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The paper presents a probabilistic model to study security of supply in a gas network. The model is based
on Monte-Carlo simulations with graph theory, and is implemented in the software tool ProGasNet. The
software allows studying gas networks in various aspects including identification of weakest links and
nodes, vulnerability analysis, bottleneck analysis, evaluation of new infrastructure etc. In this paper
ProGasNet is applied to a benchmark network based on a real EU gas transmission network of several
countries with the purpose of evaluating the security of supply effects of new infrastructure, either
under construction, recently completed or under planning. The probabilistic model enables quantitative
evaluations by comparing the reliability of gas supply in each consuming node of the network.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A number of energy supply disruptions due to economic,
political or technical reasons highlight the need to study energy
infrastructure networks from the security of supply point of view.
After supply disruption in January 2009 due to the Russia-Ukraine
dispute, the European Commission reacted by issuing Regulation
994/2010 on security of gas supply [1], which requires the EU
Member States to fulfil a number of requirements, including risk
assessment, preventive action plan and emergency action plan,
installation of cross border reverse flow capabilities, and supply
and infrastructure standards, including the N-1 criterion. These
and other measures proved to be important for the gas network
resilience in the subsequent smaller supply disruptions (e.g.
Libyan war in 2011, cold snap in early 2012). As energy security
remains on the top priority list of the European Commission,
several actions are planned including revision of the Regulation
[1], funding construction of new infrastructure, adoption of energy
security strategy and finally creation of Energy Union.

A gas transmission network can be understood as a critical
infrastructure, an issue that has been recently addressed by various
initiatives from research institutions and governments worldwide.
The European Commission has taken the initiative to organise a
network consisting of research and technology organisations within
the European Union with interests and capabilities in critical
infrastructure protection [2]. Interdependencies between critical
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infrastructures make the analysis complicated and challenging, but
the topic has attracted a growing number of researchers [3-5]. For
energy infrastructures the most interesting interdependence is
between gas and electricity networks, as discussed in the bench-
mark study presented in [6].

Reliability, risk and security of supply analyses of energy
infrastructure networks present a number of challenges as many
network analysis algorithms (optimal distribution of capacity,
rerouting of flows etc.) originally developed for telecommunica-
tion networks are not directly applicable to gas transmission
networks. Detailed analysis of large networked systems is being
addressed by a growing number of researchers. From the compu-
tational point of view, large network analysis is very demanding;
however increased power of modern computers makes complex
studies feasible.

A detailed review of the state of the art in the field of network
reliability analysis is reported in [7] in which computational
complexity, exact algorithms, analytic bounds and Monte Carlo
(MC) methods are presented. Availability evaluation of gas trans-
portation is analysed in [8]. Reliability and vulnerability analysis of
networks with application to power system is shown in [9].
Reliability of multi-state flow networks has been recently analysed
in [10].

The paper [11] focuses on developing a simulation model for
the analysis of transmission pipeline network with detailed
characteristics of compressor stations. The simulation model is
used to create a system that simulates the network with different
configurations to get pressure and flow parameters.

The authors analyse gas networks with inclined pipes [12]. The
resulting set of fluid flow governing equations is highly non-linear.
The authors introduce a novel linear-pressure analogue method,
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which is compared with the Newton-Raphson nodal method. The
proposed solution methodology retains most advantages of the
Newton-nodal method while removing the need for initial guesses
and eliminating the need for expensive Jacobian formulations and
associated derivative calculations.

Cost-related objectives for gas transmission pipelines network
design and planning are analysed in [13]. In this task, the type,
location, and installation schedule of major physical components
of a network including pipelines and compressor stations are
assumed. The authors propose an integrated non-linear optimisa-
tion model for this problem.

Taking as examples the power and gas transmission systems in
Harris County, Texas, USA, optimum interface designs under
random and hurricane hazards are discussed in [14]. To model
the gas pipeline operation, the maximum flow algorithm is used.
The paper goes beyond previous studies focused only on
connectivity.

The book [15] addresses a gap in current network research by
developing the theory, algorithms and applications related to
repairable flow networks and networks with disturbed flows.
According to the author, the potential application of repairable
flow networks reaches across many large and complex systems,
including active power networks, telecommunication networks,
oil and gas production networks, transportation networks, water
supply networks, emergency evacuation networks, and supply
networks.

This paper presents a probabilistic model to study security of
supply in a gas network. The model is based on Monte-Carlo
simulations with graph theory, and is implemented in the soft-
ware tool ProGasNet. This paper also presents a development
process and application study of the ProGasNet software tool to
the European gas transmission network for the analysis of
security of supply. The ProGasNet software is currently under
development. The purpose is to develop a mathematical model of
a flow network that could be used for many different purposes
including reliability of supply at each consuming node, vulner-
ability analysis, bottleneck analysis, time-dependent gas storage
analysis [29] or evaluation of new infrastructure, either real or
virtual. The JRC report [16] presents the validation results of two
approaches implemented for relatively simple benchmark net-
work systems: Monte-Carlo (MC) reliability simulation and fault
tree (FT) analysis, see also [30]. The results of test cases indicate
the potential of both methods for network reliability analysis and
the need for further research [17].

The purpose of the paper is to

® Develop a Monte-Carlo simulation algorithm for stochastic
network model with a priority supply pattern (Section 2).

® To introduce a probabilistic approach for modelling of key gas
transmission network components (Section 3).

® To define a real-world EU gas transmission network (Section 4)
under selected disruption case studies (Section 5).

® And finally, to present results of numerical experiments in
terms of security of supply at each consuming node, which can
be used also for vulnerability ranking of disruption case studies
(Section 6.1. Quantification of gas supply), redundancy analysis
of gas sources (Section 6.2. Quantification of redundancy of gas
sources), and evaluation of new infrastructure, either real or
virtual (Section 6.3. Quantification of probabilistic effects of a
new gas infrastructure).

The presented Monte-Carlo simulation technique for stochastic
network model with a priority supply pattern represents a general
approach, which can be used for security of supply modelling of
various transportation networks (crude oil, water).

2. Monte-Carlo simulation technique for stochastic network
model

2.1. Maximum flow algorithm

An important characteristic of a network is its capacity to carry
flow. What, given capacities on the arcs, is the maximum flow that
can be sent between any two nodes? The resolution of this so
called Maximum Flow (MF) problem describes the optimal use of
line capacities and establishes a reference point against which to
compare other ways of using the network [18].

