1(∂B2, S
2) and deg(u|∂B2) = 0. The relaxed Dirichlet energy of u was in-

troduced by Bethuel, Brezis and Coron [1] as

F(u,B2) := 1

2

∫
B2

|∇u|2 dx dy dz + 4πΣ(u,B2),

with

Σ(u,B2) := 1

4π
sup

ξ :B2→R

‖∇ξ‖∞�1

{∫
B2

D(u) · ∇ξdx dy dz −
∫

∂B2

D(u) · νξ dH2
}

(here ν(p) = p
|p| is the outward unit normal to ∂B2) and

D(u) :=
(

u · ∂u

∂y
∧ ∂u

∂z
,u · ∂u

∂z
∧ ∂u

∂x
,u · ∂u

∂x
∧ ∂u

∂y

)
.

The term Σ(u,B2) is a generalization of the idea of minimal connection, already studied by
Brezis, Coron and Lieb [3] in the sense that if u is smooth away from finitely many points
{Pi,Ni : 1 � i � k} ⊂ B2 and for ε small one has degu|∂Bε(Pi) = 1 and degu|∂Bε(Ni) = −1 then

Σ(u,B2) = min
σ∈Sk

k∑
i=1

|Pi − Nσ(i)|, Sk := {
Permutations of {1,2, . . . , k}}, (1)

see also [1, pp. 37–38]. As proven in [1, Theorems 2–3], F is the relaxation in the sense of
Lebesgue of the Dirichlet energy D(u,B2) := 1

2

∫
B2

|∇u|2 dx dy dz, i.e. given u ∈ H 1(B2, S
2)

as above we have

F(u,B2) = inf
{

lim inf
k→∞ D(uk,B2): uk ⇀ u in H 1, uk ∈ H 1 ∩ C0(B̄2, S

2), uk|∂B2 = u|∂B2

}
.

In particular F is sequentially weakly lower semicontinuous in H 1(B2, S
2) in the sense that

uk ⇀ u in H 1(B2, S
2) and uk|∂B2 = u|∂B2 ⇒ F(u,B2) � lim inf

k→∞ F(uk,B2).

Definition 1. Given u ∈ H 1(B2, S
2) with u|∂B2 ∈ H 1 ∩ C0(∂B2, S

2) and degu|∂B2 = 0 we say
that u minimizes F in B1 if F(u,B2) � F(v,B2) for every v ∈ H 1(B2, S

2) with v = u in B2 \B1.

An immediate consequence of the semicontinuity of F is that given ϕ ∈ H 1(B2, S
2) with

ϕ|∂B2 ∈ H 1 ∩ C0(∂B2, S2) and degϕ|∂B2 = 0 we can always find a minimizer u ∈ H 1(B2, S
2)

of F in B1 with u = ϕ in B2 \ B1.
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Understanding the regularity of such a minimizer is instead a more subtle and widely open
problem, to which we want to contribute in this paper. Before doing that, we will recall the
approach of Giaquinta, Modica and Souček to the relaxed energy.

1.2. The relaxed energy of Giaquinta, Modica and Souček

Later Giaquinta, Modica and Souček [8] introduced a different way of relaxing the Dirichlet
energy, in the context of Cartesian currents. Given a map u ∈ H 1(B2, S

2) and a 1-dimensional
integer multiplicity rectifiable current L in B2, we shall say that the current (in B2 × S2 ⊂ R

6)
T := G(u) + L × �S2 � is a Cartesian current if

∂G(u) = −∂L × �S2 � in B2 × S2, (2)

where G(u) = �{(p,u(p)) ∈ B2 × S2: p ∈ B2}� denotes the 3-dimensional current given by
integration over the graph of u, see [10]. Following [7–9] we call cart2,1(B2, S

2) the set of such
currents and set for T as above

D(T ,B2) := 1

2

∫
B2

|∇u|2 dx dy dz + 4πM(L),

where M(L) denotes the mass of L. As proven in [9, Theorem 2], D is the relaxed Dirichlet
energy, in the sense that if ϕ ∈ C∞(B2, S

2), T ∈ cart2,1(B2, S
2) and T ((B2 \ B̄1) × S2) =

G(ϕ|B2\B̄1
), then there exists a sequence of functions uk ∈ C∞(B2, S

2) with

uk = ϕ in B2 \ B̄1, G(uk) ⇀ T weakly as currents,
1

2

∫
B2

|∇uk|2 dx → D(T ,B2).

Moreover D(·,B2) is sequentially lower semicontinuous with respect to the weak convergence
of currents in cart2,1(B2, S

2).

Definition 2. We say that T ∈ cart2,1(B2, S
2) is a minimizer of D in B1 if D(T ,B2) � D(T̃ ,B2)

for every T̃ ∈ cart2,1(B2, S
2) such that T ((B2 \ B̄1) × S2) = T̃ ((B2 \ B̄1) × S2).

