On Continuity of Metric Projections

Frank Deutsch and Joseph M. Lambert
Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
Communicated by Oved Shisha
Received November 17, 1978
DEDICATED TO THE MEMORY OF P. TURÁN

1. Introduction

In this note we collect a number of complements and extensions to some known results due to Panda and Kapoor [12], Oshman [10], and Holmes and Kripke [6], and also point out an error in the main result of [8]. These results are all concerned with the common theme of continuity of metric projections.

Let X be a (real or complex) normed linear space and M a subset of X. The metric projection onto M is the mapping $P_{M}: X \rightarrow 2^{M}$ which associates with each x in X its (possibly empty) set of nearest points in M. Thus

$$
P_{M}(x)=\{m \in M:\|x-m\|=d(x, M)\}
$$

where $d(x, M)=\inf \{\|x-y\|: y \in M\} . \quad M$ is called proximinal (resp., Chebychev if $P_{M R}(x)$ contains at least (resp., exactly) one point for each x in X. A sequence $\left(y_{n}\right)$ in M is called minimizing for x in X if $\lim \left\|x-y_{n}\right\|=$ $d(x, M)$. Recall that a normed linear space X is rotund (R) or strictly convex provided the boundary of the unit ball in X contains no line segements.
Vlasov [16] introduced the concept of compact local uniform rotundity (CLUR). Oshman [11] and, independently, Panda and Kapoor [12] have shown that in CLUR space the class of Chebychev sets with continuous metric projections coincides with the class of approximatively compact Chebychev sets. In Section 2, we extend the results of [12] to a more general setting. For example (Theorem 2.6), in a CLUR space, the metric projection onto a proximinal set is compact-valued and upper semicontinuous on a dense set.

In Section 3, we consider a class of β-suns investigated by Oshman [10], enlarge this class somewhat, and show that each member of this class has a continuous metric projection irrespective of the gemometry of the Banach space.

Section 4 contains a few complements to some results of Holmes and Kripke [6] concerning linear metric projections. For example (Proposition 4) for each $1 \leqslant r \leqslant 2$, we can construct a Banach space X and a subspace M of X so that M is Chebyshev, P_{M} is linear, $\left\|P_{M}\right\|=r$, and the kernel of P_{M} is also a Chebyshev subspace with a continuous metric projection.

In Section 5, we point out that the "Klee" space does not have the property attributed to it in [8]. Thus several questions and conjectures concerning the continuity of metric projections (which this space apparently settled) are still unresolved.

We will use the following notation throughout. If X is a normed linear space, then

$$
S(X)=\{x \in X:\|x\|=1\} .
$$

A word about the organization of this paper. With the exception of some definitions given in early sections and used in later ones, each section is independent of the others, and thus can be read in any order.

2. Properties of CLUR Spaces

In this section we note that the main results of Panda and Kapoor [12] in CLUR spaces can be extended to the setting of proximinal (rather than Chebychev) sets, and outer radially lower semicontinuous (rather than continuous) metric projections.

A normed linear space X is called compactly locally uniformly rotund (CLUR) if x, x_{n} in $S(X)$ and $\left\|x_{n}+x\right\| \rightarrow 2$ imply that $\left(x_{n}\right)$ has a convergent subsequence.

Clearly, every finite-dimensional space is CLUR, and CLUR generalizes the notion of a locally uniformly rotund (LUR) space. Indeed, it is easy to verify that X is LUR if and only if X is CLUR and (R). (In [12], CLUR was called property (M). However, we conform to the earlier designation $[16,17]$.)

Definition 2.1. Let K be a subset of X. The metric projection P_{K} is said to be outer radially lower semicontinuous (o.r.l.s.c.) at x_{0} if for every y_{0} in $P_{K}\left(x_{0}\right)$ and each open set W with $W \cap P_{K}\left(x_{0}\right) \neq \varnothing$ there exists a neighborhood U of x_{0} such that $W \cap P_{K}(x) \neq \varnothing$ for every x in $U \cap\left\{x_{0}+\lambda\left(x-y_{0}\right)\right.$: $\lambda \geqslant 0\} . P_{K}$ is called o.r.l.s.c. if it is o.r.l.s.c. at each point of ir.

This generalization of lower semicontinuity was introduced and studied in $[3,4]$ (where it was called "ORL continuity"). It was shown there, for example, that every sun has an o.r.l.s.c. metric projection; and in spaces of type $C(T)$ or $l_{\mathbf{1}}(T)$, the converse is valid.

By making the appropriate modifications of the proof of Theorem I
in [12]-using Blatter's generalization [2, Lemma 4] of a result of Vlasov [16 , Lemma 1]-we can prove the following result.

Theorem 2.2. Let X have property $C L U R$ and let K be a proximinal subset. If P_{K} is o.r.l.s.c. and P_{K} is compact-valued, then K is approximatively compact.

Panda and Kapoor [12, Theorem 1] proved this in the special case when K is a Chebychev sct with a continuous metric projection. Since every apprximatively compact Chebychev set has a continuous metric projection (Singer [13]), we obtain

Corollary 2.3. Let K be a Chebychev subset of a space having property $C L U R$. The following-statements are equivalent.
(1) K is approximatively compact,
(2) P_{K} is continuous,
(3) P_{K} is-o.r.l.s.c.

Oshman [11] and, independently, Panda and Kapoor [12] proved the implication (2) \Rightarrow (1). We do not know whether the converse of Theorem 2.2 is valid. However, the above corollary shows that the converse is valid for Chebychev sets.

Definition 2.4. Let K be a subset of $X . P_{K}$ is upper semicontinuous (u.s.c.) at x_{0} if for each open set W with $P_{K}\left(x_{0}\right) \subset W$, there exists a neighborhood U of x_{0} such that $P_{K}(x) \subset W$ for every x in $U . P_{K}$ is called u.s.c. if it is u.s.c. at each point of X.

For Chebychev sets, u.s.c. and continuity are obviously identical.
Lemma 2.5. Let K be a proximinal subset of $X, x \in X$, and suppose every minimizing sequence for x has a convergent subsequence. Then P_{K} is u.s.c. at x and $P_{K}(x)$ is compact.