The mathematical description of the MF problem is a standard
problem in graph theory [19]. The aim of the Maximum flow
algorithm is to maximise the value of flow passing from the source
node s to the sink node t given the two following constrains:

® Conservation of flows: the sum of the flows entering a node
must equal the sum of the flows exiting a node, except for the
source node and the sink node.

® (Capacity: the flow of an edge is non-negative and cannot
exceed its capacity.

The Maximum flow problem can be solved by various
approaches, for example by linear programming or with the
Ford-Fulkerson algorithm, which finds directed paths from the
source node to the sink node with available capacity on edges in
this path. In the algorithm, this path-searching process is repeated
until no additional flow can be added to this directed path.

The case of multiple sources and sinks, involving several source
nodes sy, Sy,..., ¢ and several sink nodes ty, t5,..., t, and where the
flow from any source can be sent to any sink, is known as Multiple
Sources and Sinks problem, and can be straightforwardly con-
verted into a one-source and one-sink problem [20]: Let us
introduce a supersource s (virtual source node) with edges (of
unlimited capacity) directed from this supersourse s to all source
nodes $;, Sy,..., Sk. Furthermore, let us introduce a supersink t
(virtual sink node) with edges (also of unlimited capacity) directed
from all sink nodes ty, t5,..., t, to the supersink t. Then the problem
of maximising the total value of the flow from all sources is then
the same as that of maximising the value of the flow from s to t.

2.2. Modelling of stochastic networks

In this subsection we present a Monte-Carlo simulation based
algorithm for stochastic flow networks with priority supply
patterns based on the distance from the source node: In order to
concurrently model both reliability and capacity constraints of the
gas transmission network, we use a stochastic network represen-
tation, where each node and edge of the flow network can
randomly fail, according to a given probabilistic model of the
network component. These component failures in the network are
modelled using the Monte-Carlo simulation technique.

The algorithm has these inputs:

® The capacity matrix C that provides information about capacity
constraints of the network elements including input source
nodes, demand nodes and information about connected pipe-
line capacities (for example per day).

® The length matrix L that provides information about length of
the edges between nodes (expressed for example in km). As the
used geographical length is a symmetric relation, in order to
save the computer memory, only an upper (or lower) triangular
part of matrix L is necessary to store.

The output of the algorithm is an optimal flow matrix F
satisfying for each Monte-Carlo step the Maximum flow algorithm
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Fig. 1. Anonymized topology of the test gas transmission network.

and the distance based commodity supply pattern, in which the
nodes closer to the source are served first.

The implemented priority supply assumption based on geo-
graphical distance from the gas source follows the supply gas
pattern during previous gas crises in Europe, especially the 2009
Russia-Ukraine gas dispute: The countries geographically far from
the blocked gas source were supplied only partially or even were
not supplied at all. Of course, this assumption can be easily
changed by the user, in order to simulate effects of various supply
strategies during the hypothetical gas crises.

In order to correctly model the priority supply pattern based on
the distance from the source node for the case of tasks with
multiple sources and sinks, one has to introduce additional
conditions. For a task with multiple sources, the links between
the virtual source node s and the source nodes sy, Sy,..., Si are
assumed to be unidirectional. It also means that the virtual source
node cannot be reached from source nodes. This condition is
expressed in the length matrix by the additional penalty:

L(s;,s) =inf,for i=1,2,....k )

For a task with multiple sinks, the links between the virtual sink
node t and the sink nodes ty, t,..., t, are assumed to be unidirec-
tional. It means that the sink nodes cannot be reached from the
virtual sink node. This penalty is expressed in the length matrix as:

L(t, t)=inf for i=1,2,...,r )

In a case of having multiple sources and multiple sinks, penalties
(1) and (2) must be fulfilled simultaneously. In the proposed
simulation algorithm, a stochastic flow network is approximated
by a sequence of deterministic network flow models. Without

losing the generality, the virtual source node is coded in the
algorithm by Node 1 (see, for example, node 1 in Fig. 1), whereas
the virtual sink node is coded by the symbol t.

In each Monte-Carlo simulation step, the deterministic max-
imum flow model with sampled component network failures is
solved according to the priority supply pattern based on the
distance from source. The algorithm uses linear algebra operations
for the priority supply pattern, in order to reorder network
elements according to the distance based approach. In order to
improve the readability of the pseudo-code, the algorithm is
expressed in a matrix form, as suggested in [21].

The stochastic flow network algorithm with priority supply
pattern based on distance from source includes the following
steps:

Input:
Capacity matrix: C
Length matrix: L
Pipeline failure probability per km and year: py
Number of Monte-Carlo steps: Neps
Output: optimal flow matrix F satisfying in each Monte-Carlo
step the maximum flow according to the distance based
commodity supply pattern (nodes closer to the source are
served first)
a. P=initP(L, py) {Initialising and defining failure probability matrix
of network elements}.
b. for i=1.2, ... Ngeps {Main Monte-Carlo loop}.
C. Cing=randpert (C, P) {Failed elements have reduced capacity}.
d. Lipg=clear_failured_elements (L,C,,q) {Totally failed elements are
not reachable}.
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e. o=distance (Lynq).
f. [sortear iX]=5s0rt(0) {The row vector 6 is sorted by the ascending
order}.
g. I1=speye(t) {Sparse identity matrix of order t }.
h. I1=11 (ix,: ) {Permutation matrix of elements according to the
distance-based approach}.
i. Cong=I1 x Cnq x IT" {Distance -based permutation of the capa-
city matrix Crpg}.
j. f=maxflow (1, t, Crpq)-
k. f= II" x f x IT; {Inverse transformation of the flow matrix f}.
. Fi=f
m. End

Let us describe the algorithm. Step a is used to define the failure
probability matrix P of the network elements. Then in Step b, the
Monte-Carlo simulation starts. Network elements, which are
stored in the capacity matrix C are subjected to random failures,
according to the failure probability matrix P. In Step ¢ the Monte-
Carlo sampled capacity matrix is stored in matrix Cpg.

The total failure of the network element causes the component
inaccessibility, which can be coded in the algorithm by removing
the failed element from the network. For this reason, in Step d the
length matrix must be updated. In this way, in case some network
component suffers a total failure, the affected network element is
not accessible from the source node and the corresponding
element of the length matrix L4 has to be updated.

