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Abstract

The notion of the carvingwidth of a graph was introduced by Seymour and Thomas [Call routing and the ratcatcher, Combinatorica
14 (1994) 217–241]. In this note, we show that the carvingwidth of a d-dimensional hypercube equals 2d−1.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years many “width” parameters of graphs were studied in connection to decomposing a given graph, in
order to deal with certain algorithmic problems or to prove some important graph theoretic results. The treewidth,
pathwidth, branchwidth, carvingwidth, cliquewidth, etc. are some examples. In spite of their slightly nonintuitive,
technical-sounding definitions, these width parameters have proved to be of great use in graph theory as well as in
algorithms. Many of these parameters were introduced by Robertson and Seymour in their series of fundamental papers
on graph minors. The notion of the carvingwidth of a graph G, denoted as cw(G) (see Section 2 for definition) was
introduced in [13] by Seymour and Thomas, to develop an algorithm to decide whether there exists a routing tree
with congestion less than k, when the underlying graph is planar. In that paper, they had introduced another important
parameter called branchwidth. This parameter approximates the treewidth by a constant factor. They gave an O(n4)

algorithm to construct a optimal branch decomposition of a planar graph. The key part of this algorithm is to construct
an optimal carving decomposition of a corresponding graph, called the medial graph. Recently Gu and Tamaki [5]
improved the situation by giving an O(n3) algorithm to construct the optimal carving decomposition of the medial
graph, thus making it possible to construct the optimal branch decomposition of the planar graph in O(n3) time. An
algorithm to decide whether the carvingwidth of a graph is at most k (for a fixed k) is given by Thilikos et al. [14].

A d-dimensional hypercube Hd on 2d vertices is defined as follows: the vertices of Hd correspond to the 2d binary
strings each of length d, two of the vertices being adjacent if and only if they differ in exactly one bit position. Hypercubes
are a well-studied class of graphs, which arise in the context of parallel computing, coding theory, algebraic graph
theory and many other areas. Hypercubes are popular among graph theorists because of their symmetry, small diameter
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and many other interesting graph-theoretic properties. In this paper, we show that:

cw(Hd) = 2d−1.

The result is obtained as a consequence of a relation we derive between the carvingwidth of a graph G and a certain
type of edge isoperimetric property of G. We explain this relation below:

Let G= (V , E) be a graph. We denote by V (G) and E(G) the vertex and edge sets of G, respectively. Given a subset
S of V (G), its edge boundary �G(S) be defined as

�G(S) = {e ∈ E(G): exactly one end point of e is in S}. (1)

Then the edge isoperimetric problem is to minimise |�G(S)| over all subsets S of V (G) with |S| = � for a given integer
�. We define

be(�, G) = min
S⊆V (G),|S|=�

|�G(S)|.

Let s be any integer such that 1�s� |V (G)|. We show that, for any graph G:

cw(G)� min
s/2�x � s

be(x, G). (2)

Discrete isoperimetric inequalities (both the edge and vertex versions) are well-studied in graph theory. Though
Macaulay had published an isoperimetric theorem in 1921, the first appearance of the term “isoperimetric” in the
combinatorial literature seems to be in a paper by Harper [8] published in 1966. See [12] for a brief survey on
isoperimetric inequalities. The recent monograph by Harper [10] gives a much broader and deeper exposition of the
results on combinatorial isoperimetric problems.

Isoperimetric inequalities turn out to be useful in various situations. In fact, Harper [8] studied the vertex isoperimetric
problem on hypercubes in order to estimate the bandwidth of Hd . Chandran and Kavitha [2] used isoperimetric
inequalities to give lower bounds for the treewidth and pathwidth of Hd . Harper applied again the isoperimetric
inequalities to approximately estimate the bandwidth of Hamming graphs [9]. Chandran and Subramanian [3] have
shown an inequality relating the vertex isoperimetric problem with the treewidth of a graph, which is very much like
Inequality 2 in form, cw(G) being replaced by treewidth(G) and be(x, G) being replaced by the corresponding term
for the vertex isoperimetric problem. They derived a lower bound for the treewidth of a graph in terms of girth and
average degree, making use of their inequality.

