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Abstract

In the present paper we consider the Dirichlet problem for quasilinear nonuniformly
parabolic equations. A new sufficient condition which guarantees the a priori estimate of
the maximum of the modulus of the solution is formulated. A several applications of this
estimate are given.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction and main result

Consider the following problem:

ut − aij (t,x, u,∇u)uxixj = F(t,x, u,∇u) in QT =Ω × (0, T ) (1.1)

(we assume the usual summation convention),

u(0,x)= φ(x) inΩ and u= χ(t,x) onST = ∂Ω × [0, T ], (1.2)

whereΩ ⊂ Rn is a bounded domain,x = (x1, x2, . . . , xn), ∇u= (ux1, . . . , uxn),
aij = aji , i, j = 1, . . . , n. Without loss of generality suppose thatΩ lies in the
strip −l1 < x1 < l1. Assume that the functionsaij (t,x, u,p), F(t,x, u,p) are
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defined on the set�QT × R × Rn take finite values for(t,x) ∈QT and finiteu,p
and

aij (t,x, u,p)ξiξj � 0 for all ξ ∈ Rn, (t,x, u,p) ∈ �QT × R × Rn. (1.3)

There are several sufficient conditions which guarantee the boundedness of
a classical solution of problem (1.1), (1.2) (see [1–5]). Remind that a classical
solution is a solution belonging toC0(�QT )∩C1,2

t,x (QT ). HereC1,2
t,x (QT ) is the set

of functions having the first derivative with respect tot and the second derivatives
with respect tox continuous inQT ; C0(�QT ) is the set of continuous in�QT
functions. In the present paper we give a new sufficient condition guaranteeing
the a priori estimate of|u|.

Suppose that the right side of the equation can be represented in the form

F(t,x, u,p)= f1(t,x, u,p)+ f2(t,x, u,p), (1.4)

wheref1 andf2 have different properties. Suppose thatf1(t,x, u,p) for (t,x) ∈
QT and anyu,p1 satisfies the following restriction:∣∣f1(t,x, u,p1,0, . . . ,0)

∣∣ � a11(t,x, u,p1,0, . . . ,0)ψ
(|p1|

)
. (1.5)

Hereψ(ρ) is a continuously differentiable function,ψ(ρ) > 0 for ρ > 0,ψ(0)�
0 and we assume that

+∞∫
0

dρ

ψ(ρ)
> 2l1. (1.6)

In order to formulate the conditions onf2(t,x, u,p) let us introduce the function
h(x1) as a solution of the following problem:

h′′ +ψ(|h′|) = 0, h(−l1)=M, h(l1)=H. (1.7)

HereM �m≡ max{supΩ |φ|, supST |χ |}, the constantH will be defined below.
Represent the solution of problem (1.7) in parametric form using the substitution
q(h)= h′(x1), q ′

x1
(h(x1))= q(h)q ′(h):

h(q)=
q1∫
q

ρ dρ

ψ(ρ)
+M, x1(q)=

q1∫
q

dρ

ψ(ρ)
− l1,

whereq ∈ [q0, q1] andq0, q1 are chosen such that 0< q0< q1<+∞ and

x1(q)=
q1∫
q0

dρ

ψ(ρ)
= 2l1.

This is possible due to (1.6). Put
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H =
q1∫
q0

ρ dρ

ψ(ρ)
+M.

Assume thatf2 satisfies the following conditions:

f2(t,x, u,p1,0, . . . ,0)� 0 for u�M, p1 ∈ [q0, q1], (1.81)

f2(t,x, u,−p1,0, . . . ,0)� 0 for u� −M, p1 ∈ [q0, q1]. (1.82)

Let us formulate now the main result.

Theorem. Letu(t,x) be a classical solution of problem(1.1), (1.2). Suppose that
conditions(1.3)–(1.6), (1.8)are fulfilled; then

sup
QT

|u| � h(x1)�H.

The proof will be given in the second section.
In the third section we give examples of applications of the theorem. In

particular, from the theorem one can obtain the following fact. Consider the linear
heat equation for the anisotropic media, i.e. we suppose that in different directions
the heat conductivity is different. Inxi direction the heat conductivity coefficient
is aii(t,x)� 0:

ut = div(a11ux1, . . . , annuxn)+ f (t,x), (1.9)

hereu(t,x) � 0 is an absolute temperature,f (t,x) � 0 is a source. Consider
problem (1.9), (1.2) and assume thatφ(x)≡ χ(t,x)≡ 0. Suppose for simplicity
thata11 is constant. From the theorem it follows that

sup
QT

|u| � 3

2
l21

supf

a11
.

