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Abstract 

The piezoelectric material generates an electric field when it is deformed by an external force. On account of this electro-
mechanical coupling, piezoelectric material plays an important role in the development of sensors as well as actuators. The 
governing equations of electro-mechanical characteristics are expressed by extended Stroh formalism. The boundary element 
method is applied to solve the finite domain problem in which the Green function derived according to boundary conditions is 
embedded. The essential nonlinear identification problem is solved by using the multiple loading modes and stepwise 
optimization to search for the global minimum solution. This paper successfully identifies the hole/crack size, location, and 
orientation in finite circular piezoelectric plates by using the strain/electric field data, stress/electric displacement data, or 
displacement/electric charge data from static loadings. The numerical results that confirm the effectiveness of the proposed 
method for hole/crack identification in circular piezoelectric plates are presented in details. 
© 2013 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the National Tsing Hua University, Department of Power Mechanical 
Engineering. 
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Nomenclature 

a semi-major axis of elliptical hole (m) 
*a , *b    eigenvectors 

b semi-minor axis of elliptical hole (m) 
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uk displacement (m) 
kM
iu  displacement/electrical loading (charge) 

Cijks modulus of elasticity (Pa) 
Dj electrical displacement (Coul/m2 or Nt/(mVolt)) 
Ej electrical field (Nt/coul or Volt/m) 

MF  penalty function for nonlinear optimization 
* *( )f z  holomorphic functions of complex variables  *z  kM
lg  constraints during nonlinear optimization 
*p  eigenvalues 
*p̂  concentrated loading/charge 

R1 radial coordinate of elliptical hole/crack center in polar coordinates (m) 
RC radius of circular plate (m) 

*
mt̂  traction 
*x̂  coordinates of point 
ij stress (Pa) 
kM
ij  stress/electrical displacement 

orientation of hole/crack (rad) 
ekij piezoelectric stress tensor (Coul/m2 or Nt/(mVolt)) 

1 transverse coordinate of elliptical hole/crack center in polar coordinates (rad) 
ik permittivity tensor (Coul2/(m2Nt) or Nt/Volt2) 
kM
ij  strain/electrical field 

i stress functions 

1. Introduction 

In aerospace and mechanical industries the increasing demand to efficiently identify the size, location and 
orientation of the defect challenges researchers. There are dynamic and static methods to deal with the defect 
identification. One of the dynamic methods is based on the variation of vibration frequency due to the existence of 
defects, for example, the non-destructive inspection (NDI) technology to detect the change of natural frequency with 
the existence of crack or hole by using ultrasonic inspection. The natural frequency varies with the crack depth and 
location [1,2]. Chen et al. conducted experiment in cantilever beams to detect the crack size and position according 
to the first three natural frequencies [3]. They reported that the error of size identification was 4% and the error of 
location identification was 2%. The accuracy of location identification was better than that of size identification. 
Karthikeyan and Tiwari carried out an experimental investigation to establish an identification procedure for the 
detection, localization, and sizing of an open flaw in a beam based on forced response measurements [4]. They 
successfully identified the location and size of the flaw according to the natural frequency variation of the stiffness 
matrix. The static method is to use the static information, such as stress, strain, and deflection or displacement to 
identify hole and crack in structures. The vehicles, airplanes and ships in service are subject to many kinds of 
loading. It is convenient to monitor and gather the static data of critical structures. Researchers found that the 
measured static data provided a lot of information that could be used to identify the hole and crack effectively [5-9]. 
Caddemi and Morassi explored the crack identification for elastic beams by static measurement. The crack/hole 
identifications for composite structures were studied by several researchers in refs [6-9]. If the strains or 
displacements are not enough sensitive to the size and location of crack in the plate under the static loading, it makes 
a formidable problem for the crack/hole identification from static data. Hwu and Liang successfully solved the 
problem by using the multiple loading modes and stepwise optimization. The results of Hwu and Liang’s method on 
hole/crack identification are accurate and stable in the anisotropic composite laminate [6,7]. In this paper the method 
is extended to the piezoelectric material. 

