
The Journal of Systems and Software 120 (2016) 195–218

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

How do software development teams manage technical debt? – An

empirical study

Jesse Yli-Huumo

a , ∗, Andrey Maglyas a , Kari Smolander b

a Lappeenranta University of Technology, School of Business and Management, Department of Innovation and Software, PO Box 20, Skinnarilankatu 34,

Lappeenranta FI-53851, Finland
b Aalto University, School of Science, Department of Computer Science, P.O.Box 15400, FI-00076 Aalto, Finland

a r t i c l e i n f o

Article history:

Received 14 May 2015

Revised 10 December 2015

Accepted 10 May 2016

Available online 11 May 2016

Keywords:

Technical debt

Technical debt management

Exploratory case study

a b s t r a c t

Technical debt (TD) is a metaphor for taking shortcuts or workarounds in technical decisions to gain

short-term benefit in time-to-market and earlier software release. In this study, one large software de-

velopment organization is investigated to gather empirical evidence related to the concept of technical

debt management (TDM). We used the exploratory case study method to collect and analyze empirical

data in the case organization by interviewing a total of 25 persons in eight software development teams.

We were able to identify teams where the current strategy for TDM was only to fix TD when necessary,

when it started to cause too much trouble for development. We also identified teams where the manage-

ment had a systematic strategy to identify, measure and monitor TD during the development process. It

seems that TDM can be associated with a similar maturity concept as software development in general.

Development teams may raise their maturity by increasing their awareness and applying more advanced

processes, techniques and tools in TDM. TDM is an essential part of sustainable software development,

and companies have to find right approaches to deal with TD to produce healthy software that can be

developed and maintained in the future.

© 2016 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

t

u

s

a

m

fi

a

e

c

t

v

a

w

H

t

M

t

c

s

s

t

o

f

c

p

a

(

c

w

a

a

s

w

h

0

. Introduction

Technical debt (TD) is a metaphor used to describe a situa-

ion in software development, where a shortcut or workaround is

sed in a technical decision (Kruchten et al., 2012b). TD has also

imilarities to three aspects of financial debt: repayment, interest ,

nd in some cases high cost (Allman, 2012). In software develop-

ent, a shortcut or workaround can give the company a bene-

t in the short term with quicker release to the customer and

n advantage in time-to-market over the competition (Kruchten

t al., 2012a; Yli-Huumo et al., 2015a). However, if these short-

uts and workarounds are not repaid, TD can accumulate and hurt

he overall quality of the software and the productivity of the de-

elopment team in the long term (Zazworka et al., 2011b). Cre-

ting temporary solutions to the code base increases complexity,

hich makes further development hard and time-consuming (Yli-

uumo et al., 2015a; Yli-Huumo et al., 2014). A simple solution for

he problem would be to repay the known TD before issues start
∗ Corresponding author.

E-mail addresses: jesse.yli-huumo@lut.fi (J. Yli-Huumo), andrey.maglyas@lut.fi (A.

aglyas), kari.smolander@aalto.fi (K. Smolander).

i

H

l

v

ttp://dx.doi.org/10.1016/j.jss.2016.05.018

164-1212/© 2016 The Authors. Published by Elsevier Inc. This is an open access article u
o show. However, the highly competitive software market forces

ompanies to work in tight schedules and deadlines to release

oftware to customers in faster cycles. This creates constant pres-

ure for the development teams to deliver working features to cus-

omers within the given deadlines. In addition, perfection as an

bjective is also a risk, because it may cause delays and that way

rustration to the customers, who may then select other commer-

ial alternatives. Therefore, it is important to identify and develop

rocesses for companies to live with TD and to know how, what

nd when the TD should be repaid. Technical debt management

TDM) consists of activities, processes, techniques, and tools that

an be used to identify, measure, prevent, and reduce TD in a soft-

are product.

TD and TDM receive attention currently both in the academia

nd the industry (Li et al., 2015a). Researchers and practitioners

re becoming more interested in the concept of TD and the rea-

ons why it should be an essential part of decision-making in soft-

are development (Falessi et al., 2014). The current literature has

dentified and developed some tools and practices to conduct TDM.

owever, according to a recent mapping study, the problem is the

ack of empirical evidence about TDM in a real-life software de-

elopment environment (Li et al., 2015a). It is important to gather
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jss.2016.05.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.05.018&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jesse.yli-huumo@lut.fi
mailto:andrey.maglyas@lut.fi
mailto:kari.smolander@aalto.fi
http://dx.doi.org/10.1016/j.jss.2016.05.018
http://creativecommons.org/licenses/by/4.0/

196 J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218

c

c

2

2

C

‘

d

j

w

c

t

c

r

2

c

c

p

l

T

o

o

A

a

2

t

(

t

p

h

d

a

c

2

f

s

e

t

t

t

t

w

i

c

c

fi

q

H

s

u

n

m

e

r

t

I

t

c

d

d
evidence about TD and TDM in real-life software development sit-

uations to understand how TDM is currently perceived by real

software development teams, and to use that knowledge to im-

prove the existing processes and tools.

In order to understand TDM in a real-life software develop-

ment environment, we studied eight software development teams

in a large organization that is a provider of multiple software so-

lutions. For data collection and analysis, we used the eight TDM

activities identified by Li et al. (2015a) in semi-structured inter-

views to gather empirical data about TDM in the selected software

development teams. We used the exploratory case study method

(Robson, 2002) to answer the following main research question:

RQ: “How do software development teams manage technical

debt?”

Since the main research question can be considered quite a

wide topic, including several other topics, we decided to create a

set of sub questions to tackle specific topics of our interest.

RQ1.1: What TDM activities are used in the studied development

teams?

Technical debt management can be separated into the follow-

ing activities: identification, measurement, prioritization, prevention,

monitoring, repayment, representation/documentation, and communi-

cation (Li et al., 2015a). However, it is not certain what activities

are actually used and taken into consideration in real-life software

development. Therefore, it is important to study and understand

which TDM activities are currently applied/used and which are not.

The results obtained from the studied development teams could

reveal which activities will need more research in the future.

RQ1.2: What methods, models, practices or tools do the studied de-

velopment teams use for each TDM activity?

There are a number of possible methods, models, practices or

tools for every TDM activity (Li et al., 2015a). They have been de-

veloped and suggested in the literature, but they lack empirical ev-

idence of their usability and functionality (ibid.). Therefore, it is es-

sential to gather empirical evidence from real-life software devel-

opment to understand what approaches different software devel-

opment teams use for each TDM activity. Collecting such evidence

could help to evaluate which TDM approaches should be catego-

rized to each TDM activity.

RQ1.3: Are there any maturity differences in adopting TDM activi-

ties between development teams?

