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In bioenergetic reactions, electrons are transferred long distances via a hopping mechanism. In photosynthesis
and DNA synthesis, the aromatic amino acid residue, tyrosine, functions as an intermediate that is transiently
oxidized and reduced during long distance electron transfer. At physiological pH values, oxidation of tyrosine
is associated with a deprotonation of the phenolic oxygen, giving rise to a proton coupled electron transfer
(PCET) reaction. Tyrosine-based PCET reactions are important in photosystem II, which carries out the light-
induced oxidation of water, and in ribonucleotide reductase, which reduces ribonucleotides to form
deoxynucleotides. Photosystem II contains two redox-active tyrosines, YD (Y160 in the D2 polypeptide) and
YZ (Y161 in the D1 polypeptide). YD forms a light-induced stable radical, while YZ functions as an essential
charge relay, oxidizing the catalytic Mn4CaO5 cluster on each of four photo-oxidation reactions. In Escherichia
coli class 1a RNR, the β2 subunit contains the radical initiator, Y122O•, which is reversibly reduced and oxidized
in long range electron transferwith theα2 subunit. In the isolated E. coliβ2 subunit, Y122O• is a stable radical, but
Y122O• is activated for rapid PCET in anα2β2 substrate/effector complex. Recent results concerning the structure
and function of YD, YZ, and Y122 are reviewed here. Comparison is made to recent results derived from
bioengineered proteins and biomimetic compounds, in which tyrosine-based charge transfer mechanisms
have been investigated. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic
systems.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In photosynthesis and respiration, electrons must be transferred
long distances across a membrane. Electron transfer (ET) reactions are
mediated by tunneling with rates that decrease exponentially with dis-
tance [1]. To accelerate bioenergetic ET reactions and make them bio-
logically useful, redox-active cofactors are embedded into the protein
matrix [2]. These redox-active cofactors are transiently oxidized and re-
duced and define a radical transport pathway. The aromatic amino acid,
tyrosine, serves as such a redox-active cofactor in photosynthesis and
DNA synthesis (reviewed in ref. [3]). Tyrosine charge transfer has also
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been proposed to play important roles in other metabolic processes, in-
cluding galactose oxidation [4], prostaglandin synthesis [5], fatty acid
oxidation [6], peroxide disproportionation [7], and oxygen reduction
in cytochrome c oxidase [8]. While tyrosyl radicals, generated by pho-
tolysis in solution, decay in the microsecond time regime [9], proteins
have developed ways to control radical reactivity and extend radical
lifetimes. The intermediate tyrosyl radical can be detected using spec-
troscopic techniques, such as time-resolved optical, electron paramag-
netic resonance (EPR), and vibrational spectroscopies (visible Raman,
UV resonance Raman (UVRR), and reaction-induced FT-IR (RIFT-IR)).
These techniques have yielded insight into the functional roles of
redox-active tyrosines.

When tyrosine is oxidized, a neutral tyrosyl radical is formed [10]. It
has been proposed [3] that deprotonation of the phenolic oxygen, ac-
companying radical formation, is important in controlling the kinetics
and thermodynamics of ET under physiological conditions. Fig. 1 illus-
trates a reaction, in which oxidation of tyrosine is accompanied with
protonation of an imidazole side group of histidine. This reaction is
an example of a proton coupled electron transfer (PCET) reaction.
Because proton transfer (PT) can occur only over short distances, the
position, structure, and pKa of the proton-accepting group are poten-
tially critical factors in controlling radical transfer (for example, see
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Fig. 1. Schematic diagram illustrating a PCET reaction between tyrosine and a hydrogen-bonded histidine.
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discussion in [11]). The mechanisms of tyrosine-based ET and PCET re-
actions in DNA synthesis, photosynthesis, bioengineered proteins, and
biomimetic compounds have been the subject of great interest, and
some recent findings, relevant to tyrosine-based charge transfer, are
reviewed here.

2. Ribonucleotide reductase

The prototypical example of a tyrosine-based charge relay occurs in
ribonucleotide reductase (RNR). In all RNRs, the reduction of ribonucle-
otides to deoxyribonucleotides proceeds through a free radical mecha-
nism [12]. The reaction is initiated by H atom abstraction at the ribose
3′-carbon using an active site, transient cysteine radical [13]. There are
three classes of RNRs, grouped according to the redox-active cofactor
that is used as the radical initiator [14,15]. Class Ia RNRs use a tyrosyl
radical (Y122O•)-diferric cofactor to generate the cysteine radical.
Class Ia RNRs are found in humans, viruses, and some bacteria, including
Escherichia coli, and are composed ofα2 (formerly R1) andβ2 (formerly
R2) subunits (reviewed in [14]).