Again semicontinuity of D implies that for any T ∈ cart2,1(B2, S
2) there exists a minimizer

T0 of D in B1 with T0 (B2 \ B̄1) × S2 = T (B2 \ B̄1) × S2.
The relation between D and F was studied in [9]: Given u ∈ H 1(B2, S

2) with u|∂B2 smooth
and of degree 0, there exists a 1-dimensional integer multiplicity rectifiable current L in B2
which minimizes M(L) among the i.m. rectifiable currents satisfying (2) and (∂L) ∂B2 = 0.
Moreover M(L) = Σ(u,B2). Therefore F(u,B2) = D(G(u) + L × �S2 �,B2). In this sense, the
current L generalizes the notion of minimal connection of Brezis, Coron and Lieb and M(L)

provides a natural extension of the length of a minimal connection given by (1).
An important difference between F and D is that F(·,B2) depends only on u, but the

term Σ(u,B2) is non-local. The definition of D(·,B2) is local instead, but it depends on the
couple (u,L) and not on u only. In order to discuss regularity issues, this second definition
turns out to be more convenient because regularity is a local notion. On the other hand, the
above considerations show that the two approaches are basically equivalent. In particular if
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G(u) + L × �S2 � ∈ cart2,1(B2, S
2) is a minimizer of D in B1 in the sense of Definition 2 with

suppL � B2, u|∂B2 ∈ H 1 ∩ C0(∂B2, S
2) and degu|∂B2 = 0, then u is a minimizer of F in B1 in

the sense of Definition 1 and conversely, if u is a minimizer of F in B1, then G(u) + L × �S2 �
is a minimizer of D in B1 if we choose L minimal under conditions (2) and (∂L) ∂B2 = 0. In
both cases F(u,B2) = D(G(u) + L × �S2 �,B2).

1.3. The regularity of minimizers and our example

Remember that Schoen and Uhlenbeck [17] proved that a map u ∈ H 1(B2, S
2) minimizing

the Dirichlet energy D in B1 (in the sense of Definition 1 with D instead of F ) is smooth in B1
away from a discrete set (see also [15]). Their result is sharp as shown by Hardt and Lin [12],
who constructed minimizers of D with singular sets finite but arbitrarily large. The theorem of
Schoen and Uhlenbeck cannot be applied to the present situation since minimizers of F are not
necessarily minimizers of the Dirichlet energy.

Using a monotonicity formula Giaquinta, Modica and Souček [9] proved that if T = G(u) +
L × �S2 � ∈ cart2,1(B2, S

2) is a minimizer of D in B1, then the support of L B1 has Haus-
dorff dimension at most 1. It is easy to see that u|B1 is a stationary harmonic map away from
supp(L B1), and from a theorem of Evans [4] it follows that u is smooth away from a set of
dimension at most 1. While this result is much weaker than the one of Schoen and Uhlenbeck, we
remark that to our knowledge no example has been so far provided of a minimizer of F having
singularities (contrary to the case of the Dirichlet energy, where we have the examples of [12]).

In fact Hardt, Lin and Poon [13] were able to give a complete regularity theory for the func-
tional F restricted to the class of axially symmetric maps. A map u ∈ H 1(B2, S

2) is said to be
n-axially symmetric (or simply axially symmetric if n = 1) if

u(r, θ, z) = (
cos(nθ) sin

(
ϕ(r, z)

)
, sin(nθ) sin

(
ϕ(r, z)

)
, cos

(
ϕ(r, z)

))
,

where (r, θ, z) are cylindrical coordinates in R
3 and ϕ is a function which determines u com-

pletely (compare [11]). Similarly an n-axially symmetric Cartesian current in B2 × S2 will be a
current of the form T = G(u) + L × �S2 � ∈ cart2,1(B2, S

2), where u is n-axially symmetric, the
support of L is a subset of the z-axis and its multiplicity at each point is an integer multiple of n.
We shall call A(n)(B2, S

2) the set of such currents.
Hardt, Lin and Poon studied the case n = 1 and proved (among many other things) that any

T = G(u) + L × �S2 � ∈ A(1)(B2, S
2) minimizing D in B1 among axially symmetric currents

has L B1 = 0 unless u|B1 ≡ const, and from this they deduced that the singular set of u|B1

is a discrete subset of z-axis ∩ B1. (This result is sharp in that they also gave examples where
the minimizers must have singularities, but we remark that these are minimizers among axially
symmetric currents and not among all currents.) Their clever proof strongly relies on a dipole
construction [13, Lemma 7.1]: assuming that L B1 �= 0, they can remove a piece of L B1,
replace it with a “dipole” similar to those introduced in [3], and prove that some energy could be
saved, contradicting minimality.

Both in Giaquinta, Modica and Souček’s and in Hardt, Lin and Poon’s regularity results,
proving smallness of the vertical part L B1 is crucial, and this suggests the following strategy
to prove regularity of a minimizer u of F in B1 (in the sense of Definition 1):

1. Fix L (1-d i.m. rectifiable current as above) minimal satisfying (2) and (∂L) ∂B2 = 0 and
consider G(u)+L× �S2 �, which is now a minimizer of D in B1 in the sense of Definition 2.
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2. Prove that L B1 = 0 using a generalization of the dipole construction of [3] and [13] as
follows. Assume that L B1 �= 0 and for simplicity that L B1 contains a straight segment
and that u around this segment behaves almost like an n-axially symmetric map; then remove
a part of this segment and modify u is the spirit of [13, Lemma 7.1] (for instance using the
refined dipole construction of [16]) reducing the energy but still preserving condition (2),
contradiction.

3. L B1 = 0 implies that u is stationary in B1, hence Evans’ result implies that u is smooth
away from a set of H1-measure 0.