We observe here the phenomenon of cooling of a body for fixedl1 andf (t,x)
when the heat conductivity increases in one direction. In fact,u(t,x)→ 0 as
a11 → +∞. Similar effect we have in the nonlinear case. This phenomenon has a
simple physical interpretation (see Section 3).

Moreover, from the theorem we can easily obtain the standard a priori estimate
of sup|u| for linear equation (see Section 3, estimate (3.4)) as well as for the
nonlinear one (see Section 2, Remark 4).

2. Proof of the theorem

Let u(t,x) be a classical solution of problem (1.1), (1.2). Define the operator
L by the following:
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L(u)≡ ut −A11
(
ux1x1 +ψ(|ux1|

)) −
∑
i+j>2

Aijuxixj ,

whereAij (t,x) ≡ aij (t,x, u,∇u). Obviously h′(x1) = q � 0 (see (1.7)) and
henceu − h is nonpositive onΩ ∪ ST . It is clear thatL(h) = 0 and thus for
w = u− h we have

L(u)−L(h)≡L0(w)≡wt −A11(wx1x1 + βwx1)−
∑
i+j>2

Aijwxixj

= F(t,x, u,∇u)− a11(t,x, u,∇u)ψ
(|ux1|

)
,

where (from the mean value theorem)

β =ψ ′(ρ∗) |ux1| − |hx1|
ux1 − hx1

.

Due to the fact thatψ(ρ) is a continuously differentiable function and thatu(t,x)
is a classical solution we conclude that|β| � |ψ ′(ρ∗)|<+∞ in �QT \ (ST ∪Ω).

Consider the functioñw =we−t . One can easily see that

w̃t + w̃−A11(w̃x1x1 + βw̃x1)−
∑
i+j>2

Aij w̃xixj

= e−t(F(t,x, u,∇u)− a11(t,x, u,∇u)ψ
(|ux1|

))
.

Suppose that̃w achieves positive maximum at the pointN ∈ �QT \(ST ∪Ω). Then
at this pointw̃ > 0 and∇w̃ = 0, i.e.u > h �M andux1 = h′ > 0, uxi = 0 for
i = 2,3, . . . , n. Due to (1.4), (1.5),(1.81) we have

w̃t + w̃−A11(w̃x1x1 + βw̃x1)−
∑
i+j>2

Aij w̃xixj |N

= e−t(f1(t,x, u,ux1,0, . . . ,0)− a11(t,x, u,ux1,0, . . . ,0)ψ
(|ux1|

)
+ f2(t,x, u,h′,0, . . . ,0)

)∣∣
N

� 0.

This contradicts the assumption that̃w attains positive maximum in�QT \
(ST ∪Ω). From the nonpositivity of̃w on ST ∪Ω we conclude that̃w � 0 in
�QT and hence

w= u(t,x)− h(x1)� 0 in �QT .
Now consider the functionv ≡ u+ h. Obviouslyv is nonnegative onST ∪Ω ,

becauseh′ � 0. Define operatorL1:

L1(u)≡ ut −Aijuxixj .
It is clear that

L1(u)= F(t,x, u,∇u) and L1(h)= a11(t,x, u,∇u)ψ
(|h′|).



210 A.S. Tersenov / J. Math. Anal. Appl. 273 (2002) 206–216

For ṽ = ve−t we have

ṽt + ṽ −Aij ṽxixj = e−t(f (t,x, u,∇u)+ a11(t,x, u,∇u)ψ
(|h′|)).

Suppose that functioñv attains negative minimum at the pointN ∈ �QT \
(ST ∪Ω). At this pointṽ < 0 and∇ṽ = 0, i.e.u <−h� −M andux1 = −h′ < 0,
uxi = 0 for i = 2,3, . . . , n. Due to (1.4), (1.5),(1.82) we obtain

ṽt + ṽ −Aij ṽxixj |N
= e−t(f1(t,x, u,−h′,0, . . . ,0)+ a11(t,x, u,−h′,0, . . . ,0)ψ

(|h′|)
+ f2(t,x, u,−h′,0, . . . ,0)

)∣∣
N

� 0.

This contradicts the assumption thatṽ attains negative minimum atN . Taking
into account that̃v = (u+ h)e−t � 0 onST ∪Ω , we conclude that̃v � 0 in �QT
and hence

v = u(t,x)+ h(x1)� 0 in �QT .
Thus we obtain that|u(t,x)| � h(x1)� h(l1)≡H. The theorem is proved.
Let us formulate several remarks.

