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ABSTRACT 

Explicit (computable) lower and upper bounds on the distances between a given 
real eigenvalue of a real square matrix and the remaining (not necessarily real) 
eigenvalues of the matrix are developed. 

1. INTRODUCTION 

The purpose of this paper is to develop lower and upper bounds on the 
distances between a given real eigenvalue of a real square matrix and the 
remaining (not necessarily real) eigenvalues of the matrix. Specifically, let A 
be a real square matrix, and let A be a real eigenvalue of A. We identify a 
ring in the complex plane having the form { < E C: s < I[ - A 1 < S } where 
0 < s d S, such that all the eigenvalues of A which are different from X are 
included in it. We next motivate the interest in such bounds. The bounds s 
and S we obtain depend only on the eigenvalue h and the corresponding 
eigenvector. 

Let A and h be as above. Resolvent expansions of the matrix A at A are 
power-series expansions of the inverse of (A - (Z )-I in the variable < - X, 
where E + X is a complex number. Evidently, if 15‘ - XI is large, we have from 
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the Neuman expansion that 

(A-U-‘= [(A-XI)-(t-X)11 -r 

= -(<-h)-‘[I-([-h)-‘(A-AZ)] -’ 

= - j~O(~-~)-i-l(A-hl)‘. (1.1) 

Also, if I< - h( is small with E # h, we have that (e.g., [9, Theorem 3.11) 

i= -v 

+ j~~(E_h)‘[(A-Xr)D]‘+L, (1.2) 

where E is the eigenprojection of A at h, v is the index of h for A, and 
(A - hZ)D is the Drazin inverse of A - hZ (formal definitions will be given in 
Section 2). There are many applications of resolvent expansions of matrices 
(e.g., [3] or [9]). It will b e s h own in Lemma 2.5, below, that the right-hand 
side of (1.1) converges, in which case it equals the left-hand side of (l-l), if 
and only if ]t - X( is greater than the maximal distance between X and an 
eigenvalue of A which is different from A. It is also shown in Lemma 2.5 that 
the right-hand side of (1.2) converges, in which case it equals the left-hand 
side of (1.2), if and only if I< - h( is smaller than the minimal distance 
between h and an eigenvalue of A which is different from A. 

An additional motivation for interest in the minimal distance between the 
eigenvalues of a real square matrix A and a distinguished real eigenvalue h 
occurs when the matrix A is stochastic. It is well known that if A is a 
stochastic matrix, one is an eigenvalue of A and the multiplicity of this 
eigenvalue equals the number of ergodic classes of A (e.g., [5]). It now follows 
from continuity arguments that if {A,, } is a sequence of stochastic matrices, 
each having a single ergodic class, and if lim, _ m A, exists and the limiting 
matrix is a (stochastic) matrix having more than a single ergodic class, then 
there is a sequence {A,}, where for each n = 1,2,..., h, # 1 and A, is an 
eigenvalue of A,,, with lim,, ~ m h, = 1. In particular, min{ (p - I]: z.4 is an 
eigenvalue of A, and p # 1) approaches zero as n -+ co. Call a stochastic 
matrix completely decomposable if it has more than a single ergodic class. We 
conclude from the above that the smaller the minimal distance between the 
eigenvalue one of a stochastic matrix A and the other eigenvalues of A is, the 
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“more completely decomposable” A is. Example 6.2 below illustrates the use 
of the above measure for “nearly complete decomposability.” For further 
discussion on “nearly completely decomposable stochastic matrices” and their 
eigenvalues see [12, Chapter 41. 

The organization of this paper is as follows. Preliminary results and 
notational conventions are listed in Section 2. General bounds on the dis- 
tances between a given eigenvalue of a matrix and its remaining eigenvalues 
are given in Section 3. Section 4 contains some explicit bounds which are easy 
to compute, and Section 5 contains variants of the general bounds (obtained 
in Section 3) for the cases where the given eigenvalue is simple. Finally, we 
list a few numerical examples in Section 6. 

2. NOTATIONAL CONVENTIONS AND PRELIMINARY RESULTS 

The real and complex field will be denoted by R and C, respectively. The 
coordinates of a (complex) matrix or vector will be denoted by subscripts, 
e.g., Bij or bi. The null space and range space of a complex n X n matrix B 
will be denoted by null B and range B, respectively, i.e., null B = {x E C”: Bx 
=0} andrangeB={Bx:xEC”}. 