4. If possible prove even more regularity for u.

In this work we show that the above project fundamentally fails at step 2 because a generaliza-
tion of the dipole construction of [13] to the n-axially symmetric case with n � 2 is impossible!
This is an immediate consequence of Theorem 1 below. Define for α > 0,

T0 := G(u0) + L0 × [[
S2]] ∈ A(n)

(
B2, S

2), (3)

where

u0(r, θ, z) := Π−1(αrn
(
cos(nθ), sin(nθ)

)) ∈ C∞(
B̄2, S

2), L0 := −n�z-axis� B2. (4)

Here Π : S2 = {(x, y, z) ∈ R
3: x2 + y2 + z2 = 1} → R

2 ∪ {∞} is the stereographic projection,
given by

Π(x,y, z) = (x, y)

1 + z
,

and �z-axis� is the current given by integration along the z-axis = {(0,0, z): z ∈ R}, with orien-
tation set up so that, setting uε : B2 → S2 as

uε(r, θ, z) :=
{

Π−1(αrn(cos(nθ), sin(nθ))) for r � ε,

Π−1(αε2nr−n(cos(nθ), sin(nθ))) for r � ε,

one has G(uε) ∈ A(n)(B2, S
2) and as ε ↓ 0 we have G(uε) ⇀ T0 as currents in B2 × S2.

Theorem 1. For any n � 2 there is 0 < α0 � 1
4 such that for all α ∈ [0, α0] the current T0 defined

in (3)–(4) is the unique minimizer of D(·,B2) in

A(n)
T0

:= {
T ∈ A(n)

(
B2, S

2): T
(
(B2\B̄1) × S2) = T0

(
(B2\B̄1) × S2)}.

Lemma 7.1 of [13] implies at once that for n = 1 our current T0 is not minimizing in A(1)
T0

,
and if this lemma could be generalized to the case n � 2 it would contradict Theorem 1. The
fundamental difference between the cases n = 1 and n � 2 is that when n = 1, for any min-
imizer T = G(u) + L × �S2 � ∈ A(1)(B2, S

2) of D in B1 one has that ∇̃u := (∂u/∂x, ∂u/∂y)

cannot vanish indentically on open subsets of the z-axis ∩ B1 ([13, Lemma 7.3]), and at points
in suppL ∩ B1 with ∇̃u �= 0 one can remove a piece of L and of the original map and, replacing
them with the dipole constructed in [13, Lemma 7.1] (compare with [3, Section III]) one saves an
energy proportional to |∇̃u|2 (compare also [2]), hence producing a new current in A(1)

(B2, S
2)
T



3104 L. Martinazzi / Journal of Functional Analysis 261 (2011) 3099–3117
with smaller energy, contradicting the minimality of T . In our example ∇̃u0 ≡ 0 on the z-axis
and the expected energy gain due to the dipole replacement is smaller than the energy necessary
to glue the dipole to the original map.

Coming back to Step 2 of the regularity program outlined above, if L B1 �= 0 contains a
segment and ∇u vanishes along this segment (an occurrence very difficult to rule out in general),
then we can expect to be essentially in the situation of Theorem 1 and we cannot use minimality
to get a contradiction. This remark shows that in order to prove regularity of minimizers of F (or
of D) one has to work close to the topological singularities of u, i.e. close to supp ∂L, and not in
the “interior” of the minimal connection (suppL\supp ∂L), which might prove very challenging.

1.4. Statement of Theorem 1 in terms of the F energy

Theorem 1 can be reformulated in terms of the F energy as follows. Define the cones

C+ := {
(r, θ, z) ∈ B2: z > 1, 0 � r < z − 1

}
, C− := −C+ = {

p ∈ R
3: −p ∈ C+}

and set ũ0 := u0 on Ω \ (C+ ∪ C−), where u0 is as in (4). On C+ we define

ũ0(r, θ, z) := Π−1(α(z − 1)2nr−n
(
cos(nθ), sin(nθ)

))
.

On C− we set ũ0(r, θ, z) := ũ0(r, θ,−z). This way

ũ0 ∈ H 1(B2, S
2) ∩ C0(B̄2 \ {

(0,0,±1)
}) ∩ H 1(∂B2, S

2)
and

deg ũ0|∂B2 = 0, deg ũ0|∂B1/2(0,0,±1) = ∓n

(this construction was inspired by the dipole of [3, Section III] and a conversation with H. Brezis).
Theorem 1 is essentially equivalent to the following.

Theorem 2. The map ũ0 minimizes F(·,B2) in the set

A(n)

ũ0
= {

u ∈ H 1(B2, S
2): u is n-axially symmetric and u = ũ0 in B2 \ B1

}
.

Notice that Σ(ũ0) = 2 (the minimal connection joining the singular points (0,0,±1) goes
all the way from (0,0,−1) to (0,0,1)), while in the case n = 1 the result of Hardt, Lin and
Poon implies that ũ0 is not a minimizer and that a minimizer u is smooth in B̄1 \ {(0,0,±1)}
by a simple extention of [13, Theorem 8.2] and u|B̄1

has singularities at (0,0,±1) of degree
±1 which “topologically” cancel the singularities of ũ0|B2\B1 in the sense that (recalling that
u|∂B1 = ũ0|∂B1 ∈ C0(∂B1, S

2))

degu|∂(B1/2((0,0,±1))∩B1) = ±1, degu|∂(B1/2((0,0,±1))\B1) = ∓1, degu|∂B1/2((0,0,±1)) = 0

and Σ(u) = 0.
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1.5. Some notation and formulas

For an open set Ω ⊂ R
2 and a function u ∈ W 1,2(Ω,S2) we set û = Π ◦ u and we define the

Dirichlet energy

E(u,Ω) := 1

2

∫
Ω

|∇u|2 dx dy = 2
∫
Ω

|∇û|2
(1 + |û|2)2

dx dy, (5)

and the area counted with multiplicity

A(u,Ω) :=
∫
Ω

|Ju|dx dy = 4
∫
Ω

|J û|
(1 + |û|2)2

dx dy, (6)

where Ju denotes the Jacobian determinant of u. Since |∇u|2 � 2|Ju| one has

E(u,Ω) � A(u,Ω), (7)

with equality holding if and only if u is conformal.
Assume now that Ω = Ds := {(x, y) ∈ R

