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Multiple Signalling Pathways Establish Cell Fate
and Cell Number in Drosophila
Malpighian Tubules
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A unique cell, the tip mother cell, arises in the primordium of each Drosophila Malpighian tubule by lateral inhibition
within a cluster of achaete-expressing cells. This cell maintains achaete expression and divides to produce daughters of
equivalent potential, of which only one, the tip cell, adopts the primary fate and continues to express achaete, while in the
other, the sibling cell, achaete expression is lost (M. Hoch et al., 1994, Development 120, 3439-3450). In this paper we chart
the mechanisms by which achaete expression is differentially maintained in the tip cell lineage to stabilise cell fate. First,
wingless is required to maintain the expression of achaete in the tubule primordium so that wingless mutants lack tip cells.
Conversely, increasing wingless expression results in the persistence of achaete expression in the cell cluster. Second,
Notch signalling is restricted by the asymmetric segregation of Numb, as the tip mother cell divides, so that achaete
expression is maintained only in the tip cell. In embryos mutant for Notch tip cells segregate at the expense of sibling cells,
whereas in numb neither daughter cell adopts the tip cell fate resulting in tubules with two sibling cells. Conversely, when
numb is overexpressed two tip cells segregate and tubules have no sibling cells. Analysis of cell proliferation in the
developing tubules of embryos lacking Wingless after the critical period for tip cell allocation reveals an additional
requirement for wingless for the promotion of cell division. In contrast, alteration in the expression of numb has no effect
on the final tubule cell number. © 2000 Academic Press
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INTRODUCTION is not random; patterning, involving pannier and genes of
the iroquois complex, ensures the selection of a predeter-
Cells achieve their final differentiated fate through a mined cell as the SOP (Ramain et al.,, 1993; Gomez-
§eries of decisions, each (?f \_NhiCh may depend o_n.multiple Skarmata et al., 1996; Simpson, 1997). Further, the precise
inputs. An example of this is the sequential activity of the  pattern of cell fate in the progeny of the SOP requires the
proneural and neurogenic genes in Drosophila; a stratedy  asymmetric localisation of a cytoplasmic determinant en-
that is used widely in developing tissues such as the CNS  ¢qged by numb (nb), which in turn relies on the polarised
(Campos-Ortega, 1993), PNS (Campuzano and Modolell,  gistripution of the cytoskeletal-binding protein Inscuteable
1992), somatic mesoderm (Corbin et al., 1991; B_ate etal, (Uemura et al., 1989; Rhyu et al., 1994; Kraut et al., 1996;).
1993; Carmenaetal., _1995)' anduthe stomatogastrl_c ne_rvous Numb influences cell fate by blocking the activation of
system .(Gonzalez-Gautan and Jackle, 1995.)' Studies n the Notch, thereby biasing the outcome of signalling between
developing PNS have revealed further refinements in the potentially equivalent cells (Guo et al., 1996: Spana and
mechanisms determining cell fate. Within certain proneu- Doe, 1996) v '

ral clusters the selection of sensory organ precursors (SOPs e L. . .
yorganp ( ) The specification of cell types in the SOP lineage there-

N . - o fore depends on the activity of at least four groups of genes.
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segregation of different cell types, remains a challenging
question.

Normal development of the excretory system, the Mal-
pighian tubules, of the fly depends on the segregation of a
unique cell, the tip cell, in each tubule primordium. Tip
cells direct and pattern cell proliferation in the developing
tubules through activation of the EGF receptor (Baumann
and Skaer, 1993; Kerber et al., 1998), so that in the absence
of tip cells (Skaer, 1989; Hoch et al., 1994) or in embryos
mutant for the EGF receptor or its ligand, spitz (Kerber et
al., 1998), these cell divisions fail. The allocation of tip cell
fate depends on lateral inhibition within a set of cells in
each primordium, which express proneural genes, such as
achaete (ac), and which have the capacity to develop as tip
cells. Only asingle cell, the progenitor of the tip cell (the tip
mother cell), continues to express proneural genes and
retains tip cell potential. This restriction depends on the
activity of the neurogenic genes so that multiple tip cells
develop in embryos mutant for genes in this family. The tip
mother cell divides once and its daughters follow separate
fates. One differentiates as the tip cell and continues to
express the transcription factors Achaete and Kruppel; the
other as the sibling cell, which loses the expression of both
markers. This second cell fate decision also depends on the
activity of the neurogenic genes, Delta (encoding the ligand)
and Notch (encoding the receptor) (Hoch et al., 1994), but in
addition on the activity of the DNA-binding protein en-
coded by eyelid (Carrera et al., 1998).