The algorithm can also be used for modelling the partial failure
of a multi-state component, which can be expressed by a partial
reduction of the component capacity. Contrary to the total failure,
in case of a partial failure the affected network component
remains accessible, so the update of the length matrix L4 in Step
d is not necessary.

In Step e the distance vector ¢ is computed. The vector contains
the distance of the shortest paths between the virtual source node
and all remaining non-virtual nodes. An entry j of vector &
represents the distance of the shortest path from the virtual
source Node 1 to Node j. We used the Matlab tool Bctnet of [26],
based on Dijkstra's algorithm. Contrary to the classical Dijkstra's
algorithm, it is not necessary to compute the full distance matrix,
as only the distance from the virtual source node is used in our
algorithm.

In Step e, the distance vector & is sorted by the ascending order
to vector Osoreeq, in order to identify the priority for the node
commodity supply, because the network elements geographically
close to the source node (minimum distance according to length
matrix L) have to be served first. The vector ix contains the indices
satisfying Osoreeq=(ix). The criticality of nodes for priority supply
pattern is coded by the vector ix. Of course, if there is a need, the
vector ix can be updated by the user in Step f of the algorithm, in
order to simulate effects of various supply strategies during the
hypothetical gas crises.

In Step g the identity matrix /7 of order t is created, in order to
form the permutation matrix. The matrix /7 has initially ones on
the main diagonal and zeros elsewhere. In order to save computer
memory, one can exploit the sparsity pattern of the matrix /7.

In Step h a permutation matrix /7 of a graph isomorphism
problem is computed according to the distance from the gas
source, in order to transfer the original model to the distance-
based approach by a dynamic reordering of the network elements.
Columns of the matrix /7 are permuted according to the indexes
produced in Step f. In Step i, the graph isomorphism task is
computed by linear algebra operations [21].

Then, in Step j the flow matrix f of the Maximum flow
algorithm is computed. The aim is to maximise the commodity
flow from the virtual source Node 1 to the virtual sink Node ¢,

according to given constrains. In our computer implementation,
we used the above mentioned Ford-Fulkerson algorithm.

To finish the simulation, in Step k the computed flow matrix is
transformed back to the original problem by the inversion linear
algebra operation. As the permutation matrix I/ is sparse and
orthogonal, the linear algebra operations are very fast and stable.

Finally, the output optimal flow matrix F is updated in Step m.
The resulting flow matrix F is ready for further exploration by
statistical methods enabling the monitoring of the flow patterns
generated by the Monte-Carlo simulations.

3. Modelling of gas transmission network components

The capacity constraints of key gas transmission network
components, i.e. pipelines (Section 3.1), compressor stations
(Section 3.2), gas storages (Section 3.3) and liquefied natural gas
(LNG) terminals (Section 3.4), are coded by the capacity matrix C.
Capacity of an network component connecting the i-th and j-th
network element is coded by ((i,j). The capacity network C does
not need to be necessary symmetric: For example, it is not always
possible to assume a reverse flow between the i-th and j-th
network element, because of technical or contractual constrains.

A failure of a network element is coded by a reduction of the
capacity matrix. For example, a component failure leading to
impossibility of transport gas from the i-th to j-the network
element is coded by a reduction of the capacity to zero: ((i,j)=0.

The failure probability of network elements is coded by the
failure probability matrix P. Failure probability of a network
component connecting the i-th and j-the network element is
coded by P(i,j). The matrix P expresses the annual failure prob-
ability of network components. The assumed duration of one
simulation is a parameter, which is set by the user. In our paper,
the network component failures were simulated on a monthly
basis, as we are interested in gas supply situation during the first
month of a hypothetical gas crisis.

The knowledge of possible gas supply situations during the first
month of a gas crisis is crucial for security of supply in the gas
network; see especially Regulation 994/2010 on security of gas
supply [1], Article 8.

Currently we do not simulate repair of failed components. A
long-time scale integration would need more assumptions that the
failed components cannot be recovered during the time scale.

Capacity and flow data is expressed at a daily scale, in order to
assume peak gas demand during one “peak” day with extreme
high gas demand [1]. We assume that the peak demand is constant
during the simulation.

3.1. Probabilistic model of a pipeline

In accordance to the GTE report [25], relationship between the
pipeline capacity Q and the pipeline diameter D can be approxi-
mated by the following relation:

Q~D

where: D is the diameter of the pipeline, in metres; Q is estimated
capacity of the pipeline, in Nm3/h; and y is a constant conversion
coefficient of 2.59.

This model prediction can be tuned if prior information is
available. For example, the maximum pipeline capacity at the cross
border connection point together with the pipeline diameter can
be taken from a transmission system operator (TSO) reports.
Consequently, the maximum pipeline capacity for a different
pipeline diameter within the network can be recomputed by
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applying the following formula:

Q_ (&)’

Q; \D;

where: D;, D, are diameters of the pipelines in comparison, in
metres; Q;, Q, are capacities of the pipelines in comparison, in
Nm?/h;

The pipeline failure is modelled by the reduction of the pipeline
capacity to zero. According to the EGIG report [22], the average
failure frequency of a European gas transmission pipeline is
3.5x10~* per kilometer-year. Let us assume that 10% of the
reported failures cause complete rupture of a pipeline. The
assumed 10% represents the pipeline rupture, according to the
EGIG report. As a result, we set pipeline failure probability as
pr=3.5x 10~> per kilometer-year. Currently one damage level
(complete damage) is considered for pipelines. In future, a multi-
state approach will be analysed.

3.2. Probabilistic model of a compressor station

It is assumed that a compressor station failure causes the
reduction of the capacity of the surrounding pipelines. More
precisely, a compressor station failure reduces the inlet pipeline
and also the outlet pipeline capacity by 20%. This estimate is based
on empirical estimations from known operational cases [28], but
physical model simulations could serve as a confirmation for each
specific situation.

It is assumed that the annual failure probability of a compres-
sor station is 0.25. This is a conservative estimation obtained by a
reliability database from network operators. The compressor
station are Nodes 11 and 12 in our model (see Fig. 1). Of course,
the proposed algorithm is ready for an interaction with physical
models, in order to confirm the specific situations. The modelling
of interactions is under development.

3.3. Probabilistic model of gas storage

In case of a gas storage failure, it is assumed that the capacity of
the pipeline connected to the gas storage is reduced to zero [29].
According to expert knowledge [4], we set the annual failure
probability of the gas storage to 0.10. Gas storage is Node 19 in our
model (Fig. 1).