2: x2 + y2 < s2} and u is n-axially symmetric, i.e.
for a function f : [0, s] → R̄ we can write in polar coordinates

u(r, θ) = Π−1(f (r)
(
cos(nθ), sin(nθ)

))
. (8)

Then a simple computation shows

1

2
|∇û|2 = |f ′|2

2
+ n2f 2

2r2
� nf |f ′|

r
= |J û|. (9)

Lemma 3. If f : [s, t] → [0,∞] is any function with 0 � s < t , f (s) = a, f (t) = b

(limr↑t f (r) = ∞ if b = ∞), a � b and u ∈ W 1,2(Bt \ Bs) is as in (8), then

A(u,Dt \ Ds) � 4πn
b2

1 + b2
− 4πn

a2

1 + a2

(
b2

1 + b2
= 1 if b = ∞

)
. (10)

The inequality is an equality if and only if f is monotone. An analogous statement applies when
a > b (possibly with a = ∞).

Proof. Assume first 0 < b < ∞. Then we compute, using (6) and (9),

A(u,Dt \ Ds) = 4πn

t∫
s

2f |f ′|
(1 + f 2)2

dr � 4πn

t∫
s

2ff ′

(1 + f 2)2
dr

= 4πn

[
− 1

2

]t

= 4πnb2

2
− 4πna2

2
,

1 + f s 1 + b 1 + a
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where the inequality is strict if and only if f ′ < 0 on a set of positive measure, i.e. if f is not
monotone. When b = ∞ the same proof applies, up to a simple approximation procedure. The
case a > b is similar. �

In the following C will denote a large positive constant which may change from line to line.

2. Proof of Theorem 1

Consider the open cylinder Σ := {(x, y, z) ∈ R
3: x2 + y2 < 1, −1 < z < 1}. Since B1 ⊂

Σ � B2, it suffices to prove that T0 minimizes

D(T ,Σ) := 1

2

∫
Σ

|∇u|2 dx dy dz + 4πM(L Σ)

over A(n)
T0,Σ

:= {T ∈ A(n)(B2, S
2): T = T0 in (B2\Σ̄) × S2}. This will simplify the notation.

The proof proceeds by contradiction. Let from now on n � 2 be fixed and let us assume that
there exists a current T = G(u) + L × �S2 � ∈ A(n)

T0,Σ
with D(T ,Σ) � D(T0,Σ) and T �= T0.

Since u is n-axially symmetric, we can find a function f such that

u(r, θ, z) = Π−1(f (r, z)
(
cos(nθ), sin(nθ)

))
.

2.1. Some preliminary lemmas

Lemma 4. We have L = −n�I � for some measurable set I ⊂ z-axis ∩ B2.

Proof. The proof is analogous to the one of [13, Lemma 4.1] for the 1-axially symmetric case,
with the following natural modifications. In Section 2 of [13] the 1-axially symmetric maps
Λ(x) = (x1,x2,x3)|x| and Ψ (x) = (x1,x2,−x3)|x| from R

3 \ {0} into S2 should be replaced by the n-

axially symmetric maps Λ(n) := R(n) ◦ Λ and Ψ (n) := R(n) ◦ Ψ , where R(n) : S2 → S2 is the
map

R(n)(cos θ sinϕ, sin θ sinϕ, cosϕ) = (
cos(nθ) sinϕ, sin(nθ) sinϕ, cosϕ

)
.

Notice that deg(±Λ(n)|S2) = ±n and deg(±Ψ (n)|S2) = ∓n. With this in mind, the statements
and proofs of Lemma 2.1, Lemma 2.2 and Lemma 4.1 of [13] can be immediately adapted to the
n-axially symmetric case. �

Up to modifying I on a set of measure 0, we can and do assume that every point of I is a
Lebesgue point of I with respect to H1 z-axis, i.e.

lim
r↓0

H1(I ∩ Br(ξ))

r
= 1, for every ξ ∈ I. (11)

Lemma 5. Set Z := Ī\I. Then H1(Z) = 0.
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Proof. Since I ∩ (B2 \ Σ̄) = z-axis ∩ (B2 \ Σ̄), we have Z ⊂ Σ̄ . Assume by contradiction that
H1(Z) > 0 and let ξ ∈ Z ∩ Σ be a Lebesgue point of Z (with respect to H1 Z) such that

lim
r→0

1

r

∫
Br(ξ)

|∇u|2 dx dy dz = 0. (12)

Such a point exists because (12) is true for H1-almost every ξ ∈ z-axis∩B2, by |∇u|2 ∈ L1
loc(R

3)

and a standard covering argument, see e.g. [5, Section 2.4.3], or [6, 2.10.19(3)]. Then by the
monotonicity argument given in the proof of Theorem 5 of [9], one has H1(I ∩ Br0(ξ)) = 0 for
r0 > 0 small enough, hence I ∩ Br0(ξ) = ∅ by (11). This contradicts ξ ∈ Ī . �
Lemma 6. There is a set J ⊂ (z-axis ∩ B2)\Ī , such that H1((z-axis ∩ B2)\(Ī ∪ J )) = 0 and

lim
r→0

f (r, z) = +∞, for (0,0, z) ∈ J. (13)

Similarly

lim
r→0

f (r, z) = 0, for H1-a.e. (0,0, z) ∈ I ∩ B2. (14)

Proof. Since it is obvious that (14) applies for (0,0, z) ∈ B2 \ Σ̄ , we will focus on the case
(0,0, z) ∈ Σ , i.e. −1 < z < 1. We first claim that, for almost every z ∈ (−1,1), u|D1×{z} is
continuous. Indeed, as shown for instance in [18, Section 4] (in the case n = 1, but the case
n > 1 is identical), u satisfies