In this study we explore the mechanisms underlying the
specification of the tip cell further. In particular we exam-
ine the role of intercellular signalling by wingless (wg) and
the asymmetric activity of numb (nb). We show that wg is
required for the appearance of tip cells in the tubules and
that wg expression is both necessary and, for a period,
sufficient for the maintenance of ac expression in cells with
tip cell potential. While nb is not required for the segrega-
tion of tip mother cells, it is necessary for the continued
expression of ac in the tip cell and thus for the correct
allocation of cell fate between the tip cell and its sibling.
This activity is dependent on the expression of the cyto-
plasmic protein Inscuteable. Thus both mechanisms act
through the maintenance of ac expression to confirm tip
cell potential. We analyse the consequences for tubule cell
proliferation of removing wg function and of misspecifying
cell fates between the tip cells and their siblings.

MATERIALS AND METHODS

Fly Stocks

The following strains were used: Oregon R; a null allele of wg,
wg®; a ts allele, wg"**; two alleles of numb, nb*(Uemura et al.,
1989) and nb"® (Buescher et al., 1998), and a deficiency uncovering
nb, Df(2L)30A-C (Lindsley and Zimm, 1992); inscuteable” (Kraut
et al., 1996); HS-wg/TM3hbLacZ (Nordermeer et al., 1992); a

P-element insertion in neuromusculin, A37 (Kania et al., 1993);

Wan, Cato, and Skaer

UAS-numb (Zhong et al., 1996); HS-N;.. (an activated form of
Notch, Struhl et al., 1993); and HS-Gal4 (gift of Andrea Brand).

Manipulation of Gene Expression

Temperature-shift experiments and the ectopic expression of wg
were carried out as described previously (Skaer and Martinez Arias,
1993). Times for temperature shifts are given as equivalent time at
25°C, so that an upshift at 5 h would be after embryos had been
kept at 18°C for 10 h. Embryos carrying the ts allele or the heat
shock construct were identified by the absence of B-galactosidase
staining associated with the balancer chromosome. Sibling and
wild-type embryos were used as controls. In addition, the efficiency
of the heat shock promotor was tested both by staining embryos at
the end of each heat shock regime using an antibody against Wg (wg
was ubiquitously expressed; data not shown) and by making cuticle
preparations of mature embryos (van der Meer, 1977), which
showed the characteristic phenotype of naked ventral cuticle
(Nordermeer et al., 1992).

For the expression of Ni.., embryos were collected for 1 h at
25°C, aged at 18°C, dechorionated, and heat shocked for 20 min at
36°C. The heat shock was repeated after one hour at 25°C for longer
periods of expression and embryos were then aged at 18 or 25°C
before fixing for immunostaining.

The expression of nb was driven by crossing UAS-nb females to
males carrying HS-Gal4. Gastrulae were selected from the result-
ing progeny and subjected to heat shock, as described above, so that
nb was expressed from 3.5 to 7.5 h. Embryos were then aged at 18
or 25°C before fixing.

Malpighian tubule cells were counted in dissected stage 16
embryos (Truman and Bate, 1988), after staining immunocyto-
chemically for Cut.

Immunocytochemistry

Embryos were stained as described previously (Hoch et al., 1994)
except that staining for Ac was as described in Goriely et al. (1991).
Embryos were mounted in Araldite in capillaries to allow free
rotation (Schmidt-Ott and Technau, 1992) and were photographed
using a Ziess Axioplan microscope. We used the following antibod-
ies at the dilutions shown: mAb22C10 1:200 (Zipursky et al., 1984);
mAbachaete 1:100 (gift of S. Carroll); anti-Kruppel 1:1000 (gift of C.
Rushlow); anti-B-galactosidase 1:10,000 (Cappel); mAbcut 1:200
(gift of I. Rebay); and anti-wg 1:1000 (gift of M. van den Heuvel).

For confocal microscopy, fluorescently tagged secondary anti-
bodies (Jackson) were used at 1:800 dilution and embryos viewed
with a LeicaTCS NT laser imaging system.

The age of embryos is given either as hours after egg laying at
25°C or as stages according to Campos-Ortega and Hartenstein
(1985).

