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Abstract

In the present paper we consider the Dirichlet problem for quasilinear nonuniformly
parabolic equations. A new sufficient condition which guarantees the a priori estimate of
the maximum of the modulus of the solution is formulated. A several applications of this
estimate are given.

0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction and main result

Consider the following problem:
ur —ajj(t, X, u, Vu)ux,xj =F(t,X,u,Vu) inQr=2 x(,T) (1.2)
(we assume the usual summation convention),
u0,x)=¢(x) in2 and u=yx@#Xx) onSp =082 x[0,T], (1.2

wheref2 C R" is a bounded domairx, = (x1, x2, ..., x,), Vit = (g, ..., Uy,),
a;j = aji, i, j =1,...,n. Without loss of generality suppose th@tlies in the
strip —I1 < x1 < [3. Assume that the functions; (z, X, u, p), F(t,X,u,p) are
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defined on the seP7 x R x R" take finite values fotz, x) € Q7 and finiteu, p
and

aij(t, X, u,p)&E; >0 forallé eR", (1,x,u,p)€ Or x RxR". (1.3)

There are several sufficient conditions which guarantee the boundedness of
a classical solution of problem (1.1), (1.2) (see [1-5]). Remind that a classical
solution is a solution belonging ©°(Q7) N C,l,’XZ(QT). HereCi;(Z(QT) is the set
of functions having the first derivative with respect tand the second derivatives
with respect tox continuous inQr; C%(Qr) is the set of continuous Q7
functions. In the present paper we give a new sufficient condition guaranteeing
the a priori estimate of«|.

Suppose that the right side of the equation can be represented in the form

F(t,X,u,p)= f1(t, X, u, p) + f2(t, X, u, p), (1.4)
where f1 and f> have different properties. Suppose tifats, X, u, p) for (¢,X) €
Q7 and anyu, p1 satisfies the following restriction:

| fit. X, u, p1.0,...,0)| <a11(t. X, u, p1,0, ..., 0¥ (Ip1l). (1.5)

Herey (p) is a continuously differentiable functiott,(0) > 0 for p > 0, ¥(0) >

0 and we assume that
+o00 J
0
— > 2. 1.6
/) (1.6

In order to formulate the conditions ofa(z, X, u, p) let us introduce the function
h(x1) as a solution of the following problem:

R +vy(lh')=0,  h(-l)=M,  h(1)=H. (1.7)

Here M > m = max{sup, [#], sup;, |x|}, the constant! will be defined below.
Represent the solution of problem (1.7) in parametric form using the substitution

q(h) = h'(x1), gy, (h(x1)) = g (h)q' (h):

“ o “
pdp o

hg) = | =5+ m, = | L —un,

(@) J 1//(,0)+ x1(q) q/l//(,o) 1

whereq € [qo, g1] andqo, g1 are chosen such thatgp < g1 < +00 and

q1 d
0
= | — =2)4.
“@)‘/ww> L
q0

This is possible due to (1.6). Put
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q1

d
H=| 222 L m.

¥ (p)

q0
Assume thatf, satisfies the following conditions:

fa(t, X, u, p1,0,...,00 <0 foru> M, p1€lqo,q1l. (1.81)
fZ(l‘,qu,_Plaoy-'wO)}O forug_M5 PlE[QO,QI]- (1'82)
Let us formulate now the main result.

Theorem. Letu(¢, X) be a classical solution of problefi.1), (1.2) Suppose that
conditions(1.3)—(1.6), (1.8xre fulfilled; then

suplu| <h(x1) < H.
or

The proof will be given in the second section.