The binding and reduction of substrate occur in the ~170 kDa α2
subunit (Fig. 2). The C439 radical generates a 3′ substrate radical by H
atom abstraction from the substrate, NDP [14]. To regulate activity,
class Ia α2 contains two effector sites, one termed the specificity site
and the other termed the overall activity site. When bound to the
Fig. 2. Structures of theα2 and β2 subunits of RNR. (A) Active site residues in theα2 sub-
unit at 3.2 Å (PDB 4R1R) and containing the substrate, GDP; (B) Y122OH-differric cluster
inβ2 at 1.9 Å (PDB 1MXR). The solid line is the distance [29,108] betweenβ2 Y122 andα2
C439. The proposed conformational change at Y122O• is superimposed in part B in yellow,
and is described as a singlet A (backbone/ring dihedral angles: 173°/99°) to a radical B
(−69°/80°) conformational change in a YT dipeptide [51]. Iron atoms are shownas orange
spheres. Y356 is located in a disordered region of the β2 structure and is not shown.
activity site, dATP is a reversible inhibitor [16]. In E. coli, dATP binding
to the activity site has been shown to form inactive, α4β4 oligomers
[17–19]. Effectors, such as ATP, bind to the specificity site and promote
CDP or UDP reduction [20]. Further, binding at the specificity site stim-
ulates interactions between α2 and β2 [17–19]. Thus, RNR is a dynamic
molecule that is under exquisite allosteric and oligomeric control.

In the 87 kDa E. coli β2 subunit, the tyrosyl radical, Y122O•, oxidizes
C439 via a reversible, long distance PCET process (Fig. 2). The Y122 rad-
ical is required for activity [21] and is generated by oxygen-requiring
redox reactions at a diiron cluster [22–24]. In the isolated β2 subunit,
Y122O• is stable for days [25]. However, formation of an α2β2 sub-
strate/effector complex activates Y122O• for rapid PCET (reviewed in
[26]). While the chemistry of nucleotide reduction has been shown to
be ~100 s−1 [27], the overall activity or RNR is slower and gated by
structural changes (2–10 s−1) [28].

Radical propagation between Y122 and C439 occurs over 35 Å be-
tween the two subunits [29,30] via a conserved pathway of aromatic
side chains. The pathway involves a reversible, proton coupled electron
transfer (PCET) process (β2: Y122O• ⇋ [W48] ⇋ Y356 ⇋ α2: Y731 ⇋
Y730⇋C439) (reviewed in [26]). The roles of residues in the PCET path-
way were elucidated using site-directed mutagenesis [31–33] and site-
specific incorporation of unnatural amino acids (UNAs) [27,34–40].
Substitution of tyrosines with aminotyrosine or fluorotyrosine trapped
metastable intermediates in radical transfer (reviewed in [26]).

3. The Y122O• radical initiator in RNR

As mentioned above, in class 1a RNR, Y122O• functions as a radical
initiator in a PCET pathway that involves multiple, aromatic amino
acids. The substitution of UNAs into this conserved PCET pathway
(Y122 β2, Y356β2, Y731α2, Y730) has shown that forward ET is slight-
ly uphill in energy and mostly likely driven by the irreversible release
of water from the substrate (reviewed in [26]). At physiological pH
values, tyrosine residues are expected to deprotonate when oxidized
[10]. Site-specific mutagenesis has identified the pKas of Y122, Y356,
Y731, and Y730 and has shown that these residues are protonated in
the pH regime in which RNR is active (pH 6–8) [41]. Therefore, PT
must normally be associated with ET both in the β2 and in the α2 sub-
units. In the β2 subunit, experimental data suggests that PT and ET are
orthogonal, meaning that the proton and electron are transferred to dif-
ferent acceptors. In theα2 subunit, evidence suggests that ET and PT are
collinear, with the proton and electron transferring to the same acceptor
(reviewed in [26,42]).

The kinetics of substrate reduction was defined in a nitrotyrosine
derivative, NO2Y122OH, in which the conformational gate is uncoupled
from the chemistry of substrate reduction [27]. This NO2Y122OH
mutant conducts one enzymatic turnover, but is inactivated formultiple
turnovers. However, substitution of NO2Y at other tyrosines in the PCET
pathway dramatically decreased the activity of RNR [41]. Significantly,
X-ray structures of the NO2Yα2mutants [41] and the NO2Y122OHmu-
tant [27] revealed no significant structural changes relative to wildtype.