−�u = |∇u|2u in Σ, (15)

in the sense of distribution. It is well known, see e.g. [14, Lemma 3.2.10], that the right-hand
side of (15) belongs to the Hardy space H1

loc(Σ), hence ∇2u ∈ L1
loc(Σ) by elliptic estimates. By

a Fubini-type argument, we infer then that

(∇2u
)∣∣

D1×{z} ∈ L1
loc(D1) for almost every z ∈ (−1,1),

which implies u|D1×{z} ∈ C0
loc(D1), by the embedding W

2,1
loc (D1) ↪→ C0

loc(D1). Since u is smooth
away from the z-axis, see e.g. [13, Lemma 5.1] (where again only the case n = 1 is treated, but
the same proof applies for any n � 1), we have in fact that u|D1×{z} ∈ C0(D1) for a.e. z ∈ (−1,1),
as claimed.

Let J ⊂ (z-axis ∩ B1)\Ī be the set of points (0,0, z) which are Lebesgue density points of
(z-axis ∩ B1)\Ī (with respect to the H1 measure), such that u|D1×{z} ∈ C0(D1) and

∂
(

G(u|Σ(z))
)

Σ = G(u|D1×{z}), Σ(z) := D1 × (z,1) ⊂ Σ. (16)

The slicing property (16) is satisfied for almost every z ∈ (−1,1), since G(u) is a normal current,
see e.g. [10, Prop. 1, Section 2.2.5], so H1((z-axis ∩ B2) \ (Ī ∪ J )) = 0.
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We now claim that (13) holds true. Fix z ∈ (−1,1) with (0,0, z) ∈ J . First of all the continuity
of u|D1×{z} implies

lim
r→0

f (r, z) = +∞ or lim
r→0

f (r, z) = 0.

Since T is a Cartesian current, the degree of the 2-dimensional current

∂
(
T Σ(z)

) = ∂
(

G(u|Σ(z))
) + ∂

((
L Σ(z)

) × �S2 �
) = G(u|∂Σ(z)) − n�(0,0, z)� × �S2 �

must be zero (see e.g. [8, p. 468]), and this rules out the possibility limr→0 f (r, z) = 0. This
completes the proof of (13), and the proof of (14) is completely analogous. �
2.2. Strategy of the proof

Assume first that L = L0 := −n�z-axis� B2. Then D(T ,Σ) � D(T0,Σ) is equivalent to

1

2

∫
Σ

|∇u|2 dx dy dz � 1

2

∫
Σ

|∇u0|2 dx dy dz,

and by (7) we have for a.e. z ∈ (−1,1) that u|D1×{z} ∈ W 1,2(D1) ∩ C0(D1) and

E
(
u,D1 × {z}) � A

(
u,D1 × {z}) � A

(
u0,D1 × {z})

= E
(
u0,D1 × {z}) = 4πn

α2

1 + α2
, (17)

where the first inequality is strict unless u|D1×{z} is conformal by (7), in the second one we used
that α ∈ (0,1) and Lemma 3, the first equality follows from the conformality of u0, and the
second equality follows from Lemma 3 and the fact that f0(r) = αrn is monotone. Then it easily
follows that u|D1×{z} = u0|D1×{z} for a.e. z ∈ (−1,1), hence u = u0 and T = T0.

Assume now that L �= L0. Then the set J defined in Lemma 6 has positive H1-measure. As
before, we write z-axis ∩ B2 = Ī ∪ J ∪ N , where H1(N) = 0. Define for (0,0, z) ∈ J ,

ψ(z) := 4πn + 4πnα2

1 + α2
− 1

2

∫
D1×{z}

|∇̃u|2 dx dy, ∇̃ :=
(

∂

∂x
,

∂

∂y

)
.

The quantity ψ(z) measures the maximal (because it ignores the z-derivative) energy gain (pos-
sibly negative) which we can expect by replacing u0 with u in D1 ×{z} and removing the vertical
part n�(0,0, z)� × �S2 �. We must have ψ(z) > 0 for some (0,0, z) ∈ J , otherwise

D(T ,Σ) >

∫
(0,0,z)∈I∩B1

(
1

2

∫
D1×{z}

|∇̃u|2 dx dy

)
dz + 4πnH1(I ∩ B1)

+
∫ (

1

2

∫
|∇̃u|2 dx dy

)
dz
(0,0,z)∈J D1×{z}
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�
(

4πnα2

1 + α2
+ 4πn

)(
H1(I ∩ B1) + H1(J )

)
= D(T0,Σ),

where the first inequality is strict because the integrals on the right don’t take into account the
z-derivative, which cannot vanish identically if J �= ∅, and in the second inequality we used (17)
for (0,0, z) ∈ I ∩ B1. Now we can choose (0,0, z1) ∈ J such that

ψ(z1) � 1

2
sup

(0,0,z)∈J

ψ(z) > 0. (18)

In the next section we will prove that ψ(z1) � 0, contradiction.

2.3. The energy estimates

Lemma 7. Let

a := min
r∈(0,1]f (r, z1) � α.