Remark 1. Instead of conditions (1.8) we can take the following ones:

f2(t,x, u,−p1,0, . . . ,0)� 0 for u�M, p1 ∈ [q0, q1], (2.11)

f2(t,x, u,p1,0, . . . ,0)� 0 for u� −M, p1 ∈ [q0, q1]. (2.12)

In this case the barrier is a solution of the same equation as in (1.7) but with the
other boundary conditions, namelyh(−l1)=H , h(l1)=M. The estimate here is
sup|u(t,x)| � h(x1)� h(−l1)≡H .

Remark 2. If conditions (1.8) and (2.1) are fulfilled then sup|u| � h(0).

Remark 3. The choice of the quantityH in (1.7) actually results from the
necessity of the fulfillment of conditionh′(x1) > 0 for |x1|< l1.

Consider the following problem. Letf1 = f1(t,x) and a11 ≡ 1. Denote by
f0 the sup|f1(t,x)|. As a barrierh(x1) we take the solution of the equation
h′′ = −f0. The first boundary condition ish(−l1) = M, instead of the second
one we take the conditionh′(x1) > 0 for |x1| � l1. We obtain

h(x1)= −x
2
1

2
f0 + l1f0x1 +M + 3l21

2
f0.

The estimate in this case takes the following form

sup|u| � h(0)=M + 2l21f0.
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Remark 4. Assume thatf1(t,x, u,0)≡ 0 and conditions (1.3), (1.4) are fulfilled.
Suppose that for some constantM �m

uf2(t,x, u,0,0, . . . ,0)� 0 for |u|>M.
Then

sup
QT

|u| �M.

In fact, here as a barrier we can takeh≡M. Obviouslyw0 ≡ (u−M)e−t � 0
onST ∪Ω . Moreover

L2
(
w0) ≡w0

t +w0 −Aijw0
xixj

= e−t f (t,x, u,∇u).
Suppose thatw0 achieves positive maximum at the pointN ∈ �QT \ (S∪Ω). Then
at this pointw0> 0 and∇w0 = 0, i.e.u >M � 0 and∇u= 0. Due to (1.4), (1.5),
(1.81) we have

w0
t +w0 −Aijw0

xixj

∣∣
N

= e−t f2(t,x, u,0,0, . . . ,0)
∣∣
N

� 0.

This contradicts the assumption thatw0 attains positive maximum in�QT \
(ST ∪ Ω). From the nonpositivity ofw0 on ST ∪Ω we conclude thatw0 � 0
in �QT and henceu− h� 0 in �QT .

Functionv0 ≡ (u+M)e−t is nonnegative onST ∪Ω . It is clear that

v0
t + v0 −Aijv0

xixj
= e−tF (t,x, u,∇u).

Suppose that functionv0 attains negative minimum at the pointN ∈ �QT \
(ST ∪Ω). At this pointv0 < 0 and∇v0 = 0, i.e.u <−M � 0 and∇u= 0. Due
to (1.4), (1.5),(1.82) we obtain

v0
t + v0 −Aijv0

xixj

∣∣
N

= e−t f2(t,x, u,0)|N � 0.

This contradicts the assumption thatv0 attains negative minimum atN . Taking
into account thatv0 � 0 onST ∪Ω , we conclude thatv0 � 0 in �QT and hence
u� −M in �QT .

So we obtain that|u(t,x)| �M.

3. Examples

Let us first consider the linear equation

ut − aij (t,x)uxixj = f (t,x)+ bi(t,x)uxi + c(t,x)u
inQT =Ω × (0, T ). (3.1)
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Denote

f1 ≡ f (t,x)+ bi(t,x)pi, f2 ≡ c(t,x)u,
assume that

a11(t,x)� a0> 0 and c(t,x)� 0,

wherea0 is some positive constant. One can easily see that conditions (1.8) as
well as (2.1) are fulfilled. Condition (1.5) is satisfied withψ(|p1|)≡K(1+|p1|),
whereK = max{sup|f |,sup|b1|}a−1

0 . In this case we can easily construct the
barrier in the explicit form

h(x1)=M − l1 + e2Kl1K−1 − eK(l1−x1)K−1 − x1

as a solution of the problem

h′′(x1)+K
∣∣h′(x1)

∣∣ = −K, h(−l1)=M,
h(l1)=M − 2l1 +K−1(e2Kl1 − 1

)
.