Although the midpoint potential of NO2Y122OH is expected to be
increased relative to Y122OH (~200 mV), the NO2Y122O• species was
generated by activation at the iron cluster, forming a metastable radical
(~40 s half-life, 1.2 radical per β2). After mixing with substrate and ef-
fector and the α2 subunit, the NO2Y122O•mutant generated 0.6 equiv-
alent of dCDP and ~0.6 equivalent of a new radical on the pathway [27].

image of Fig.�2
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The new radical has been assigned mainly to Y356O• (85–90%), with
the remainder of the radical species delocalized on Y730 and Y731
[40]. Surprisingly, this single turnover generated the phenolate form
of NO2Y122O−, i.e., ET occurredwithout PT.Multiple turnovers are inac-
cessible due to thermodynamic restraints: Y356, Y731, and Y730 are un-
able to oxidize NO2Y122O− in reverse PCET.

Optical titrations were used to define the pKa of NO2Y122OH [41].
Nitrotyrosine has unique optical bands that are sensitive to protonation
of the phenolic oxygen and has a pKa of 7.2, significantly shifted from
that of tyrosine [41,43]. This study showed that the protein environ-
ment induces only small pKa shifts (b1 pKa unit) at most positions on
the PCET pathway. However, the pKa of NO2Y122OH was significantly
perturbed, compared to NO2Y in aqueous solution. In fact, the pKa of
NO2Y122OH could not be measured in a physiologically relevant pH
range, but was increased by N2 pKa units [41]. Thus, the radical initiator,
Y122O•, is in an unusual environment.

The vibrational spectra of Y122O• and Y122OH have been identified
[44–48]. The oxidation of tyrosine/tyrosinate to form tyrosyl radical has
a distinct vibrational signature. In model tyrosyl radicals, produced by
photolysis in solution or in frozen powders, a dramatic upshift of the
CO vibrational band and a downshift of its aromatic ring stretching
mode accompany radical formation [46,47,49]. Assignments based on
UVRR spectroscopy, which resonantly enhances the bands of aromatic
groups, are summarized in Table 1 [47].

RIFT-IR can also be used to monitor the oxidation of tyrosine/
tyrosinate to form tyrosyl radical [45,47,48,50,51]. RIFT-IR detects
tyrosyl radical and tyrosine bands, as well as other linked structural
changes in the protein environments. In RIFT-IR studies, hydroxyurea
[52] was used to reduce Y122O•. RIFT-IR was then employed to follow
the reduction of Y122O •, constructing a difference spectrum that re-
flects all the structural changes induced by this reaction. These spectra
reveal vibrational bands of radical and singlet states, which were
assigned by 2H4Y ring labeling in β2 [45]. Theoretical approaches and
model compounds aided in these assignments [49,51].

When phenoxyl or tyrosyl radical is generated in aqueous solution,
the CO vibrational bands are observed at 1502 and 1516 cm−1, respec-
tively (see ref [53] and Table 1). The frequency of the radical's CO band
is insensitive to solvent isotope exchange with 2H2O [54]. How-
ever, when phenoxyl radical is formed in an argon matrix, the CO
band is downshifted, compared to aqueous solution, and observed at
1481 cm−1 [55]. These model studies suggest that the frequency of
the tyrosyl radical CO band is sensitive to hydrophobicity. The CO
band of the Y122O • is detected at 1498/1499 cm−1 [44,45,47]. This
~17 cm−1 downshifted CO frequency may reflect a low, local dielectric
in the environment of Y122O• (see also [41]).

For the tyrosine singlet state, the frequency of the Y7a band (Table 1)
acts as a hydrogen bonding sensor, and the frequency of the Y9a band is
Table 1
Vibrational frequencies (cm−1) and assignments for tyrosyl radical and singlet in RNR and
model compounds, as defined by UVRRa.

Radical Singlet

Sample CO stretch
Y7a

Ring stretch
Y8a

CH bend
Y9a

Cring-CH2-Y7a Ring stretch
Y8a

Tyrb 1516 1572 1174 1207 1602
Tyrc N.D.d N.D. 1177 1207 1602
Tyre 1516 1572 1174 1207 1610
Tyr–Hisb 1516 1569 1174 1207 1602
Peptide Ab 1516 1569 1174 1207 1602
RNRf 1499 1556 1170 1199 1608