Then a > 0,

ψ(z1) � 8πna2

1 + a2
, (19)

and

1

2

∫
Σ

∣∣∣∣∂u

∂z

∣∣∣∣
2

dx dy dz � 32πna2

1 + a2
. (20)

Proof. Assume a � 0 and take any r ∈ (0,1] such that f (r, z1) = a. Then Lemma 3 and (13)
yield

1

2

∫
D1×{z1}

|∇̃u|2 dx dy � A
(
u, (D1 \ Dr) × {z1}

) + A
(
u,Dr × {z1}

)

�
(

4πnα2

1 + α2
− 4πna2

1 + a2

)
+

(
4πn − 4πna2

1 + a2

)
,

and (19) follows at once. If a = 0 this yields ψ(z1) � 0, contradiction. Similarly if a < 0 choose
0 < r1 < r2 < 1 such that f (r1, z1) = f (r2, z1) = 0 and f (r, z1) � 0 for r ∈ (0, r1) ∪ (r2,1), and
apply Lemma 3 on (D1 \ Dr2) × {z1} and on Dr1 × {z1} separately to get again ψ(z1) � 0. As
for (20), for (0,0, z) ∈ I and 0 � α < 1, (17) and (18) yield
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1

2

∫
Σ

∣∣∣∣∂u

∂z

∣∣∣∣
2

dx dy dz = D(T ,Σ) − 1

2

∫
Σ

|∇̃u|2 dx dy dz − 4πnH1(I ∩ B1)

� D(T0,Σ) − 1

2

∫
Σ

|∇̃u|2 dx dy dz − 4πnH1(I ∩ B1)

�
∫

(0,0,z)∈J

ψ(z) dz � 2ψ(z1)H1(J ) � 4ψ(z1),

and the conclusion follows from (19). �
We have seen that the shape of the profile of u|D1×{z1}, in particular of the infimum of f (·, z1),

determines the constraint (20) on the z-derivative of u. We shall now see how (20) in turn implies
a constraint on the shape of u and consequently a loss of conformality which, for α small enough
and n � 2, forces ψ(z1) < 0. This will be the desired contradiction which proves that L = L0
and completes the proof of Theorem 1.

Lemma 8. Assume that 0 < α � 1
4 and set

s := inf

{
r ∈ (0,1): f (r, z1) = 1

2

}
.

Then we have s � C0a for a fixed positive constant C0.

Proof. We have for 0 < α � 1
4 and for r ∈ (0, s],

f (r, z1) � 1

2
, f (r,−1) = αr2 � 1

4
,

hence, by Cauchy–Schwartz’s inequality,

z1∫
−1

∣∣∣∣∂u(r, z)

∂z

∣∣∣∣
2

dz � 1

z1 + 1

( z1∫
−1

∣∣∣∣∂u(r, z)

∂z

∣∣∣∣dz

)2

� 1

z1 + 1

∣∣u(r, z1) − u(r,−1)
∣∣2 � 1

C
.

Set Σs = {(r, θ, z) ∈ Σ : r < s}. Then

∫
Σs

∣∣∣∣∂u

∂z

∣∣∣∣
2

dx dy dz � s2

C
,

which together with (20) implies our claim. �
Proposition 9. For any n � 2 there is α0 ∈ (0,1/4] such that if 0 < α � α0 and u ∈ W 1,2(D1, S

2)

has the form

u(r, θ) = Π−1(f (r)
(
cos(nθ), sin(nθ)

))
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with

f (1) = α, lim
r→0

f (r) = +∞, min
0�r�1

f (r) = a,

s := inf

{
r ∈ (0,1]: f (r) = 1

2

}
� C0a,

then

1

2

∫
D1

|∇u|2 dx dy > 4πn + 4πnα2

1 + α2
. (21)

Before proving this key proposition, let us notice that it completes the proof of Theorem 1.
Indeed we can apply it to u|D1×{z1} (hence f (r, z1) will play the role of f (r) in Proposition 9)
and (21) yields ψ(z1) < 0.

Proof of Proposition 9. In the following several formulas will be more transparent if we write
b instead of 1/2, but the reader should keep in mind that b is fixed. We should also remember
that 0 < a � α and α is small. Moreover we will often use (7) and Lemma 3.

Step 1. We can easily estimate

E(u,Ds) = 1

2

∫
Ds

|∇u|2 dx dy � A(u,Ds) = 4πn − 4πnb2

1 + b2
. (22)

To estimate E(u,D1\Ds) we can assume that f � 1 in D1\Ds . Indeed if f (r0, z1) = 1 for some
r0 ∈ (s,1), we clearly have

E(u,D1 \ Ds) = E(u,Dr0\Ds) + E(u,D1\Dr0) � A(u,Dr0\Ds) + A(u,D1\Dr0)

�
(

2πn − 4πnb2

1 + b2

)
+

(
2πn − 4πnα2

1 + α2

)
.

This and (22) imply (21) for α small enough. From now on we shall assume that f � 1 in D1\Ds .

Step 2. Pick any s̃ ∈ (s,1] such that f (s̃) = a. There exists a function v ∈ W 1,2(D1\Ds) of the
form

v(r, θ) = Π−1(h(r)
(
cos(nθ), sin(nθ)

))
(23)

for some h ∈ W 1,2([s,1]) which minimizes the energy

E(v,D1\Ds) = 1

2

∫
|∇v|2 dx dy = 4π

1∫
s

|h′|2 + n2

r2 h2

(1 + h2)2
r dr (24)
D1\Ds
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among all functions ṽ ∈ W 1,2(D1\Ds) (with corresponding h̃ ∈ W 1,2([s,1]) as in (23)) satisfy-
ing a � h̃ � 1, h̃(s) = b, h̃(s̃) = a and h̃(1) = α. Indeed the functional in (24) is coercive and the
imposed conditions (which are convex) are preserved under the weak convergence in W 1,2.