RESULTS

Tip Cells Fail to Segregate in wg Mutant Embryos

In wild-type embryos, each Malpighian tubule tip cell can
be recognised as a single large cell protruding from the
distal end of the tubule, from stage 12 (Skaer, 1989). They
express Kruppel and stain with the antibody 22C10 (Zipur-
sky et al., 1984; Hoch et al.,, 1994) (Fig. 1B). Embryos
carrying the wg®* mutation were stained for these markers.
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FIG. 1. (A, B). Wild-type embryos stained with anti-Cut (A) to show the Malpighian tubules (arrows, anterior tubules) and with 22C10 (B)
which picks out the tip cell (arrow). (C, D) Embryos mutant for wg® stained with anti-Cut (C) and 22C10 (D). The tubules (arrow in C) are
much reduced in size and lack tip cells (site of tip cell arrow in D). (A, C) Dorsal views; (B, D) dorsolateral views. Anterior to the left in all
cases.
FIG. 2. The expression of ac in wild type (A-D) and wg®* mutant (E-H) embryos. (A, E) Stage 10 (4.5 h); (B) stage 11 (5.5 h); (F, H) stage
10 (5 h); (G) stage 11 (6.5 h); (C) early stage 12 (7-7.5 h); (D) stage 12 (8—8.5 h). The onset of ac expression (arrows in A, E, F) is reduced or
fails altogether in wg mutants compared with wild type (cf. A with E, F, H). In wild-type embryos division of the tip mother cell (arrow in
B) leads to the appearance of two cells expressing ac (arrows in C). However, expression refines again to a single cell in each tubule (D). In
mutant embryos ac expression fades and disappears by mid-stage 11 (white arrowheads in G). (A, B, E-G) Lateral views; (C, D) dorsal views.
(H) Dorsolateral view, stained for Ac (red) and Cut (green). ac expression, apparent in the posterior midgut (PMG, arrowhead) and CNS (gray
arrowheads), is absent in the tubule primordia (arrows). Anterior of the extended germ band embryo is to the left so that the hindgut lies
to the left and the posterior midgut lies to the right.
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FIG. 3.

In embryos homozygous for the ts allele wg'**, tip cells, revealed by 22C10, appear at the permissive temperature (A) but are

missing in embryos raised at the restrictive temperature (B). If the expression of wg is removed by exposure to the restrictive temperature
from 3.5 to 5.5 h, tip cells are lost (C) but restoration of wg expression for the same period results in their appearance (D). Arrows indicate
tip cells in A and D and white arrowheads the site where they would normally appear in B and C. (A-C) Lateral views; (D) dorsal view;

anterior to the left in all cases.

Cell division fails in the tubule primordia of mutant em-
bryos, producing tubules of very reduced size (cf. Figs. 1A
and 1C; Skaer and Martinez Arias, 1993). However, in these
tiny tubules no tip cells develop, judged both by the absence
of antibody staining and by uniform cell morphology at the
tubule tip (cf. Figs. 1B and 1D).

In wild-type embryos a cluster of cells in each tubule
primordium starts to express proneural genes during stage
10 at about 4.5 h (shown for Achaete (Ac) in Fig. 2A).
Expression refines by 5-5.5 h to one cell, the tip mother
cell, in each cluster (Fig. 2B). This cell divides between 6.5
and 7.5 h to produce two Ac-staining cells (Fig. 2C). By 8 h
staining is again restricted to one cell, the tip cell, in each
cluster (Fig. 2D) and ac continues to be expressed in this cell
until stage 16 (15 h) (Hoch et al., 1994). In embryos mutant
for wg, ac expression in the tubule primordia is either
absent (Fig. 2H) or weak and expressing cells are only rarely
arranged in clusters (Figs. 2E and 2F). Expression weakens
prematurely and disappears by 6.5 h (Figs. 2G and 2H).
These results indicate that Wg is required for the normal
pattern of ac expression in the tubule primordia, being
essential for its maintenance in the tip cell lineage.

There Is a Window of Requirement for Wg
between 4.5 and 5.5 h

In order to establish when the wg product is required for
tip cell allocation, we manipulated wg activity using the
temperature-sensitive allele, wg""* (Nusslein-Volhard et
al., 1984). At the permissive temperature tip cells develop
normally (Fig. 3A), while at the restrictive temperature Wg
function is lost and tip cells fail to appear (Fig. 3B). Tem-
perature shift experiments establish that embryos must
develop at the permissive temperature between 4 and 5 h
for tip cells to appear normally (Table 1). In accordance with
these findings, embryos shifted to the permissive tempera-
ture for this period develop with tip cells (Fig. 3D), while a
shift to the restrictive temperature results in tubules with
no tip cells (Fig. 3C).