Proof. That $P_{K}(x)$ is compact is obvious since every sequence in $P_{K}(x)$ is minimizing. If P_{K} were not u.s.c. at x, there exist an open set $W \supset P_{K}(x)$ and a sequence $x_{n} \rightarrow x$ such that $P_{K}\left(x_{n}\right) \backslash W=\varnothing$. Choose $y_{n} \in P_{K}\left(x_{n}\right) \backslash W$. Then

$$
\left\|x-y_{n}\right\| \leqslant\left\|x-x_{n}\right\|+\left\|x_{n}-y_{n}\right\|=\left\|x-x_{n}\right\|+d\left(x_{n}, K\right) \rightarrow d(x, K)
$$

so $\left(y_{n}\right)$ is minimizing for x. Let $\left(y_{n_{k}}\right)$ be a subsequence with $y_{n_{k}} \rightarrow y_{0}$. Then $y_{0} \in K$ and, from the above inequality, $\left\|x-y_{0}\right\| \leqslant d(x, K)$. Hence $y_{0} \in P_{K}(x) \subset W$, so $y_{n_{k}} \in W$ eventually, a contradiction.

In particular (Singer [13]): Every approximatively compact set has a u.s.c. metric projection. The main result of this section is

Theorem 2.6. Let X be a CLUR space, K a proximinal subset, $x \in X$. $y \in P_{K}(x), 0<\lambda<1$, and $z=\lambda x+(1-\lambda) y$. Then:
(1) every minimizing sequence for z has a convergent subsequence,
(2) P_{K} is u.s.c. at z,
(3) $P_{K}(z)$ is compact.

In particular, there is a dense subset of X on which P_{K} is u.s.c. and compactvalued.

Proof. In view of Lemma 2.5, it suffices to prove (i). We may assume $x \in K$. Note that $y \notin P_{K}(z)$. For each n, let

$$
K_{n}=\{u \in X:\|u-z\| \leqslant\|z-y\|+\|n,\| u-x\|\geqslant\| x-y \|\} .
$$

Let $\left(y_{n}\right)$ in K be a minimizing sequence for z. Then there is a subsequence ($y_{m(n)}$) such that $y_{m(n)} \in K_{n}$ for each n. By Lemma 2 of [12], $\left(y_{m(n)}\right)$ (and hence (y_{n}) also) has a convergent subsequence.

Corollary 2.7 (Panda and Kapoor [12]). Let X be a CLUR space. Then the metric projection onto each Chebychev set is continuous on a dense subset of X.

Corollary 2.8 (Panda and Kapoor [12]). In a CLUR space, every proximinal β-sun is approximatively compact.

Proof. Let K be a proximinal β-sun in X and $z \in X \backslash K$. Choose $y \in P_{K}(z)$ so that $y \in P_{K}(z+\lambda(z-y))$ for all $\lambda \geqslant 0$. Given $\lambda_{0}>0$, let $x=z+\lambda_{0} \times$ $(z-y)$. Then z is a convex combination of x and y and Theorem 2.6 implies every minimizing sequence for z has a convergent subsequence. Thus K is approximatively compact.

It is natural to ask whether an approximation theoretic characterization of CLUR spaces exists. For example, are these spaces characterized by the property that the class of approximatively compact sets coincides with the class of proximinal sets having u.s.c. (os o.r.l.s.c.) and compact-valued metric projections?

3. A Class of Suns

A normed linear space X is called NLUR (Oshman [9]) if $\left(x_{n}\right)$ in $S(X)$, $\left(f_{n}\right),\left(f_{0}^{(n)}\right)$ in $S\left(X^{*}\right), f_{n}\left(x_{n}\right)=1=f_{0}^{(n)}\left(x_{0}\right)(n=0,1,2, \ldots), d\left(x_{0}, H_{0}^{(n)} \cap H_{n}\right) \rightarrow 0$, and $d\left(x_{n}, H_{0}^{(n)} \cap H_{n}\right) \rightarrow 0$ imply $x_{n} \rightarrow x_{0}$, where

$$
H_{0}^{(n)}=\left\{x \in X: f_{0}^{(n)}(x)=1\right\} \quad \text { and } \quad H_{n}=\left\{x \in X: f_{n}(x)=1\right\}
$$

Oshman [9] essentially showed that in a reflexive rotund space with NLUR, the metric projection onto every Chebychev β-sun is continuous. It is not known whether the converse is true. (The converse is false without the assumption of rotundity. This follows by observing that each non-rotund fiinite-dimensional space is CLUR but not NLUR and then applying Corollary 2.8 , above.) As an initial attempt to obtain a (negative) answer to this question we investigate the class of β-suns studied by Oshman [10, Lemma 2]. We show that these β-suns-indeed, an even larger class of β-suns-always have continuous metric projections. The essential ideas of the proof of Lemma 3.1 can be found in [10, Lemma 2]. Since the proof is short, we have included it here for completeness.

For the remainder of this section, unless otherwise stated, we fix a normed linear space $X, x_{0} \in S(X)$, and a weak* compact subset $\left\{f_{i}: i \in I\right\}$ of the set $\left\{f \in S\left(X^{*}\right): f\left(x_{0}\right)=1\right\}$. Let

$$
V=\bigcup_{i \in I}\left\{y \in X: f_{i}(y) \geqslant 1\right\}
$$

Lemma 3.1. V is a proximinal β-sun. More explicitly, $x+d(x) x_{0} \in P_{V}(x)$ for each $x \in X \backslash V$, where $d(x)=\inf f_{i}\left[1-f_{i}(x)\right]$.

Proof. Since V is the union of the closed half spaces $H_{i}=(y \in X$: $\left.f_{i}(y) \geqslant 1\right\}(i \in I)$, it follows that for each $x \in X \backslash V, d(x, V)=\inf _{i} d\left(x, H_{i}\right)=$ $\inf _{i}\left[1-f_{i}(x)\right]=d(x)$.

Let $y=x+d(x) x_{0}$. Then $\|y-x\|=d(x)=d(x, V)$. Thus to show $y \in P_{\nu}(x)$, we need only show $y \in V$. By weak* compactness we can choose an index $i_{0} \in I$ so that $d(x)=1-f_{i_{0}}(x)$. Then

$$
f_{i_{0}}(y)=f_{i_{0}}(x)+d(x)=1,
$$

so $y \in V$. In particular, V is proximinal.
It remains to show that V is a β-sun. Let $x \in X \backslash V$ and $x^{\prime}-x+d(x) x_{0}$. By the preceeding argument, $x^{\prime} \in P_{V}(x)$. Let $\lambda=x^{\prime}+\lambda\left(x-x^{\prime}\right)$. We will show that $x^{\prime} \in P_{V}\left(x_{\lambda}\right)$. For each $v \in V$, choose $i \in I$ so that $f_{i}(v) \geqslant 1$. Then

$$
\begin{aligned}
\left\|x_{\lambda}-x^{\prime}\right\| & =\lambda\left\|x-x^{\prime}\right\|=\lambda d(x)=d(x)-(1-\lambda) d(x) \\
& \leqslant 1-f_{i}(x)-(1-\lambda) d(x) \leqslant f_{i}(v-x)-(1-\lambda) d(x) \\
& =f_{i}\left(v-x_{\lambda}\right) \leqslant\left\|v-x_{\lambda}\right\|
\end{aligned}
$$

Thus $x^{\prime} \in P_{v}(x)$ and V is a β-sun.
Oshman [10] established Lemma 3.1 in the particular case when

$$
V=\left\{y \in X: f(y) \geqslant 1 \text { for some } f \in S\left(X^{*}\right) \text { with } f\left(x_{0}\right)=1\right\}
$$

Theorem 3.2. If V is a Chebychev set-which will be the case when X is rotund-then P_{V} is continuous.