The vector (1, 1, . . . , 1)r E R” will be denoted by e, and the vector 
(O,O,..., O)T E R” will be denoted by 0. Also, for i = 1,. . . , n, the ith unit 
vector, denoted ei, is the vector in R” whose coordinates are all zero except 
for the ith coordinate, which is one. (As usual, these conventions do not have 
explicit reference to n.) 

Let B E Cnx”. The spectrum of B, denoted a(B), is the set of all 
eigenvalues of B. The spectral radius of B, denoted p(B), is the maximal 
modulus of an eigenvalue of B, i.e., p(B)= max{ Jh]: X E a(B)}. Let p E C, 
and let Q,, = B - PZ. The index of p fir B, denoted v,(B), is the smallest 
integer m > 0 for which the null spaces of (QW)“* and (Qp)n’tl coincide. Of 
course, p E a(B) if and only if v&B) > 0. Evidently, null(Q,,)“’ = null(Q,)” 
for v = v,(B) if and only if m > v. Also, the null set (0,)” for v = v&B) is 
called the algebraic eigenspace of B at p. An eigenvalue p of B is called 
simple if the dimension of the algebraic eigenspace of B at p is one. 

The following lemma is well known (e.g., [9, Lemma 2.11). 

LEMMA 2.1. Let Q be a complex n x n matrix, let v be the index of zero 
for Q, and let 92 and .N be, respectively, the range and null spaces of Q”. 
Then: 

(1) C” = 9’$./4”. 
(2) There is a projection E on JV along 9. 
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(3) Q”E = EQ” = 0, Q”-‘E = EQ”-’ # 0. 
(4) E and Q commute. 
(5) Q - E is nonsingular. 
(6) (Q - E)-’ and E commute. 
(7) DE=ED=O, whereD=(Q-E-‘(I-E)=(Z-E)(Q-E)-‘. 
(8) DQ=QD=Z-E. 
(9) D*+‘Q=QD”+‘=D” forn=l,Z,.... 

For a given complex square matrix Z? and a complex number ZL, the matrix 
Econstructed in Lemma 2.1 for Q = B - PZ is called the eigenprojection of B 
at p. Also, it was shown in [6] that the matrix D constructed in Lemma 2.1 is 
the well-known Drazin inverse of Q, which will be denoted by Q” (see, for 
example, [l] for the original definition of the Drazin inverse). One can easily 
verify that if B and p are real, so are E and Q”. Also, (QT)D = [Q”] r. 

The following lemma gives a representation of the Drazin inverse for 
complex square matrices for which zero is an eigenvalue having index 1. 

LEMMA 2.2. Let Q be a complex n X n matrix where zero is an eigen- 
value of Q, and let v and E be, respectively, the index of zero for Q and the 
eigenprojection of Q at zero. Then the following are equivalent: 

(1) v= 1. 
(2) Q”=(Q- E)-‘f E. 

Proof. As Q - E is invertible, and as Q” = (Q - E)-‘(I - E), we have 
that (2) holds if and only if Z-E = (Q - E)QD = (Q - E)[(Q - E)-l + El 
= Z + (Q - E)E = I - E + QE, or equivalently, if and only if QE = 0. As zero 

is an eigenvalue of Q, we have that E Z 0. Hence, part (3) of Lemma 2.1 
assures that QE = 0 if and only if v = 1, completing the proof. n 

The next lemma states the relationship between eigenvalues and corre- 
sponding eigenvectors of a complex square matrix and those of its Drazin 

inverse. It is key for our development. 

LEMMA 2.3. Let Q be a complex n X n matrix, and let zero be an 
eigenvalue of Q. Then 

u(QD)= {p-‘:O+~GT(Q)}U{O}. (2-l) 

Moreover, the eigenvectors of Q and Q D corresponding to the (common) 
eigenvalue zero coincide. 
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Proof. The result is given by Campbell and Meyer [ 1, p. 1291. n 

COROLLARY 2.4. Let A be a complex square matrix, and let h be an 

eigenvalue ofA. Then p[(A - hZ)o] = max{ (p - h]-r: h + Z.L E a(A)}, where 
the maximum over the empty set is defined to be xero. 