3.4. Probabilistic model of LNG terminal

The LNG terminal is modelled as a special of the gas storage:
the LNG terminal is modelled as a gas source that can randomly
fail. In case of a LNG component failure, it is assumed that the
capacity of the pipeline connected to the LNG terminal is reduced
to zero. According to literature indications (e.g. [24]), we set the
annual failure probability of the LNG terminal to 0.15. Node 10 is a
LNG terminal.

4. Definition of the case-study network

Fig. 1 shows the network topology of the test gas transmission
network model used in our study. The test case is based on the real
gas transmission network of three countries. The presented
supply/demand data sets are realistic; however, its geographical
topology is not disclosed for sensitivity reasons. The network
contains the following elements: pipelines, compressor stations
and the LNG terminal (Node 10).

Node 1 is a virtual gas source. In total, there are 4 supply nodes:
2,10, 11 and 19 (see Table 1). All numbers are expressed in million
of cubic metre per day (mcm/d). Gas source at Node 10 represents

an LNG terminal with capacity of 4 mcm/d during the initial phase
of construction. However, the maximum designed capacity of LNG
is 10.5 mcm/d.

In each test case, different supply nodes are used. For example,
in Case A, there are three gas sources: Node 2 (with limit 31 mcm/
d), Node 10 (LNG with limit 4 mcm/d) and Node 19 (with limit
25 mcm/d), see Fig. 1. Case F is based on Case A, but the LNG
terminal at Node 10 has extended its capacity limit up to
10.5 mcm/d.

Pipeline diameters and their lengths were obtained from the
gas operators. Consequently, the respective capacities have been
estimated from pipelines diameters according to the GTE report
[25], as discussed in Section 2. Moreover, the estimation of the
transmission pipeline capacities has been independently verified
by the authors and is consistent with results published at
reference [23]. All the properties of the transmission gas pipelines
are summarised in Table 2. As the matrices C and L are symmetric

Table 1
Properties of the gas sources of the gas network. The physical limits (column limit)
of gas sources are expressed in mcm/d.

from To limit
1 2 31
1 10 4 or 10.5
1 11 71
1 19 25
Table 2

Properties of connected elements of the gas network. Capacities are expressed in
mcm/d; lengths are expressed in km.

from to capacity length from to capacity length
2 50 31 23 18 23 49.16 43
3 4 49.16 0.01 18 34 2.83 43
3 5 1211 32 18 40 5.05 148
3 1 1211 29 19 20 1211 60
3 46 1713 22 19 23 12.11 0.01
4 5 1211 32 20 21 49.16 90
4 47 2 22 20 22 1211 0.01
4 48 1211 2 21 22 12.11 90
5 43 5.05 5 21 28 1211 86
6 7 1211 80 22 23 7 60
6 8 5.05 80 22 24 12.11 86
6 35 5.05 30 24 25 0.83 86
6 44 5.05 11.6 25 26 12.11 46
7 8 49.16 0.01 25 27 49.16 100
7 51 1211 200 27 31 5.05 0.01
8 9 2.83 25 27 32 5.05 70
8 51 1211 200 28 29 49.16 50
9 10 2.83 162 29 32 49.16 195
10 53 1.34 144 30 31 5.05 70
10 54 5.05 144 30 32 0.47 0.01
1 12 2 103 30 33 047 60
1 43 1211 34 32 33 2 60
11 50 49.16 31 33 38 5.05 60
12 13 49.16 85 34 37 2.83 200
12 17 49.16 62 36 46 5.05 24
12 52 1211 10 36 47 5.05 24
13 14 30.6 0.01 39 50 1.34 106
13 53 2 30 40 41 5.05 32
14 15 5.05 85 40 42 1211 63
14 54 5.05 30 44 45 5.05 1
15 16 12.11 62 44 46 1713 23
15 43 1211 132 44 47 2 23
16 17 25 0.01 46 47 49.16 0.01
16 34 4 24 49 54 0.83 40
17 34 1211 24 53 54 49.16 0.01
18 19 1211 43
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in our benchmark, only non-zero elements of the upper triangular
matrices are shown in Table 2.

Finally, Table 3 illustrates the properties of the demand nodes
of the gas network. Node 55 is a virtual sink node. Node demands
have been estimated according to partial information obtained
from the gas operators. The ‘last mile’ is not modelled, as only
transmission pipelines are represented in the model.

As our benchmark aims at studying the reliability of the gas
network, the demands at the nodes are deterministic. For this
reason, the length of the connected pipelines of demand nodes is
set close to zero, in order to avoid failures of demand nodes. In the
software tool, it is set that no pipeline failures are modelled for
0.01 km or shorter pipelines. In order to simplify Fig. 1, the virtual
sink node with the relative connections is not shown.

Length data are used for the calculation of the distance from
source nodes, in order to model the priority of supply. The demand
nodes close to the source are served first. Moreover, length data
sets are used for computing pipeline failure probability, as dis-
cussed in Section 2.

Moreover, the physical limits of gas sources, capacities of
connected elements and node demands are used as constrains
for the Maximum flow algorithm.

5. Disruption case studies

In order to simulate the test network reaction to various gas
supply disruptions, the seven following scenarios are studied. All
the selected scenarios are significant for understanding security of
supply effects: The Case A represents the gas system working in
normal conditions (business as usual). The Case B represents
previous version of the system, in which LNG terminal was
missing. The selected scenarios have been chosen in order to
analyse consequences of loss of one or more key gas sources (Case
C, D, E). Finally, Cases F and G represent a possible future
development of the gas system.

® (Case A: LNG at Node 10 has an upper limit capacity of 4 mcm/d.
No external disruption; i.e. input nodes 2 and 19 are supplied as
contracted. The pipeline between Node 10 (LNG) and Node 53
is not considered in the model.

® (Case B: As Case A, but there is no LNG at Node 10.

® (Case C: External disruption. Only LNG at Node 10 with upper
limit of 4 mcm/d is modelled as a gas source. The pipeline
between Node 10 (LNG) and Node 53 is not considered in
the model.

® Case D: External disruption. Only LNG at Node 10 with upper
limit of 10.5 mcm/d is modelled as a gas source.

® Case E: External partial disruption. Only LNG at Node 10 with
upper limit of 10.5 mcm/d and gas storage at Node 19 with
upper limit 25 mcm/d are modelled as gas sources.