In the third section we give examples of applications of the theorem. In
particular, from the theorem one can obtain the following fact. Consider the linear
heat equation for the anisotropic media, i.e. we suppose that in different directions
the heat conductivity is different. Ly direction the heat conductivity coefficient
is a;i(t,X) > 0:

Ur = div(alluxl, e annuxn) + f(t,X), (19)

hereu(s,x) > 0 is an absolute temperaturé(z,x) > 0 is a source. Consider
problem (1.9), (1.2) and assume tlggaix) = x (¢, X) = 0. Suppose for simplicity
thatayq is constant. From the theorem it follows that

3 ,supf

suplu| < =1 .
or 2% an

We observe here the phenomenon of cooling of a body for fixethd f (¢, X)
when the heat conductivity increases in one direction. In fagt,x) — 0 as
a11 — +oo. Similar effect we have in the nonlinear case. This phenomenon has a
simple physical interpretation (see Section 3).

Moreover, from the theorem we can easily obtain the standard a priori estimate
of sup|u| for linear equation (see Section 3, estimate (3.4)) as well as for the
nonlinear one (see Section 2, Remark 4).

2. Proof of thetheorem

Let u(z, X) be a classical solution of problem (1.1), (1.2). Define the operator
L by the following:
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L) =u; — A11(uagey + ¥ (Juxy])) = Y Aijttaia;
i+j>2
where A;;(t,X) = a;;(t, X, u, Vu). Obviously h’'(x1) = ¢ > 0 (see (1.7)) and

henceu — h is nonpositive on2 U St. It is clear thatL (k) = 0 and thus for
w =u — h we have

L() = L(h) = Lo(w) = wy — A11(wapxy + Bway) — Y Ajjway,
i+j>2
= F(ta X, u, Vu) - all(t5 X, u, VM)I//.(IMX]_I)’
where (from the mean value theorem)

|MX1| - |hx1|

Uy, — hy,

B=1v"(0")

Due to the fact tha (o) is a continuously differentiable function and that, x)
is a classical solution we conclude thAt < [v/(p*)| < +ooin Or \ (ST U £2).
Consider the functiob = we™!. One can easily see that

wz +w-— All(wxlxl + ,wal) - Z Aij wx[x_/
i+j>2
=e " (F(t, % u, Vu) — a11(t, X, u, Vu)yr (luy, ).
Suppose thal achieves positive maximum at the poMte Q7 \ (S7 U£2). Then

at this pointw > 0 andVw =0, i.e.u > h > M anduy, = h’ > 0, u,, =0 for
i=2,3,...,n.Dueto (1.4), (1.5)(1.81) we have

Wi + W — A12(Wxyxy + Bilxy) — Z Aiij;x_/ [N
i+j>2
=e ' (f1(t. X, u,ux;, 0,...,0) —a12(t, X, u, 1y, 0, ..., 0)r (Ju, |)
+ folt. X, u, 1,0, ..., 0))], <O.

This contradicts the assumption that attains positive maximum iz \
(St U £2). From the nonpositivity ofs on Sy U £2 we conclude thafi <0 in
Q7 and hence

w=u(t,X)—h(x1) <0 inQOr.

Now consider the function = u + h. Obviouslyv is nonnegative o7 U £2,
becausé’ > 0. Define operatof.1:

Li(u) =ur — Ajjuyx;-
It is clear that

Li(u)=F(t,x,u,Vu) and Li(h)=a1(t,X,u, Vu)y(|h'l).
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Forv = ve™" we have
U+ — Aijig; = e (% u, Vi) + a1a(t, X, u, Vu)yr(|'])).

Suppose that functiod attains negative minimum at the point € Q7 \
(ST U $2). Atthis pointt < 0andVi =0, i.e.u < —h < —M andu,, = —h' <0,
uy, =0fori =2,3,...,n. Due to (1.4), (1.5)(1.87) we obtain

ﬁt +v— Aiji}xng' |N
=e ' (fult, X, u, —h',0,...,0) +aza(t, X, u, —', 0, ..., 0)y (|4
+ fZ(l‘,qu, _h/5 07 "'70))’/\/ > O'
This contradicts the assumption thagttains negative minimum &Y. Taking
into account thab = (u + h)e™" > 0 on Sy U 2, we conclude thaf > 0 in Or
and hence
v=u(t,X)+h(x1) >0 inQr.