Piezoelectric materials have a wide variety of applications in actuators and sensors because of their coupled 
electro-mechanical nature. However, their brittleness makes them sensitive to defects like cracks, holes or other type 
of imperfections. The defects might be owing to improper manufacture and increase or develop during service and 
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finally result in an irretrievable damage to the system. In general operation, the structural devices are vulnerable to 
different directional forces, such as the mode one, mode two, and mode three types of forces. The main idea 
underlying the multiple loading modes and stepwise optimization is to use the static data from different mode type of 
forces to improve the performance of hole/crack identification in circular piezoelectric plates. The organization of 
this paper is as follows. Section 2 presents the electro-mechanical formulation of piezoelectric material and the 
Green functions for the boundary element method to solve the finite domain problems. Section 3 describes the 
method of multiple loading modes and stepwise optimization using static data to identify hole/crack. Section 4 
presents numerical results that confirm the effectiveness of the proposed method for hole and crack identification in 
finite circular piezoelectric plates. Section 5 concludes the paper. 

2. Electro-mechanical Formulation 

For an anisotropic linear piezoelectric medium, the constitutive law may be written as 

,

,

ij ijks k s kij k

i iks k s ik k

C u e E
D e u E

   (1) 

where the parameters and the corresponding unit are stress ij (unit:Pa  displacement uk (unit:m  elasticity tensor 
Cijks (unit:Pa  electrical field Ek (unit: Nt/coul or Volt/m electrical displacement Di (unit: Coul/m2 or Nt/(mVolt)), 
piezoelectric stress tensor eiks (unit: same as Di), permittivity tensor ik (unit: Coul2/(m2Nt) or Nt/Volt2). Because of 
the full symmetry conditions of the elasticity tensor Cijks, the piezoelectric stress tensor ekij and the permittivity tensor 

ik also satisfy the full symmetry conditions. The governing equations for the mechanical equilibrium and no free 
charge condition can be expressed by 

, 0ij j ,  , 0i iD    (2) 

An extended version of Stroh formalism [10] satisfying equations (1) and (2) has been derived by Kuo and Barnett 
[11] as 

* * * * * * *
1 2 3 4

* * * * * * *
1 2 3 4

u A f (z ) A f (z )

φ B f (z ) B f (z )

T

T

u u u u
    (3a) 

where 

* * * * * * * * * *
1 2 3 4 1 2 3 4
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1 1 2 2 3 3 4 4

* *
1 2

A ,  B ,

f (z ) ( ) ( ) ( ) ( ) ,

,       1,2,3,4.

T

a a a a b b b b

f z f z f z f z

z x p x

   (3b) 

u* and  are 4×1 column vectors. The first three components of u* are displacements denoted by 1 2 3, ,u u u  and the 
first three components of  are stress functions 1 2 3, , . The last components of u* and  are expressed as 

* * *
4, 4,1 2 4,2 1        1,2;          .i iu E i D D    (4) 
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* *( ), 1,2,3,4f z , are four holomorphic functions of complex variables  *z , which are determined by the 
boundary conditions set for each particular problems. The material eigenvalues *p  and eigenvectors *a , *b  are 
determined by the following eigenrelations 

* * * *

* * *
* *1 2

* *T *
3 1

N ς ς

N N
N            ς

N N

p

a
b

    (5) 

where N* are the compositions of the material properties. The detailed formulations of N* can be found in [13]. From 
a similar derivation in elasticity [12], the infinite anisotropic piezoelectric plate containing an elliptic hole subject to 
a concentrated loading/charge *p̂ applied at point )ˆ,ˆ(ˆ 21

* xxx  is shown in Fig. 1. The boundary conditions are 

*
m

*

C

t̂ 0        along the hole surface

ˆd *p     (6) 

where C is any closed curve enclosing the point *x̂ . The analytical solutions are: 

4
* * * * *T * 1 * *-1 *

1

* *2 2 *2 2
*

*

1 1? ?( ) log( ) A log( ) B B
2 2 k

k
z

i i

z z a p b
a ip b

* *T *
kf p I A p

   (7) 

where a and b are semi-major axis and semi-minor axis shown in Fig. 1. Ik is the 4×4 diagonal matrix with 1 on the 
kth main diagonal and zeros elsewhere. The analytical solutions of straight crack problems are the same as equation 
(7) by letting b approach zero. 
 