® (Case F: LNG at Node 10 has upper limit 10.5 mcm/d. No external
disruption, i.e. input nodes 2 and 19 are supplied as contracted.

® Case G: LNG at Node 10 has upper limit 10.5 mcm/d. No
external disruption, i.e. input nodes 2 and 19 are supplied as
contracted. Moreover, new gas source with the upper limit
7.1 mcm/d is added on Node 11.

In these scenarios, we assume that the network components
(pipelines, compressor stations and LNG terminal) might fail
according to the probabilistic estimates discussed above. The
failure probabilities can be set by the user independently on
scenarios. However, in our scenarios, the component failure
probabilities are fixed, in order to directly compare consequences
of various disruption scenarios.

For each scenario, 1 million Monte-Carlo simulations were run.
The analysis calculated the steady state of supply/demand esti-
mated by the Maximum flow algorithm. According to discussion in
Section 3, the network component failures were simulated on a
monthly basis, while all the capacity and flow data is expressed at
a daily scale.

6. Results of Monte-Carlo simulations

In order to study security of supply in a gas network, various
gas supply strategies were simulated with the Monte-Carlo
approach. Results of Monte-Carlo simulations are presented by
means of statistical indicators, for example by the cumulative
distribution function (CDF) plots.

The indicators are computed for all required network nodes. By
applying more detailed analysis, it is possible to quantify the
probabilistic effects of each component of the gas infrastructure,
for example, the local (node) effects of a LNG terminal. The
detailed results might be important for gas operators, as network
nodes may represent key industrial plants, for example gas driven
power stations. Readability of detailed results is increased by the
risk ratio.

Even more, it is possible to quantify the redundancy of gas
sources. This aspect is interesting especially if one adds more gas
source nodes, in order to increase the gas delivery probability of
the network. We will see that even if the gas network reliability
remains approximately the same, the gas delivery in the gas

Table 3
Properties of demand nodes of the gas network. Node demands are expressed by mcm/d; lengths are expressed in km. Note: Demand on the Node 51 is set to zero for cases
C, D, E
from to demand from to demand
5 55 343 33 55 0.4
6 55 0.57 34 55 1
7 55 0.66 36 55 1.74
10 55 2.02 37 55 13
13 55 1.03 39 55 1
17 55 0.46 41 55 04
18 55 8.4 42 55 0.5
21 55 0.54 43 55 1.06
25 55 0.6 44 55 2.82
26 55 0.8 47 55 0.68
27 55 35 48 55 117
28 55 6 51 55 7
30 55 0.4 52 55 0.98
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Fig. 2. Global overview: Reliability of gas supply for test cases expressed by truncated CDF.
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Fig. 3. Reliability of gas supply at Node 36 for Scenario F (with LNG) and Scenario B (No
LNG) expressed by the truncated CDF. Although the supply reliability is very large, as we
analyse a scenario without external disruption (see small probabilities of order 10~ in
the y-axis), it is possible to quantify a positive effect of a 10.5 mcm/d LNG terminal at
Node 36.

network can be successfully quantified by the probabilistic
approach. This probabilistic quantification can be used as a tool
for comparing, scoring and ranking different gas infrastructure
projects.

6.1. Quantification of gas supply

Fig. 2 shows the cumulative distribution function of the total
network supply for all disruption case studies. It can be inter-
preted as follows: the monthly probability of having less than
specific daily demand (gas volume x, on the horizontal axis) is
given by the F(x) value (on the vertical axis). We assume that the
daily demand is constant during the month.

As expected, the gas supply situation is worse in cases with
external gas disruption, i.e. for Cases C and D followed by
Scenario E.

In Scenario E, only LNG at Node 10 with upper limit of
10.5 mcm/d and gas storage at Node 19 with upper limit
25 mcm/d are considered as gas sources. The CDF of Scenario E
has two very visible ‘steps’ corresponding to gas volume
10.5 mcm/d and 25 mcm/d. These CDF ‘steps’ are mainly caused
by gas sources failures; this can be verified analytically in an

Gas volume g, mcm per day

Fig. 4. Reliability of gas supply at Node 5 for Scenario E with LNG and without LNG
expressed by the CDF. Although the maximum observed gas supply on the node
was 2.91 mcm/d in the case without LNG, gas supply at the node will be only
0.76 mcm/d or less with probability 99.72%. In contrary, with a 10.5 mcm/d LNG
terminal, the gas supply will be less than 3.05 mcm/d with only 2.2% probability.

approximate manner, as shown below. (Of course, this considera-
tion is only an approximation, as the failures of the other gas
network components, for example the transmission pipeline fail-
ures, are assumed only in Monte Carlo simulations, but not in the
following roughly analytical verification.)

Let's analyse the CDF ‘step’ corresponding to gas volume
10.5 mcm/d. This step represents the upper limit of the LNG. This
input parameter of the model is shown in the x-axis of the figure
by the symbol “LNG”. Moreover, the expected monthly failure
probability of the LNG is -according to the input data of the model-
0.15/12=0.0125, which is shown by the same symbol “LNG” at the
y-axis of the figure. The intersection of these two values is
expressed in the figure by a small red circle. In the graph one
can see that the CDF for Case D, fully dependent on LNG, is above
this circle. This is because CDF includes in all cases internal
(random) failures of the gas network elements.

The influence of gas storage is shown by the symbol “storage”
in the x-axis with the limit of 25 mcm/d, and in the y-axis by the
expected monthly failure probability of the gas storage: 0.10/
12=0.00833.

It is evident that the failure of gas storage at Node 19 will cause
the loss of 25 mcm/d, and therefore the maximum available supply
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will be 10.5 mcm/d, corresponding to the upper limit of the LNG
storage. The gas supply will be 10.5 mcm/d or less with probability
of 0.0083, as shown in Fig. 2. This probability is consistent with the
expected monthly failure probability of the gas storage.

Let us describe the CDF ‘step’ corresponding to gas volume
25+10.5=35.5 mcm/d. The gas supply will be less than 35.5 mcm/d,
when there is a failure of the LNG source (Node 10) or a failure of the
gas storage (Node 19):

P(Node 10 U Node 19) = P(Node 10)
+P(Node 19)-P(Node 10 N Node 19)
=0.0125+0.00833
—0.0125:0.00833 = 0.0207

This probability is marked in the y-axis of Fig. 2 by the symbol
(“LNG+storage”). The same symbol in the x-axis of the figure

Table 4
Global overview: statistics of overall gas supply. Sorted by vulnerability expressed
as D-mean%. The less vulnerable cases are on top.