Proof. Assume V is Chebychev. By Lemma 3.1, $P_{V}(x)=x+d(x) x_{0}$ for each x in $X \backslash V$. Since P_{V} is continuous on V, to show continuity of P_{V}, it obviously suffices to show that the function $x \rightarrow d(x)$ is continuous on $X \backslash V$. Let $x \in X \backslash V$ and $x_{n} \rightarrow x$. Since $d\left(x_{n}\right) \leqslant 1-f_{i}\left(x_{n}\right)$ for each $i \in I$, we have $\lim \sup d\left(x_{n}\right) \leqslant d(x)$. Next choose $i_{n} \in I$ so that $d\left(x_{n}\right)=1-f_{i_{n}}\left(x_{n}\right)$. Let $f \in X^{*}$ be a weak* cluster point of $\left(f_{i_{n}}\right)$. Then $f=f_{i_{0}}$ for some $\dot{i}_{0} \in I$. Since

$$
\begin{aligned}
\left|f_{i_{n}}\left(x_{n}\right)-f(x)\right| & \leqslant f_{i_{n}}\left(x_{n}\right)-f_{i_{n}}(x)\left|+\left|f_{i_{n}}(x)-f(x)\right|\right. \\
& \leqslant\left|x_{n}-n\right|+\left|f_{i_{n}}(x)-f(x)\right|
\end{aligned}
$$

we have (by passing to a subscquence if necessary) that $f_{i_{n}}\left(x_{n}\right) \rightarrow f(x)$. Hence

$$
\lim \inf d\left(x_{n}\right)=1-f(x) \geqslant d(x)
$$

Thus

$$
d(x) \leqslant \lim \inf d\left(x_{n}\right) \leqslant \lim \sup d\left(x_{n}\right) \leqslant d(x)
$$

and so $d(x)=\lim d\left(x_{n}\right)$. This shows that d is continuous on $X \backslash V$.
It remains to show that if X is rotund, then V is a Chebychev set. In view of Lemma 3.1, it suffices to show that any proximinal β-sun K in a rotund space X is Chebychev. If this result were false, there would be an $x \in X \backslash K$ and distict points $x^{\prime}, x^{\prime \prime}$ in $P_{K}(x)$. We may assume $x=0$. Choose $y^{\prime} \in P_{K}(0)$ so that $y^{\prime} \in P_{K}\left[y^{\prime}+\lambda\left(0-y^{\prime}\right)\right]$ whenever $\lambda \geqslant 0$. In particular, $y^{\prime} \in P_{K}\left(-y^{\prime}\right)$. Now either $x^{\prime \prime} \neq y^{\prime}$ or $x^{\prime} \neq y^{\prime}$, say, the former. Then since equality holds in the triangle inequality, we obtain $y^{\prime}=x^{\prime}$, a contradiction.

4. Linear Metric Projections

If M is a Chebyshev subspace of the normed linear space X, the kernel of th metric projection P_{M} will be denoted by M^{0}. Thus

$$
M^{0}=\left\{x \in X: P_{M}(x)=0\right\}=\{x \in X:\|x\|=d(x, M)\}
$$

It is well known (Holmes and Kripke [6]) that P_{M} is linear if and only if M^{0} is a linear subspace. In the same paper, they proved the following results

Theorem (Holmes and Kripke [6]). Let M be a Chebychev subspace of X.
(1) If P_{M} is continuous, then $I+P_{M}$ is a homeomorphism of X with itself.
(2) If P_{M} is linear, then $\left\|P_{M}\right\|=1$ if and only if M^{0} is a proximinal subspace and $x-P_{M}(x) \in P_{M}(x) \in P_{M^{0}}(x)$ for each $x \in X$.
(3) If P_{M} is linear and M^{0} is a Chebychev subspace, then the following statements are equivalent:
(a) $\left\|P_{M}\right\|=1$,
(b) $P_{M^{0}}=I-P_{M}$,
(c) $\left(M^{0}\right)^{0}=M$.

Our first observation is that to compute the norm of certain linear metric projections, it suffices to consider only the unit ball of a rather small subset.

Lemma 4.1. If M is a Chebychev subspace of the normed linear space X, P_{M} is linear, and M^{0} is proximinal, then

$$
\left\|P_{M}\right\|=\sup \left\{\left\|P_{M}(x)\right\|: x \in\left(M^{0}\right)^{0},\|x\| \leqslant 1\right\}
$$

Proof. We first note that since M is Chebychev, each $x \in X$ has a unique representation in the form $x=m+m^{0}$, where $m \in M$ and $m^{0} \in M^{0}$. In fact, $m=P_{M}(x)$ and $m^{0}=x-P_{M}(x)$. Thus $X=M \oplus M^{0}$. Since M^{0} is proximinal, we also have $X=M^{0}+\left(M^{0}\right)^{0}$ (i.e., $X=\left\{m^{0}+m^{00}: m^{0} \in M^{0}\right.$, $\left.m^{00} \in\left(M^{0}\right)^{0}\right\}$. Finally, recall that since M^{0} is a subspace, $P_{M^{0}}$ is "additive modulo $M^{0^{01}}: P_{M^{0}}(u+v)=P_{M^{0}}(u)+P_{M^{0}}(v)$ for any $u \in X$ and $v \in M^{0}$. Thus we have $x=m+m^{0}$ and $m=m_{1}{ }^{0}+m^{00}$, where $m \in M, m^{0}, m_{1}{ }^{0} \in M^{0}$, and $m^{00} \in\left(M^{0}\right)^{0}$. Since M^{0} is a subspace $m_{1}^{0}+m^{0} \in M^{0}$ and

$$
x=\left(m_{1}^{0}+m^{0}\right)+m^{00}
$$

so

$$
m^{0}+m_{1}^{0} \in m^{0}+m_{1}^{0}+P_{M^{0}}\left(m^{00}\right)=P_{M^{0}}\left(m^{0}+m_{1}^{0}+m^{00}\right)=P_{M^{0}}(x) .
$$