2. Definitions and notations

Let G be a simple unweighted finite undirected graph. Let V (G) and E(G) denote its vertex set and edge set
respectively.

Definition 1. Let |V (G)|�2. Two subsets A, B ⊆ V (G) cross if and only if A ∩ B, A − B, B − A, V (G) − (A ∪ B)

are all non-empty.

For a subset A ⊆ V (G), let A denote its complement. That is A=V (G)−A. The following observation is immediate
from the above definition:

Lemma 1. Two subsets A, B ⊆ V (G) cross if and only if A, B also cross.

Definition 2. A carving in V (G) (also called a carving decomposition of G) is a set C of subsets of V (G) such that

1. ∅, V (G) /∈C,
2. no two members of C cross,
3. C is maximal subject to the two conditions above.

The width of a carving C in V (G) is defined to be width(C) = maxA∈C|�G(A)|. The carvingwidth of G is defined
to be the minimum of width(C), over all possible carvings C in V (G).
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Rooted trees and subtrees: Once we specify a certain vertex of a tree T as the root, then T can be seen a rooted tree.
(See [4], Section 1.5 for the definition of a rooted tree.) Now, let T be a rooted tree with r as the root. Given any vertex
u ∈ V (T ), we denote by Tu, the subtree of T, rooted at u. In particular, T = Tr .

Bijections: Let � : A → B be a bijection from the set A to B. Then for any subset S ⊆ B, �−1(S)={x ∈ A : �(x) ∈ S}.
Some special induced subgraphs of Hd : Recall that the vertices of Hd can be associated in one to one correspondence

with the set of binary d-strings. Let s be a fixed binary string of length k, where k�d. Then the set of vertices
corresponding to the binary d-strings with prefix s, clearly induces in Hd a graph isomorphic to Hd−k . We will denote
this induced subgraph by Hs

d . For example, the induced subgraph on the set of vertices corresponding to the binary
d-strings starting with 00 will be denoted by H 00

d . It is easy to see that H 00
d is isomorphic to Hd−2. Note that if s is

the empty string, then Hs
d represents Hd itself. The length (i.e. the number of characters) of a binary string s will be

denoted by |s|.
Edges between two disjoint sets: Let A, B be disjoint subsets of V (G). Then E(A, B) = {(u, v) ∈ E(G) : u ∈

A and v ∈ B}. (That is the set of edges with one end point in A and the other end point in B.)
The set of leaves of a tree: Let T be a tree. Then we denote by L(T ) the set of leaves (i.e. vertices of degree 1 or 0)

of T. Also, let �(T ) = |L(T )|.

3. Lower bound for cw(G)

The following lemma about carvings in V (G) is proved in [13].

Lemma 2 (Seymour and Thomas [13]). Let V be a finite set with |V | > 2, let T be a tree in which every vertex has
degree 1 or 3. Let � : V → L(T ) be a bijection. For each edge e of T, let T1(e) and T2(e) be the two components of
T \e; and let

C = {�−1(L(Ti(e))): e ∈ E(T ), i = 1, 2}.

Then C is a carving in V. Conversely, every carving in V arises from some tree T and bijection � in this way.

Lemma 3. Let T be a tree with at least three vertices and such that each of its vertices has degree either 3 or 1. For
any edge e, let T1(e) and T2(e) be the components of T \e. Then, for any integer x, such that 1�x�n (where n=�(T )),
there exists an edge e ∈ E(T ) such that either x/2��(T1(e))�x or x/2��(T2(e))�x.