Case max mean median std cv% D-mean% D

G 48.5 483 48.5 1.6 3.38 03 48.5
A 48.5 48.3 48.5 1.6 34 0.3 48.5
F 48.5 483 48.5 1.6 3.41 0.3 48.5
B 48.5 483 48.5 1.7 3.45 0.3 48.5
E 35.5 35.2 35.5 2.6 7.31 15.2 41.5
D 10.5 104 10.5 1.2 1.3 75 415
C 4 3.95 4 0.44 1.2 90.5 41.5

Table 5

Global overview: Selected probabilities of gas delivery for the case studies. List of
demand (D, mcm/d) and probabilities that the gas delivery will be zero or less than
20%, 50%, 80% or 100% of the gas demand. Sorted by vulnerability expressed by the
probability of gas delivery. The less vulnerable cases are on the top.

Case D P(X=0)  P(X<02D) P(X<05D) P(X<0.8D) P(X<D)
A 4846 0 0.000001 0.000002 0.00846 0.0114
G 4846 0 0 0.000001 0.00839 0.0116
F 4846 0 0 0.000001 0.00864 0.0117

B 48.46 0.000002 0.000002 0.000003 0.00882 0.0124
E 4146 0 0.000101 0.00846 0.0217 1

D 41.46 0.0125 0.0134 1 1 1

C 4146 0.0125 1 1 1 1

Table 6

Statistics of gas sources: reliability quantification of redundancy of gas supply.

Scenario Source max mean median std cv% L-mean% Limit L

A 2 306 203 202 0.79 388 346 31
10 4 395 4 044 112 13 4
19 25 241 243 2.2 9.15 3.6 25
B 2 306 242 242 068 281 219 31
19 25 241 243 2.2 924 36 25
10 4 395 4 044 11.2 13 4
D 10 105 104 105 1.2 1.3 13 10.5
E 10 105 104 105 1.2 113 13 10.5
19 25 248 25 23 924 08 25
G 2 235 151 15 068 448 513 31
10 105 2 2.02 027 134 81 10.5
1 71 71 71 0 0 0 71
19 25 241 243 2.2 9.21 3.6 25
F 2 306 193 19.2 086 446 378 31
10 105 494 5 057 115 53 10.5
19 25 241 243 2.2 926 36 25

represents the upper limit for LNG and storage: 10.5+25=35.5
(mcm/d). It is visible from the graph that the CDF of the Case E, fully
dependent on LNG and storage, is again above the small red circle, as
the CDF includes internal (random) failures of the gas network
elements.

The cumulative distribution functions of gas supply of the
remaining cases (A, B, F, G) are approximately the same, see
Fig. 2, as they are not affected by external gas disruptions. In these
cases, it is visible that the gas is supplied from the reliable main
pipeline source (31 mcm/d of Node 2). Then, in the x-axis, at the
point corresponding to a gas volume of 31 mcm/d, there is a jump
to the storage probability, as for larger volume of gas the system
requires supply from the gas storage.

It seems from Fig. 2 that the CDFs of these remaining cases (A,
B, F, G) are the same. However, we will see in the next section that
these cases are different and this difference can be successfully
quantified. For example, the positive impact of LNG is visible also
for these cases with no external gas disruptions, when analysing
the probabilistic gas supply results at the node level, see Fig. 3.
This is due to the fact that LNG can be viewed as a gas local source
in our benchmark. Of course, the positive effect of LNG is very
visible for a case with the external gas disruption, see Fig. 4.

The Statistical properties of gas supply for the cases presented
in this paper are summarised in Table 4. The column “D-mean%” of
Table 4 shows the relative difference between demand D and
mean value of the supply. The column is expressed as a percen-
tage. The column “cv%” represents the variation coefficient, which
is defined as the ratio of the standard deviation “std” to the mean;
it is also expressed as a percentage. Results are sorted in the
columns “D-mean%” and “cv%”. The best case for gas supply
appears to be Case G. This is predictable, as this case has the
largest redundancy of gas sources (LNG at Node 10 and an
additional gas source at Node 11). The set of successful cases ends
with Case B. This case has the most limited “redundancy” of gas
sources, as there is neither LNG nor any other additional gas
source. In Case E, approximately 15% of gas is not supplied in
average, because of external gas disruptions. The worst case is
again Case C, in which, in average, 90.5% of the demand is not
supplied.

Table 5 includes probabilistic results of disruption cases. The
table includes for all cases the list of demand quantities (column
D) and probabilities that the supply at node X will be zero,
expressed by the symbol P(X=0), or less than 20%, 50%, 80% or
100% of the node demand.

The results of the disruption cases, with no external gas
disruption, fluctuate around the same probabilities — see results
of cases A, B, F, G. However, Case B is correctly identified as having
the minor value among the cases considered, as it has neither LNG
nor any additional gas source.

Case E is able to supply at least 80% of the demand with
probability 1-0.0217~0.978. This probability is, approximately, a
complement of the 0.0207 probability of the already discussed
“LNG + storage” effect, see previous comments on Fig. 2.

6.2. Quantification of redundancy of gas sources

Although the cases without external gas disruption have
approximately the same probabilistic results for the gas supply,
they have different redundancy of the gas sources. The results for
the quantification of the redundancy of gas sources are showed in
Tables 6 and 7.

Statistical indicators of gas supply are presented in Table 6. The
column “L-mean%” of Table 6 represents the relative difference
between the physical upper limit of the gas source L and the mean
value of the supply. The column is expressed in percentages. The
column “cv%” represents the variation coefficient expressed also in
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percentages. Cases C, D, E have no redundancy of gas sources, so
values of “L-mean%” are close to zero. On the contrary, Case G has
the largest redundancy, especially thanks to the additional gas
source at Node 11, which is used with the largest priority.

Probabilistic indicators of gas supply are presented in Table 7.
The table includes the list of gas sources for all cases, their physical
upper limit L, and the probabilities that the supply from the source
will be zero, represented by the symbol P(X=0), or less than 50%,
80% or 100% of the gas source limit.

Cases C, D, E have no redundancy of gas sources; all the relative
probabilities are close to zero. On the contrary, Case G has the
largest redundancy, with gas sources at Node 2, at Node 10, and an
additional one at Node 11, which is used with the largest priority.