In particular, $\left\|m^{00}\right\|=\left\|x-\left(m^{0}+m_{1}^{0}\right)\right\| \leqslant\|x\|$. Also, by linearity of P_{M},

$$
P_{M}(x)=P_{M}(m)=P_{M}\left(m_{1}^{0}+m^{00}\right)=P_{M}\left(m_{1}^{0}\right)+P_{M}\left(m^{00}\right)=P_{M}\left(m^{00}\right)
$$

This shows that for each $x \in X$ with $\|x\|<1$, there is an $m^{0} \in\left(M^{0}\right)^{0}$ with $\left\|m^{00}\right\| \leqslant 1$ and $P_{M}\left(m^{00}\right)==P_{M}(x)$. Thus

$$
\begin{aligned}
\left\|P_{M}\right\| & =\sup \left\{\left\|P_{M}(x)\right\|: x \in X,\|x\| \leqslant 1\right\} \\
& \leqslant \sup \left\{\left\|P_{M}(x)\right\|: x \in\left(M^{0}\right)^{0},\|x\| \leqslant 1\right\} \leqslant\left\|P_{M}\right\|
\end{aligned}
$$

and the result follows.

If M is a Chebychev subspace of X, the norm of P_{M}, whether P_{M} is linear or not, is defined by

$$
\left\|P_{M}\right\|=\sup \left\{\left\|P_{M}(x)\right\|:\|x\| \leqslant 1\right\} .
$$

Since P_{M} is the identity on $M,\left\|P_{M}\right\| \geqslant 1$. On the other hand, since

$$
\left\|P_{M}(x)\right\| \leqslant\left\|P_{M}(x)-x\right\|+\|x\| \leqslant 2 \| x
$$

for every x, it follows that $\left\|P_{M}\right\| \leqslant 2$. Thus $1 \leqslant\left\|P_{M}\right\| \leqslant 2$. In a Hilbert space it is well known that the metric projection onto a closed subspace is always linear and has norm one (viz., it is the orthogonal projection). In general normed spaces however, with the exception of Chebychev subspaces of codimension one, Chebychev subspaces having linear metric projections are relatively scarce. (For example, the space C[0,1] has none with finite dimension [5].) The next two results state, in particular, that linear metric projections exist with every norm size possible. (We use the notation $l_{1}(2)$ to denote the space \mathbb{R}^{2} with the norm $\|(\alpha, \beta)|=|\alpha|+|\beta|$.

Proposition 4.2. For each real number r with $1 \leqslant r \leqslant 2$, there is a one dimensional subspace $M=M_{i}$ of $l_{1}(2)$ with the following properties:
(1) M is Chebychev,
(2) P_{M} is linear,
(3) $\left\|P_{M}\right\|=r$,
(4) M^{0} is Chebychev,
(5) $P_{M^{0}}$ is linear.

Proof. Choose an angle $\theta \in[0, \pi / 4)$ so that $\tan \theta=r-1$. Define the subspace $M=M_{r}$ by

$$
M=\{x=(\gamma, \gamma \tan \theta): \gamma \in \mathbb{R}\} .
$$

For any $x=(\alpha, \beta)$ in $l_{1}(\mathbb{R})$ and $y=(\gamma, \gamma \tan \theta)$ in M, we have

$$
\begin{aligned}
\|x-y\| & =|\alpha-\gamma|+|\beta-\gamma \tan \theta| \\
& \geqslant|\alpha-\gamma| \tan \theta+|\beta-\gamma \tan \theta| \\
& \geqslant|\alpha \tan \theta-\beta|
\end{aligned}
$$

and equality holds only if $\alpha=\gamma$ (since $0 \leqslant \tan \theta<1$). But $y_{0}=(\alpha, \alpha \tan \theta)$ satisfies $\left\|x-y_{0}\right\|=|\beta-\alpha \tan \theta|$. Thus M is Chebychev and

$$
\begin{equation*}
P_{M}(\alpha, \beta)=(\alpha, \alpha \tan \theta) \quad \forall(\alpha, \beta) \text { in } l_{l}(2) . \tag{}
\end{equation*}
$$

In particular, (1) is verified, and (2) follows from the relation (*).
(*) If $\|(\alpha, \beta)\| \leqslant 1$, then

$$
\left\|P_{M}(\alpha, \beta)\right\|=\|(\alpha, \alpha \tan \theta)\|=:|\alpha|(1+\tan \theta)=|\alpha| \boldsymbol{r}=\boldsymbol{r}
$$

and equality holds for $(\alpha, \beta)=(1,0)$. Thus $\left\|P_{M}\right\|=r$.
(4) From (${ }^{*}$) it follows that $(\alpha, \beta) \in M^{0} \Leftrightarrow \alpha=0$. That is,

$$
M^{0}=\{(0, \beta): \beta \in \mathbb{R}\} .
$$

If $x=(\alpha, \beta)$ and $y=y=(0, \gamma) \in M^{0}$, then

$$
\|x-y\|=|\alpha|+|\beta-\gamma| \geqslant|\alpha|
$$

and equality holds-only if $\beta=\gamma$. This shows that M^{0} is Chebychev and

$$
\begin{equation*}
P_{M^{0}}(\alpha, \beta)=(0, \beta) . \tag{}
\end{equation*}
$$

(5) follows from Eq. (**).
(6) For each (α, β) with $\|(\alpha, \beta)\| \leqslant 1$, we have

$$
\left\|P_{M^{0}}(\alpha, \beta)\right\|=|\beta| \leqslant\|(\alpha, \beta)\| \leqslant 1,
$$

so $\left\|P_{M^{0}}\right\|=1$.

$$
\text { (7) } \begin{aligned}
\left(M^{0}\right)^{0} & =\left\{(\alpha, \beta): P_{M^{0}}(\alpha, \beta)=0\right\} \\
& =\{(\alpha, 0): \alpha \in \mathbb{R}\}
\end{aligned}
$$

and $\left(M^{0}\right)^{0} \neq M$ if $\tan \theta \neq 0$, i.e., if $r \neq 1$.
Remark. Using Lemma 4.1, it is not hard to see that there is no Chebychev subspace M of $l_{1}(2)$ with (P_{M} linear and) $\left\|P_{M}\right\|=2$. More generally, we prove

Lemma 4.3. If X is a finite-dimensional normed linear space and $M a$ Chebychev subspace, then $\left\|P_{M}\right\|<2$.
Proof. If $\left\|P_{M}\right\|=2$, then by compactness of the unit ball in X and the continuity of P_{M}, there would exis- $x \in X$ with $\|x\|=1$ and $\left\|P_{M}(x)\right\|=4$. Hence

$$
2=\left\|P_{M}(x)\right\| \leqslant\left\|P_{M}(x)-x\right\|+\|x\| \leqslant 2\|x\|=2 .
$$

Thus equality must hold throughout so $\left\|P_{M}(x)-x\right\|=\|x\|$. This implies that $P_{M}(x)=0$ which contradicts $\left\|P_{M}(x)\right\|=2$. Thus $\left\|P_{M}\right\|<2$.