Given that the restoration of wild-type wg protein has
been shown to take 20-30 min and that the removal of
functional protein takes a similar time after shifting tem-
perature (quoted in Skaer and Martinez Arias, 1993), these
results establish the window of requirement for functional
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TABLE 1

Appearance of Tip Cells in the Malpighian Tubules of wg
Embryos after Temperature Shifts at Different Ages

1114

Tubules with

Age at temperature tip cells, Tubule cell number,
change, h % of tubules average = SEM
(=30 min) analysed (n)

Upshifts
3 0
4 75
5 100 83 = 3 (39)
6 100 107 = 3 (24)
7 100 129 = 4 (18)
Downshifts
3 100 119 * 4 (22)
4 100 68 * 6 (12)
5 0
6 0
7 0

Note. Tip cells were analysed in a minimum of 8 mutant (32
Malpighian tubules) and 8 control sibling embryos for each tem-
perature shift. Tip cells appeared normally in control embryos for
all temperature shifts and the number of cells in the tubules was
not different from wild type (124 + 3; Baumann and Skaer, 1993).
Malpighian tubule cell number is given as the average for all four
since the anterior and posterior pair cannot be distinguished in the
strongly affected embryos.

Wg in the tubules for tip cell allocation as 4.5-5.5 h of
embryogenesis.

W(g is normally expressed in the tubule primordia as they
evert from the hindgut (Skaer and Martinez Arias, 1993).
From 4.5 h expression is higher in the posterior region of the
developing tubules than the anterior (Fig 4A). The tip
mother cell segregates from this posterior region, where wg
continues to be expressed (Figs. 4B and 4C). Wg is lost from
tubules during stage 12 (Skaer and Martinez Arias, 1993).

Ectopic Expression of wg Is Sufficient to Maintain
ac Expression but Not to Establish Extra Tip Cells

We used embryos carrying wg under the regulation of a
heat shock promotor (Nordermeer et al., 1992) to drive
increased levels of wg expression throughout the tubules.
We examined the expression of ac in the developing tubules
after three different heat shock regimes, designed to drive
wg expression for varying periods in embryos aged between
4 and 10 h (Figs. 5C-5E). In regimes which drive wg
expression to 67 h, ac expression is maintained in the cell
clusters for longer than in wild type but refines to one cell
after the end of the heat shock period (Figs 5C and 5E, a—d).
When wg expression is driven until 8.5 h the expression of
ac refines from a cluster (Fig. 5E, e) to 2 cells (Figs. 5E, f; and
4D) but does not refine further until after the heat shock.
However if wg expression is driven until 9-11 h, the
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expression of ac does refine to a single cell during the period
of heat shock (Figs. 5E, g and h, and 5D). In summary,
elevated levels of Wg in the developing tubules do not result
in expansion of ac-expressing domains but rather in persis-
tence of expression. There is a limit to this capacity; beyond
7 h expression refines to two cells and beyond 9 h refine-
ment to a single cell occurs even in the presence of ectopic
Wag.

After each heat shock regime examination of embryos,
aged to stage 16 and stained with 22C10, revealed that a
single tip cell always developed, appearing morphologically
normal (data not shown). Wild-type embryos subjected to
similar heat shock regimes showed the normal pattern of ac
expression in the tubule primordia (data not shown).

There Is a Dual Requirement for wg to Maintain
Cell Proliferation in the Tubules

Manipulation of wg expression using the ts allele, wg'**,

reveals a requirement for wg in cell division, separate from
its role in tip cell specification. If Wg is removed after 5 or
6 h AEL but before cell division ceases in the tubules, the
final tubule cell number is reduced compared to wild type
(Table 1). This indicates that the appearance of tip cells is
insufficient, in the absence of Wg, to promote the normal
pattern of division in the tubules.

Tip Cell Allocation Is Disrupted in the Absence
of nb

In wild-type embryos the division of the tip mother cell is
asymmetric, giving rise to the tip cell and a sibling cell
(Figs. 6A and 6B; and Hoch et al., 1994). Soon after this
division the morphology of the tip cell alters so that it
protrudes from the tubule epithelium on the basal side,
though it does not delaminate from it. (Figs. 1B and 4D-4F).
In contrast the sibling cell remains with(in) the tubule
epithelium adjacent to the tip cell. In embryos carrying a P
element in which LacZ is expressed in the tip mother cell
(A37 in neuromusculin; Kania et al., 1993), perdurance of
B-galactosidase allows the sibling cell to be identified
immunocytochemically (Fig. 6A). In embryos double
stained with 22C10 and for B-galactosidase, only the tip cell
stains for both antigens (Fig. 6B).

In embryos mutant for nb Malpighian tubules develop
without tip cells (Figs. 6C-6E). The tubules of embryos
carrying A37 in a nb mutant background contain two
B-gal-positive cells that remain with(in) the tubule epithe-
lium (Fig. 6F) and do not stain with 22C10 (Fig 6G),
indicating that they both develop instead as sibling cells.