Every software development team is different, working with

different products in different environments, and using different

methods, models, practices, and tools in their unique way. It is

highly possible that software development teams in general have

different activities and approaches as regards TDM. Some software

development teams may use more time on TDM, while some de-

velopment teams may not pay much attention to it (Power, 2013).

Therefore, it is important to understand if it is possible to dis-

tinguish between different maturities of TDM, similarly as in the

capability maturity model (CMM)(Paulk et al., 1993). The results

of this study can be used to develop a similar maturity model

for TDM, which researchers and practitioners could use to con-

duct more research, or to improve companies’ internal and external

practices.

RQ1.4: What are the biggest challenges in TDM?

Software process improvement includes the challenge of adopt-

ing new practices and tools to development teams. Understanding

this challenge in relation to TDM is beneficial for software devel-

opment teams and researchers.

The rest of the paper is organized as follows: Section 2 intro-

duces the theoretical background of TD and TDM in software de-

velopment, Section 3 describes the research methodology used in

this study, and Section 4 presents the results received from the

empirical analysis of the studied software development teams. In

Section 5 present the developed framework. In Section 6 we dis-
uss the results and implications to future research. Section 7 con-

ludes the paper.

. Background

.1. Technical debt

The metaphor technical debt (TD) has been introduced by Ward

unningham (Cunningham, 1992). He describes the metaphor as

Shipping first time code is like going into debt. A little debt speeds

evelopment so long as it is paid back promptly with a rewrite. Ob-

ects make the cost of this transaction tolerable. The danger occurs

hen the debt is not repaid. Every minute spent on not-quite-right

ode counts as interest on that debt.” (op.cit., p. 29-30). Even though

he metaphor was first introduced over twenty years ago, a re-

ent mapping study shows that it has received the attention of

esearchers and practitioners only in the past few years (Li et al.,

015a).

The TD metaphor was first associated with compromises on the

ode level of software (Cunningham, 1992). In addition, terms like

ode smells (Fowler et al., 1999) have described situations where

oor technical choices in software development have caused prob-

ems in code quality and architectural soundness. However, the

D metaphor has been rapidly expanded after the initial concept

n the code level, and it has been associated with other stages

f the software development lifecycle as well (Tom et al., 2013;

lves et al., 2014). The current literature identifies such terms

s requirements (Brown et al., 2010), design (Zazworka et al.,

011b; Zazworka et al., 2011a), architectural (Nord et al., 2012),

est (Brown et al., 2010), process (Lim et al., 2012), documentation

 Kruchten et al., 2012a), and people debt (Kruchten et al., 2012b)

o demonstrate the same effect of shortcuts or workarounds hap-

ening in the other stages of the software development lifecycle.

Shortcuts and workarounds in software development usually

appen for intentional reasons, such as for business deadlines and

evelopment complexity (Yli-Huumo et al., 2015a). Time-to-market

nd customer feedback are important factors for companies’ suc-

ess, and it is essential to deliver solutions on time (Lim et al.,

012). This is the reason why business stakeholders are often more

ocused on deadlines and customers than the actual quality of the

oftware, which is more in the developers’ interest area (Barney

t al., 2008; Boehm, 2006). Therefore, strict deadlines may some-

imes force the development team to create solutions with second-

ier quality to meet the requirements within the deadlines set by

he business stakeholders (Yli-Huumo et al., 2014). When TD starts

o accumulate, it is often a safer and faster choice to take more TD

ith a quick and dirty solution, because there is a risk of break-

ng the product even more by modifying a complex part of the

ode base (Yli-Huumo et al., 2015a). Thus, code base complexity

an force the company to take more TD intentionally, because the

xing of current TD would take too much time and money, while

uick and dirty solutions are easier and faster to implement (Yli-

uumo et al., 2014).

TD can also occur unintentionally (McConnell, 2007). The rea-

on for unintentional TD can be lack of competence, a need to

pgrade existing technologies, or a customer or market -induced

eed for change. A coder may lack competence to develop an opti-

al solution. A development team may not be able to provide ad-

quate instructions and coding standards for development, which

educes the quality of the solution. In legacy software, the old

echnology that is still in use can also be seen as unintentional TD.

n these situations, a company sometimes has to start upgrading

he technology to a newer version. It is also possible that changes

oming from the market or a customer can turn the effort of the

evelopment team to a new direction. This means that previously

eveloped parts need to be changed to make the product more

J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218 197

”We don’t have �me
for design”

”We must ship now
and deal with

consequences”

”What’s layering?”
”Now we know how
we should have done

it”

Reckless Prudent
etarebile

D
tnetrevdanI

Fig. 1. Technical debt quadrant (Fowler, 2009).

s

r

i

o

o

i

2

t

l

o

r

s

d

a

b

s

a

c

m

H

a

w

u

v

t

a

a

k

i

s

t

s

c

t

l

t

t

l

2

n

d

e

d

m

i

a

t

t

2

p

d

a

t

(

g

(

a

t

c

P

(

(

(

i

d

r

t

w

h

p

d

d

p

c

d

o

a

c

S

a

a

n

l

t

c

l

d

o

(

c

t

c

t

c
uitable for the changing business needs. Fig. 1 shows a TD quad-

ant (Fowler, 2009) that identifies four categories of having TD for

ntentional and unintentional reasons (McConnell, 2007).

TD is often seen only as a negative concept in software devel-

pment (Lim et al., 2012;Yli-Huumo et al., 2014). Software devel-

pers think that creating shortcuts and non-scalable solutions will

ncrease the complexity within the code base (Yli-Huumo et al.,

014). When the code base starts to accumulate with too much TD

hat is not fixed afterwards, the development becomes more chal-

enging, because the shortcuts are not designed to work well with

ther parts of the code base. Complexities in the code base start to

educe the overall quality and productivity goes down when new

olutions and features must be implemented to the code base in

ebt (Yli-Huumo et al., 2015a).

Taking TD is never an optimal solution, and companies should

void it when possible. However, actions that lead to TD can be

eneficial to software companies, and in that sense TD can be

een only as a negative side effect. When taking TD, companies

re able to speed up the release cycles to the customer, which

an increase customer satisfaction and provide advantage in the

arket. Another benefit for companies is customer feedback (Yli-

uumo et al., 2015b). Companies are able to adjust the product

nd its business model based on faster customer feedback. This

ay the companies can identify and prevent both intentional and

nintentional TD more efficiently, when customer feedback pro-

ides knowledge about the most important development needs in

he software (ibid.). Therefore, while TD in the software is never

 benefit, actions that incur TD into software can be beneficial to

 software company in terms of acquiring business advantage and

nowledge of customer and business needs.