We end this section with the promised characterization of the complex 
numbers 5 for which (1.1) and (1.2) hold, respectively. 

LEMMA 2.5. Let A be a complex n x n matrix, let h be an eigenvalue of 

A, and let 5 be a complex number. Then: 

(1) Z’Zre right-hand side of (1.1) converges if and only if I< - hi > 

max{ Ip - XI: 1-1 E a(A)}, and in this case (1.1) holds. 

(2) The right-hand side of (1.2) converges if and only if 15 - X( < 

min{ ]p- h]: h z ZJ E a( A)}, and in this case (1.2) holds. 

Proof. It is well known (e.g., [8 Corollary 4.41) that for a square matrix 
B, CF,oBi converges if and only if p(B) < 1, and in this case Z - B is 
invertible and (I - B))’ =X7&Z?‘. 

We conclude that the right-hand side of (1.1) converges if and only if 
]<-h]P1p(A-xZ)=p[(E-h))‘(A-XZ)]<l. In this case Z-(,$--x))’ 
(A-XZ)=(E-X))‘[(E-X)Z-(A-AZ)]= -(t-x))‘(A-[Z)isinvert- 
ible, and its inverse equals CT&([ - h))j( A - XZ)j; in particular, in this case 
(1.1) holds. Observing that p(A- XI)= max{]Z.- XI: p E a(A)}, we have 
that I.$--A]-‘p(A-AZ)<1 if and only if It-- XI> max{]p-X]:pEu(A)}, 
establishing (1). 

As above, we next conclude that the right-hand side of (1.2) converges if 
and only if I,$‘-- h]p[(A- A)D]= p[([- X)(A- XZ)D] < 1. In this case, argu- 
ments of [9, Theorem 3.11 show that (1.2) holds. Corollary 2.4 shows that 
[p(A-XZ)D]~‘=min{]~-~]:X#~~u(A)}, wheretheminimumoverthe 
empty set is defined to be + cc. We therefore conclude that 15 - A]p[( A - 
XI)“]<1 if and only if I~-Xl<p[(A-XZ)D]-‘=min{l~-XJ:hf~~ 
a( A)}, establishing (2). n 

3. THE MAIN RESULTS ON BOUNDS ON 
DISTANCES OF EIGENVALUES 

In this section we present the promised bounds on the distances of the 
eigenvalues of a square matrix from a given eigenvalue. 
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Let (1 ]I be a norm on R”, and let u E R”. We define the coefficient 
7,; ,,( B) for an n X n matrix B by 

Of course, the above maximum is not taken over the empty set and is 
attained. 

We are now ready for the main result of this paper. Part of the result [the 
last inequality in (3.2) below] follows directly from [ll]. We include a full 
proof here for completeness. 

THEOREM 3.1. Let A be a real n X n matrix, let h be a real eigenvalue 
of A, and let w be a corresponding real, right eigenvector. Also, let 11 11 be a 
norm on R”. Then 

PYOO~. We will first establish the last inequality in (3.2), namely, we will 

show that for every h # p E a( A), 

lp - Al < T,$A - AZ). (3.3) 

Consider the real-valued functional +( .) defined over C” by 

Of course, the above maximum is not taken over the empty set and is 
attained. Also, it is easy to verify that for every z E C” and 5 E C, 

We will next obtain a bound on +[( A - AZ)z]. First observe that for every 
x E R”, [xT(A- XZ)]w = xT[(A - AZ)w] = 0 and therefore 
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Taking the maximum of both sides of this inequality over x E R” for which 

]]x(( d 1 and xTw = 0 implies that 

+[(A - AZ)21 6 [T,;“,,(A - AZ)] [+(~>I. (3.7) 

Next let ZJ # h be an eigenvalue of A, and let 0 # .z E C” be a correspond- 
ing right eigenvector. Then Az = Z.L~, and (3.5) and (3.7) imply that 

IP--lW=dk-A)d =+[(A-WI G [T,, ,,(A-+#W 
(3.8) 

We will next show that e(x) > 0. This assertion coupled with (3.8) will 
immediately imply (3.3). As @J(Z) > 0, it suffices to show that G(Z) # 0. Now, 

if @p(z) = 0, then we have that 

[ xTw = 0, XER”] =a [x%=0]. (3.9) 