Thus to find a Chebychev subspace with (linear) metric projection having norm 2 , we are forced to consider infinite-dimensional spaces.

Proposition 4.4. There is a subspace M of $C[0,1]$ with the properties:
(1) M is Chebychev,
(2) P_{M} is linear,
(3) $\left\|P_{M}\right\|=2$,
(4) M^{0} is Chebychev,
(5) $P_{M 0}$ is not linear,
(6) $\left\|P_{M^{0}}\right\|=1$,
(7) $\left(M^{0}\right)^{0} \neq M$.

Proof. Let $M=\left\{x \in C[0,1]: \int_{0}^{1} x(t) d t=0\right\}$. For each $x \in C[0,1]$, let $\int_{0}^{1} x(t) d t=0$. For each $x \in C[0,1]$, let $\tilde{x}=x-\int_{0}^{1} x(t) d t$. Then $\tilde{x} \in M$ and $\|x-\tilde{x}\|=\left|\int_{0}^{1} x(t) d t\right|$. If $y \in M$, then
$\left||x-y| \geqslant \int_{0}^{1}\right| x(t)-y(t)|d t \geqslant| \int_{0}^{1}\left[x(t) d t\left|=\left|\int_{0}^{1} x(t) d t\right|=\| . x-\tilde{x}\right| \mid\right.$.
This shows that $\tilde{x} \in P_{M}(x)$. Now equality holds in the above inequality if and only if $x-y=c$, a constant. Since $y \in M, c=\int_{0}^{1} x(t) d t$. That is, $y=\tilde{x}$. This proves that M is Chebychev and

$$
\begin{equation*}
P_{M}(x)=x-\int_{0}^{1} x(t) d t \tag{*}
\end{equation*}
$$

(2) The linearity of P_{M} follows immediatcly from (*).
(3) Given $0<\epsilon<1$ define

$$
\begin{aligned}
x(t) & =1-\frac{2}{\epsilon} t & & \text { if } \quad 0 \leqslant t \leqslant \epsilon \\
& =-1 & & \text { if } \quad \epsilon \leqslant t \leqslant 1
\end{aligned}
$$

Then $x \in C[0,1],\|x\|=1$, and $P_{M}(x)=x+1-\epsilon$. Since $x(0)=1$, we have that $\left\|P_{M}(x)\right\| \geqslant 2-\epsilon$. Since ϵ was arhitrary, $\left\|P_{M}\right\| \geqslant 2$ and hence $\left\|P_{M}\right\|=2$.
(4) From (*) we obtain

$$
M^{0}=\left\{x \in C[0,1]: P_{M}(x)=0\right\}=\{x: x \text { a constant }\}
$$

It is well known that the constant functions form a one-dimensional Chebychev subspace of $C[0,1]$. Indeed, if $x \in C[0,1]$, then

$$
P_{M^{0}}(x)=\frac{1}{2}\left[\max _{0 \leqslant t \leqslant 1} x(t)+\min _{0 \leqslant t \leqslant 1} x(t)\right] .
$$

(5) Define x and y on $[0,1]$ by

$$
\begin{array}{rlrl}
x(t) & =0 & & \text { if } \\
& 0 \leqslant t \leqslant t \leqslant \frac{1}{4}, \\
& =1 & & \text { if } \\
& \frac{1}{4} \leqslant t \leqslant \frac{1}{2}, \\
y(t) & =1 & & \\
& & \frac{1}{2} \leqslant t \leqslant 1 ; \\
& =-4 t+3 \leqslant t \leqslant \frac{1}{2}, \\
& & & \\
& =0 & & \\
\frac{1}{2} \leqslant t \leqslant \frac{3}{4}, \\
& & & \frac{3}{4} \leqslant t \leqslant 1 .
\end{array}
$$

Then $x, y \in C[0,1]$ and $P_{M^{0}}(x)-\frac{1}{2}:=P_{M 0}(y)$. But

$$
\begin{aligned}
& (x+y)(t)=1 \quad \text { if } \quad 0 \leqslant t \leqslant \frac{1}{4}, \\
& =4 t \quad \text { if } \frac{1}{4} \leqslant t \leqslant \frac{1}{2}, \\
& =4(1-t) \quad \text { if } \quad \frac{1}{2} \leqslant t \leqslant \frac{3}{4}, \\
& =1 \quad \text { if } \frac{3}{4} \leqslant t \leqslant 1 \text {, }
\end{aligned}
$$

so that $P_{M^{0}}(x+y)=\frac{3}{2} \neq P_{M^{0}}(x)+P_{M M^{0}}(y)$. Thus $P_{M^{0}}$ is not linear.
(6) If $\|x\| \leqslant 1$, then $-1 \leqslant x(t) \leqslant 1$ for all t implies

$$
-1 \leqslant \frac{1}{2}\left[\max _{t} x(t)+\min _{t} x(t)\right] \leqslant 1,
$$

i.e., $\left\|P_{M^{0}}(x)\right\| \leqslant 1$. Thus $\left\|P_{M^{0}}(x)\right\| \leqslant 1$. Thus $\left\|P_{M^{0}}\right\|=1$.
(7) From (5) and the previously mentioned Holmes-Kripke result, it follows that $\left(M^{0}\right)^{0}$ is not linear and hence $\left(M^{0}\right)^{0} \neq M$. A simple direct proof is also available. Define x on $[0,1]$ by

$$
\begin{array}{rlrl}
x(t) & =-4 t+1 & & \text { if } \\
& =-1 \leqslant t \leqslant \frac{1}{2}, \\
& & & \text { if } \quad \frac{1}{2} \leqslant t \leqslant 1,
\end{array}
$$

Then $P_{M^{0}}(x)=0$, i.e., $x \in\left(M^{0}\right)^{0}$, but $\int_{0}^{1} x(t) d t=-\frac{1}{2}$ so $x \notin M$.
Remark. It would be interesting to know exactly which Banach spaces contain Chebychev subspaces having linear metric projections with norm 2. (The above shows that $C[0,1]$ is such a space, but finite-dimensional spaces and Hilbert spaces are not.)