Careful examination of mutant embryos (whether nb’,
nb™, or a deficiency uncovering nb) shows that in a
proportion tip cells are allocated normally in one or two of
the four tubules (approximately 8% of all progeny (n = 115)
and Fig. 6C). This finding is confirmed by double staining
A37/nb embryos with anti p-gal and 22C10 (Fig. 6H).
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(A-C) wg expression. (A) wg (red) is expressed on the posterior side (arrow) of the tubule primordia from stage 10. (B, C) Two focal

planes of an early stage 11 embryo. ac expression (green) refines into the tip mother cells in the posterior wg-expressing domains, facing the
hindgut, HG (arrowheads indicate tip mother cells in B, C; in the tubule shown in B refinement of ac expression is incomplete). (D-F) nb
expression. (D) nb (red) is expressed uniformly in the tip mother cell (asterisk) at 6.5 h (mid-stage 11). (E) Staining for Cut (green) becomes
diffuse in the tip mother cell (asterisk) as the nuclear envelope breaks down in early mitosis and Nb becomes asymmetrically distributed
in a basal crescent. (F) Mid-stage 12. Nb is partitioned asymmetrically into the tip cell (asterisk). (A'-F’) Features illustrated in A-F (boxed
areas in D'-F’). Anti-Nb, red; anti-Cut, green. Asterisks: tip mother cell (D, E); tip cell (F). HG, hindgut; MT, Malpighian tubule primordium;
PMG, posterior midgut; L, tubule lumen on the apical side of the tubule cells.

Ectopic Expression of nb Directs Cells to a Tip
Cell Fate

Staining with an antibody against Nb reveals that it is
expressed in the tip mother cell, where initially it is
distributed symmetrically (Fig. 4D). However, as the cell
enters division, Nb is strikingly localised in a basal crescent

(Fig. 4E), so that it segregates only to one daughter, the
larger cell, which becomes the tip cell (Fig. 4F).

We investigated the effects of ectopic Nb, using a heat
shock GAL4 (Brand and Perrimon, 1993) to drive its expres-
sion throughout the Malpighian tubules, from 3.5 to 7.5 h.
Embryos were stained with 22C10 and those that had
expressed nb ectopically were identified by the increased
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FIG.5. The expression of ac in the tubules of wg mutant embryos
and those in which wg is overexpressed using a heat shock
construct. (A-D) Summarises expression in wild-type (A), wg
mutant (B), and heat shocked embryos (C, D). (C and E, a-d) A
regime to drive wg from 3.5-6.5 h. ac is expressed in clusters of
cells at 5.5 h (a) and 6.5 h (b), but refines after the heat shock (c) to
asingle cell in each primordium by 7.5 h (d). (D and E, e-h) Regimes
to drive wg expression for longer periods, until 8.5 (e, f)orupto 11 h
(g, h). ac expression is maintained in clusters of cells at 6.5 h (e) and
in two cells at 8.5 h (f). However, if wg is expressed up to 11 h (g,
h, and dotted line in parentheses in D), ac expression refines into a
single cell during the period of heat shock. (a-h) Figure at bottom
right indicates the age of the embryo in hours.

number of neurones in the PNS (Uemura et al., 1989). In
these embryos the Malpighian tubules have two tip cells
(Figs. 7A and 7B). Control embryos, whether siblings from
the experimental cross or embryos carrying UAS-nb without
GAL4, had only one tip cell in each tubule (Figs. 7C and 7D).

In neural and myogenic lineages, insc is required to direct
the asymmetric segregation of Nb between daughter cells.
The loss of insc therefore results in a phenotype resembling
weak overexpression of nb (Kraut et al., 1996; Ruiz Gomez
and Bate, 1997; Buescher et al., 1998). insc is also expressed
in the Malpighian tubules (Kraut and Campos-Ortega,
1996), suggesting a role in the asymmetric distribution of
Nb between the tip mother cell daughters. Analysis of
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22C10 staining in embryos mutant for insc revealed that,
although in many cases the appearance of tip cells is
normal, some embryos have at least one tubule with two tip
cells. Interestingly in these cases, one cell protrudes further
from the distal end of the tubule than its sibling (Fig. 7E).