Thus we obtain thal (¢, X)| < h(x1) < h(l1) = H. The theorem is proved.
Let us formulate several remarks.

Remark 1. Instead of conditions (1.8) we can take the following ones:

fat, X, u, —p1,0,...,00<0 foru> M, p1<lqo, q1l, (2.11)
fa(t, X, u, p1,0,...,00 >0 foru<—M, p1€lqo,q1l (2.1p)

In this case the barrier is a solution of the same equation as in (1.7) but with the
other boundary conditions, namely—I1) = H, h(l1) = M. The estimate here is
suplu(z, X)| < h(x1) < h(-l1) =H.

Remark 2. If conditions (1.8) and (2.1) are fulfilled then s < 4(0).

Remark 3. The choice of the quantity? in (1.7) actually results from the
necessity of the fulfillment of conditiok'(x1) > O for |x1| < 1.

Consider the following problem. Lef; = fi(¢,X) andai1 = 1. Denote by
fo the sug fi(z,x)|. As a barrierh(x1) we take the solution of the equation
h" = — fo. The first boundary condition i&(—/1) = M, instead of the second
one we take the conditioff (x1) > O for |x1| < /1. We obtain

x% 3lf
h(x1) = —7f0 + 1 fox1+ M+ 7]”0-

The estimate in this case takes the following form

suplu| < h(0) = M + 212 f.
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Remark 4. Assume thatfy (¢, X, u, 0) = 0 and conditions (1.3), (1.4) are fulfilled.
Suppose that for some constat> m

ufo(t,x,u,0,0,...,00<0 forlu| > M.
Then

suplu| < M.
or

In fact, here as a barrier we can take= M. Obviouslyw® = (u — M)e™ <0
on St U £2. Moreover

Lg(wo) = w,o + w® — Aingixj = eftf(t, X, u, Vu).
Suppose thaw?® achieves positive maximum at the poiite Q7 \ (SU2). Then
at this pointw?® > 0 andvw® =0, i.e.u > M > 0andVu = 0. Dueto (1.4), (1.5),
(1.81) we have
w) +w®— Ajjul, |y =€ f20,%,4,0,0,...,0)| , <O.
This contradicts the assumption thaf attains positive maximum Q7 \
(St U £2). From the nonpositivity ofs® on S7 U £2 we conclude that® < 0
in Qr and hence: — 2 <0in Q7.
Functionv® = (u + M)e~" is nonnegative o7 U £2. It is clear that
400 — A0 =e T xu, V).
Suppose that function® attains negative minimum at the poiit € Q7 \
(St U £2). At this pointv® < 0 andv? =0, i.e.u < —M < 0 andVu = 0. Due
to (1.4), (1.5),1.8,) we obtain

vto—i— w0 — Aijvg[xj ’N =e ' fo(t,X, u,0) |y >0.

This contradicts the assumption thét attains negative minimum a¥. Taking
into account thav® > 0 on S U §2, we conclude that® > 0 in 07 and hence
u>—Min QOr.

So we obtain thaltu(z, X)| < M.

3. Examples

Let us first consider the linear equation

up — @i (1, Xiy,x; = f(1,%X) 4 bi(t, Xux; +c(t, X)u
in 07 =2 x (0, T). (3.1)
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Denote

fi= ft,X) +bi(t,X)p;, fo=c(t, Xu,
assume that

a11(t,X) > ap>0 and c(,x) <0,

whereag is some positive constant. One can easily see that conditions (1.8) as
well as (2.1) are fulfilled. Condition (1.5) is satisfied wift{| p1|) = K (14 | p1|),
where K = max{sup| f|, sup|b1|}a51. In this case we can easily construct the
barrier in the explicit form

hx1) =M — 1+ ?Khg =1 — KO0 g=1_ )
as a solution of the problem
h'(x1) + KW (xp)|=-K,  h(-l)=M,
h(y) =M — 211 + K (2Kl — 1),
Instead of the boundary condition At we can take conditio’(x1) > O for

|x1] < I1 (see Remark 3). Thus for the solution of problem (3.1), (1.2) from
Remark 2 we obtain that

suplu| <h(0) = M — Iy + KLk 72K 1), (3.2)
or
Ifin Eq. (3.1) the coefficienk; = 0 then as a functiogfr we can take the constant
K1=sup|flagt,i.e.h”(x1) = —K1 and hencé (x1) = M — x2K1/2+ K1l1x1 +
3Kllf/2. The estimate has the following form:

3
suplu| < h(0) = =K1l2 + M. (3.20)
or 2
If ¢(¢,x) < A, wherex is some positive constant thé < h(0)e*” .
Consider the heat equation under the assumption that the coefficient of heat
conductivity is different in different directions

u; — div(aggy,, - . ., apptty,) = f(t,X). (3.3)

Hereu(t, X) is temperature. For the solution of problem (3.3), (1.2) the estimate
(3.2) holds, heré1 = ai1y,. If a11,, = 0 then estimat€3.2,) is valid.

Let us mention here that estimate (3.@.21)) depends not on the intensity of
the sourcef (¢, x) but on the ratio

max{supl f|, suplb1|}/infazs  (suplfl/infai),

whereas; is a coefficient of the heat conductivity in the direction.
Let m = 0. For the arbitrary fixed sourc¢ by choosing the constarni
to be sufficiently big we can makie| arbitrary small. As it has been already
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mentioned in the first section this fact has a simple physical explanation. The heat
flow through the boundary in the, direction increases ag = infaj1 increases
assisting to the cooling of the body. Remind that according to the Fourier law the
heat flow through the boundafy = 352 x (0, T') is given by the integral

/(allu)(lﬂ e annuxn) -ndxdt,
St

wheren is an external normal vector to the boundary.

If on the boundary we require the absence of the heat fleyyn = 0 (ho-
mogeneous Neumann problem), then the valua & determined only by the
intensity of the sources and by the initial data and does not depend on the conduc-
tivity of the media.

Using the theorem we can obtain an estimate independent of the coefficients
of the principal part of the equation. Consider Eq. (3.1), let

a;j&&; > 0 and c(t,X) < —co<0.
Put
fi=0, fo=f(t,X)+bi(t,X)pi +c(t, X)u.

As a barrierh here we take the constamt = max{m, sup| f|/co}. In that case
obviously

folt, X, u,h',0,...,00= fo(t,%x,u,00 <0 foru> M,
fo(t, X, u,—h',0,...,0)= fo(t,X,u,00 >0 foru<-—M.

Hence we conclude that for the solution of problem (3.1), (1.2) the following
estimate takes place:

suplu| < max{m, supl/| }
o

or
If c(z,X) < A, wherex is a positive constant, then
. su
suplu| < inf (e” max{m, P/ }) (3.4)
or A>co A—co

wherecg = supc(t, X). This is a standard a priori estimate for the solution of
problem (3.1), (3.2).
Let us pass to the nonlinear case. Consider the following semilinear equation
ur —k(u)Au= Qw), k(u)>0. (3.5

We suppose tha@(u) does not satisfy condition Q1) < O for ju| > M. It
is well known that generally speaking the solution of the Dirichlet problem for
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that equation blows-up, i.e. there exists< +o0o such that sup|u(z, X)| - +o0
whenr — t*.

From the theorem it follows that if in (3.5) functio@(u) satisfies the
inequality| O (u)| < Cok(u), whereCp is some positive constant, then the solution
is bounded for alt > 0. If instead of (3.5) we consider equation

ur —kiWuy,xy, = 0w), kiw)>0, i=1...,n,

then for the boundedness of the solution it is sufficient to require the fulfillment
of the inequalityl @ ()| < Cok; (1) only for one value of index.
Consider the nonlinear heat equation

Uy — diV(k(u)Vu) =Q0(u), (3.6)

wherek(u) > 0 is continuously differentiable function.
Write this equation in the following form:

ur —k(u)Au = fi,

where f1 = Q(u) + k' (u)|Vul|?.