5. The Klee Space and Continuous Metric Projections

This section concerns itself with the necessaty and sufficient conditions for a Banach space to have a continuous metric projection onto every closed convex set. Oshman [11] has given a geometrical characterization of such
spaces, namely, that it have property (0). A Banach space X is said to possess property (0) if X is reflexive, and if $\left(x_{n}\right)$ in $S(X),\left(f_{n}\right)$ in $S\left(X^{*}\right), f_{n}\left(x_{n}\right)=1$ $(n=0,1,2) f_{n} \rightarrow f_{0}$ weakly, $d\left(x_{0}, H_{0} \cap H_{n}\right) \rightarrow 0, d\left(x_{n}, H_{0} \cap H_{n}\right) \rightarrow 0$ imply $x_{n} \rightarrow x_{0}$, where $H_{n}=\left\{x \in X \mid f_{n}(x)=1\right\}$.

One notes that this characterization is extremely complicated and difficult to apply to specific Banach spaces. It should be noted that if X is reflexive and X^{*} is Frechet smooth, then X has property (0). Indeed if $\left(x_{n}\right) \subset S(X)$, $f_{n} \in S\left(X^{*}\right), f_{n}\left(x_{n}\right)=1(n=0,1, \ldots)$, and $d\left(x_{n}, H_{0} \cap H_{n}\right) \rightarrow 0$, choose any $y_{n} \in H_{0} \cap H_{n}$ such that $\left\|x_{n}-y_{n}\right\| \rightarrow 0$. Then

$$
\left\|f_{0}\left(x_{n}\right)-1\right\|=\left\|f_{0}\left(x_{n}\right)-f_{0}\left(y_{n}\right)\right\| \leqslant\left\|x_{n}-y_{n}\right\| .
$$

By Smulian's characterization [14] of Frechet smoothness of X^{*}, it follows that $\left(x_{n}\right)$ converges. By strict convexity of X, the limit is x.

Both Oshman [11] and Vlasov [17] have conjectured that X possessing property (0) is equivalent to X^{*} being Frechet smooth.

In [17], Vlasov has shown that they are indeed equivalent if X is a smooth Banach space. Previous work [8] by the second author of this paper claimed that the dual of the Klee space [7], was an example of a Banach space such that the metric projection onto every closed subspace was continuous and yet the dual of that space was not Frechet smooth. A mistake in the proof of [8, Lemma 2.1] renders all claims in that paper invalid. We show in this section that the dual space of the Klee space does not possess property (0). In particular, this shows that there exists a reflexive, rotund Banach space, whose dual space has a norm that is Frechet differentiable at all points of its unit ball except for two antipodal points and yet this space fails to possess property (0). This seems to lend considerable support to a positive answer to Oshman and Vlasovs conjecture. It is evident why such a space should have been considered as a possible counterexample to their conjecture. One needs only to verify the defining property of property (0) for those sequences (f_{n}) in $S\left(X^{*}\right)$ which converge weakly to either of the two antipodal points of this unit ball of X^{*} where the norm is not Frechet differentiable. Symmetry reduces the problem and looking at only one of the points. Unfortunately the defining condition fails at these points as we show.

Recall that l_{2} is the Banach space of square summable sequences of real numbers $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ with norm $\|x\|_{2}=\left(\sum_{0}^{\infty} x_{n}^{2}\right)^{1 / 2}$. The vector δ_{n} will denote the sequence whose nth coordinate is one and all others are zero. V denotes the subspace $\left\{x \in l_{2} \mid x_{0}=0\right\}$ and the norm is denoted !| $x \|_{i v}=\left(\sum_{1}^{\infty} x_{n}^{2}\right)^{1 / 2}$.

Klee [7] exhibited an equivalent renorming of $t_{2}-$ call the space X such that X is smooth and that the norm of X is Frechet differentiable at all points of $S(X)$ except $+\delta_{0}$. If we let $Y=X^{*}$ denote the dual space of X, it is clear that Y is a reflexive, rotund Banach space from elementary duality
considerations. It is the space Y that we will show does not possess property (0).

We recall the renorming of l_{2} given in [7]. Let

$$
\mathscr{U}_{n}=\left\{\delta_{0},-\delta_{0}\right\} \cup\left\{\left.x \in l_{2}| | x_{0}\left|<1, \sum_{i=1}^{\infty}\right| \frac{x_{i}}{\eta_{i}\left(x_{0}\right)}\right|^{2} \leqslant 1\right\}
$$

where each η_{i} is an even function on $[-1,1]$ to $[0,1]$ with the following properties.

Given a sequence ϵ_{i} of positive real numbers decresing to zero one has
(1) η_{i} is the continuous and concave with $\eta_{i}(0)=1, \eta_{i}\left(1-\epsilon_{i}\right)=2 \epsilon_{i}$ and $\eta_{i}(1)=0$ for all i,
(2) η_{i} is differentiable on $[0,1)$ with $\eta_{i}(0)=0$ and $\eta_{i}\left(1-\epsilon_{i}\right)=-1$ for all i;
(3) η_{i} has a vertical tangent at 1 (i.e., $\lim _{\lambda \rightarrow 1^{-}} \eta_{i}(\lambda)=-\infty$ for all i).

To facilitate our computations, we shall work with the following particular functions having these properties:

$$
\begin{aligned}
\eta_{i}(\lambda) & =1-\frac{\lambda^{2}}{4 \epsilon_{i}}, & & 0 \leqslant \lambda \leqslant 2 \epsilon_{i} \\
& =1-\lambda+\epsilon_{i}, & & 2 \epsilon_{i} \leqslant \lambda \leqslant 1-\epsilon_{i} \\
& =\sqrt{4 \epsilon_{i}(1-\lambda)}, & & 1-\epsilon_{i} \leqslant \lambda \leqslant 1
\end{aligned}
$$

In [7] Klee let K to be the closed convex hull of $\mathscr{U}_{\eta}: K=\overline{\mathrm{co}}\left(\mathscr{U}_{\eta}\right)$. The guage $\rho_{K}(\cdot)$ of K is taken to be the norm of the Klee space X. We set $Y=X^{*}$ with norm defined by the gauge $\rho_{K^{0}}(\cdot)$ where K^{0} denotes the polar set of K in Y.