Let u = Re(z) and o = Im( z) be the vectors in R” whose components are 
the real and imaginary parts of z, respectively. We conclude from (3.9) that 

[ xTw = 0, XER”] - [A=o, x%=0]. (3.10) 

Arguments from elementary linear algebra show that (3.10) implies that for 
some a, fi E R, u = aw and v = j3w. It follows that z = u + iv = (a + ip)w 
and therefore(p-_)z=(A--XZ)z=(A-hZ)(a+ifi)w=O. As A#p and 
z # 0, we get a contradiction to the assertion that r+(z) = 0, completing the 

proof of (3.3). 
Since the second inequality of (3.2) is trivial, it remains to prove the first 

inequality of (3.2). It follows from Lemma 2.3 that a[( A - hZ)o] = {(p - 
X)-l: X #p E u(A)}u{O} and that w is a (real) right eigenvector of (A - 
XZ)n corresponding to the eigenvalue zero. Hence, by applying the last 
inequality of (3.2) to (A - XZ)o and its eigenvalue zero with its real right 
eigenvector w, we conclude that for h f /.L E a( A) 

(~-A('~T,;~,,[(A--Z)~]; (3.11) 

and the first inequality of (3.2) follows directly. W 

The following two corollaries state modifications of Theorem 3.1, by 
applying that theorem to matrices having the same spectrum as the given 
matrix (cf., [ll, Sections 4, 51). 
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COROLLARY 3.2. Let A be a real n x n matrix, let h be a real eigenvalue 
of A, and let v be a corresponding real left eigenvector. Also, let 11 11 be a 
rwrm on R”. Then 

min ]p- 
E o(A) 
P#h 

max IP- 
ILEO 

P#h 

Al < $‘,,(AT- AZ). 

(3.12) 

Proof. The corollary follows immediately by applying Theorem 3.1 to AT 
and recalling the facts that a(A) = a( AT) and that 
eigenvector of A’ corresponding to eigenvalue A. 

v is a (real) right 
n 

COROLLARY 3.3. Let A be a real n X n matrix, let h be a real eigenvalue 
of A, and let w be a corresponding real right eigenvector. Also, let F be a real 
mmsingular n X n matrix, and let )I 11 be a mrm on R”. Then 

=s 711 II "-'w[F-'(A-AZ)F]. (3.13) 

Proof. The corollary follows immediately by applying Theorem 3.1 to 
F- ‘AF and recalling that a( A) = o(F- ‘AF), that F- ‘w is a (real) right 
eigenvector of F- ‘AF corresponding to eigenvalue A, and that (F- ‘AF - 
hZ)D = F-‘( A - AZ)DF. n 

Examples of Rothblum and Tan [ll, Section 81 demonstrate that the 
bounds obtained from Theorem 3.1 depend on the selection of the norm 1) )I; 
that the bounds obtained from Corollary 3.2 do not necessarily coincide with 
those obtained from Theorem 3.1; and that the bounds obtained from 
Corollary 3.3 depend on the selection of the (nonsingular) matrix F. We 
remark that a useful selection of the (nonsingular) matrices in Corollary 3.3 
are diagonal matrices (e.g., [ll, Section 61). In particular, one can select the 
nonsingular matrix F to be diagonal with Fii = wi for i = 1,. . . , n with wi f 0 
and with Fii = 1 otherwise, assuring that the coordinates of Fp ‘w consist only 
of zeros and ones. The usefulness of such selections will be demonstrated in 
Section 4. We also observe that additional corresponding bounds can be 
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obtained through a combination of Corollaries 3.2 and 3.3 (applying Theorem 
3.1 to Fp ‘ATF, where F is a nonsingular matrix). 

The bounds obtained in Theorem 3.1 and Corollaries 3.2 and 3.3 are all 
expressed in terms of the functionals 7: ( .) which are defined, by (3.1) as the 
maximum of a real-valued convex function over a convex set. Thus, tech- 
niques of mathematical programming can be used to compute these bounds. 
For example, the corresponding maxima are always obtained at extreme 
points of the convex sets. In particular, explicit forms can be obtained when 
the number of corresponding extreme points is finite (e.g., Section 4). 