Proof. Let v be an internal vertex (i.e., a vertex of degree 3) of T. For the purpose of this proof, consider T as a rooted
tree, rooted at v. If x = n, then the lemma is trivial: since v has three children there exists a child z of v such that
�(Tz) < n/2. So �(T ) − �(Tz)�n/2 and we can infer that (v, z) is an edge of the required type. Now, assume that
1�x < n. Let s1, s2, . . . , sk be a maximal sequence of vertices of T, satisfying the following three conditions: (1) s1 =v;
(2) si+1 is a child of si in the rooted tree T; (3) �(Tsi ) > x for all i�k.

First observe that �(Ts1) = �(T ) = n > x and thus a sequence of the required type exists. Note that the last vertex of
this sequence, sk cannot be a leaf vertex, since in that case �(Tsk )= 1�x, and condition (3) is violated. Therefore, sk is
an internal vertex of T. Let u, w be the two children of sk . Without loss of generality, let �(Tu)��(Tw). Then, clearly
�(Tu) > x/2, since �(Tsk ) > x. Also, �(Tu)�x since otherwise s1, s2, . . . , sk cannot be maximal. We infer that (sk, u)

is an edge of the required type. �

Theorem 1. Let G = (V , E) be a graph on n vertices and let 1�x�n. Then cw(G)�minx/2� i �x be(i, G).

Proof. Let C be a carving in V (G) that has the minimum width over all possible carvings in V (G). By Lemma 2,
there exists a tree T whose vertices are of degree 1 or 3, and a bijection � : V (G) → L(T ) such that for each set
A ∈ C there exists an edge e ∈ E(T ), where A = �−1(L(T1(e))) or A = �−1(L(T2(e))), where T1(e) and T2(e) are
the components of T \e. By Lemma 3, for any x, 1�x�n, there exists an integer s, x/2�s�x and an edge e ∈ E(T )

such that either s = �(T1(e)) or s = �(T2(e)). Without loss of generality, let s = �(T1(e)) and let X = �−1(L(T1(e))).
Since x/2� |X| = s�x, |�G(X)|�minx/2� i �x be(i, G). It follows that cw(G)�minx/2� i �x be(i, G). �
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Now, we use Theorem 1 to give a lower bound for the carvingwidth of Hd . The edge isoperimetric problem for
the hypercube was studied and solved by Harper [7] and later independently by Hart [11]. Let m be an integer, where
1�m�2d . Let M be the subset of vertices of Hd , which correspond to the binary representations (assuming d bits per
representation) of {0, 1, . . . , m − 1}. The following result was proved in [11,7]. (Also see the presentation by Bollobás
[1], Chapter 16, proof of Theorem 2 therein.)

Lemma 4 (Hart [11], Harper [7]). |�Hd
(M)| = be(m, Hd).

Lemma 5. cw(Hd)�2d−1.

Proof. By Theorem 1, it is sufficient to show that there exists an integer x such that for every m, where x/2�m�x,
be(m, Hd)�2d−1. We take x = 2d−1. Now let m= 2d−2 + t where 0� t �2d−2. Let M be the subset of vertices of Hd

which correspond to the binary representation of {0, 1, . . . , m − 1}. Clearly, M = V (H 00
d ) ∪ X,where X ⊆ V (H 01

d )

and |X| = t . Since for any vertex u ∈ V (H 0
d ), there is a unique vertex v ∈ V (H 1

d ) such that (u, v) ∈ E(Hd), we
have |E(M, V (H 1

d ))| = |M| = 2d−2 + t . Moreover, since for every vertex u ∈ V (H 01
d ) there is a unique vertex

v ∈ V (H 00
d ) such that (u, v) ∈ E(Hd), we have |E(M, V (H 0

d ) − M)|� |V (H 0
d ) − M| = 2d−2 − t . It follows that

|�(M)|�2d−2 + t + 2d−2 − t = 2d−1, and therefore cw(Hd)�2d−1 as required. �

Remark. The proof of Lemma 5 can be shortened if we use Guu’s characterisation [6] of the function be(i, Hd).

4. Upper bound for cw(Hd)

To complete the proof, we will demonstrate a carving in V (Hd) with width 2d−1. For a binary string p with |p|�d,
let Vp = V (H

p
d ). Let S be the set of all non-empty binary strings of length at most d. We define a family F of subsets

of V (Hd) as follows:

F = {Vp, Vp : p ∈ S}.