 

 

 

 

 

 

 

 

Fig. 1. Infinite plate with elliptical hole subjected to an arbitrary loading/charge. 

To solve the finite domain problems, the boundary element method as an approximate numerical technique has 
been successfully applied for a wide variety of areas. According to the former research [13], it is a feasible approach 
to solving the finite piezoelectric material problem by the numerical program of boundary element method in which 
the analytical solution equation (7) was embedded. The forward analysis of the effect of variations of size, location, 
and orientation of crack/hole on strains/electrical fields, stresses/electrical displacement or displacement/electrical 
load in circular plates is similar to that in square plates. Because the shape of the plate is not square, the pure loading 
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mode as depicted in Fig. 2 is hardly to be defined in a circular plate. Therefore, the multiple loading modes of a 
circular plate are defined to be three types of mixed loading modes as follows. 

 mode I : load along the radius direction R of the circular plate which is the combination of the loading direction 
x1 and x2 in Cartesian coordinate system, 

 mode II: load in the anti-plane direction, 
 mode III: electrical displacement along the radius direction R . 

The definition of the size (a, b), location (R1, 1) and orientation ( ) of crack/hole in a circular plate is shown in Fig. 
3. Note that the magnitude of the measured variables to be used to identify hole/crack in piezoelectric materials such 
as strains, displacements, electric charges, and electric displacements are usually very small. It is important in 
practice that the measured variables in each loading mode must be carefully selected to keep good sensitivity. 

 

Fig. 2. Three typical types of loading modes for crack in the plate. 

 

Fig. 3. Location (R1, 1) and orientation  of elliptical hole, sensors arrangement and boundary conditions around the circular plate. 
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3. Hole and Crack Identifications 

The measured variables used for hole/crack identification are strain/electrical field ij, stress/electrical 
displacement ij, displacement/electrical loading (charge) ui. Assume that they are functions of hole/crack properties 
and location of sensors and can be expressed as 

1 1

1 1

1 1

( , , , , , )

( , , , , , )

( , , , , , )

kM
ij ij k M

kM
ij ij k M

kM
i i k M

R a b s

R a b s

u u R a b s

    (8) 

where R1, 1, , a and b are hole/crack properties, sk is sensor number to denote the measured location, M is the type 
of mixed loading mode. Nonlinear optimization [14] is applied by using different measured variables in equation (8) 
with different type of mixed loading modes, different sensor positions, and different hole/crack properties such as 
size a, b, orientation , and position R1, 1. 

At first, a set of star values of measured variables including *kM
ij , *kM

ij , and *kM
iu  from a known hole/crack 

target in which the target size a* and b*, target orientation *, and target position R1
*, 1

* are specified. The initial 
guesses of design variables are random. We search for the target values of design variables by minimizing the 
penalty function that represents the differences between the estimated values and star values of measured variables. 
From the experiences in hole/crack identification for elastic square plates [6], the insensitivity of static strains to 
hole/crack geometry and location resulting from the local effect of hole/crack identification problems may be 
overcome by introducing the multiple loading modes approach. The approach is described as follows. We start an 
identification for hole/crack by a given loading mode condition until the penalty function cannot be reduced further. 
Then switch to another loading mode. Let the results of the previous identification be the initial guess of the next 
identification and carry on the identification again. Repeat this process until the convergence criterion is satisfied. 
According to this concept, a multistep nonlinear optimization is designed in the following. 