Instead of the boundary condition atl1 we can take conditionh′(x1) > 0 for
|x1| < l1 (see Remark 3). Thus for the solution of problem (3.1), (1.2) from
Remark 2 we obtain that

sup
QT

|u| � h(0)=M − l1 + eKl1K−1(eKl1 − 1
)
. (3.2)

If in Eq. (3.1) the coefficientb1 ≡ 0 then as a functionψ we can take the constant
K1 = sup|f |a−1

0 , i.e.h′′(x1)= −K1 and henceh(x1)=M−x2
1K1/2+K1l1x1+

3K1l
2
1/2. The estimate has the following form:

sup
QT

|u| � h(0)= 3

2
K1l

2
1 +M. (3.21)

If c(t,x)� λ, whereλ is some positive constant then|u| � h(0)eλT .
Consider the heat equation under the assumption that the coefficient of heat

conductivity is different in different directions

ut − div(a11ux1, . . . , annuxn)= f (t,x). (3.3)

Hereu(t,x) is temperature. For the solution of problem (3.3), (1.2) the estimate
(3.2) holds, hereb1 = a11x1. If a11x1 = 0 then estimate(3.21) is valid.

Let us mention here that estimate (3.2) ((3.21)) depends not on the intensity of
the sourcef (t,x) but on the ratio

max
{
sup|f |,sup|b1|

}/
inf a11

(
sup|f |/ inf a11

)
,

wherea11 is a coefficient of the heat conductivity in thex1 direction.
Let m = 0. For the arbitrary fixed sourcef by choosing the constanta0

to be sufficiently big we can make|u| arbitrary small. As it has been already
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mentioned in the first section this fact has a simple physical explanation. The heat
flow through the boundary in thex1 direction increases asa0 = inf a11 increases
assisting to the cooling of the body. Remind that according to the Fourier law the
heat flow through the boundaryST ≡ ∂Ω × (0, T ) is given by the integral∫

ST

(a11ux1, . . . , annuxn) · ndx dt,

wheren is an external normal vector to the boundary.
If on the boundary we require the absence of the heat flow∂u/∂n = 0 (ho-

mogeneous Neumann problem), then the value ofu is determined only by the
intensity of the sources and by the initial data and does not depend on the conduc-
tivity of the media.

Using the theorem we can obtain an estimate independent of the coefficients
of the principal part of the equation. Consider Eq. (3.1), let

aij ξiξj � 0 and c(t,x)� −c0< 0.

Put

f1 ≡ 0, f2 ≡ f (t,x)+ bi(t,x)pi + c(t,x)u.
As a barrierh here we take the constantM = max{m,sup|f |/c0}. In that case
obviously

f2(t,x, u,h′,0, . . . ,0)≡ f2(t,x, u,0)� 0 for u >M,

f2(t,x, u,−h′,0, . . . ,0)≡ f2(t,x, u,0)� 0 for u <−M.
Hence we conclude that for the solution of problem (3.1), (1.2) the following
estimate takes place:

sup
QT

|u| � max

{
m,

sup|f |
c0

}
.

If c(t,x) < λ, whereλ is a positive constant, then

sup
QT

|u| � inf
λ>c0

(
eλT max

{
m,

sup|f |
λ− c0

})
, (3.4)

wherec0 = supc(t,x). This is a standard a priori estimate for the solution of
problem (3.1), (3.2).

Let us pass to the nonlinear case. Consider the following semilinear equation

ut − k(u)∆u=Q(u), k(u) > 0. (3.5)

We suppose thatQ(u) does not satisfy conditionuQ(u) � 0 for |u| > M. It
is well known that generally speaking the solution of the Dirichlet problem for
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that equation blows-up, i.e. there existst∗ <+∞ such that supx |u(t,x)| → +∞
whent → t∗.

From the theorem it follows that if in (3.5) functionQ(u) satisfies the
inequality|Q(u)| � C0k(u), whereC0 is some positive constant, then the solution
is bounded for allt > 0. If instead of (3.5) we consider equation

ut − ki(u)uxixi =Q(u), ki(u) > 0, i = 1, . . . , n,

then for the boundedness of the solution it is sufficient to require the fulfillment
of the inequality|Q(u)| �C0ki(u) only for one value of indexi.