We remark that the results of this section can be extended to complex 
matrices and corresponding complex eigenvalues by changing the definition 
of the r coefficients in (3.1) and replacing the condition x E R” by x E C”. 
The corresponding results are easier to prove, but we do not find them 
interesting, since the corresponding coefficients are not easy to compute 
(being optimal values of complex optimization problems). We remark that 
Zarling [12] obtained such a variant of Theorem 3.1 for a stochastic matrix, 
the eigenvalue X = 1, and the I, norm (though he claims that his arguments 
apply with our definition of T as a maximum of the corresponding functional 
over R” and not Cn). 

We finally note that Rothblum and Tan [ 111 discuss the selection of the 
norm for corresponding bounds. In particular, it follows that appropriate 
selections of the norms can get the bounds to be arbitrarily tight. 

4. SOME EXPLICIT BOUNDS 

Recall that for a vector x E R” and 1~ p < co, the 1, norm of X, denoted 

]]x]],, is given by (C?,~]X~]~)~‘~ when 1~ p < co and by maxi G i G ,,Ix,( when 
p = co. For notational convenience, we denote the coefficients 7,;‘,,(B) by 
7;‘(B) when the norm (1 I( is the 1, norm. In this section we obtain explicit 
expressions for ~i( B) when p = 1 and when p = cc rather than implicit 
optimal values of optimization problems. Our development follows [ll, 
Sections 6, 9) and relies on [lo]. 

We first state an explicit form for r:(B). 

THEOREM 4.1. Let B be an n X n real matrix, and let u E R” where 
n>l. Then 

T;‘(B)= ma 
i,j=l,...,n 

(4.1) 
i#i 
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Proof. As the maximization problem defining r:(B) [in (3.1)] is of a 
convex function over the convex set %? 5 {x E R”: ]]x]]i < 1, 3cru = 0}, its 
maximum is attained at an extreme point of the set $?. The set of extreme 
points of the set V were identified in [lo] to be the set F = { ( ]ui I+ 
IujI)-l(uiei - t4,d): i, j = l,..., n, i Z j, Ju,J+ lujl Z O}. It is easily seen that 
(4.1) is the maximum of the corresponding convex function over F. n 

The computational effort required to compute T:(B) with the expression 
given in Theorem 4.1 is of the order of O(n”). We remark that the explicit 
expression for r:(B), obtained in Theorem 4.1, simplifies when the coordi- 
nates of the vector u consist only of zeros and ones. 

Before presenting the explicit form of r:(B), we need an additional 
definition. For a vector u E R”, define the real-valued functional M” on R” 

The following explicit expression for the above functional was obtained in 

for aER”. (4.2) 

[lo]. First observe that by making the change of variable xi + xi if ui > 0 
and xi -+ - xi if ui < 0, one can assume, without loss of generality, that 
u > 0. Let i(l), . . . , i(n) be an enumeration of the indices 1,. . . , n such that 

‘i(l) ‘i(2) U,(n) 
-a--->, ... >-. 

ui(l) ui(2) Ui(n) 

(4.3) 

where a/O is defined to be + cc if a > 0 and - cc if 1y < 0. Then Theorem 
4.1 of [lo] shows that 

Ii1 - 1 n 

M”(u)z C ai(t)+Yui(m)- C ‘i(t), 

t=1 t = I,1 + 1 
(4.4) 

where m E {l,..., n} is the smallest integer for which 2C71ruiCtj > Cy= iui 
and where 

y=l+ 5 q-2 2 UiCl) u&. 
i ! 

(4.5) 
i=l I=1 

One can compute M”(u) by sorting the n numbers { u i /ui : i = 1,. . . , n } 
and then computing i(m), y, and the right-hand side of (4.5). The computa- 
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tional complexity of this procedure is O(n log n) (e.g., [4, Vol. 31). An 
alternative method for computing M”(a), whose computational complexity is 
O(n), is given in [lo]. 

When u is a vector consisting of zeros and ones, the explicit expression for 
M”(a) given in (4.4) simplifies, as ajCmj is a median of {a,: i = l,.. ., n, 
ui # 0) (e.g., [lo, Section 41). In particular, if k and p are such that 
{t=l,..., n:ui,,,#O}={k,k+l ,..., p}, then y =0 if p - k is even and 
y = - 1 if p - k is odd. Also, 

k-l 

M”(a) = C Iai(t 5 l”i(t)- ui(rrt)l+ t Iai(t 
t=1 t=k t=p+1 

(4.6) 

We will next state the promised explicit form of r:(B). 