Lemma 6. F is a carving in V (Hd).

Proof. We need to verify that the three properties of Definition 2 are satisfied. Property 1 is trivial to verify. We verify
Properties 2 and 3 below:

Property 2. Let A, B ∈ F. We need to show that they do not cross.

Case 1: A = Vp and B = Vp′ . Without loss of generality let |p|� |p′|. If p is a prefix of p′ then Vp ⊆ Vp′ and thus
A − B = ∅. Else if p is not a prefix of p′, then A ∩ B = ∅.

Case 2: A = Vp and B = Vp′ . By Lemma 1, A and B cross if and only if A and B cross. But A and B do not cross
by case 1.

Case 3: A = Vp and B = Vp′ . If p is a prefix of p′, then A ⊆ B and thus A ∩ B = ∅. If p′ is a prefix of p then
V (Hd) − (A ∪ B) = ∅. On the other hand, if neither p a prefix of p′ nor p′ a prefix of p, then a A − B = ∅.

Thus in all cases, A and B do not cross.

Property 3. Consider any subset T /∈F where ∅ �= T ⊂ V (Hd). We will show that there exists a subset S ∈ F such
that S crosses with T, thus proving that F is a maximal set with respect to Properties 1 and 2, as required. Let p be the
longest string such that p is a common prefix for all the binary strings corresponding to the vertices in T. Clearly |p| < d ,
since T /∈F. Let T0 (respectively, T1) be the set of vertices in T such that the binary digit at the |p| + 1th position
of its corresponding string is 0 (respectively, 1). Without loss of generality let |T0|� |T1|. Also let “p0” (respectively,
“p1”) be the string obtained by concatenating the bit 0 (respectively, 1) at the end of the string p. The reader may not
that T0 �= ∅: otherwise “p1” will be a prefix longer than p that is common to all the strings corresponding the vertices
in T, contradicting the assumption. Moreover T0 �= Vp0: otherwise T = T0 ∪ T1 = Vp0 ∪ Vp1 = Vp ∈ F contradicting
the assumption that T /∈F. We consider the following cases:
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Case 1: T1 �= Vp1. Then clearly Ti ⊂ Vpi for i = 0, 1. In this case it is easy to verify that Vp0 crosses with T: that is,
all the four sets Vp0 ∩ T , Vp0 − T , T − Vp0 and V (Hd) − (Vp0 ∪ T ) are non-empty.

Case 2: T1 = Vp1 and |p|�1. In this case also it can be easily checked that Vp0 crosses with T.
Case 3: T1 = Vp1 and |p| = 0. Unlike the previous two cases, in this case Vp0 does not cross with T since V (Hd) −

(Vp0 ∪ T ) = ∅. So we need another candidate. Note that since T1 = Vp1, T ′ = T ⊂ Vp0. Let p′ be the longest prefix
which is common to all the strings in T ′. Clearly |p′|�1 since T ′ ⊂ Vp0. Thus by Cases 1 and 2, there exists a set
S′ ∈ F which crosses with T ′. Now, by the definition of F, S′ ∈ F. Take S = S′. Since S′ and T ′ cross, by Lemma
1, T = T ′ and S = S′ also should cross, as required. �

Lemma 7. The width of the carving F equals 2d−1.

Proof. Noting that �Hd
(Vp) = �Hd

(Vp), it is clear that the width of the carving F equals maxp∈S (|�Hd
(Vp)|). Since

H
p
d , the induced subgraph on Vp is isomorphic to a (d − |p|)-dimensional hypercube, |�Hd

(Vp)| = |p|2d−|p|. This
expression maximises when |p| = 1, and thus the width of the carving F equals 2d−1. �

Combining Lemmas 5 and 7, we infer the following:

Theorem 2. cw(Hd) = 2d−1. The carving F constructed above is an optimum carving in V (Hd).
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