We claim that h′ � 0 in [s, s̃] and h′ � 0 in [s̃,1]. Indeed, if for points s � s1 < s2 < s3 � s̃

we have h(s1) = h(s3) < h(s2), we can modify h by setting h ≡ h(s1) on [s1, s3]. This would
decrease the energy, as one can see by inspecting the right-hand side of (24), using that the
function h → h2/(1 + h2)2 is strictly increasing for h ∈ [0,1]. One can do the same in [s̃,1].

Since E(u,D1\Ds) � E(v,D1\Ds), it is enough to estimate the energy of v. We have

A(v,D1\Ds) = A(v,Ds̃\Ds) + A(v,D1\Ds̃) = 4πnb2

1 + b2
− 8πna2

1 + a2
+ 4πnα2

1 + α2
, (25)

and the proof is complete if we can prove that for α small enough and a ∈ (0, α] we have

(E − A)(v,D1\Ds) >
8πna2

1 + a2
. (26)

Step 3. We now reduce the proof of (26) to a simpler problem. From (5), (6) and (9) we infer

(E − A)(v,D1\Ds) =
∫

D1\Ds

(2|h′|2 + 2n2

r2 h2 − 4n
r
|h′|h)

(1 + h2)2
dx dy

=
∫

D1\Ds

2(|h′| − n
r
h)2

(1 + h2)2
dx dy

= 4π

1∫
s

(|h′(r)| − n
r
h(r))2

(1 + h(r)2)2
r dr. (27)

Since 0 � h � 1 on D1\Ds , we have 1 � (1+h2)2 � 4 in (27). Then, considering what we know
about v and h, to estimate (E − A)(v,D1\Ds) up to a multiplicative constant it is enough to
estimate the infimum of

I (g) =
1∫

s

(∣∣g′(r)
∣∣ − n

r
g(r)

)2

r dr

over

C := {
g ∈ W 1,2([s,1]): g(s) = b, g(1) = α, g(s̃) = a, g′ � 0 on [s, s̃], g′ � 0 on [s̃,1]}.

Since I is coercive on C (because a � g � b = 1/2 for g ∈ C ) and C is convex and closed with
respect to the W 1,2-topology, it is possible to find a function g0 which minimizes I over C . Since
h ∈ C ,

(E − A)(v,D1\Ds) � πI (h) � πI (g0), (28)

and it remains to estimate I (g0).
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Step 4. We shall now explicitly compute g0. Consider the set

C1 := {
g ∈ W 1,2([s, s̃]): g(s) = b, g(s̃) = a, g′ � 0

}
.

Then g0|[s,s̃] ∈ C1 and it minimizes

Ĩ (g) :=
s̃∫

s

(
g′(r) + n

r
g(r)

)2

r dr

over C1, where we used that |g′| = −g′ for g ∈ C1. The functional Ĩ is strictly convex over C1,
hence if we can find a critical point g̃ of Ĩ in C1, then it has to be the unique minimizer g0|[s,s̃].
By a critical point in C1, we mean a function g̃ ∈ C1 such that

d

dε
Ĩ (g̃ + εϕ)

∣∣∣∣
ε=0+

:= lim
ε↓0

I (g̃ + εϕ) − I (g̃)

ε
� 0, for any ϕ := g − g̃, g ∈ C1. (29)

The inequality in (29) is due to the fact that C1 is not a vector space and g̃ might belong to ∂C1.
For t > s to be chosen, consider the function

ηt (r) = Atr
n + Bt

rn
, At = atn − bsn

t2n − s2n
, Bt = sntn(btn − asn)

t2n − s2n
,

which satisfies ηt (s) = b, ηt (t) = a. There is exactly one value t0 > s for which η′
t0
(t0) = 0.

Indeed any such t0 satisfies

t2n
0 = Bt0

At0

= sntn0 (btn0 − asn)

atn0 − bsn
if atn0 − bsn > 0, (30)

hence

at2n
0 − 2bsntn0 + as2n = 0. (31)

Then we compute

tn0± =
(

b

a
±

√(
b2

a2
− 1

))
sn = b

a

(
1 ±

√(
1 − a2

b2

))
sn.

Then, since we want t0 > s, we have

tn0 = tn0+ = b

a

(
1 +

√(
1 − a2

b2

))
sn = b

a

(
2 − 1

2

a2

b2
+ o

(
a2/b2))sn, (32)

with o(a2/b2)
2 2 → 0 as a/b → 0. This way also the condition atn − bsn > 0 in (30) is satisfied.
a /b 0
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If t0 � s̃ set g̃ = ηs̃ . Then η′
s̃
� 0 on [s, s̃]. Indeed η′

s̃
(s̃) � 0, since this is equivalent to as̃2n −

2bsns̃n + as2n � 0, which follows from (31) and t0− � s < s̃ � t0+. But η′
s̃
(r) � 0 is equivalent

to r2n � Bs̃/As̃ and we have proven this for r = s̃, hence it also holds for 0 < r < s̃.
If t0 < s̃, set g̃ = ηt0 on [s, t0] and g̃ ≡ a on [t0, s̃]. Again it is clear that g̃′ � 0.
In both cases we have g̃ ∈ C1 and we claim that g̃ satisfies (29). In fact, assuming first t0 < s̃,

we have for ϕ as in (29)

d

dε
Ĩ (g̃ + εϕ)|ε=0+ = 2

s̃∫
s

(
g̃′ + n

r
g̃

)(
ϕ′ + n

r
ϕ

)
r dr

= 2

t0∫
s

(
−(

rg̃′)′ + n2

r
g̃

)
ϕ dr + 2

s̃∫
t0

n2

r
g̃ϕ dr,

where we used the condition g̃′(t0) = 0 in the integration by parts. The last integral is non-
negative since ϕ � 0 in [t0, s̃], being g̃ = a and g � a in that interval. As for the first integral on
the right-hand side, it vanishes, since for t > 0,