Suppose thatQ(u)| < Cok(u) and |k'(u)| < Cok(u). In that case condition
(1.5) is fulfilled with ¥ (|p1]) = Co(1 + pf). The integral in (1.6) is equal to
7/2Co. Thus in order to obtain the estimate |aff we require the constantiy
to be less than /411.

If uk’(u) <0 then we write Eq. (3.6) in the form

ur —k(u)Au = Qu) + f2,

where f> = k’(u)|Vul?. In that case we obtain the estimate |af without
supplementary assumptions 6p.

Suppose thaP (z) > 0 whenz < 1 andu > 1 on the parabolic boundary of the
domain. One can easily see that in this cagex) > 1. In fact, let

Lu=u; — kAu — 121|Vu|2,

wherek = k(r,%) = k(u), k1 = k1(t,X) = k’(u). Obviously Lu = Q(u). For
v=u — 1 we obtain

Lu=v —kAv —k1|Vv|? = Q).

We conclude thab cannot attain negative values at the internal points of the
domain. Due to the fact that > 0 on the parabolic boundary of the domain we
conclude thav > 0 in the whole domain.

Consider the case when the coefficient of the heat conductivity has the form
k(u) = kou®, wherekg > 0 anda > 0 are some constants. Suppose &) > 0
for z < 1 andu > 1 on the parabolic boundary of the domain. Obviously) <
ak(u). Let|Qu)| < ak(u). We puty (| p1]) = a(1+ p%), to fulfill the conditions
of the theorem it is necessary ferto be less thaw /4.
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Similarly we can investigate the following equation (anisotropic case):

ur — div(kl(u)uxl, ...,k,,(u)uxn) = Q(u).

Let us demonstrate the application of the theorem on one more example.
Consider the following problem (for simplicity we restrict ourselves by one-
dimensional case):

up — ey =12u? —u? in Qr =(~1,1) x (0, T), (3.7)

u(0, x) =uo(x), u(t, £l =0, ug(+l) =0. (3.8)
Suppose thatuo, (x)| < K and consequentlyo(x)| < K( — |x]). Consider the
auxiliary equation

Uy — gy =1%u? — f(u) inQr (3.9)
with conditions (3.8), where

2
_Jus, for lu| < K,
f(”)_{Kzzz, for |u| > K.

Let us obtain the estimata(z, x)| < K! for the solution of auxiliary problem
(3.9), (3.8). Consider the function(z, x) = u(t, x) + h(x), whereh(x) = K -
(I + x). Itis clear that

v — vex = 12U — fu).
Foro(t,x) = v(t, x)e”" we obtain
Uy + 0 — ey = (PuZ — fw))e™.

If the function? attains negative minimum at the poiNte Q7 \ I" (I" is para-
bolic boundary of the domai@7), then at this poinf, =0, i.e.u, = —h' = —-K
and hence

b + 0 — bexlv = (IPK? = fw)e ™|, = 0.

This contradicts the assumption that at the paintve have negative minimum.
Itis clear that on/” the functionv is nonnegative, hende> 0 in Q7. This gives
us the estimate

u(t,x) = —K( +x). (3.10)

Now consider the functiom (¢, x) = u(t, x) + h1(x) whereh1(x) = K( — x).
Forw(t, x) = w(t, x)e~" we obtain

Wy + W — Wyx = (1Pu? — fu))e™.

At the pointNy € Qr \ I' of the negative minimum of functio we haveu, =
h =K and
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Wi+ — Wyxln, = (1PK? - f@)e™ |y, =0.

From this contradiction and from the fact that> 0 on the parabolic boundary
of the domainQ; we conclude thafs > 0 in Or. Hence

u(,x)>—K(I—x). (3.12)
From (3.10) and (3.11) we obtain
u(t,x) > —K(l — |x|) > —KI.

Similarly we can obtain the estimaie< KI. As a consequence we conclude
that Eqgs. (3.9) and (3.7) coincide and the estimate, x)| < M = K! holds as
well for the solution of problem (3.7), (3.8).
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