Minimize: 

* 2

1 1
( 1)

s mn n
kM kM

M l l
k l

F H H     (9a) 

Subject to: 

* 1,2,...,
1 0,

1,2,...,
skM kM kM

l l l M
m

k n
g H H e

l n
    (9b) 

0 <R1 <RC , 0<Θ1 <2π , 0<θ<π, 0<a< RC /3, 0 <b<RC/3   (9c) 

where kM
lH  represents the measured variables in equation (8) for each loading mode M; k is the index of sensors 

and total number of sensors is ns; l is the index of measured variables and total number of measured variables is nm; 
eM is the tolerance of error for loading mode M; and RC is the radius of piezoelectric circular plate. Note that the 
measured variables are different when the loading mode changes. The static measured variables kM

lH  for each 
loading mode are: 
(1) Loading mode I (M=1) : strain , , ,RR R (l=1~3), stress , , ,RR R (l=4~6) and 

displacement , .Ru u (l=7,8). 
(2) Loading mode II (M=2) : strain , , ,Rz z zz (l=1~3), stress , , ,Rz z zz (l=4~6) and displacement .Zu (l=7). 
(3) Loading mode III (M=3) : electric field , , ,R zE E E (l=1~3), electric displacement , , ,R zD D D (l=4~6) and 

electric charge q(=u4, l=7). 
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In order to obtain a good convergence, the tolerance of error should not be set too small at the beginning 
identification process. We gradually decrease the tolerance of error in the successive identification process of 
different loading modes. When the constraint conditions are satisfied and the data of measured variables approach 
star values, the penalty function will decrease continuously. The details of numerical results of hole/crack 
identification are described in the next section. 

4. Numerical Results 

We use the piezoelectric material PZT4 in the following numerical examples and the material properties are 
summarized in Table 1. In Fig. 3, the loading stimuli applied in the boundary nodes are stress (1Pa), or electric 
displacement (1000 Coul/m2). The optimization methods are feasible direction method and golden section method 
[14]. 

     Table 1. Material properties of piezoelectric material PZT4. 

S11=1.09×10-11 m2/Nt S33/S11=0.725 g33=2.61×10-2 Volt m/Nt 11=8.697×107 Volt2/Nt 

S12/S11= -0.497 S44/S11=1.771 g13/g33= -0.425  33/  11=0.881 

S13/S11= -0.193 S66/S11=2.994 g15/g33=1.510  

4.1. Identification of crack size only 

In order to test the performance of the numerical program, we let b=0 and fix the position and orientation of crack 
at first. The crack size a is the only one variable to be identified. The measured data are stresses ( , , )RR R  and 
electric displacement ( , , )R zD D D . There are 12 equally spaced sensors sk (k=1~12) located at RC/10 away from 
the boundary of circular plate. The loading stimulus is stress along the R direction in the upper-right boundary nodes 
shown in Fig. 3. The fixed constraints are set in the lower-left boundary nodes shown in Fig. 3. There is a horizontal 
crack in the center of the plate to be identified. The crack length is 2a=4cm. The diameter of the circular plate is 
10cm. The identified results are shown in Table 2. The tolerance of error eM is set to 0.001 and radius of circular 
plate is 5 cm. After 8 iterations, the final identified result of crack size is 1.9964 cm and the penalty function 
decrease to FM =3.62×10-4. Apparently it is successful to identify one variable, crack size, only. As the number of 
identified variables increases, the problem becomes more challenging. The multiple loading modes method is 
applied to inject new energy to solve the identification problem. 

     Table 2. Size identification of horizontal crack. 

 a(cm) Penalty function FM 

Target value 2 0. 