i v’ &

-
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numb,22¢10; F *numb; As?;?m p-gal

s

\.’ »

numb; A37; anti p-gal, 22C10

FIG. 6. Tip cell specification is perturbed in embryos mutant for
nb. (A) Both progeny of the tip mother cell stain (brown) for g-gal in
an enhancer trap line A37 (in neuromusculin). (B) Only one of these
cells, the tip cell, stains for 22C10 (black). In embryos mutant for
nb, staining for ac (C), for Kr (D), or with 22C10 (E) reveals the
absence of tip cells, but in an A37 background, nb mutant tubules
have two B-gal-staining cells (F), neither of which stains for 22C10
(G). In some nb mutant embryos the normal allocation of tip cells
is found in one or two of the tubules (C stained for Ac; H, A37; nb
embryo stained for B-gal (brown) and 22C10 (black)). Arrows
indicate tip cells, arrowheads sibling cells, and white arrowheads
the site where tip cells would normally segregate.
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FIG. 7. Inembryos expressing nb ubiquitously from 3.5 to 7 h and
stained with 22C10 during stage 16 (A) or for Kr during stage 13 (B),
there are two tip cells (arrows) in each Malpighian tubule. Sibling
controls have only one tip cell in each tubule (arrow in C, D). Two
22C10-positive cells are occasionally found in the tubules of
embryos mutant for insc (arrows in E). In embryos in which N, is
expressed from 6 to 8 h (F), no tip cells appear (stained for Kr during
stage 15; site of tip cell, white arrowhead).

If Nb acts by repressing signalling through Notch (Guo et
al., 1996; Zhong et al., 1996; Spana and Doe, 1996) in the
selection of tip cells, Notch loss and gain of function would
be expected to show phenotypes opposite to those we have
described for nb loss and gain of function. Both loss of N and
the overexpression of nb result in the appearance of ectopic
tip cells. However, in embryos lacking the zygotic function
of N there are up to 12 tip cells (Hoch et al., 1994), a more
severe phenotype than the two tip cells found when the
expression of nb is driven ectopically. This difference
results from the fact that N is required both for the
segregation of the tip mother cell from the ac-expressing
cluster and also for the correct allocation of sibling cells
(Hoch et al., 1994), while nb is required only during the
second phase of N signalling.

We tested the effects of N gain of function in the tubules
by driving the expression of a constitutively active N
construct (Nj...; Struhl et al., 1993) under the control of a
heat shock promoter. Tubules developed without tip cells
(Fig. 7F) and this phenotype was found whether expression
of Niw. was driven from 5 h, during tip mother cell
specification, or from 6 or 7 h, when the allocation of the tip
cell would be affected. In summary, N gain of function
parallels the loss of nb.

Wan, Cato, and Skaer

Alteration in the Expression of nb Does Not Alter
Tubule Cell Numbers

Interestingly, in embryos that are mutant for nb, and
have no tip cells, there is no change in the final number of
tubule cells (Table 2). This is equally true of embryos in
which the overexpression of nb results in the specification
of two tip cells. The distinction between the number of
cells in the anterior and posterior tubules is also unaffected.

DISCUSSION

The segregation of tip cells depends on the coordinated
activity of the proneural and neurogenic genes. In the
absence of proneural genes, no tip cells develop, while in
mutants lacking neurogenic gene activity all the cells in the
cluster develop as tip cells; there are no sibling cells (Hoch
et al., 1994). Signalling through N is therefore required to
establish the fate of sibling cells in the tubules; in embryos
mutant for neurogenic genes supernumerary tip cells appear
at the expense of siblings cells. Here we present evidence
that two further processes are involved in tip cell specifica-
tion, but at different stages in the series of decisions taken.

wg Is Required to Maintain ac Expression
in the Tip Cell Lineage

In the absence of wg, ac expression is variably initiated in
a few tubule primordial cells and is lost from the tip cell
lineage by 6.5 h, so that tip cells fail to differentiate (Figs. 5B
and 8). The temporal requirement for wg expression, from
4.5 to 5.5 h, and its expression in the posterior of the
tubules, the region from which the tip mother cell segre-
gates, is consistent with a role in maintaining ac expression
in this lineage. Phillips and Whittle (1993) demonstrated a
similar requirement for wg in the development of sensory
organs in the wing.

Increasing the expression of wg results in the persistence
but not the expansion of ac expression (Fig. 5C). However,
the normal pattern of ac expression is restored later in
development so that a single tip cell still segregates. These
results suggest that Wg signalling is capable of maintaining
ac expression in the pro-tip cell cluster or sibling pair but
only for a limited period. Suppression of ac expression in all

TABLE 2

Malpighian Tubule Cell Number at Stage 15
(Average = SEM (n))

Anterior tubule Posterior tubule

Wild type 141 = 2 (15) 106 = 2 (20)
nb™® 143 = 2 (19) 107 = 1 (18)
UAS-nb 144 + 3 (9) 109 = 1 (12)
Control 141 = 2 (19) 107 + 1 (20)
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Tip cell selection
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FIG. 8. Summary of tip cell allocation in wild-type, wg, and nb mutant embryos and those with ectopic nb expression.

but the tip cell can still occur in the presence of extra Wg,
but is delayed.