Table 7
Probabilistic analysis of gas sources: Reliability quantification of redundancy of gas
supply.

Case Source LimitL P(X=0) P(X<05L) PX<08L) PX<L)
A 2 31 730E-05 4.04E—-04  9.92E-01 1.00E+00
10 4 123E-02 1.23E-02 1.34E-02 1.39E-02
19 25 829E-03 8.29E-03 8.54E-03 9.99E-01
B 2 31 6.10E—-05 3.89E—-04 9.91E-01 1.00E+00
19 25 846E—-03 846E-03 8.68E—-03  9.99E-01
10 4 125E-02 1.25E-02 1.25E—-02 1.30E-02
D 10 10.5 125E—-02 1.25E-02 1.34E-02 1.44E-02
E 10 10.5 1.24E-02 1.24E-02 1.32E-02 1.42E-02
19 25 846E—-03 846E—-03 846E-03  8.87E—-03
G 2 31 8.60E—05 9.79E-01 1.00E+00  1.00E+00
10 10.5 1.24E-02 1.00E+00 1.00E+00  1.00E+00
11 71 0.00E+00 0.00E+00 0.00E+00  0.00E+00
19 25 839E-03 8.39E-03 865E-03 9.99E-01
F 2 31 6.70E-05 3.94E-04  9.92E-01 1.00E+00
10 10.5 126E—-02 9.99E-01 1.00E+00  1.00E+00
19 25 848E—-03 848E-03 8.75E-03  9.99E-01

Table 8

Results of Scenario B: List of nodes with non-zero demands (D, mcm/d) and
probabilities that the node supply will be zero or less than 20%, 50%, 80% or 100% of
the node demand.

6.3. Quantification of probabilistic effects of a new gas
infrastructure: a case of LNG terminal

Although cases without external gas disruption have approxi-
mately the same CDF of the gas supply at the global (summary)
level, they have not only differences on the redundancy of the gas
sources, but also significant differences at the node level.

Let us analyse in more detail the probabilistic results of Cases B
and F, see Tables 8 and 9. Both cases represent a scenario without
external disruption, i.e. input nodes 2 and 19 are supplied as
contracted. Moreover, in Scenario F, LNG is added at Node 10 with
upper limit 10.5 mcm/d. Node 56 represents a virtual node
(summary of supply). As already shown in Table 5, adding the
LNG source produces a decrease in P(X < D) from 1.24E—02 to
117E-02.

Moreover, results of one million of Monte-Carlo simulations
indicate that adding the LNG as redundant supply will diminish
the gas delivery uncertainty for Nodes 13, 17, 34, 43 - see Table 9.

However, the quantification of the security of supply effects of
the addition of redundant LNG by direct comparison of the
probabilities in Tables 8 and 9 is not self-evident, due to size of
the tables. For this reason, we created another table, which
automatically highlights dissimilarities between see Table 10.

In our approach, the quantification of security of gas supply of
the LNG gas infrastructure for node i of the gas network is
provided by a risk ratio [27]. The risk ratio is easy to interpret:
the risk ratio (also called ‘relative risk’) for a ‘not enough gas event’
at Node i is the probability of having ‘not enough gas’ at Node i
without the LNG infrastructure divided by the probability of
having ‘not enough gas’ at Node i with the LNG:

P(not enough gas at Node i|no LNG)
P(not enough gas at Node i|LNG is connected)

risk_ratio =

For example, if the risk ratio equals 5, it is 500% more likely to
occur a ‘not enough gas event’ at Node i when no redundant LNG
than in cases with redundant LNG connected, holding all other

Table 9

Results of Scenario F: List of nodes with non-zero demands (D, mcm/d) and
probabilities that the node supply will be zero or less than 20%, 50%, 80% or 100% of
the node demand.

Node D P(X=0)  P(X<02D) P(X<05D) P(X<0.8D) PX<D) Node D P(X=0)  P(X<02D) P(X<05D) P(X<08D) P(X<D)
5 343 200E-06 200E—06 139E—04 139E—04 1.39E—04 5 343 000E+00 O0.00E+00 3.00E-06 3.00E—06 3.00E—06
6 0.57 3.05E-04 3.05E-04 3.90E—-04 3.90E—04 3.90E—04 6 0.57 3.00E-06 3.00E—06 4.00E—06 4.00E—06 4.00E—06
7 0.66 3.90E—04 3.90E—04 3.90E—04 3.90E—04 3.90E—04 7 0.66 740E—05 740E—05 740E—05 740E—05 7.40E—05
10 202 227E—04 227E—-04 227E-04 935E-04 9.35E—04 10 202 400E—06 4.00E—06 4.00E—06 4.00E—06 4.00E—06
13 1.03 2.00E—06 2.00E-06 2.00E—06 2.00E-06 2.00E—06 13 1.03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
17 046 2.00E—06 2.00E-06 2.00E—06 2.00E—06 2.00E—06 17 046 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
18 84 500E-06 6.00E—06 7.00E—06 8.46E—03 846E—03 18 84 000E+00 0.00E+00 0.00E+00 8.48E—03 8.48E—03
21 0.54 846E—03 8.46E—03 846E—03 8.46E—03 846E—03 21 0.54 848E—03 8.48E—03 848E—03 8.48E—03 8.48E—03
25 0.6 846E—03 SAGE—03 846E—03 846E—-03 8.46E—03 25 06 849E-03 849E-03 849E-03 8.49E-03 849E—03
26 0.8 858E-03 910E-03 910E—03 9.10E—03 9.10E—03 26 0.8 864E—03 914E-03 914E—03 9.14E-03 9.14E—03
27 35 860E—03 8.60E—03 8.60E—03 8.60E—03 8.60E—03 27 35 864E—03 8.64E—03 8.64E—03 8.64E—03 8.64E—03
28 6  846E—03 846E—-03 8.68E—03 8.68E—03 8.68E—03 28 6  849E-03 849E—03 8.75E—03 8.75E—03 8.75E—03
30 04 860E—03 8.60E—03 860E—03 8.60E—03 8.60E—03 30 04 864E—03 8.64E—03 8.64E—03 8.64E—03 8.64E—03
33 04 860E—03 8.60E—03 8.60E—03 8.93E—03 8.93E-03 33 04 864E—03 8.64E—03 8.64E—03 8.99E—03 8.99E—03
34 1 200E—06 2.00E—06 2.00E—06 2.00E—06 2.00E—06 34 1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E-+00
36 174 213E-04 213E—04 213E-04 214E-04 215E-04 36 1.74 3.00E—06 3.00E-06 7.30E—05 226E—04 227E—04
37 13  9.04E—03 9.04E—03 9.04E—03 9.04E—03 9.04E—03 37 13  910E—03 910E—03 9.10E—03 910E—03 9.10E—03
39 1 361E-04 3.61E-04 361E-04 361E-04 3.61E—04 39 1 347E—04 347E-04 347E—04 347E-04 3.47E—04
41 04 899E—03 899E-03 899E—03 8.99E—03 8.99E-03 41 04 898E—03 89SE—03 898E—03 8.98E—03 8.98E—03
42 0.5 90SE—03 9.0S8E—03 9.08E—03 9.08E—03 9.08E—03 42 0.5 904E—03 9.04E—03 9.04E—03 9.04E—03 9.04E—03
43 1.06 2.00E—06 2.00E-06 2.00E—06 2.00E-06 2.00E—06 43 1.06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
44 282 139E-04 139E—04 213E—04 276E—04 2.76E—04 44 2.82 3.00E-06 3.00E—06 3.00E-06 3.00E—06 3.00E—06
47 0.68 139E-04 139E-04 139E-04 139E—-04 139E—04 47 0.68 3.00E-06 3.00E—06 3.00E-06 3.00E—06 3.00E—06
48 117 700E—06 7.00E—06 7.00E—06 7.00E—06 7.00E—06 48 117 6.00E—06 6.00E—06 6.00E—06 6.00E—06 6.00E—06
51 7  390E-04 390E-04 390E—04 G.ISE—04 618E—04 51 7  228E-04 286E-04 321E-04 399E-04 3.99E-04
52 098 3.20E—-05 320E-05 320E—05 340E—05 3.40E—05 52 098 3.50E—05 350E—05 3.50E—05 3.50E—05 3.50E—05
56  48.46 200E—06 2.00E—06 3.00E-06 8.82E—03 124E—02 56  48.46 0.00E+00 0.00E+00 100E—06 8.64E—03 1.17E—02
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Table 10
Quantifications of probabilistic effects of an 10.5 mIn/d LNG source. Positively
affected demand nodes highlighted.