a Reprinted with permission from Journal of Physical Chemistry B [47].
b p2H 11, 244 nm probe.
c pH 8.5, 244 nm.
d N.D., not determined.
e p2H 8.5, 244 nm [54].
f p1H 7.6, 229 nm probe.
sensitive to OH conformation [56]. The frequencies of these bands are
insensitive to the solvent isotope exchange with 2H2O (Table 1 and
[54]). Analyzing the Y122OH frequencies (p1H 7.6, Table 1), Y7a is ob-
served to be shifted, compared to aqueous tyrosinate and tyrosine,
and is assigned at 1199 cm−1. Y9a is also shifted, compared to aqueous
tyrosinate and tyrosine, and is observed at 1170 cm−1 (Table 1). The
unique, shifted Y7a and Y9a frequencies of Y122OH may reflect its
out-of-plane OH conformation and its hydrogen bonding interaction
with D84 [57]. Thus, the vibrational spectra of Y122OH and Y122O •

are consistent with a hydrogen-bonded Y122OH and a non-hydrogen
bonded, hydrophobic environment for Y122O•.

A remaining question concerns Y8a (aromatic ring stretching) of
the radical and singlet states in RNR, which have unusual frequencies
(Table 1). For example, for the tyrosine singlet (p1H 8.5), the Y8a
bands are observed at 1602 and 1606 cm-1 in 1H2O and 2H2O buffers,
respectively [54]. For the Y122OH singlet in 1H2O at pH 7.6, the band
is observed at 1608 cm−1 [47]. In addition, Y8a of the Y122O• radical
(1556 cm−1) is observed at lower frequency compared to tyrosyl
radical in aqueous buffer. A substantial downshift of this band is not ob-
served for a non-hydrogen bonded phenoxyl radical in an argonmatrix.
Also, the band has been reported to upshift with para substitution of the
phenoxyl radical [58]. Based on calculations in ref. [49], the low frequen-
cy of theY122O•Y8a bandwas tentatively attributed to a unique confor-
mation of the radical [47]. However, recent DFT calculations at a higher
level of theory on a YT dipeptide have shown that the frequencies of
Y8a are relatively insensitive to conformational rearrangements in the
radical and singlet states. On the other hand, Y amide bands in the YT di-
peptide were shown to be exquisitely sensitive to conformation, as
discussed below [51]. DFT calculations on more complex models of the
Y122O•-diferric cofactor are needed to explore the unusual frequencies
of these aromatic ring bands.

The species that acts as the proton donor to Y122O • in its hydro-
phobic environment is of interest. Theoretical studies have suggested
that the proton donor for Y122O • is a water ligand to the iron cluster
[59]. Evidence to support this hypothesis was obtained using an azido-
labeled substrate, which functions as a suicide inhibitor of RNR [60].
In the presence of this inhibitor, Y122O• is reduced by an electron, ulti-
mately derived from the inhibitor, and the Y122O • radical signal is
quenched [61,62]. UsingMossbauer spectroscopy, evidence for a change
in ligation of the iron cluster was obtained. This change in ligation was
coupled to reduction of Y122O• and was assigned to a deprotonation
of a water ligand. There was no evidence for an accompanying change
in metal oxidation state. These studies provide experimental evidence
for the involvement of water and the metal cluster in PCET reactions.

In the isolated β2 subunit, an electron hole is stored on Y122, and
Y122O• is activated for facile charge transfer only in the α2β2 sub-
strate/effector complex. The tyrosyl radical, Y122O•, is paramagnetic,
and the diferric cluster is spin coupled. Thus, the tyrosyl radical gives
rise to a characteristic S = 1/2 EPR spectrum [61]. Electron nuclear
double resonance studies of Y122O• suggest that the radical is not
hydrogen bonded [63]. Interestingly, high field EPR spectroscopy has
provided evidence that Y122 is conformationally mobile. Studies of
RNR single crystals predicted an oxidation-induced translation of Y122
[57]. In that study, the radical was generated by treatment of β2 crystals
with hydrogen peroxide. The full rotational spectral patternwas obtain-
ed, and the orientation of the g tensor axes was determined. In that
work, the EPR results showed that the g tensor was not oriented as ex-
pected from the X-ray structure of the Y122OH met state (Y122OH-
diferric cluster). This finding led to the proposal that the oxidation and
reduction of Y122 are associated with a translation away from D84.
D84 is a unidentate ligand to the iron cluster (Fig. 2) and is hydrogen
bonded to Y122OH in structures of themet state [57]. D84 is also hydro-
gen bonded towater ligands in themet-formof the protein.While X-ray
structures of the radical state are not yet available, this predicted trans-
lation would preclude hydrogen bonding between Y122O• and D84.
Such a conformational change is significant, because it rationalizes the



Table 2
D84Vibrational Assignments in the Y122OH and the Y122O• states, as assigned by 13C-Asp
Labeling and RIFT-IRa.