THEOREM 4.2. Let B be an n x n matrix, and let u E R”. For j = 1,. . . , n, 
let Bj be the jth column of B. Then 

T:(B)= ,=yy M”(Bj). (4.7) 
1 ..,n 

Proof. Let ?? = {x E R”: ]]x]]~ ~1, xTu = 0). Evidently, 

T;(B) = rnEa$lxTBII, = max max lxTBjl 
0 xG4j=l,...,n 

max maxlxTBjl = max 
= j=l,...,n xf5e 

maxxTBj 
j=l ,....n SE?? 

= ] yix M”( Bj). 
,...,n 

n 

The computation of rG( B) requires n evaluations of the functional 84”(. ). 

As noted, each of these evaluations can be accomplished by a method whose 
complexity is O(n). Thus, rz( B) can be computed by a method whose 
complexity is O(n”). We remark that the computation of T:(B) simplifies 
when the coordinates of u consist only of zeros and ones, by using (4.6). 

5. SIMPLE EIGENVALUES 

In this section we present some variants of the results of Section 3 in the 
case where the eigenvalue h is simple. We start with a summary of properties 
of simple eigenvalues. 
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We first need some additional notation. For a complex n X n matrix B, a 
vector b E C” and an index i E {l,..., n}, we use the notation B(‘z”’ 

(B,~ 6“) ) to denote the matrix all of whose columns (rows) coincide with those 
of i except for the ith one, which is b (b’). 

LEMMA 5.1. Let Q be a complex n x n matrix where zero is a simple 
eigenvalue of Q, and let w and vT be corresponding right and left eigenvec- 
tom, respectively. Also, let E be the eigenprojection of Q at zero, and let 
i E {l,..., n} satisfy wi f 0. Then: 

(1) v,(Q) = 1. 
(2) vTw # 0. 
(3) E = (v’zu)~‘(wvT). 
(4) Q”. 10) is invertible. 
(5) The ith row of [Q(i,*U)]-l is (vTw)~‘vT. 
(6) Q” = (1 _ ,)(i.@[Q(i>tu)] -1. 

(7) Zf xTw = 0, then for some y E C”, yTQD= xT. Moreover, if Q and x 

are real, y can be selected to be real. 

Proof. Let v = va(Q). A s zero is a simple eigenvalue of Q, we have that 
LJ > 1 and that 1 < dim(null Q) < dim(null Q”) = 1. We conclude that 
dim(null Q) = dim(null Q”), assuring that v < 1. It follows that v = 1, estab- 
lishing (1). 

Parts (2) and (3) follow directly from [7, Theorem 3.11. 
Next observe that as Qw = 0 and wi # 0, the ith column of Q can be 

expressed as a linear combination of the remaining columns. In particular, the 
subspaces spanned by the columns of Q and by the columns of Qci,“) 
coincide. As zero is a simple eigenvalue of Q and, by part (I), ua( Q) = 1, we 
have that null Q is spanned by a single vector. In particular, null Q = { (YW : 
a E C}. It follows that the columns of Q(i,cu) span (range Q)@(null Q). As 
vO(Q) = 1, we have from Lemma 2.1, part (l), that (range Q)@(null Q) = C”. 
Hence, the n columns of Qci,lO) span C”, and standard results from linear 
algebra assure that Q”,‘“’ is invertible, establishing (4). 

Next recall that v’Q = 0. It follows that v~Q(~,“‘) = ( vrw)(ei)T, and 
therefore the invertibility of Q (~.[a) implies that (vTw)-lv,=(ei)TIQ(i,I~)]--l, 

i.e., ( v~w)~‘v~ is the ith row of [Q”,‘“‘]-‘, establishing (5). 
Next observe that Q”Q = Z - E [see Lemma 2.1, part (S)] and that 

(I - E)w = w - (~~w)-~(wv~)w = 0. It follows that QDQci,“)= (I - E)(‘XO’ 
and therefore the invertibility of Q(i,‘c) implies that Q” = (I - 
E)(‘~“‘[Q(‘~ ‘O)] _ ‘, establishing (6). 