Overall, the current conceptualizations of TD vary, and there

s no clear, common definition. According to some scholars, TD

hould be associated only with intentional decisions happening in

he code base, and messy code should not be counted as TD, while

ome think that old technologies in legacy software should also be

ounted as TD (Norton, 20 09; Fowler, 20 09). The addition of mul-

iple terms related to shortcuts happening in other stages of the

ife cycle of software development also confuses the concept. In

his study we focus on TD related to a badly structured architec-

ure/code (“smelly code”) and a code that violates coding guide-

ines. Even though concepts such as social debt (Tamburri et al.,

013) and people debt (Alves et al., 2014) describe similar phe-

omena of having shortcuts and non-optimal solutions in software
evelopment and organization, we believe that they should be cat-

gorized as sources for TD rather than as actual TD. Therefore, the

efinition of TD we use in this study is the following:

“A badly structured technical solution or architectural design in

the system, incurred by either an intentional decision or an un-

intentional side effect, which causes omitted quality and pro-

ductivity”

Our goal is to understand how software development teams

anage intentional technical decisions when making compromises

n software development. We also believe that unintentional TD is

n essential part of software development. Our aim is also to iden-

ify how development teams try to prevent and reduce both inten-

ional TD and unintentional TD.

.2. Technical debt management

Technical debt management (TDM) is conducted to manage,

revent, measure and reduce technical debt (TD) during software

evelopment. TDM includes processes, techniques and tools that

re used in software development. The current literature related

o TDM has identified and developed some processes and tools

 Li et al., 2015a). Managing technical debt (MTD) workshops have

athered multiple studies related to TD and TDM in the past years

 Seaman et al., 2015). However, TDM is challenging to implement,

nd it is hard for managers and developers to estimate and iden-

ify what and how much TD the current system has, how it will

hange, and what effects it will have in the future (Li et al., 2015a).

ower (2013) identifies seven main challenges surrounding TDM:

1) agreeing what technical debt is; (2) quantifying technical debt;

3) visualizing technical debt; (4) tracking technical debt over time;

5) impact of neglecting technical debt over multiple releases; (6)

dentifying technical debt as a root cause of defects; and (7) un-

erstanding the cost of delay.

The reduction and repayment of TD are done by refactoring or

ewriting the bad solutions (Codabux and Williams, 2013). Refac-

oring or rewriting can be seen as processes for “changing a soft-

are system in such a way that it does not alter the external be-

avior of the code yet improves its internal structure. It is a disci-

lined way to clean up code that minimizes the chances of intro-

ucing bugs. In essence when you refactor you are improving the

esign of the code after it has been written” (Fowler et al., 1999 ,

. 9). However, changing old solutions in the code is not easy, be-

ause improving the code base requires a significantly competent

eveloper, and the company cannot just use all development time

n refactoring or rewriting the solutions. Therefore, having some

ssisting approaches to know when and what refactoring is needed

an be useful for development teams.

A portfolio approach for TDM has been suggested by Guo and

eaman (2011) . The approach is widely used in the finance domain

s a risk reduction strategy for investors, to determine the types

nd amounts of assets to be invested or divested. The core compo-

ent of the proposed approach is a “technical debt list” (ibid.). The

ist contains TD “items”, each of which represents an incomplete

ask that may cause problems in the future. Portfolio management

ould be adapted to manage TD, where the company would col-

ect all the TD items to a list and use it to reduce TD and to con-

uct refactoring systematically. Li et al. (2015b) have also devel-

ped similar TD list management for architectural technical debt

ATD).

Unintentional TD caused by changes in the customer or market

an be harder to manage and predict, because the development

eam cannot necessarily know these TDs in advance. However, the

urrent literature has identified some practices to prevent uninten-

ional TD. Implementing coding standards to the development pro-

ess can prevent TD, when the developers have a cohesive way to

198 J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218

f

t

s

k

v

o

f

t

a

i

t

3

3

s

a

w

p

A

k

r

m

t

(

a

o

i

n

p

T

t

s

r

t

o

p

t

r

i

q

s

s

v

t

s

f

s

g

e

i

s

s

o

o

a

c

p

H
produce a similar style code, which makes it readable and mod-

ifiable (Green and Ledgard, 2011). Code reviews can be used to

check other developers’ solutions before the release to catch pos-

sible TD issues in the design (Mantyla and Lassenius, 2009). Also

simple practices in agile methodologies, such as the Definition of

Done practice can reduce TD in the early stages of development

(Davis, 2013).

An extensive mapping study of 49 primary studies has been

recently conducted by Li et al. (2015a) to understand the current

state of the art on TDM. The study identifies eight activities for

TDM: (1) identification detects TD caused by intentional or unin-

tentional technical decisions in a software system through specific

techniques, such as static code analysis; (2) measurement quanti-

fies the benefit and cost of known TD in a software system through

estimation techniques, or estimates the level of the overall TD in

a system; (3) prioritization ranks identify TD according to certain

predefined rules to support deciding which TD items should be re-

paid first and which TD items can be tolerated until later releases;

(4) prevention aims to prevent potential TD from being incurred;

(5) monitoring watches the changes of the cost and benefit of un-

resolved TD over time; (6) repayment resolves or mitigates TD in a

software system by techniques such as reengineering and refactor-

ing; (7) representation/documentation provides a way to represent

and codify TD in a uniform manner, addressing the concerns of

particular stakeholders; and (8) communication makes identified

TD visible to stakeholders so that it can be discussed and managed

further.

Overall, the current understanding of TDM includes some ideas

for processes, techniques and tools to manage TD. Even though the

current literature has started to tackle and identify the concept and

solutions of TDM, the problem is that there is a need for more

empirical evidence from real-life software development (Li et al.,

2015a).

2.3. Empirical studies on technical debt management in practice

There are few empirical studies on TDM. Guo et al. (2011) use

a specific TDM framework to track down one delayed maintenance

task in a real software project. Their TDM framework starts from

the identification of a TD item, which then will be added to a TD

list. After this, the TD item gets measured based on the principal

and interest, which are based on estimates. Then, the TD item is

ready for prioritization based on cost and benefit. With this frame-

work, the authors have been able to track down and quantify TD

items, and see the costs of delaying maintenance tasks. A simi-

lar approach has also been used by other researchers to identify

and document TD issues in order to make TD easier to manage

(Zazworka et al., 2013).

Klinger et al. (2011) interviewed four experienced software ar-

chitects to understand how decision-making regarding TD was

conducted in an enterprise environment. The results showed that

the decisions related to TD issues were often informal and ad hoc,

which led to a lack of tracking and quantifying the decisions and

issues. The study also identified that there was a large communi-

cation gap between technical and business people as regards dis-

cussion about TD.

Different tools have been developed for TDM. The SQALE

method (Letouzey, 2012 ; Letouzey and Ilkiewicz, 2012) has been

developed for the purposes of identifying, estimating, analyz-

ing, measuring, and monitoring TD in a software. DebtFlag

(Holvitie and Leppänen, 2013) has been developed to capture, track

and resolve TD in software projects. The SonarQube tool and its

plugins have been applied in several studies to identify and mea-

sure TD from software (Al Mamun et al., 2014; Griffith et al., 2014).