Y122O• Y122OH

υb Δυ (13C) Assignment υb Δυ (13C) Assignment

(+) 1687 −43 D84 υas (–) 1675 −40 D84 υas

(+) 1653 −40 D84 amide I (–) 1661 −40 D84 amide I
(+) 1563 −12 D84 amide II (–) 1540 −8 D84 amide II
(+) 1414 N.D.c D84 υs (–) 1404 N.D.c D84 υs

a Reprinted with permission from the Journal of the American Chemical Society [50].
b Frequencies, in cm−1, from the RIFT-IR isotope-edited spectra.
c Not determined.
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making and breaking of a hydrogen bond, which couldmodulate proton
transfer from a water ligand.

RIFT-IR spectroscopy has also provided evidence that Y122 is
conformationally mobile, when HU is used as a reductant for the radi-
cal. These RIFT-IR studies showed that Y122O • reduction by HU is
coupled with a substantial translation of the phenolic oxygen [51]. To
define the conformational change, C1 amide labeling of tyrosine was
performed, and the amide I bands of Y122O• and Y122OH were iden-
tified in the RIFT-IR spectra as bands at 1662 (Y122OH) and 1653
(Y122O•) cm−1. Density functional calculations were used to predict
the frequencies and 13C isotope shifts, and theoretical infrared spectra
were generated. Of the lowest energy conformers of radical and sin-
glet states, the best match between experiment and theory was an A
(singlet) to B (radical) conformational change, corresponding to a
change in backbonedihedral angle (Fig. 3). The X-ray structure confirms
that the Y122OH is in the A conformation. By modeling the A to B con-
formational change onto theX-ray structure of themet state, the change
was concluded to be consistent with only small displacements in the
amide backbone. However, the vibrational analysis and modeling sug-
gested that the Y122 phenolic oxygen translates away from D84 in the
radical state. The distance between D84 and Y122O• was predicted to
be 7 Å, in qualitative agreement with previous magnetic resonance
studies, which predict a 3 Å distance. These results are suggestive of a
conformationally linked mechanism, which makes and breaks hydro-
gen bonds.

Can the predicted hydrogen bonding change at D84 be detected
directly? RIFT-IR has provided evidence for such a hydrogen bonding
change in D84 [50]. Again, HU was used as the reductant. The first evi-
dence for the coupled hydrogen bonding change was obtained in the
isolated β2 subunit. Isotopic labeling of aspartate with two different
isotopologues was performed using an aspartate auxotrophic strain.
This experiment identified the infrared bands of D84, which were
concluded to be markers for hydrogen bonding changes (Table 2), and
Fig. 3. Comparison of singlet and radical conformational states for Y122, as defined byHU reduc
[51]) of the 1.4 Å met β2 (Y122OH) form (top), obtained from X-ray crystal analysis (PDB 1MX
former, as predicted by isotopic labeling and DFT on dipeptidemodels [51], and is presented in
dihedral angles of the A singlet conformer were also structurally refined; deviations from them
predicted previously from experimental [21,63] or calculated [109] hyperfine coupling constan
calculations on the dipeptide model.
Reprinted with permission from Journal of Physical Chemistry B [51].
showed that structural interactions are propagated from Y122 to the
metal cluster.

Recently, RIFT-IR measurements were performed on the RNR qua-
ternary complex using isotopically labeled chimeras to assign bands to
α2 or to β2 [48]. The inhibitor, dATP, had a dramatic effect on these
mixing-induced RIFT-IR spectra. The effects of HU on Y122 and D84
were also probed in the α2β2-containing samples. As assessed by ob-
served vibrational bands, HU-mediated events were similar to those
documented in the isolated β2 subunit [50,51]. This finding supports
the conclusion that HU-mediated events at Y122 and D84 are similar
in the α2β2 quaternary complex and in the isolated β2 subunit.

4. Photosystem II

Another example of tyrosine-based radical transfer occurs in the
photosynthetic reaction center, photosystem II (PSII). PSII carries out
the light-driven oxidation of water and reduction of plastoquinone
(reviewed in [64]). PSII is a large complex enzyme (Fig. 4), which con-
tains at least 20 protein subunits and multiple redox-active cofactors
[65]. Two core subunits, which bind many of the prosthetic groups,
tion (A), and for the YT dipeptide model (B). In (A), structural refinements (seemethod in
R) and of the radical (Y122O•) form (bottom). The radical formwasmodeled as the B con-
gray. Distances (in Å) between Y122 and D84 are shown in green. For the singlet (top), the
et crystal structure are highlighted in pink. For Y122O• (bottom), the ring dihedral angles
ts are shown in green and purple, respectively. The structures in (B) are derived from DFT