Given x in $S(X)$, it is necessary for us to find the norm duality mapping $T: S(X) \rightarrow S(Y)$ which has the property that $(x, T x)=\rho_{K}(x) \rho_{K^{0}}(T x)=1$. One checks that $T \delta_{0}=\delta_{0}$. Let $F=\left\{x \in l_{2}\left|\sum_{1}^{\infty}\right| x_{i}\left|\eta_{i}\left(x_{0}\right)\right|^{2}=1\right\}$ denote a surface in l_{2}. By standard infinite-dimensional calculus techniques in l_{2}, one can determine the equation of a supporting hyperplane to F at any specific point \bar{x} on F. Such an equation would have the form $(\varphi, x-\bar{x})=0$ where φ is in l_{2}. Since F is a symmetric set, φ would also determine a supporting hyperplane at $(-\bar{x})$. Any supporting hyperplane would also support the closed convex hull of $\left\{-\delta_{0},+\delta_{0}\right\} \cup F$ and hence support K, the unit ball of the Klee space. Normalizing the linear functional q will yield the norm duality element for an element in \mathscr{U}_{n}. In particular one finds that if f is in $S(X), f=\left(f_{0}, f_{1}, \ldots\right)$, then

$$
T f=\frac{1}{1+A(f) \cdot f_{0}}\left(A(f), \frac{f_{1}}{\eta_{1}^{2}\left(f_{0}\right)}, \frac{f_{2}}{\eta_{2}^{2}\left(f_{0}\right)}, \ldots\right)
$$

where $A(f)=\sum_{i=1}^{\infty}-\left(f_{i}^{2} / \eta_{i}{ }^{3}\left(f_{0}\right)\right) \eta_{i}\left(f_{0}\right)$.

To show that Y does not possess property (0) set

$$
f^{j}=\left(1-\epsilon_{j}\right) \delta_{0}+\eta_{1}\left(1-\epsilon_{j}\right) \times \delta_{1}+\eta_{j}\left(1-\epsilon_{j}\right) y \delta_{j}
$$

where $x^{2}+y^{2}=1, x y \neq 0$, and the $\left(\epsilon_{j}\right)$ is the precise sequence determining the propertics of the η_{j}. Clcarly f^{j} is in $S(X)$. $T f^{j}$ is in $S(Y)$ and is given by

$$
T f^{j}=\frac{1}{1+\epsilon_{j}} \delta_{0}+\frac{x}{1+\epsilon_{j}} \sqrt{\frac{\epsilon_{j}}{\epsilon_{1}}} \delta_{1}+\frac{y}{1+c_{j}} \delta_{j}
$$

As $j \rightarrow \infty, \epsilon_{j} \rightarrow 0, f^{j} \rightarrow \delta_{0}$ weakly and $T f^{j} \rightarrow \delta_{0}$ weakly.
Since Y is a renorming of l_{2} with an equivalent norm, it can be shown that $\left\|T f^{j}-\delta_{0}\right\|_{2}^{2}=1 /\left(1+\epsilon_{j}\right)^{2}\left(\epsilon_{1}^{2}+\left(\epsilon_{j} / \epsilon_{1}\right) x^{2}+y^{2}\right) \geqslant y^{2} / 2>0$ for all j. Thus $T f^{j}$ does not converge strongly to δ_{0}. This would refute Y processing property (0) if we can show that the f^{j} and $T f^{j}$ satisfy these remaining hypothesis of property (0). In particular we must show that $d\left(T f^{j}, H_{0} \cap H_{j}\right) \rightarrow 0$ and To facilitate the computation we present another renorming of l_{2}. Let B denote the closed convex hull of $\left\{\delta_{0}+S(V),-\delta_{0}+S(V)\right\} . K$ is contained in B and l_{2} with guage ρ_{B} can be shown to be equivalent renorming of I_{2}. In fact, $\rho_{B}(x)=\max \left\{\left|x_{0}\right|,\left\|x_{v}\right\|_{v}\right\}$, where $x=x_{0}+x_{v}, x_{v}$ in V. In the space Y, we also obtain an equivalent renorming using $\rho_{B^{0}}$ as the norm. In particular $\rho_{B^{0}}(y)=\left|y_{0}\right|+\left\|y_{v}\right\|_{V}$. Clearly $B^{0} \subset K^{0}$ and $\rho_{K^{0}}(y) \leqslant \rho_{B^{0}}(y)$ for all y in Y. Thus $d_{K^{0}}\left(T f^{j}, H_{0} \cap H_{j}\right) \leqslant d_{B^{0}}\left(T f^{j}, H_{0} \cap H_{j}\right)$ and $d_{K^{0}}\left(\delta_{0}, H_{0} \cap H_{j}\right) \leqslant$ $d_{B^{0}}\left(\delta_{0}, H_{0} \cap H_{j}\right)$. We will show that the larger distances approach zero insuring that the smaller ones do likewise. By definition

$$
\begin{aligned}
d_{B^{0}}(\alpha, H)= & \inf _{h \in H} \beta_{B^{0}}(\alpha-h) \\
& \inf _{h \in H}\left\{\left|\alpha_{0}-h_{0}\right|+\left\|\alpha_{v}-h_{v}\right\|_{V}\right\} .
\end{aligned}
$$

We note that in our specific case

$$
H_{0}-\left\{z \in l_{2} \mid z_{0}-1\right\}
$$

and

$$
H_{j}=\left\{z \in l_{2} \mid\left(1-\epsilon_{j}\right) z_{0}+x \eta_{1}\left(1-\epsilon_{j}\right) z_{1}+y \eta_{j}\left(1-\epsilon_{j}\right) z_{j}=1\right\} .
$$

Thus

$$
H_{0} \cap H_{j}=\left\{z \in l_{2} \mid z_{0}=1 \text { and } x \eta_{1}\left(1-\epsilon_{j}\right) z_{1}+y \eta_{j}\left(1-\epsilon_{j}\right) z_{j}=\epsilon_{j}\right\} .
$$

Then

$$
\begin{aligned}
\rho_{B^{0}}\left(\alpha_{,} H_{0} \cap H_{j}\right) & =\inf _{z \in H_{0} \cap H_{j}}\left\{\left|\alpha_{0}-1\right|+\left\|\alpha_{v}-z_{v}\right\|_{v}\right\} \\
& =\left|\alpha_{0}-1\right|+\inf _{z \in H_{0} \cap H,}\left\|\alpha_{V}-z_{V}\right\|_{v} \\
& =\left|\alpha_{0}-1\right|+\inf _{z_{v} \in \dot{i z}}\left\|\alpha_{V}-z_{v}\right\|_{V},
\end{aligned}
$$

where $\mathscr{A}=\left\{z \in V \mid x \eta_{1}\left(1-\epsilon_{j}\right) z_{1}+\gamma \eta_{j}\left(1-\epsilon_{j}\right) z_{j}=\epsilon_{j}\right\}$ is a hyperplane in V.