Finally assume that xTw = 0. Then xTE = x’( vTw ) - ‘( wvT) = 0, and 
therefore for y ‘=xT(Q-E), Y~Q~=[x~(Q-E)][(Q-E)-~(Z-E)]= 
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xr(Z - E) = x’. Of course, if Q and x are real, so is y. This completes the 
proof of (7). n 

Parts (4)-(6) of Lemma 5.1 were first established by Denardo [Z] for the 
special case where the matrix Q has the form P - 1 where P is stochastic. In 
particular, in this case w = e = (1,. . . , l)r~R” has w,#O for each in 
{l,...,n}. 

Let A, X, and w be as in Theorem 3.1. We next show that when X is 
simple, the lower bound in (3.2) namely [ ~,;0,,( A - xZ)D] -I, can be com- 
puted without the prior computation of (A - XZ)o. Our key tool is the 
following observation, which provides a (trivial) sufficient condition for two 
matrices to have identical r coefficients (e.g., [ll, Section 71). 

LEMMA 5.2. Let B be a n X n matrix, let a and u be vectors in R”, and 
let 11 1) be a norm on R”. Then 

(54 

Proof. The conclusion is immediate from the observation that if xru = 0 
for x E R”, then xrB = x’( B - ua’). n 

THEOREM 5.3. Let A be a real n X n matrix, let A be a real simple 
eigenvalue of A, and let w be a corresponding real, right eigenvector with 
wi # 0 where i E { 1,. . . , n}. Also, let 1) 1) be a norm on R”. Then 

T,;“,,[(” - XZ)D] = .,;:,,([(A - hZ)‘i”“‘]i;,;i,) 

and 

(5.2) 

(5.3) 

where E is the eigenprojection of A at X. 

Proof. Let J be the n X n diagonal matrix all of whose diagonal 
elements are one except of the ith one, which is zero. Evidently, for a real 
n x n matrix B, 

B”,e’ = BJ and BCi,OTj = JB. 
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Let vT be a left eigenvector of A corresponding to eigenvalue A. Lemma 
5.1 assures that vTw f 0, that E = (v~w)~~(wv~), and that (A - hZ)D = (I - 
E)(isO)[(A _ AZ)“.“) -1 ] =(I - E)J[(A - AZ)“~“‘]-‘. It follows that 

(A-h+ [(A-XI)'i'"'],,~T,=(z_E)~[(A_hz)".~'] -1 

_ ][(A _ XZ)“‘““] -’ 

zz -E][(&#i”U)] -’ 

= -w(vT(vTw)-lJ[(A-hZ)("l"']-l). 

Hence, (5.2) follows directly from Lemma 5.2. 
Next observe that Lemma 2.2 assures that (A - XZ)D = (A - XI - E)-’ 

+ E = (A - XI - E)-‘+ w[v~(wv~)-~]. Hence, (5.3) follows directly from 
Lemma 5.2. n 

Let A, h, and w be as in Theorem 5.3. We note that (5.2) and (5.3) show 
that r,p,,[(A - xZ)D] can be determined by computing the corresponding T 
coefficient of a matrix obtained from A - hZ through a single matrix inver- 
sion; of course, the use of (5.2) requires the prior computation of the 
corresponding right eigenvector w, and the use of (5.3) requires the prior 
computation of both w and the corresponding eigenprojection E. The 
simplest method for computing E, given in part (3) of Lemma 5.1, requires 
the identification of a right and a left eigenvector of A corresponding to X. It 
follows that (5.2) yields a faster method for computing r,r,,[(A - hZ)n] than 
(5.3) does. We also note that Lemma 5.1 shows that the inversion of 
(A - XI)“,“) produces a left eigenvector vT of A with respect to h for which 
E = wvT. 

We end this section with the observation that when the eigenvalue h of 
the matrix A is simple, the lower bound in Theorem 3.1 can be stated in 
terms of the matrix A - hZ itself rather than in terms of its Drazin inverse. 
The disadvantage of this formulation is that it is not easily computable, as the 
corresponding expression for the bound is as a minimum of a (convex) 
function over a set which is rwt convex. Our proof follows Zarling [12, p. 371, 
who derives the results for stochastic matrices and the eigenvalue one. 