image of Fig.�3


Fig. 4. (A) Cofactor arrangement in PSII from Thermosynechococcus vulcanus (3ARC) at 1.9 Å resolution, including YD andYZ, chlorophyll (Chl), pheophytin (Pheo), non-heme iron (Fe), and
plastoquinones (QA and QB). In the oxygen evolving complex (OEC): calcium, green;manganese, purple; oxygen, red; (B) YZ and its hydrogen bonding interactions; (C) YD and its hydro-
gen bonding interactions. In (B and C), hydrogen bonded water molecules are depicted as orange spheres.
Reprinted with permission from Nature Chemistry [110].
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are the D1 and D2 polypeptides. An initial photoexcitation of chloro-
phyll generates a charge-separated state in which a quinone acceptor
(QA, QB) is reduced and a Mn4CaO5 cluster is oxidized. This reaction oc-
curs across the thylakoidmembrane and ismediated by a chain of redox
active groups, including chlorophyll (Chl), pheophytin (Pheo), and a
redox active-tyrosine YZ. YZ is tyrosine 161 of the subunit called D1
(reviewed in [66]). YZ is required for activity andmediates radical trans-
fer between the chlorophyll donor, P680+ , and the metal cluster, where
oxygen is generated from water [67]. This metal cluster or oxygen-
evolving center (OEC) accumulates four oxidizing equivalents, with YZ
functioning as the relay on each flash. The sequentially oxidized states
of the OEC are called the Sn states, where the subscript n refers to the
number of oxidizing equivalents stored [68].

The manganese and calcium ions in the OEC are bound by six car-
boxylate ligands and one histidine ligand. In the recent 1.9 Α structure
from a thermophilic cyanobacterium, the positions of bound water
molecules were predicted [65]. A network of water extending from
Ca-bound and Mn-bound water molecules was assigned. Two bound
waters were identified at the manganese ion denoted Mn4, and two
were identified at the calcium ion. The bound water molecules at Mn4
and Ca are candidates to be the substrate [69,70]. These bound water
molecules are connected via an extensive hydrogen-bonding network
to YZ, OEC ligands, and several peptide carbonyl groups (S169, D170,
G171, and F182), which are all within ~7 Å of OEC-bound water mole-
cules. New experimental and theoretical approaches to the mechanism
ofwater oxidation, based on the 1.9 Å structure, have been reviewed re-
cently (see, for example, [64,71]). This article focuses on the function
and structure of YZ, with special emphasis on the effect of the intact
hydrogen-bonding network, as revealed in the structure [65]. Compari-
son of YZ to the other PSII redox-active tyrosine, YD, is of interest. YD is
tyrosine 160 of the subunit called D2. Unlike YZ, YD is not essential for
oxygen evolution activity. YD has a lower potential, when compared
to YZ, and forms amore stable radical (reviewed in [66]). The placement
of bound water molecules and proximity to the Mn4CaO5 cluster [65]
distinguish YD and YZ (Fig. 4).

5. YD and YZ in PSII

For YD and YZ, the basis of their functional differentiation is not yet
clear. For example, chemical complementation and site-directed muta-
genesis have defined a role for each hydrogen-bonded histidine as a
proton transfer partner [72,73]. ESEEMmeasurements provide evidence
for a hydrogen bond between YD and histidine 189 of the D2 polypep-
tide [74]. But, EPR experiments on YD suggest that the pathway is

image of Fig.�4
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more complex. An EPR-based proton inventory was consistent with
competing proton transfer pathways, one proposed to be from water
and one from histidine [75]. In a proton inventory, the dependence of
the rate on the mole fraction of solvent isotope is determined [76].
The results showed a multiexponential dependence that was explained
by two competing pathways, at least one of which was multi-proton.
Also, marked pH dependence was observed in the decay kinetics, con-
sistent with a change in mechanism when low and high pH values
were compared [77].

Interestingly, YD • has been shown to undergo a temperature-
dependent, conformational relaxation [78]. The YD• radical can be gen-
erated by illumination at 10 K. Cryogenic high-field EPR measurements
were used to show that when the 10 K-generated radical is warmed in
the dark, a shift in the gx component of its g tensor occurs. This compo-
nent of the radical's g tensor is sensitive to electrostatic interactions. The
shift in gx tensor component was attributed to a spontaneous lengthen-
ing of the hydrogen bond to YD• [78].