Initial guess 0.2 0.34198 

Identified 
procedures 

Iteration 1 0.3001 0.30651 
Iteration 2 0.6178 0.22239 
Iteration 3 1.2938 9.8122172E-02 
Iteration 4 2.3877 4.6605524E-02 
Iteration 5 4.1576 0.2247717 
Iteration 6 2.1885 2.3105575E-02 
Iteration 7 2.2104 2.5721302E-02 
Iteration 8 1.9964 3.6152947E-04 

error 0.18% FM eM 

4.2. Identification of hole 

In this numerical example for hole identification, the radius of plate is set to be 6 cm. Because we are going to 
use multiple loading modes method, the magnitude of different type of measured variables has to be considered 
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carefully. For piezoelectric materials in comparison with the stress the electric displacement and strain is usually 
very small. In order to obtain a better sensitivity, we use the normalized form  * 1kM kM

l lH H  instead of 
*kM kM

l lH H  as the penalty function in Equation (9). The location, size, and orientation of target hole are 
(R1 ,Θ1 )=(2, 0.524), (a,b)=(1, 0.5), and θ=0.262. The initial guess are (R1 ,Θ1 )=(0,0), a=b=1.5, and θ=0. On the 
basis of nonlinear optimization using multiple loading modes, the optimal identification results of each loading 
mode are used as an initial guess of the next optimization for a different loading mode until the final results satisfy 
the convergence criterion. Let us compare the results of hole identification obtained by using the data of different 
type of measured variables in Table 3. It indicates that the best identification is using the strain/electric filed data, 
the second is using the stress/electric displacement data, and the third is using the displacement/electric charge data. 
The sequence of applied loading mode, tolerance of error, and iteration number of identification by using three types 
of measured data such as strain/electric filed, stress/electric displacement, and displacement/electric charge is given 
in the following three paragraphs. 

Identification from strain/electric filed data: (1) mode I, eM=0.5, 36 iterations, (2) mode II, eM=0.1, 28 iterations, 
(3) mode III, eM=0.05, 42 iterations, (4) mode I, eM=0.05, 58 iterations, (5) mode III, eM=0.01, 44 iterations, (6) 
mode II, eM=0.01, 61 iterations, (7) mode I, eM=0.001, 73 iterations. The detailed identification results are presented 
in Table 4. 

Identification from stress/electric displacement data: (1) mode I, eM=0.5, 23 iterations, (2) mode II, eM=0.1, 46 
iterations, (3) mode III, eM=0.05, 57 iterations, (4) mode I, eM=0.05, 62 iterations, (5) mode III, eM=0.01, 71 
iterations, (6) mode II, eM=0.01, 58 iterations. 

Identification from displacement/electric charge data: (1) mode I, eM=0.5, 26 iterations, (2) mode II, eM=0.1, 31 
iterations, (3) mode III, eM=0.05, 37 iterations, (4) mode I, eM=0.05, 49 iterations, (5) mode III, eM=0.01, 53 
iterations, (6) mode II, eM=0.01, 49 iterations, (7) mode I, eM=0.005, 58 iterations, (8) mode III, eM=0.001, 82 
iterations, (9) mode II, eM=0.001, 63 iterations, (10) mode I, eM=0.001, 87 iterations. 

Although we use 10 loading modes and reduce the tolerance of error to 0.001, the identification results by using 
displacement/electric charge data are still not quite satisfactory. It is possible that the initial guess, the sequence of 
loading modes, and even the magnitude of tolerance error affect the accuracy and efficiency of hole/crack 
identification. We recognize that it is difficult to find a golden rule to further improve the identification performance. 
However, the proposed multiple loading mode method effectively achieves a stable and acceptable identification 
results. Note that the number of sensors is 12 in Table 3 and 4. 

Another interesting topic would be to examine the effect of using different number of sensors on identification 
accuracy. The sensors are equally spaced on the boundary of the circular plate. We use the same target values and 
initial guess described above in this subsection to carry out hole identification. Fig. 4(a) shows the identified results 
in comparison with using 6, 8, and 12 sensors. It suggests that the more sensors will result in the better identification. 
The blue solid line represents the target hole. The red square symbols on the boundary mark the locations of 6 
sensors, the black circular and red square symbols mark the locations of 12 sensors, and the locations of 8 sensors 
are not marked for simplicity. The dotted line represents the identification results from 6 sensors, the dash-dotted 
line represents that from 8 sensors, and the dashed line represents that from 12 sensors. All identification results are 
satisfactory that clearly indicate the size, location, and orientation of target hole. 