A set of other tools to support TD management were identified in

the mapping study by Li et al. (2015a) .
Most of the empirical studies of TDM take in consideration only

ew aspects of the eight TDM activities (Li et al., 2015a). A specific

ool to identify and measure TD does not help in other activities,

uch as communication or prioritization. There is a clear need to

now how TD should be managed from the organizational point of

iew. The mapping study by Li et al. (2015a) found a large number

f different models, methods, practices, and tools in the literature

or each separate TDM activity. However, there is no single solu-

ion that takes the whole problem of TDM into account. Therefore,

 framework or model for TDM that combines all TDM activities

s needed, both by researchers and practitioners, to understand all

he aspects of TDM.

. Research process

.1. Research methodology

This study is qualitative, and it uses case study as the re-

earch methodology. The definition by Yin describes a case study

s ‘an empirical inquiry that investigates a contemporary phenomenon

ithin its real-life context, especially when the boundaries between

henomenon and context are not clearly evident’ (Yin, 2003 , p. 13).

s a research strategy, case study is used to contribute to our

nowledge of individual, group, organizational, social, political, and

elated phenomena (ibid.). Therefore, case study has been a com-

on research methodology especially in social sciences. However,

he case study methodology has also been used in economics

ibid.), and it has become more popular in software engineering

s well (Runeson and Höst, 2008).

Software development is carried out by individuals, groups and

rganizations, and therefore social and political questions are of

mportance for software development, which makes software engi-

eering a multidisciplinary area where case study is a relevant ap-

roach (Runeson and Höst, 2008). There are multiple ways to study

D in software engineering. The research can investigate the writ-

en code itself, where the focus is on understanding how a badly

tructured code affects the other parts of the software. This type of

esearch can be done with quantitative research methods, where

he results show measurements on how for example performance

r other quality attributes change depending on different structural

ossibilities in the code base. It is also possible to study TD from

he organizational point of view. In an organizational TD study the

esearch focuses on how various processes and practices are used

n software-related TD. This type of a study can be performed with

ualitative methods, which can, for example, produce results that

how how people and processes affect the existence of TD in the

oftware.

Since the aim of this study is to understand how software de-

elopment teams conduct TDM to control and reduce TD, rather

han what are the best possible code structures or architectural

olutions, we believe that the case study methodology is an ef-

ective approach to understanding how people with different re-

ponsibilities working together in software development have or-

anized TDM. The case study methodology makes it possible to

xamine the concept of TDM in real-life situations, to gather qual-

tative data, and to add to existing research related to TDM.

This study can be defined as an interpretive exploratory case

tudy (Robson, 2002), as the goal of the study is to discover how

oftware development teams have organized TDM, without a pri-

ri hypotheses. The purpose of an exploratory case study is to find

ut what is happening, seeking new insights and generating ideas

nd hypotheses for new research (ibid.). In addition, an interpretive

ase study aims at understanding phenomena through the partici-

ants’ interpretation of their context (Runeson and Höst, 2008).

We decided to use the guidelines provided by Runeson and

öst (2008) to conduct the case study process. The case study

J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218 199

Design and
development

of data
collec�on
protocol

Conduct case
A

Conduct case
B

First results
publica�on

First round
data analysis

Conduct case
C

Conduct case
D

Conduct case
E

Conduct case
F

Conduct case
G

Conduct case
H

Improvement
of data

collec�on
protocol /

Selec�on of
round two
companies

Second round
data analysis,

Cross-case
analysis,

conclusions

Final results

Appendix 1.
(Yli-Huumo et

al. 2014)
Appendix 2.

2 teams,
11 interviews,

12 persons,
342 minutes

6 teams,
6 interviews,
14 persons,
285 minutes

Case study
design /

Selec�on of
round one
companies

Step 1 Step 2 Step 3 Step 5 Step 1-2 Step 3 Step 4 Step 5Step 4

Steps of case study process (Runeson & Höst, 2008)

Fig. 2. Case study research process used in this study.

p

j

f

d

t

(

o

s

f

3

f

m

2

c

a

o

r

g

d

d

v

r

u

w

o

s

t

i

f

(

m

n

i

t

n

i

t

t

t

a

k

t

w

a

f

A

t

w

d

d

a

f

m

h

i

m

s

w
rocess is divided into five main steps: (1) case study design : ob-

ectives are defined and the case study is planned; (2) preparation

or data collection: procedures and protocols for data collection are

efined; (3) collecting evidence: execution with data collection on

he studied case; (4) analysis of collected data ; and (5) reporting

ibid). Fig. 2 shows the research process used in the study, based

n guidelines by Runeson and Höst (ibid.). The steps of the re-

earch process are discussed and explained in closer detail in the

ollowing subchapters.

.2. Case study design and company selection

The design step of the case study process should contain the

ollowing elements: objective, the case, theory, research questions,

ethods, and selection strategy (Runeson and Höst, 2008; Robson,

002). The design and development of the data collection proto-

ol was started by examining the current literature related to TD

nd TDM. On the basis of the literature, we designed and devel-

ped a set of questions and topics for discussion to understand the

easons, effects and management related to TD. We decided to or-

anize the interviews in two separate rounds. The reason for con-

ucting the interviews in two rounds was that we wanted to un-

erstand the concept of TDM first through a smaller number of de-

elopment teams to be able to adjust the interviews for the second

ound cases. This approach is similar to the theoretical sampling

sed in the grounded theory method (Strauss and Corbin, 1998),

here the next data sample is chosen on the basis of an analysis

f a previous sample, creating an iterative process for theory con-

truction . In this case, we wanted to be able to modify our ques-

ions and topics based on the data received from the first round of

nterviews.
We decided to use semi-structured interviews (Charmaz, 2014)

or data collection, which makes this research a flexible study

 Runeson and Höst, 2008). Semi-structured interviews include a

ixture of open-ended and specific questions, designed to elicit

ot only the information foreseen, but also unexpected types of

nformation (Seaman, 1999). We thought that semi-structured in-

erviews would provide us with good results, since the term ‘tech-

ical debt’ might be unfamiliar to the interviewees, and also tak-

ng in consideration the complexity in its definition, it was impor-

ant to explain it carefully to create similar understanding between

he interviewer and the interviewee. In addition, it was important

o introduce all the aspects of TDM activities in the interviews,

s it was highly possible that the interviewees would not have

nowledge on their definition. Thus, the use of semi-structured in-

erviews would make it possible for us to talk with the intervie-

ees face to face, and in a case of misunderstanding, we would be

ble to explain the questions more precisely and ask more specific

ollow-up questions to identify answers to the research questions.

 potential drawback of using semi-structured interviews can be

he trustworthiness of the answers. However, we believe that there

as no issue with the trustworthiness of the answers, since all the

evelopment teams in this study had expressed their interest in

eveloping TDM in their organizations.