−(
rη′

t (r)
)′ + n2

r
ηt (r) = 0 for r ∈ (0,∞). (33)

If t0 � s̃, (29) follows at once from (33). Then (29) is proven and g̃ = g0|[s,s̃].
An analogous procedure can be done on [s̃,1], assuming s̃ < 1 (if s̃ = 1, then a = α and,

setting τ0 = 1, one has g0 ≡ a = α on [t0, τ0]; then jump to Step 5) and minimizing

Ī (g) :=
1∫

s̃

(
g′(r) − n

r
g(r)

)2

r dr

over

C2 := {
g ∈ W 1,2([s̃,1]): g(s̃) = a, g(1) = α, g′ � 0

}
.

We consider for 0 < τ < 1,

ζτ (r) = A′
τ r

n + B ′
τ

rn
, A′

τ = α − aτn

1 − τ 2n
, B ′

τ = τn(a − ατn)

1 − τ 2n
,

so that ζτ (τ ) = a, ζτ (1) = α, and we compute τ0 � 1 such that ζ ′
τ0

(τ0) = 0. This gives τ 2n
0 = B ′

τ0
A′

τ0
,

hence

τn
0± = α

a

(
1 ±

√
1 − a2

α2

)
, τ n

0 = τn
0− = α

a

(
1 −

√
1 − a2

α2

)
, (34)

where we chose the minus sign because τ0 � 1 (simple algebraic computations show that
τ0− � 1, with equality if and only if a = α). As before if τ0 � s̃ we set ḡ = ζs̃ , if s̃ < τ0 < 1
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we set ḡ = ζτ0 on [τ0,1] and ḡ ≡ a on [s̃, τ0], if τ0 = 1 we set ḡ ≡ a = α on [s̃,1]. Then again ḡ

minimizes Ī over C2, hence ḡ = g0|[s̃,1].

Step 5. We have completely determined g0 (depending on a,α, s and s̃ only). In particular we
have proven that g0 ≡ a on [t0, τ0].

We now prove that t0/τ0 → 0 as α → 0 and complete the proof of (26). First of all notice that
(32) and Lemma 8 imply (keeping in mind that b = 1/2)

tn0 � Can−1. (35)

To estimate τ0 we go back to (34) and write β = (a/α)2 ∈ (0,1]. We claim that

τn
0 = 1√

β
(1 − √

1 − β ) �
√

β

C
= 1

C

a

α
, (36)

where C is fixed. Indeed this reduces to prove that

ϕ(β) := 1

β
(1 − √

1 − β ) � 1

C
for β ∈ (0,1],

which is obvious since ϕ > 0 in (0,1] and limβ↓0 ϕ(β) = 1
2 . Since n � 2, from (35) and (36) we

infer

t0

τ0
� C

(
αan−2) 1

n → 0 as α → 0. (37)

Then we have with (28)

(E − A)(v,D1\Ds) � πI (g0) � π

τ0∫
t0

(
na

r

)2

r dr � πn2a2 log
τ0

t0
= a2

o(1)
,

with o(1) → 0 as α → 0, and (26) holds true if 0 < α � α0 = α0(n). �
3. Proof of Theorem 2

Theorem 2 can be proven essentially as Theorem 1 after fixing a minimal connection. Here
instead we show how to deduce it from Theorem 1, to emphasize that the two theorems are
equivalent (and similarly one could also deduce Theorem 1 from Theorem 2).

Let u be a minimizer of F(·,B2) in A(n)

ũ0
. It follows from [13] that u|B̄1

is smooth away from
the z-axis. Now fix L minimizing the 1-dimensional mass in the set of 1-dimensional currents
satisfying (∂L) ∂B2 = 0 and (2). Such a minimizer exists because the above set is closed
with respect to the weak convergence of currents. We first claim that L = ±n�I � for an H1-
measurable set I ⊂ z-axis ∩ B1, so that T := G(u) + L × �S2 � ∈ A(n)(B2, S

2). Indeed it follows
from the generalization of Lemma 4.1 of [13] to the case n � 2 (see the proof of Lemma 4
above), that L = ±n�I � for an H1-measurable set I ⊂ z-axis ∩ B2, but since u|B̄2\B̄1

∈ C∞ and

(∂L) ∂B2 = 0, it follows from (2) that suppL ∩ (B̄2 \ B̄1) = ∅ by the constancy theorem.
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Now we prove that T minimizes D(·,B2) in A(n)
T . Define

T̃ = T − T
(
(B2 \ B̄1) × S2) + T0

(
(B2 \ B̄1) × S2)

= T − G(ũ0|B2\B̄1
) + T0

(
(B2 \ B̄1) × S2),

where T0 is as in Theorem 1. From

(
∂G(ũ0|B2\B̄1

)
) (

B2 × S2) = G(ũ0|∂B1) + n(δ(0,0,−1) − δ(0,0,1)) × �S2 �

= (
∂
(
T0 (B2 \ B̄1) × S2)) (

B2 × S2)
and (∂T ) (B2 × S2) = 0, we infer (∂T̃ ) B2 × S2 = 0, hence T̃ belongs to A(n)

T0
(B2, S

2),

since we can write it as T̃ = G(ũ) + L × �S2 � with ũ := uχB1 + u0χB2\B1 ∈ H 1(B2), and the

condition (2) is satisfied. Clearly T̃ minimizes D(·,B2) in A(n)
T0

. Then by Theorem 1 T̃ = T0,
hence u = ũ0.
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