Node D m(X=0) mX<0.2D) m(X<0.5D) rm(X<0.8D) rr(X<D)
5 343 - - 46.3 46.3 46.3
6 0.57 1017 101.7 97.5 97.5 97.5
7 0.66 5.3 5.3 5.3 53 53

10 2.02 56.8 56.8 56.8 233.8 233.8

13 1.03 - - - - -

17 046 - - - - -

18 84 - - - 1.0 1.0

21 054 1.0 1.0 1.0 1.0 1.0

25 06 10 1.0 1.0 1.0 1.0

26 08 10 1.0 1.0 1.0 1.0

27 35 10 1.0 1.0 1.0 1.0

28 6 1.0 1.0 1.0 1.0 1.0

30 04 10 1.0 1.0 1.0 1.0

33 04 10 1.0 1.0 1.0 1.0

34 1 - - - - -

36 1.74 710 71.0 29 0.9 0.9

37 1.3 10 1.0 1.0 1.0 1.0

39 1 1.0 1.0 1.0 1.0 1.0

41 04 10 1.0 1.0 1.0 1.0

42 05 10 1.0 1.0 1.0 1.0

43 1.06 - - - - -

44 2.82 463 46.3 71.0 92.0 92.0

47 0.68 46.3 46.3 46.3 46.3 46.3

48 117 12 12 1.2 1.2 1.2

51 7 17 14 1.2 1.5 1.5

52 098 0.9 0.9 0.9 1.0 1.0

56 4846 - - 3.0 1.0 11

variables constant. On the contrary, a relative risk of one at Node i
means that the LNG infrastructure has no effect on the Node i.

As shown in Table 10, if we compare simulations with and
without LNG, the risk ratio (expressed by the symbol “rr”) of
having less than 80 % of the demand at Node 6 is, approximately,
97. Naturally, the largest effect of having the LNG infrastructure is
directly visible at Node 10. Moreover, the positive effect of LNG is
evident also for Nodes 5-7, 44, 47 and, partially, also for Node 36.
The results appear to be realistic: As expected, the nodes showing
positively effects are those geographically close to the LNG.

Finally, the nodes with relative risk equal to one are not
affected by the LNG. For Node 52, and, partially, for Node 36, the
relative risk is close to 0.9, considering the inherent numerical
approximation of the Monte-Carlo method. But it is not a supply
gas problem, as the estimated non-delivery probabilities at these
two nodes are very close to zero.

7. Conclusions and future work

The paper describes the methodological approach and the
results obtained by the probabilistic gas network simulator Pro-
GasNet. The presented Monte-Carlo simulation technique for
stochastic network model with a priority supply pattern repre-
sents a general approach, which can be used with advanced failure
models. The here presented failure model currently does not
depend on the component state (age, overload). Currently we do
not simulate repair of the failed components. Currently one
damage level (complete damage) is considered for pipelines. In
the future, a multi-state approach will be analysed. Even with
these simplifications, the model is able to identify critical network
nodes in terms of security of supply.

Our repeated numerical experiments indicate that 1 million of
runs are enough for the presented gas network: For example, it is
possible to provide a detailed quantification of probabilistic effects
of a new gas infrastructure. Generally, quality of results of the

Monte-Carlo simulations can be analysed by exact confidence
limits [31].

The ProGasNet model provides a quantitative indication of the
worst networks nodes in terms of security of gas supply and
provides their numerical ranking. The same model can be applied
for many other purposes, like vulnerability analysis, bottleneck
analysis, evaluation of new network development plans and the
analysis of potential supply crisis.

The ProGasNet has been applied to a test case based on the real
gas transmission network of some EU countries. The results
obtained indicate the benefits that might derive from the insertion
of a new infrastructure (LNG terminal) to an existing network and
in particular to certain nodes. It is important to note that security
of supply also depends on redundancy of supply sources, and that
this can be quantified by the model proposed.

The model will be expanded and improved in many directions
in the future, in particular by integrating more results from
physical flow models (important for larger networks containing
many compressor stations) and optimising the algorithm to handle
more MC runs.
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