Because metal removal is expected to change the environment of
YZ, it is important to investigate YZ in preparations that contain the
Mn4CaO5 cluster. YZ• has a short lifetime (microsecond to millisecond)
in suchpreparations, because YZ• is rapidly reduced by themetal cluster
[67,79]. As the essential charge relay in photosynthetic water oxidation,
the midpoint potential of YZ must be carefully controlled [80]. Theoret-
ical approaches have predicted changes in side chain pKa, linked to the S
state cycle (reviewed in [81]). Changes in pKa and S state associated
conformational dynamics [82] could play a role in facilitating electron
and proton transfer through YZ.

To assess the effect of oxidation of the Mn4CaO5 cluster on the envi-
ronment of YZ, laser flashes were used to step the OEC through its S
state cycle. To extend the lifetime of YZ•, the S state of interest was gen-
erated by aflash, and then the samplewas frozen to block further S tran-
sitions. For example, at 190 K, the S2 to S3 transition is blocked. A laser
flash given to a sample prepared in the S2 state then generates the YZ•
QA
− state. YZ • cannot oxidize the S2 state, but instead recombines on

the seconds time scale with the quinone acceptor. The kinetics of
decay was then monitored as a function of pH and solvent isotope.

In refs. [83,84], a comparison of YZ• kinetics in the S0 and S2 states
was performed. These states correspond to a change in oxidation state
of the Mn4CaO5 cluster S0, Mn(III)3Mn(IV)1; S2, (Mn(III)1Mn(IV)3)
[85]. The S0 and S2 states exhibited a difference in the YZ• decay rate
(t1/2 = 3.3 ± 0.3 s in S0; t1/2 = 2.1 ± 0.3 s in S2) and in the solvent
isotope effect (SIE) on the reaction (1.3 ± 0.3 in S0; 2.1 ± 0.3 in S2).
The changes were attributed to oxidation-induced changes in the
hydrogen-bonding network that links YZ and the Mn4CaO5 cluster.

Although theYZ site is known to be solvent accessible, the recombina-
tion rate and SIE were pH independent in both S states. While YD
exhibited marked pH dependent kinetics, YZ• did not [75,77]. A coupled
proton electron transfer, through a single transition state, can occur by
such a pH independent mechanism [86,87]. In tyrosine and phenol
model compounds, it has been shown that coupledproton electron trans-
fer reactions are often thermodynamically favored, because high energy
intermediates, such as the tyrosine cation radical, are avoided [88–90].

Ammonia is an inhibitor of PSII [70,91–93] and disrupts hydrogen
bonding to peptide C_O groups in the OEC [94,95]. Significantly, am-
monia dramatically slowed the YZ• recombination rate in the S2 state,
but had a smaller effect in the S0 state. In contrast, ammonia had no sig-
nificant effect on the decay of YD•, the more stable radical. These exper-
iments document significant environmental effects on tyrosine-based
charge relays and indicate that the hydrogen-bonding network, con-
taining YZ, responds to the oxidation of the OEC.

6. ET and hopping in azurin, a bioengineered protein

Sensitizer-modified proteins have been used to investigate the fac-
tors that control ET rates in biological systems. In this approach, a folded
protein of known structure is modified to bind a photosensitizer, which
generates a strong oxidant, either in the ground (Ru) or excited (Re)
state (reviewed in [96,97]). For example, to investigate the role of aro-
matic residues in ET, azurin, a copper-binding protein, was engineered
to contain photosensitizers. In a Ru-modified azurin, Cu(I) to Ru(III)
ET rates decreased exponentially with distance, consistent with a
single-step tunneling mechanism (reviewed in [98]). In a Re-modified
azurin, Cu(I) oxidation by theRe excited state (19 Ådistance)was accel-
erated by two orders of magnitude when an intermediary tryptophan
residue was present [99]. Tyrosine and phenylalanine substitutions
did not support this hopping-induced rate increase.

Recently, the UNA, nitrotyrosine, was substituted at selected posi-
tions in Ru-modified azurin [43]. Nitrotyrosine, with its pKa of 7.2, un-
dergoes ET, not PCET, at physiologically pH values. Three nitrotyrosine
derivativeswere studied. Rates increased by a factor of 10–50 compared
to singlet step ETwithout the nitrotyrosine. The observed rate enhance-
ments for the three nitrotyrosine variants were in good agreementwith
hopping maps, generated based on semiclassical ET theory and param-
eters (reorganization energies, electronic couplings, and distance de-
pendence) from similar systems [43].