Then using the formula for the distance from an element in a space to a hyperplane $\varphi(z)=c$ (i.e., $d(\alpha, H)=|\varphi(\alpha)-c| /||\varphi||)$ one has $\rho_{B^{0}}\left(\delta_{0}\right.$, $\left.H_{0} \cap H_{j}\right)=|1-1|+\inf _{z_{\nu} \in \mathscr{A}}\left\|z_{v}\right\|_{V}$

$$
=0+\frac{\left|\epsilon_{j}\right|}{2\left|\epsilon_{j}\right| \sqrt{x^{2}\left(\epsilon_{1} / \epsilon_{j}\right)+y^{2}}}=\frac{1}{2 \sqrt{x^{2}\left(\epsilon_{1} / \epsilon_{j}\right)+y^{2}}} \rightarrow 0
$$

as $j \rightarrow \infty$.
Similarly $d_{B^{0}}\left(T f^{j}, H_{0} \cap H_{j}\right)=\left|1-1 /\left(1+\epsilon_{j}\right)\right|+\inf _{z_{, ~ \in \in \mathscr{A}}}\left\|T f^{j}-z_{v}\right\|_{V}$

$$
\begin{aligned}
& =\left|1-\frac{1}{1+\epsilon_{j}}\right|+\frac{\left|2 \epsilon_{j} x^{2} /\left(1+\epsilon_{j}\right)+2 \epsilon_{1} y^{2} /\left(1+\epsilon_{j}\right)-\epsilon_{j}\right|}{2 \epsilon_{j}-x^{2}\left(\epsilon_{1} / \epsilon_{j}\right)+y^{2}} \\
& =\left|1-\frac{1}{1+\epsilon_{j}}\right|+\frac{\left|2 \epsilon_{j} /\left(1+\epsilon_{j}\right)-\epsilon_{j}\right|}{\left|2 \epsilon_{j}\right|-x^{2}\left(\epsilon_{2} / \epsilon_{j}\right)+y^{2}} \\
& =\left|1-\frac{1}{1+\epsilon_{j}}\right|+\frac{\left[2 /\left(1+\epsilon_{j}\right)-1\right]}{-x^{2}\left(\epsilon_{1} / \epsilon_{j}\right)+y^{2}} \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty .
\end{aligned}
$$

This concludes the proof that the dual of the Klee space does not possess property (0).

The authors wish to acknowledge recent correspondence from L. P. Vlassov. He notes that if in Theorem 2.2 one strengthens the o.r.l.s.c. of P_{K} to o.r.l. continuity, one obtains the following result. In a complete CLUR space every proximinal set with an o.r.l. continuous metric projection is approximately compact. Notice that one now need not have P_{K} a compact valued map. He also notes that E. V. Oshman [11, Theorem 4] proved that in a Banach space X every β-sum is approximatively compact if and only if X is a $\mathrm{CN}_{\beta} \mathrm{LUR}$ space. Thus Oshman has claim to the result we attributed to Panda and Kapoor in Corollary 2.8.

References

1. J. Blatter, Weiteste Punkte und nachste Punkte, Rev. Roumaine Math. Pures Appl. 14 (1969), 615-621.
2. B. Brosowsiti and F. Deutsch, On some geometrical properties of suns, J. Approximation Theory 10 (1974), 245-267.
3. B. Brosowski and F. Deutsch, Radial continuity of set-valued metric projections, J. Approximation Theory 11 (1974), 236-253.
4. B. Brosowski and R. Wegmann, Charakterisierung besten Approximationen in normierten Vektorraumen, J. Approximation Theory 3 (1970), 369-397.
5. E. W. Cheney and K. H. Price, Minimal projections, in "Approximation Theory" (A. Talbot, Ed.), pp. 261-289, Academic Press, New York, 1970.
6. R. B. Holmes and B. R. Kripke, Smoothness of approximation, Michigan Maith. f. 15 (1968), 225-24.
7. V. Klee, Two renorming constructions rclated to a question of Anscione, Studia Math. 33 (1969), 231-242.
8. J. M. Lambert, Continuous metric projections, Proc. Amer. Math. Soc. 48 (1975), 179-184.
9. E. V. Oshman, Chebychev sets, contnuity of the metuic projection, and some geomerric properties of the unit sphere in a Banach space, Izv. Vyssh. Uchebth. Zaved. Matematika 4 (1969), 38-46. [Russian]
10. E. V. Oshman, Chebychev sets and continuous metric projections, Izv. Vyssh. Uchebn. Zaced. Matematika 9 (1970), 78-82. [Russian]
11. E. V. Oshman, Continuity criterion for metric projections in a Banach space, Mat. Zametki 10 (1971), 459-468. [Russian; English transi. in Math. Notes 10 (171), 697701.]
12. B. B. Panda and O. P. Kapoor, Approximative compactness and continuity of metric projections, Bull. Austral. Math. Soc. 11 (1974), 47-55; Corrigendum: Bull. Austral. Math. Soc. 12 (1975), 319-320.
13. I. Singer, Some remarks on approximative compactness, Rev. Rounaine Math. Pires Appl. 9 (1964), 167-177.
14. V. Smulian, Sur la dérivabilité de la norme dans l'es de Banach, C.R. Dokl. Acad. Sci. USSR 27 (1940), 643-648.
15. L. P. Vlasov, On Chebychev sets, Dokl. Akad. Nauk SSSR 173 (1967), 491-494. [Russian; English transl. in Sov. Math. Dokl. 8 (1967), 401-404.]
16. L. P. Vlasov, Chebychev sets and approximatively convex sets, Mat. Zametki 2 (1967), 191-200. [Russian; English transl. in Math. Notes 2 (1967), 600-605.]
17. L. P. V̌asov, Approximative properties of sets in normed linear spaces, Uspeki Mat. Nauk 28 (1973), 1-66. [Russian; English transl. in Russian Math. Surveys 28 (1973), 1-66.]