     Table 3. Results of hole identifications using different type of measured variables. 

 R1(cm) Θ1(rad) θ(rad) a(cm) b(cm) 
Target value 2 0.524 0.262 1 0.5 
Initial guess 0 0 0 1.5 1.5 

strain/electrical field 
Identified results 2.08 0.588 0.287 1.01 0.51 

Error 4.0% 12.3% 9.5% 1.2% 2.5% 

stress/electrical displacement 
Identified results 2.19 0.604 0.282 1.07 0.54 

Error 9.4% 15.2% 7.6% 6.7% 7.6% 

displacement/ electrical charge 
Identified results 1.78 0.643 0.315 1.14 0.60 

Error 10.8% 22.8% 20.3% 14.1% 20.3% 
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     Table 4. Results of hole identification using strain/electric field data. 

 R1(cm) Θ1(rad) θ(rad) a(cm) b(cm) 

Target value 2 0.524 0.262 1 0.5 
Initial guess 0 0 0 1.5 1.5 
Loading mode I      eM=0.5, 36 iterations 1.52 0.478 0.313 0.67 0.62 
Loading mode II     eM=0.1, 28 iterations 1.43 0.421 0.398 0.72 0.63 
Loading mode III   eM=0.05, 42 iterations 1.81 0.545 0.326 0.82 0.59 
Loading mode I     eM=0.05, 58 iterations 1.87 0.582 0.355 0.86 0.57 
Loading mode III  eM=0.01, 44 iterations 1.93 0.538 0.305 1.17 0.56 
Loading mode II    eM=0.01, 61 iterations 1.88 0.482 0.318 0.93 0.55 
Loading mode I     eM=0.001, 73 iterations 2.08 0.588 0.287 1.01 0.51 

4.3. Identification of Crack 

The design variables for crack identification are location (R1 ,Θ1 ), orientation θ and size a. Let the radius of plate 
RC be 5 cm, the size of the target crack be one fifth of RC, i.e., a=1cm, the location of the target crack be on the 
lower left side of the circular plate shown in Fig. 4(b), the orientation of the target crack be 15o. Because of the local 
(regional) characteristics of crack, the sensitivity to measured variables of crack identification is not as high as that 
of the hole identification. As a result, it requires more loops of multiple loading modes to perform the nonlinear 
optimization for crack identification. The results of crack identification are shown in Table 5 and the identified crack 
trajectory is depicted in Fig. 4(b). Although the maximum percentage error is crack size a which is 19.2% in Table 5, 
it is noted that Id10 and Id11 are very close to the target crack as shown in Fig. 4(b). Sometimes the identified 
results will be trapped into the local minimum. It is very important to use the multiple loading modes to kick the 
identification result out of the local minimum and keep searching for the global minimum till the strict error 
tolerance is satisfied. 

     Table 5. Results of crack identifications. 

 R1(cm) Θ1(rad) θ(rad) a(cm) 