We will need the following additional definition. Let I] I] be a norm on 
R”, and let u E R”. We define the coefficient TJ; ,,(B) for an n X n matrix B 

by 

7;; ,,w = ,,yg Il~T~II. (5.4) 
r 

x%=0 
XEA” 
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We next show that the bound obtained in Theorem 3.1 can be expressed 
in terms of the functionals r~:(. ). 

THEOREM 5.4. Let A be a real n x n matrix, let X be a real, simple 

eigenvalue of A, and let w be a corresponding real right eigenvector. Also, let 

11 (1 be a norm on R”. Then 

[T,;L~,,(A-AZ)~] pl=q;;,,(A-hZ) (5.5) 

and 

(5.6) 

Proof. We first note that the homogeneity of the norm 11 11 assures that 
in the maximization problem defining $‘,( .) in (3.1), one can require that 
jlxll = 1 rather than llxll < 1. For notational convenience we let B = A - AZ. 

Assume that x*w = 0. As h is a simple eigenvalue of A, zero is a simple 
eigenvalue of Z3 and therefore, by Lemma 5.1, part (7) XI‘ = yTBD for some 
y E R”. It therefore follows from part (9) of Lemma 2.1 that 

x*BDB = #BDBDB = #BD = xT‘. (5.7) 

We also observe that (xTB)w = x*(Bw) = 0, and, by Lemma 2.3, we have 
that (xTBD)w = x’( BDw) = 0. It now follows from (5.7) that 

llxTll = llxTBBDll q IP*BII[ 7,;C,I(@‘)] (5.8) 

and that 

11~~11 = IIr*@‘BII 2 Il~*B”Il[ $;,,@)I. (5.9) 

Taking the maximum of (5.8) and minimum of (5.9) over {x E R”: /[XII = 1, 
xTw = 0}, implies, respectively, that 

1 =s [‘1;;:,,(B)] [ T,i”ll(B”)] (5.10) 

and that 

1 a [ $“,,(BD)] [ s;;‘,,w] * (5.11) 
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Of course, combining (5.10) and (5.11) establishes (5.5). Finally, (5.6) follows 
by interchanging the roles of B and BD in the above arguments. n 

Theorems 5.3 and 5.4 can be extended to situations where h is not 
necessarily a simple eigenvalue of A but u,,(A) = 1 (see [ll, Section 91). 

6. EXAMPLES 

Our first example demonstrates that the bounds in Theorem 3.1 are tight, 
namely, they can be attained. 

EXAMPLE 6.1. Let 

Then a(A)= { -O.Z,O.l,l}, and e=(l,l,l)r is a right eigenvector of A 
corresponding to the eigenvalue one. Also, max{ (p - 11: 1 # ,u E a(A)) = 1.2 
and min{ Ip - II: 1 # 1-1 E a(A)} = 0.9. Next observe that 

- .56 .19 
(A-Z)D= .28 -.65 

.28 .46 

It fohows from the results of Section 4 that 

and that 

T;(A - Z) = r;(A - I) = 1.2, 

r;[(A- Z)D] = r,[(A - Z)D] = l.ll= (0.9) -I. 

The following example demonstrates that our lower bound on min{ (p - 
11: 1 # p E a( A)} for a stochastic matrix A provides a measure of the 
complete indecomposability of A (see Section 1). 

EXAMPLE 6.2. For 0 < E d 2 ~ ‘, let 

A = 2-i-E 2-l-E E 
E I 2-i-E 2-i-E E F 

E 

E E 2p1-E 2-1Le . 

E 1 
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Then e = (l,l, 1, l)T is a right eigenvector of A, corresponding to the 
eigenvalue one and 

[ 

-1 -1 1 1 

[A,-z]~=(&~~ -i -: _: _: 

1 1 -1 -1 I 
/ 

-1 1 0 0 
+2-’ 1 -1 0 0 

I 

0 o-1 1’ 
0 0 l-l 

It follows from the results of Section 4 that 7t[(AE - Z)O] = T~[(A, - Z)O] = 
(4.5-l. Of course, the smaller E is, the more decomposable A, is, and indeed, 
that is accompanied by 4.2 being smaller. 

We are indebted to Ludo Van der Heyden for helpful comments on an 
earlier version of this paper. 
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