As our goal was to study TDM activities and their maturities,

nd we also assumed that the TDM activities would be used dif-

erently in teams within an organization, we decided to use the

ultiple-case study approach. Yin (2003) separates case studies to

olistic case studies and embedded case studies . In holistic case stud-

es the case is studied as a whole, while in embedded case studies

ultiple units of analysis are studied within a single case. This re-

earch fulfills the characteristics of a holistic case study, as our goal

as to study each development team as a whole to understand the

200 J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218

Table 1

Summary of the case software development teams.

Team Role of the team in the organization Description

A Development of a single product line. The product provides a financial management solution as a cloud service. The current size of

the team is 18. The whole development team is located in the same country. The development

team uses a Scrum-like approach as the development methodology.

B Development of a single product line. The product is a SaaS-based project management solution for multi-organization projects. The

current team size is 13, and the whole development team is located in the same country. The

development team uses a Scrum-like approach as the development methodology.

C Development of a platform infrastructure. The platform infrastructure is used by the other development teams that develop the actual

products for customers. The goal of the development team is to be a gateway between all the

products and integrations within and outside the organization. The current team size is 12,

and the development is distributed into several countries in Europe. As the development team

works with other product lines in the organization, it uses Scrum and Kanban in parallel.

D License integrations The development team has two main responsibilities: (1) licensing and generating the invoices

based on the usage, and granting the rights and accounting the usages for the services the

customers have bought, and (2) integration of all the smaller systems that have been bought

by the company. The current team size is 11, and the development is distributed into several

countries in Europe. As the development team works with other product lines in the

organization, it uses Scrum and Kanban in parallel. The development team also works closely

with development team C.

E Development of services and software for the

organization.

The main responsibility of the development team is a platform from which all the services of

macro segments are started and administrated. The current team size is 12. The development

is also distributed into several countries in Europe. The development team uses a Scrum-like

approach as the development methodology.

F Development of a single product line in the

organization.

The product is a web-based solution that allows approving invoices and expense claims online

or mobile. The current team size is 8, and the whole team is located in the same country. The

development team uses a Scrum-like approach as the development methodology.

G Development of a single product line. The product is a web-based solution for making budgeting and forecasting predictions for

business monitoring and reporting. The software collects information on the company’s

financial records and other systems, as well as the form of real-time reports. The current team

size is 8, and the development is distributed into several countries in Europe. The

development team uses a Scrum-like approach as the development methodology.

H Developing integration and security tasks for the

organization.

The main goal of the development team is to handle integration and security tasks for the

organization. The current team size is 17, and the development is distributed into several

countries in Europe. The development team uses Scrum as the development methodology.

i

i

o

t

l

b

s

F

d

w

B

t

s

c

2

t

t

n

t

i

c

a

H

w

T

s

t

s

t

l

d
process related to TDM, instead of studying multiple units within

one development team. The reason for studying multiple software

development teams over one single team was gathering a broader

amount of empirical data related to the research topic. We be-

lieved that studying several development teams would provide us

with more information related to TDM, and comparing the results

would help us understand what approaches were the most com-

monly used ones and why.

The selected case company is a large software supplier with

around 5600 employees, currently operating in multiple countries

in Europe. The company is a supplier of business software and

business process solutions, outsourcing services, commerce solu-

tions, and IT consultancy. It has currently about 340,0 0 0 cus-

tomers. We studied eight software development teams in the or-

ganization. A summary of the software development teams and

their roles in the organization is presented in Table 1 . We selected

the case company because its size, number of teams, and industry

area, which made it very suitable for studying TD and its manage-

ment. In addition, even though all the development teams were

from the same organization, most of them were not working on

the same product. Instead, most of the teams had their own prod-

uct in development and a separate management, originating from

the company’s history of mergers and acquisitions. The company

combines several product lines and includes teams coming from

different backgrounds and cultures, but currently sharing the same

organization. Therefore, we considered the company to be optimal

for studying TDM activities in development teams.

3.3. Data collection

The semi-structured interviews were conducted in two rounds

between February 2014 and April 2015. The first round with two

development teams located in Finland (Cases A and B) was started
n February 2014, and it lasted until April 2014. We started the

nterviews by contacting the manager of the team. The manager

f team A gave us also a referral to the manager in development

eam B. We conducted the first two interviews with the product

ine managers of teams A and B. After that we used the snow-

alling technique (Charmaz, 2014) to get referrals to other per-

ons in the teams. As both development teams were located in

inland, we were able to travel physically to the offices and con-

uct all the interviews face to face. The total number of interviews

as five in development team A and seven in development team

. In one of the interviews in team B (Interview ID B3), we in-

erviewed two persons at the same time because of schedule con-

traints. The interview sheet for the first round interviews is en-

losed in Appendix A .

The second round started in March 2015 and lasted until April

015. Before starting the interviews, we decided to make changes

o the interview structure for two reasons. The first reason was

hat the data gathered and analyzed in the previous round gave us

ew ideas for the interviews regarding TDM. In the first round in-

erviews we identified a lack of TDM activities, which gave us an

dea of focusing more on TDM. In the previous interviews, the fo-

us was also on the effects and causes of TD. The analysis of causes

nd effects of TD is available as a separate publication by Yli-

uumo et al. (2014) . The second reason for focusing more on TDM

as the publication of the TDM mapping study by Li et al. (2015a) .

he mapping study identified eight TDM activities, which we con-

idered as a good basic core for the inquiry on TDM. The results of

he mapping study gave us new ideas for improving the interview

tructure more towards TDM activities. The updated structure for

he second round interviews is shown in Appendix B .

The second round consisted of six software development teams

ocated in various countries in Europe. The team manager of

evelopment team A gave us new referrals, which we used to

J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218 201

Table 2

Roles of the interviewees.