The refinement of ac expression is a direct consequence
of lateral inhibition (Brand and Campos-Ortega, 1988;
Skeath and Carroll, 1992) but also requires the activity of
extra macrochaetae (emc) (Cubas et al., 1994; Ellis, 1994).
emoc restricts the activity of the proneural genes by forming

inactive heterodimers with their products (Ellis et al., 1990;
Garrell and Modolell, 1990), so that in emc mutant tubules
up to eight cells continue to express ac as well as the early
tip cell marker, Kruppel (Carrera et al., 1998). emc is
expressed in the tubule primordia but is lost later from the
tip cells (Cubas et al., 1994). Wg could therefore act to
maintain ac expression in the tip cell lineage either di-
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rectly, as has been suggested in the wing (Phillips and
Whittle, 1993; Couso et al., 1994; Neumann and Cohen,
1997; Johnston and Edgar, 1998), or indirectly through the
repression of emc.

In summary our results show that Wg is required for the
normal pattern of ac expression in the tubule primordia,
ensuring that a single cell remains dedicated to its fate,
possibly through the initiation of an ac-driven autoregula-
tory loop (Culi and Modolell, 1998).

Wg Plays a Dual Role in Regulating Cell
Proliferation in the Tubules

The role of wg in the development of the Malpighian
tubules is pleiotropic; its expression is required both for the
normal eversion of tubule primordia from the embryonic
hindgut and for the proliferation of these primordial cells
(Skaer and Martinez Arias, 1993). The activity of tip cells
also underlies normal cell proliferation in the tubules
(Skaer, 1989; Hoch et al., 1994). However, the loss of wg
gives a more severe phenotype (tubules with an average of
20-25 cells) than the absence of tip cells (70-75 cells),
suggesting that in addition to its role in the specification of
tip cells, Wg signalling may have a direct influence on
earlier cell division in the tubule primordia (Gampel, Wan,
and Skaer, manuscript in preparation).

The Asymmetric Distribution of Nb Ensures Tip
Cell Selection but Is Not Required for Segregation
of the Tip Mother Cell

As in neural and myogenic lineages (Uemura et al., 1989;
Ruiz Gomez and Bate, 1997), N is involved both in the
selection of precursor cells and in setting the fates of their
progeny, while Nb is required only at the second stage.
Thus the segregation of a single tip mother cell occurs
normally in the absence of Nb but the choice of fate
between the sibling cells is disrupted, so that both cells
adopt the fate dictated by the activation of N. Conversely,
ectopic expression of nb produces two tip cells, the cell fate
in which N is silent (Fig. 8). These observations, and our
demonstration that Nb segregates asymmetrically into the
tip cell, support a role for Nb in blocking N signalling in the
tip cell, possibly through a direct physical interaction with
the cytoplasmic domain of N (Guo et al., 1996; Zhong et al.,
1996). Loss of insc resembles a weak overexpression of nb,
suggesting that, as in other lineages (Kraut et al., 1996; Ruiz
Gomez and Bate, 1997; Buescher et al., 1998), Insc is an
essential component of the machinery for the asymmetric
distribution of Nb to the tip cell.

The silencing of N in the tip cell allows continued
expression of ac and of its target Kr (Hoch et al., 1994),
which in turn drives the expression of tip cell markers such
as 22C10 (Hoch and Jackle, 1998). Carrera et al. (1998) have
shown that the DNA-binding protein Eyelid acts in the tip
cell lineage to repress the expression of Kr in the sibling
cell; in the absence of eyelid (eld) two tip cells differentiate.

Wan, Cato, and Skaer

Treisman et al. (1997) identified eld as an antagonist of Wg
signalling in the eye, wing, and embryo. These observations
suggest the possibility that eld might be a target of N
activation in the sibling cell, where it acts to repress
Wg-mediated activation of ac and therefore tip cell fate.