Target value 3 3.927 0.262 1 

Initial guess 0 0 0 2 

Id1 Loading mode I      eM=0.5, 27 iterations 5.39 4.974 0.179 1.67 

Id2 Loading mode II     eM=0.1, 41 iterations 4.61 3.054 0.105 1.52 

Id3 Loading mode III    eM=0.05, 32 iterations 4.68 3.107 0.611 1.43 

Id4 Loading mode I      eM=0.05, 45 iterations 4.29 0.262 0.733 1.22 

Id5 Loading mode II     eM=0.05, 51 iterations 3.78 5.201 0.401 1.23 

Id6 Loading mode III   eM=0.01, 29 iterations 3.51 2.356 0.372 1.48 

Id7 Loading mode II     eM=0.01, 47 iterations 3.27 0.820 0.337 1.37 

Id8 Loading mode I      eM=0.01, 83 iterations 3.42 4.451 0.355 1.21 

Id9 Loading mode III    eM=0.005, 53 iterations 3.30 4.189 0.314 1.31 

Id10 Loading mode I      eM=0.001, 117 iterations 3.49 4.102 0.231 1.13 

Id11 Loading mode II     eM=0.001, 79 iterations 3.35 4.643 0.283 1.19 

Error 11.5% 18.2% 8.2% 19.2% 

5. Conclusions 

This paper presents an effective hole/crack identification method for a finite circular piezoelectric plate by using 
the static deformation data such as strain/electrical field, stress/electrical displacement, and displacement/electrical 
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charge. The essence of the identification method is a multi-step nonlinear optimization process applying the multiple 
loading modes to prevent the local minimum solution. According to the numerical results, when the hole/crack size 
is one sixth or one fifth of the radius of piezoelectric plate and 12 sensors is used, the maximum percentage error for 
hole identification is location error which is under 13%, and the maximum percentage error for crack identification 
is size error which is under 20%. It indicates that not only the hole/crack size but also the location and orientation 
can be satisfactorily identified. 
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(a)    (b)  

Fig. 4. (a) Results of hole identification in comparison with different number of sensors, (b) Results of crack identification. 

References 

[1] N. Khaji, M. Shafiei, M. Jalalpour, Closed-form solutions for crack detection problem of Timoshenko beams with various boundary 
conditions, Int. J. Mech. Sci. 51 (2009) 667-681. 

[2] J. Lee, Identification of multiple cracks in a beam using vibration amplitudes, J. Sound and Vibration 326 (2009) 205-212. 
[3] X.F. Chen, Z.J. He, J.W. Xiang, Experiments on crack identification in cantilever beams, Experimental Mech. 45 (2005) 295-300. 
[4] M. Karthikeyan, R. Tiwari, Detection, localization, and sizing of a structural flaw in a beam based on forced response measurements – An 

experimental investigation, Mechanism and Machine Theory 45 (2010) 584-600. 
[5] S. Caddemi, A. Morassi, Crack detection in elastic beams by static measurements, Int. J. Solids and Structures 44 (2007) 5301-5315. 
[6] C. Hwu, Y.C. Liang, Hole/Crack Identification by Static Strains from Multiple Loading Modes, AIAA Journal 39 (2001) 315-324. 
[7] Y.C. Liang, C. Hwu, On-line Identification of Holes/Cracks in Composite Structures, Smart Materials and Structures 10 (2001) 599-609. 
[8] G. Rus, S.Y. Lee, R. Gallego, Defect identification in laminated composite structures by BEM from incomplete static data, Int. J. of Solids 

and Structures 42 (2005) 1743-1758. 
[9] L.H. Yam, Y.Y. Li, W.O. Wong, Sensitivity studies of parameters for damage detection of plate-like structures using static and dynamic 

approaches, Eng. Structures 24 (2002) 1465-1475. 
[10] A.N. Stroh, Dislocations and Cracks in Anisotropic Elasticity, Phil. Mag., 7 (1958) 625. 
[11] C.M. Kuo, D.M. Barnett, Stress Singularities of Interfacial Cracks in Bonded Piezoelectric Half-Spaces, in: J.J. Wu, TCT Ting, D.M. Barnett 

(Eds.), Modern Theory of Anisotropic Elasticity and Applications, SIAM, 1991, pp. 33-50. 
[12] C. Hwu, W.J. Yen, Green’s Functions of Two-Dimensional Anisotropic Plates Containing an Elliptic Hole, Int. J. of Solids Structures, 27 

(1991) 1705-1719. 
[13] Y.C. Liang, C. Hwu, Electromechanical Analysis of Defects in Piezoelectric Materials, Smart Materials and Structures, 5 (1996) 314-320. 
[14] G.N. Vanderplaats, Numerical Optimization Techniques for Engineering Design: With Applications, N.Y.: McGraw-Hill, 1984. 