Interview ID. Round Team Role(s) Experience in the

organization

A1 1 A Software architect 6 years

A2 1 A Software designer 1 year

A3 1 A Project manager 4 years

A4 1 A Software test engineer 1 year

A5 1 A Product line manager 14 years

B1 1 B Software architect 6 years

B2 1 B Software developer 6 years

B3a 1 B Product line manager 2 years

B3b 1 B Software test engineer 4 years

B4 1 B Software architect 5 years

B5 1 B Software developer 1 year

B6 1 B User interface designer 1 year

C1a 2 C Team manager 5 years

C1b 2 C Software architect 17 years

C1c 2 C Software architect 3 years

D1 2 D Software architect 7 years

E1a 2 E Team manager 15 years

E1b 2 E Software architect 8 years

E1c 2 E Software architect 5 years

F1a 2 F Team manager 4 years

F1b 2 F Software architect 9 years

G1a 2 G Team manager 1 year

G1b 2 G Software architect 4 years

H1a 2 H Team manager 3 years

H2b 2 H Software architect 3 years

c

n

f

a

i

l

s

i

t

o

i

v

a

I

p

p

t

p

t

b

T

i

i

3

q

n

t

fi

n

s

c

c

O

r

r

g

t

a

t

i

t

g

c

A

t

m

p

c

a

w

i

s

s

c

l

r

e

w

t

n

c

t

t

t

v

s

s

d

w

a

c

4

4

g

p

fi

t

i

w

n

m

m

o

o

r

m

c

d

l

d

h

d

c

m
ontact the other six development teams. Because the teams were

ot located in Finland, we had to change the interview method

rom face-to-face interviews to online video calls. The interviews

lso changed from single person interviews to two-three person

nterviews. This was required because the time allowed for us was

imited. The interviewees were usually one team manager and one

oftware architect discussing the approaches to TDM. The risk of

nterviewing two or more people at the same time is that the in-

erviewees would not necessarily be able to speak openly because

f the presence of another interviewee. However, we noticed dur-

ng the interviews that this was not the case, and all the six de-

elopment teams were eager to talk about the problems with TD

nd TDM, and wanted to find possible solutions for improvements.

n addition, we noticed that all the software architects had multi-

le years of experience with the software product, which was ap-

reciated by the project managers involved. Therefore, we believe

hat the interviews were not disturbed by having multiple people

resent at the same time. Instead, we believe that the quality of

he interviews was improved, since there was a common goal from

oth business and technical perspective to understand and improve

DM. The roles of the interviewees are shown in Table 2 . When the

nterview engaged more than one person, this is referred to in the

nterview ID as E1a, E1b etc.

.4. Data coding and analysis

In exploratory case studies, the technique for the analysis of

ualitative data is hypothesis generation (Seaman, 1999). As we did

ot have any priori hypotheses for this study, our goal was to use

he techniques for data coding and analysis of qualitative data to

nd hypotheses from the collected data and interviews. The tech-

iques for data analysis used in exploratory case studies are con-

tant comparisons and cross-case analysis (Seaman, 1999) .

Fig. 3 gives an overview of the data coding and analysis pro-

esses conducted in this study. The data coding and analysis were

ompleted in various steps, guided by the work of Robson (2002) .

verall, we conducted a total of 17 interviews with 25 persons

elated to eight studied cases, and had 627 minutes of audio-

ecorded data. When all the interviews were conducted, we be-
an the data transcription phase. The first round interviews were

ranscribed by the authors, and the second round interviews by

 hired person with English language proficiency. The reason for

he authors to transcribe the first round interviews was that the

nterviews were conducted in the Finnish language. The authors

ranscribed and translated the first round interviews to the En-

lish language to make the coding and analysis stage easier, be-

ause there would be only one main language in use in the study.

ll the second round interviews were conducted in English. During

he interviews we were also able to gather some additional docu-

entation data. In one of the interviews we received a PowerPoint

resentation related to the TDM activity the team was currently

onducting.

After all the data was transcribed, we started the data coding

nd analysis stage. The total word count of transcriptions in Word

as 73 955. We used a tool specialized for qualitative data cod-

ng and analysis, Atlas.ti. In data coding, one code is usually as-

igned to many pieces of text, and one piece of text can be as-

igned more than one code. The codes can form a hierarchy of

odes and sub-codes (Robson, 2002). Our data coding stage fol-

owed the top-down approach, because the categories were de-

ived from the mapping study by Li et al. (2015a) , which identifies

ight activities for TDM. The categories used in the data coding

ere TD repayment, TD representation/documentation, TD identifica-

ion, TD prioritization, TD measurement, TD monitoring, TD commu-

ication, and TD prevention. Table 3 shows an example of the data

oding process with Atlas.ti, where the interviews are used to ex-

ract quotations to the identified categories. We believe that using

he top-down approach in the data coding was an effective way

o understand how every TD activity was approached in every de-

elopment team, which helped us to draw conclusions and under-

tand the TDM process.

When all the quotations were extracted and identified to the

pecific categories, we analyzed every case independently and

rew a conclusion on the process used for TDM in each case. When

e had a complete view on every case, we started a cross-case

nalysis to find out the similarities and differences between the

ases.

. Results

.1. Case A

TD repayment with refactoring and rewriting was based on the

eneral development backlog, where some of the code base im-

rovement issues could be found. However, we were not able to

nd any repayment strategy for the TD that was incurred during

he development. The developers in the team mentioned that it

s sometimes impossible to get time to refactor the solutions that

ere developed previously with shortcuts. The reason was that

ew features were already waiting in the next sprint’s develop-

ent backlog that were prioritized higher than technical improve-

ents in the code base. Therefore, TD repayment with refactoring

r rewriting was mostly done unofficially during the actual devel-

pment time that was reserved for new features. Sometimes this

efactoring was not even mentioned to the management. The team

anagement had adopted a practice where every Friday was dedi-

ated to bug fixing. However, the developers felt that it was mostly

edicated to fixing only bugs, instead of conducting architectural-

evel refactoring or rewriting.

TD representation/documentation was not systematically con-

ucted by the development team. The development team did not

ave a separate TD backlog to document TD items either. When a

eveloper identified a possible TD in the code base, there was no

lear process or guideline on how to document it to the manage-

ent system. One of the developers mentioned that the team used

202 J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218

Case E Case G Case H

Case D

Case F

Case A Case CCase B

Events in the studied cases

Interviewees’ opinions and experiences

Recordings of interviews

Transcrip�on of recordings

Extrac�on of quotes

Grouping of quotes and documenta�on
data / Cross case analysis

Conclusions

Fig. 3. The coding and analysis process.

Table 3

Example of the data coding process.

Interview transcripts Categories

“We have Epics, and we have some kind of goal, so 20% of developer time to be in internal quality.” TD repayment

“We have quite often security reviews , and maybe some technical debt can come from security” TD prevention

“We can measure also how much time we spend on this slice of the backlog . For example, on

internal quality as the whole in the team, think, spend 218 h , and we see people, some our system

architects, some our developers, some our QA testers and so on. So, we have this console and having

this an objective 20% of developer time, we can check if we spend that time, that budget on not .”

TD monitoring, TD measurement, TD repayment

“Also as a team we have some KPIs . In the team, we are part of product unit, R&D department for

ERPs and other product-related. And then we as a team define KPIs to measure, and for example, we

have one key control on technical debt .”

TD communication, TD measurement, TD monitoring

“And as a team, we have kind of demo, some kind of retrospective on monthly basis, then we do all

the numbers and then discuss it: this strength is good, this number is too low, what to do, and then

we put on backlog actions.”