Sibling Cells Can Direct Tubule Cell Division

The final tubule cell number is unaltered if there are two
tip cells and no siblings or vice versa. These two cell types
therefore have an overlapping function in wild-type devel-
opment and can substitute for each other in mutants. In the
absence of proneural gene expression, the tubules contain
neither a tip cell nor a sibling cell and the final tubule cell
number is ca. 70, instead of ca. 120 (Hoch et al., 1994). A
similar result was obtained when tip cells were surgically
removed (Skaer, 1989), suggesting that this procedure also
damages the sibling cell.

nb Is Required to Bias Signalling between
Sibling Cells

Although embryos lacking Numb always have tubules
without tip cells, approximately one-third have one or two
tubules in which the allocation of tip and sibling cell fate is
wild type. This incomplete transformation suggests that the
role of nb is to introduce a bias in signalling between equiva-
lent cells. The source of the N ligand, Delta, in the tubules is
the daughter cells themselves (Hoch et al., 1994), so that in
the absence of nb no outcome is guaranteed. Thus competi-
tive signalling between the two cells could repress tip cell fate
in both but, equally, a slight imbalance in equilibrium be-
tween the two cells could set up a feedback loop (Simpson et
al., 1993; Campos-Ortega, 1993; Heitzler et al., 1996), result-
ing in the separation of fates as in the wild type. This contrasts
with the segregation of cell types in the MP2 lineage of the
CNS (Spana et al., 1995) in which the Delta source is outside
the lineage, so that in the absence of nb both daughters are
always activated through N and the transformation to vMP2
is complete (Spana and Doe, 1996).

The degree of transformation of cell fate when nb is lost
reflects its role; transformation is partial where it imposes a
bias on signalling between equivalent cells, all of which
initially produce DI, but is complete where it blocks the
induction of a specific cell fate through signalling from an
external source. The degree of transformation in embryos
lacking Nb can therefore be used as an indicator of the
source of N activation in those lineages where this infor-
mation is unknown.

wg and nb both Maintain Tip Cell Fate
through ac Expression

The tip cell progenitor is selected from a group of com-
petent cells by lateral inhibition and is marked out by the
continued expression of ac. In this paper we have shown
that further extrinsic and intrinsic cues, Wg signalling and
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the asymmetric distribution of Nb, operate to ensure the
continued expression of ac and so confirm tip cell potential.

The selection of cell fate from an equivalence group by
lateral inhibition alone relies on chance fluctuations in the
equilibrium of signalling between cells and therefore may
not be completely reliable. The activity of other genes, by
biasing lateral inhibition, serve to make the selection of
cells to specific fates more robust. Such mechanisms have
been shown to confirm cell fate in the PNS (Cubas and
Modolell, 1992; Ramain et al., 1993; see Simpson, 1997) and
of the anchor cell in the nematode gonad (Felix and Stern-
berg, 1996; Sternberg and Felix, 1997).

Our results indicate that wg and nb are required for the
specification of the tip cell and sibling cell fate in the
Malpighian tubules. The activity of these two genes biases
the outcome of intercellular signalling at separate stages in
this process, resulting in the reliable allocation of tip and
sibling cell fates, suggesting that this distinction is impor-
tant to the development of the tubules. However, it is clear
that continued cell division in the tubules relies only on the
allocation of the tip cell progenitor and not on the differen-
tiation of fate between its daughter cells, in which nb plays
an important role.

This result is surprising, since Nb is active where sister
cells of specific lineages are allocated to separate cell fates,
for example, in the PNS (Jan and Jan, 1995), in the CNS
(Spana and Doe, 1996; Buescher et al., 1998), and in myo-
genesis (Carmena et al., 1995, 1998; Ruiz-Gomez and Bate,
1997; Baylies et al., 1998). Separation between sister cell
fates involves the maintenance of gene expression in one
sibling and its repression in the other, for example, of Kr,
eve, and S59 in sibling muscle founder cells (Carmenacet al.,
1995; Ruiz Gomez et al., 1997; Ruiz Gomez and Bate, 1997).
This pattern is also seen in the tubules; ac, Kr, and DI
continue to be expressed in the tip cell but are repressed in
its sibling. In the neural and myogenic lineages the correct
allocation of sibling cell fates underpins normal tissue
differentiation. In the tubules, we do not yet know the
separate roles of the tip cells and their siblings; they both
appear to be active in regulating cell proliferation but later
only the tip cell expresses genes characteristic of neuronal
cells (Hoch et al., 1994). The later function of both cell
types has yet to be elucidated. By manipulating nb we can
now generate tubules which lack sibling cells but have two
tip cells or have two sibling cells but lack tip cells, thus
providing an important tool for this analysis.
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Note added in proof. In a paper recently published, Garcia-Garcia
et al. (1999) demonstrate a similar role for wg in the development
of dorsocentral bristles in the adult notum of Drosophila. Wg is
required for ac/sc expression in the dorsocentral proneural lineage
but increasing the Wg activity does not repattern the cluster. As in
the Malpighian tubules, wg therefore plays a permissive rather than
an instructive role.
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