7. Biomimetics and redox active tyrosines

To model the interactions of tyrosine charge relays with the protein
matrix, biomimetic compounds offer advantages. The model systems
are structurally well defined. This approach has been used to model
iron sulfur proteins and heme-binding proteins, as well as redox-
active tyrosines (for examples, see [100–102]). Recent biomimetic stud-
ies pertinent to the YD, YZ, and Y122 radicals are summarized below.

In the recent work [103], a structured, three alpha helical bundle,
called α3, was used to test the effect of a hydrophobic environment
on the midpoint potential of the UNA, 3,5-fluorotyrosine (3,5-F2Y).
Tyrosyl radicals generated in theα3 de novo-designed peptide are rela-
tively stable, and the environment of the radical was shown to be
hydrophobic [104]. The UNA exhibited reversible electrochemical
behavior in this environment,whichwasdesigned tomimic the second-
ary structural environment of Y122 in theβ2 subunit. Importantly,α3-Y
or α3-3,5F2Y exhibited increased midpoint potentials at pH 7.0 (150–
180 mV), relative to model compounds in aqueous solution. Thus, a
hydrophobic protein environment was shown to have a substantial ef-
fect on the reduction potential. In the α3 peptide, Y and 3,5 F2Y were
shown to have midpoint potentials that differed by 30 mV.

In ref. [105] a hybrid system, containing benzimidazole–phenol
porphyrin moeties, was attached to TiO2. The benzimidazole–phenol
species is designed as a mimic of a tyrosine–histidine pair, as found
in PSII. Irradiation of this compound led to a charge separation between
the porphyrin and TiO2. A second ET reaction from the benzimidazole–
phenol group to the oxidized porphyrin then occurred. This second
ET was accompanied by PT from the phenol to benzimidazole group.
High-field EPR measurements were used to show that the resulting
phenoxyl radical is neutral, but hydrogen bonded. Annealing the sample
resulted in a shift of the gx component of the phenoxyl radical. This an-
nealing effect is similar to the conformational relaxation, previously re-
ported for the YD radical in PSII [78]. Based on electronic structure
calculations, this change was interpreted as a spontaneous alteration
in hydrogen bond strength, which is caused by a temperature-
dependent solvation change.

In refs. [106,107], a de novo-designed peptide was synthesized to
mimic PCET between tyrosine and histidine (Fig. 5). This 18 amino
acid beta hairpin maquette (peptide A), contains a single histidine and
tyrosine. TheNMR structure showed that histidine and tyrosine interact
via a pi–pi interaction. A tyrosyl radical was formed by UV photolysis or
electrochemically. Square wave voltammetry as a function of pH pro-
vided evidence for a proton transfer from tyrosine to histidine. These
inflection points were absent in a variant in which cyclohexylalanine
was substituted for histidine. This beta hairpin scaffold is robust to sub-
stitutions, and mutations were generated at other charged residues,



Fig. 5. (A) Primary sequence of peptide A, IMDRYRVRNGDRIHIRLR. The residues involved
in the cross-strand interaction are in red; (B) Lowest-energy NMR structures of peptide A
[106]; (C) Intermolecular interactions in the lowest-energy structure of peptide A showing
cross-strand interactions between Y5 and H14 (π–π), Y5 and R12 (π–cation), Y5 and R16
(H-bond), and the salt-bridge formed by D3 and R16. See [54] for more details.
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showing that a pi–cation interaction with arginine decreased the peak
potential of the tyrosine. This change mimics the lower potential of
YD, which is distinguished from YZ by pi–cation interactions with argi-
nine residues [65]. Interestingly, UV resonance Raman spectroscopy de-
tected a redox-induced secondary structural change in the peptide [54].
This conformational changewas reversible. Thus, in the case of this beta
hairpin maquette, the protein environment is dynamic and responds to
charge transfer.

8. Summary

These results document the exquisite control of PCET in native
systems, involving redox-coupled changes in distance, secondary struc-
ture, and hydrogen bonding. In RNR, there is evidence for redox-
coupled mobility in the radical initiator, at least under two sets of
conditions, reduction with HU and generation of the radical with
H2O2. In PSII, the YZ and YD PCET mechanisms are distinct in their pH
dependence, suggesting a significant effect of the protein environment
on the thermodynamics and kinetics of PCET. YD exhibits a spontane-
ous, temperature-dependent relaxation, which may correspond to
lengthening of a hydrogen bond. In addition, the kinetics of YZ decay
are responsive to photooxidation reactions at the metal center. This lit-
erature also illustrates the power of biomimetics, which can be used to
obtain more insight into events on the PCET pathway. Bioengineered
proteins and peptides have provided new information about hopping
mechanism and charge transfer.
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