TD communication, TD monitoring, TD documentation

t

h

v

t

T

g

t

a

W

t

e

g

p

c

t

C

t

c

o

w

c

n

a
the JIRA management system, where it is possible to create tickets

for issues found during the development. However, this was not

always done by the developers, which resulted in situations where

some TD remained undocumented and was kept in the notes of

the developers, and even sometimes forgotten.

TD identification was mainly conducted during the development,

when a developer noticed a problematic area in the code base,

which then sometimes resulted in fixing the case in the manage-

ment system. TD identification was also conducted by the system

architects and team managers, who sometimes analyzed the code

base to find what should be changed to improve the quality and

maintainability, and added some refactoring tasks to the develop-

ment backlog.

TD prioritization was mostly done on a hunch. When a TD is-

sue was raised in the management system, the development team

would discuss the importance of that specific case and give it

prioritization. The most important factors taken in consideration

when deciding issues to be refactored were the scalability and

business value of that specific feature.

TD measurement and TD monitoring were not conducted by the

team manager or the software architects. The reason for not mea-

suring or monitoring TD was the fact that the development team

did not have any clear process for documenting TD items, which

meant that the team management did not have the possibility

to gather or analyze any clear data. Only estimations of TD were

based on current knowledge about the code base and issues in it.
TD communication was structured well and the development

eam members understood the concept of TD. The team manager

ad a good technical knowledge background, which helped the de-

elopers and software architects to communicate and discuss about

he possible TD issues that had occurred during the development.

his was the reason why the development team would sometimes

et more time to fix and repay TD issues that had been bothering

hem in the actual development. The team manager would also act

s a filter between the business team and the development team.

hen the business stakeholders gave tasks that were impossible

o develop within the given deadlines, the team manager would

xplain the situation to the business managers, which sometimes

ave more space to the developers.

TD prevention was done with coding standards and code review

ractices. The development team had taken in use some level of

oding standards with coding books and instruction videos to show

he developers what kind of coding was expected to be developed.

ode reviews were sometimes conducted by two software archi-

ects, but it was not mandatory to check every newly developed

ode. As supervision of TD prevention was not always conducted,

ne of the developers mentioned that sometimes the developers

ould just use the old code and copy it to the other parts of the

ode base, which could be risky.

Overall, the TDM strategy in development team A was not orga-

ized as a systematic process. The development team did not have

ny clear TD documentation or TD repayment process to gather TD

J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218 203

i

w

o

f

T

k

T

u

4

p

w

n

t

n

d

r

a

w

p

t

t

i

fi

e

w

a

T

a

w

t

e

o

a

i

t

r

a

o

p

u

t

i

w

d

s

w

t

t

h

v

w

w

s

t

o

b

v

o

p

r

t

c

v

t

u

d

d

n

C

t

o

t

w

w

4

v

t

c

t

m

i

i

f

fi

t

i

t

n

n

b

w

t

a

a

a

f

m

s

b

n

u

i

f

t

m

w

a

t

t

t

p

Q

t

c

S

t

s
ssues, and it was often organized unofficially. This was the reason

hy it was also impossible for the team management to monitor

r measure TD. However, the development team had a good basis

or starting TDM, because the communication was active regarding

D, and the team manager was considered to have good technical

nowledge, which helped the development team to deal with TD.

he development team also had good TD prevention practices in

se, even though their actual use was not confirmed.

.2. Case B

TD repayment in development team B was mostly considered as

art of the normal work during the development. In a situation

here a developer identified a small refactoring case, there was

o need to create a separate issue out of it. In a situation where

he refactoring case was bigger, the development team would orga-

ize a discussion with the team manager and software architect to

iscuss the next steps and whether there was a need to conduct

efactoring or rewriting of that specific solution. The team man-

gement had also organized a practice where one day of the week

as dedicated to fixing bugs and making small refactoring.

TD representation/documentation was not currently a systematic

ractice within the development team. When a developer decided

o take a shortcut during the development, there was no manda-

ory process defined on how it would get stored and documented

n the JIRA project management system that was used. We identi-

ed situations where the developers might have created JIRA tick-

ts to the management system, but also situations where they

ere just left in the coder’s own notes. The developers also did not

lways inform the management about what shortcuts were made.

he team manager and the software architect would sometimes

dd some TD issues to the development backlog, when the issues

ere raised during the development.

TD identification was mainly done during the development by

he developers. When the code base was developed, the develop-

rs would identify the refactoring needs, when the currently devel-

ped part was extremely complex and hard to develop. Sometimes

lso the software architects would go through the code and try to

dentify possible places, especially in the architecture, where refac-

oring was needed.

TD prioritization was often based on a hunch and previous expe-

ience with the code base. However, prioritization would get done

ccording to the location of the issue. If the issue was in the core

f the code base, depending on several other places, it would get

rioritized as highest. After this, issues in the business logic and

ser interface were prioritized under it.

TD measurement and TD monitoring were not currently done by

he team management. The reason was that it was at the moment

mpossible for the team manager and software architects to know

hat TD the software currently had, because it was not properly

ocumented anywhere. The team management did not have any

pecific tools in use to measure TD, either. This was the reason

hy there were no accurate measurements or monitoring to see

he current status of TD.

TD communication was structured well in the development

eam. The team manager had wide technical knowledge, which

elped TD communication between the management and the de-

elopers. This also helped the development team in situations

here the business stakeholders gave impossible deadlines to work

ith, because the team manager would explain the issues of pos-

ible TD to the business management. However, the development

eam expressed a problem in communication, as the development

f new features was always prioritized the highest, and the code

ase improvements were not done before them.

TD prevention was done with coding standards and code re-

iews. However, the team manager mentioned that they were not
n a good level at the moment, and there was a need for im-

rovement. The current coding standards did not fulfill the needed

equirements, and the development team did not always follow

hem. Also, the code reviews were conducted by the software ar-

hitects, but it was not always possible to go through all the de-

eloped code, as it was not prioritized enough.

Overall, the TDM strategy in development team B was similar

o Case A. There was currently no mandatory process used to doc-

ment TD issues in the JIRA system, and the development team

id not have a special TD backlog in use. Refactoring was con-

ucted mostly unofficially during the development, and there was

o systematic process to repay TD in certain periods. Similar to

ase A, this was the reason why it was extremely difficult for the

eam management to measure and monitor TD. However, the idea

f TDM was understood by the management, and they were eager

o find improvements. This is why TD communication was active

ithin the development team, which gave more space for them to

ork on some TD issues.