Consider the nonlinear heat equation

ut − div
(
k(u)∇u) =Q(u), (3.6)

wherek(u) > 0 is continuously differentiable function.
Write this equation in the following form:

ut − k(u)∆u= f1,

wheref1 ≡Q(u)+ k′(u)|∇u|2.
Suppose that|Q(u)| � C0k(u) and |k′(u)| � C0k(u). In that case condition

(1.5) is fulfilled with ψ(|p1|) = C0(1 + p2
1). The integral in (1.6) is equal to

π/2C0. Thus in order to obtain the estimate of|u| we require the constantC0
to be less thanπ/4l1.

If uk′(u)� 0 then we write Eq. (3.6) in the form

ut − k(u)∆u=Q(u)+ f2,

where f2 ≡ k′(u)|∇u|2. In that case we obtain the estimate of|u| without
supplementary assumptions onC0.

Suppose thatQ(z)� 0 whenz� 1 andu� 1 on the parabolic boundary of the
domain. One can easily see that in this caseu(t,x)� 1. In fact, let

Lu≡ ut − k̃∆u− k̃1|∇u|2,
where k̃ = k̃(t,x) = k(u), k̃1 = k̃1(t,x) = k′(u). ObviouslyLu = Q(u). For
v ≡ u− 1 we obtain

Lu≡ vt − k̃∆v − k̃1|∇v|2 =Q(u).
We conclude thatv cannot attain negative values at the internal points of the
domain. Due to the fact thatv � 0 on the parabolic boundary of the domain we
conclude thatv � 0 in the whole domain.

Consider the case when the coefficient of the heat conductivity has the form
k(u)= k0u

α , wherek0> 0 andα > 0 are some constants. Suppose thatQ(z)� 0
for z� 1 andu� 1 on the parabolic boundary of the domain. Obviouslyk′(u)�
αk(u). Let |Q(u)| � αk(u). We putψ(|p1|)= α(1+p2

1), to fulfill the conditions
of the theorem it is necessary forα to be less thanπ/4l1.
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Similarly we can investigate the following equation (anisotropic case):

ut − div
(
k1(u)ux1, . . . , kn(u)uxn

) =Q(u).
Let us demonstrate the application of the theorem on one more example.

Consider the following problem (for simplicity we restrict ourselves by one-
dimensional case):

ut − uxx = l2u2
x − u2 inQT = (−l, l)× (0, T ), (3.7)

u(0, x)= u0(x), u(t,±l)= 0, u0(±l)= 0. (3.8)

Suppose that|u0x(x)| �K and consequently|u0(x)| �K(l − |x|). Consider the
auxiliary equation

ut − uxx = l2u2
x − f (u) inQT (3.9)

with conditions (3.8), where

f (u)=
{
u2, for |u| �Kl,
K2l2, for |u|>Kl.

Let us obtain the estimate|u(t, x)| � Kl for the solution of auxiliary problem
(3.9), (3.8). Consider the functionv(t, x) ≡ u(t, x) + h(x), whereh(x) = K ·
(l + x). It is clear that

vt − vxx = l2u2
x − f (u).

For ṽ(t, x)= v(t, x)e−t we obtain

ṽt + ṽ − ṽxx = (
l2u2

x − f (u))e−t .
If the functionṽ attains negative minimum at the pointN ∈ �QT \ Γ (Γ is para-
bolic boundary of the domainQT ), then at this point̃vx = 0, i.e.ux = −h′ = −K
and hence

ṽt + ṽ − ṽxx |N = (
l2K2 − f (u))e−t ∣∣

N
� 0.

This contradicts the assumption that at the pointN we have negative minimum.
It is clear that onΓ the functionṽ is nonnegative, hencẽv � 0 in �QT . This gives
us the estimate

u(t, x)� −K(l + x). (3.10)

Now consider the functionw(t, x)≡ u(t, x)+h1(x) whereh1(x)=K(l− x).
For w̃(t, x)=w(t, x)e−t we obtain

w̃t + w̃− w̃xx = (
l2u2

x − f (u))e−t .
At the pointN1 ∈ �QT \ Γ of the negative minimum of functioñw we haveux =
h′ =K and
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w̃t + w̃− w̃xx |N1 = (
l2K2 − f (u))e−t ∣∣

N1
� 0.

From this contradiction and from the fact thatw̃ � 0 on the parabolic boundary
of the domainQT we conclude that̃w � 0 in �QT . Hence

u(t, x)� −K(l − x). (3.11)

From (3.10) and (3.11) we obtain

u(t, x)� −K(
l − |x|) � −Kl.

Similarly we can obtain the estimateu�Kl. As a consequence we conclude
that Eqs. (3.9) and (3.7) coincide and the estimate|u(t, x)| �M = Kl holds as
well for the solution of problem (3.7), (3.8).
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