.3. Case C

TD repayment was identified as an essential part of software de-

elopment by the software architect, and the management of the

eam had realized that it should be a part of the development pro-

ess. Development team C used the Kanban methodology and JIRA

ool to manage the software project. In the Kanban table, the team

anagement had assigned 20% of the development time specif-

cally to improving internal quality. Internal quality was divided

nto five main parts: refactoring, test automation, DevOps, plat-

orm security, and performance. The development team used these

ve internal quality factors to assign issues to if something needed

o be refactored, rewritten or redesigned. The development team

dentified TD as an important key performance indicator within in-

ernal quality. If a person in the development team saw a bigger

eed for refactoring, he/she created an issue in JIRA under inter-

al quality, which then was included in the actual development

acklog after a discussion with the team management and soft-

are architects. Smaller refactoring cases where just done during

he development without mentioning them to the management.

TD representation/documentation was not always done system-

tically by the developers. The development team did not have

ny mandatory guidelines for the developers for representation

nd documentation of TD. In a case where a developer created or

ounded a TD issue, there was no clear process of how to docu-

ent it systematically afterwards. Instead, the developer may have

ometimes created a JIRA issue ticket for refactoring, and it could

e found in the internal quality section, or in some cases it would

ot get documented. The internal quality section in this case was

sed as a TD backlog. The management felt that this should be

mproved a lot in the future and there should be clearer guidelines

or systematical documentation of TD.

TD identification was conducted mainly by the software archi-

ects. The two software architects were given responsibility by the

anagement to identify TD in the code base. Therefore, the soft-

are architects usually went through the code base to understand

nd identify possible items to refactor and improve, which were

hen added to the internal quality issues. The identification was of-

en done just by going through the code base manually, and trying

o understand what parts of the code base were the most com-

lex ones. Part of the identification was conducted with the Sonar-

ube tool, but the architects mentioned that it was not necessarily

he best way to identify all TD, because it does not take deep and

omplex architectural issues into consideration. For example, with

onarQube the software architects were able to find issues related

o single line problems or code violations, but it could not detect

ome complicated business logic issues, which was considered as a

204 J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218

t

i

a

4

i

s

t

t

v

i

2

w

r

c

c

o

w

i

t

s

i

S

t

t

m

a

T

n

s

m

p

a

t

i

q

v

f

S

w

p

a

fi

b

a

p

d

fl

o

a

i

w

1

b

t

m

t

t

h

u
real technical problem. Therefore, the identification was seen more

as the responsibility of the people and processes. The team man-

ager and software architects also mentioned that the developers

were not currently involved heavily in the TD identification pro-

cess, and hoped that they would start to identify more TD issues

in the future.

TD prioritization responsibility was given to the software archi-

tects. The prioritization of TD issues was usually done on a hunch

and previous experience of the code base. The development team

did not have any systematic way to give estimations or numbers

to prioritize TD issues. One of the software architects mentioned

that sometimes they would take into consideration issues like how

heavily the feature was currently used or whether a lot of new fea-

tures were expected to come to that area in the future. The team

manager mentioned that he trusted people’s opinions more than

numbers when making decisions about refactoring.

TD measurement was done by one of the software architects,

who used SonarQube to measure TD. The SonarQube tool gave val-

ues of TD as automated test coverage and violations in the code.

The software architect used these two measurements to estimate

the current TD monthly. However, the software architect respon-

sible for the measurement thought that using only SonarQube to

have measures of automated test coverage and violations in the

code base cannot be the only good way to measure the actual TD.

The problem was that SonarQube only identifies minor TD issues,

such as issues in the code, but not real problems in the architec-

ture. This was the reason why it was hard to generate refactoring

issues from the SonarQube tool to the internal quality backlog.

TD monitoring was done by using data gathered from the JIRA

tool, which gave the management the possibility to estimate and

follow how much time had been spent on internal quality com-

pared to the overall development time in a certain period, and

whether it was aligned with the agreed 20% rule. The software

architect also used data from SonarQube to monitor the current

status of TD monthly, and it was analyzed and reported to the

management, to show whether TD was increased or decreased. The

combined data from JIRA and SonarQube was used to monitor how

TD was chancing.

TD communication was an important area of discussions be-

tween the team management, software architects and developers.

The team manager worked closely with the software architects,

which helped in communicating about issues related to internal

quality and TD. This way the development team was able to re-

duce issues related to internal quality and TD, instead of using

the development time to create only new features with business

value. The software architect also often discussed with the devel-

opers about issues related to TD.

TD prevention was conducted sometimes with coding standards

and code reviews. The team used Java coding standards as a rec-

ommendation to developers to produce similar code. Both software

architects also sometimes reviewed the code to catch bad designs.

However, these were only used as recommendations, and it was

revealed that in reality the coding standards were not always fol-

lowed or code reviews conducted.

Overall, the strategy for conducting TDM was structured well in

development team C. The idea to use 20% of the development time

to improve the code base and refactor architectural issues was a

good strategy to reduce TD systematically in the software. Also, the

measurement and monitoring with the JIRA and SonarQube tools

gave the management some level of estimations about the current

status of TD in the software. The issues with TDM in development

team C were TD documentation and TD prevention. Even though

the TDM structure was well-designed to repay TD systematically,

the development team did not have a proper documentation prac-

tice in use. When the developers took or found TD issues, they

were not always reported or documented, which made it hard for
he software architects to understand the status of the current TD

ssues. TD prevention with coding standards and code reviews was

lso lacking and considered a big problem by the management.

.4. Case D

TD repayment was conducted, similarly to Case C, by assign-

ng 20% of the total development time to reduce TD issues in the

oftware. The time for improvements was mostly used for addi-

ions of automated tests and unit tests. The software architect of

he team felt that they could reduce TD the most, because it pre-

ents TD from occurring in the software. If a need for refactor-

ng was found during the development, it was assigned to the

0% internal quality section in the JIRA management system that

as used in the team. The 20% rule was also used for bigger

efactoring and rewriting issues to remove bad designs from the

ode base. The development team had a two-month release cy-

le, where the last two weeks were dedicated to the stabilization

f the code base. During the two weeks, the development team

ould discuss current TD issues and what should be refactored

n the next two months’ iteration. The software architect also had

he authority to use the JIRA system to see internal quality is-

ues, and make decisions on what should be refactored in the next

teration. The goal was to fulfill the 20% rule in every iteration.

ometimes only for example 10% was required to be used on in-

ernal quality, because there may have been a need for new fea-

ures with important business value. However, the team manager

ay have added 25% to the next iteration after that, to keep the

verage on the agreed 20%. The refactoring or rewriting of small

D issues was conducted during the development, and it was not

ecessary to mention them to the management or report to the

ystem.

TD representation/documentation was done to the JIRA manage-

ent system. When a member of the development team saw a

ossibility to have a refactoring case, the instruction was to create

n issue to the system about it. In addition, if a developer needed

o take an intentional shortcut during the development, it was also

nstructed to be reported in the system. In this case, the internal

uality in the JIRA system worked as a TD backlog.

TD identification was done mostly by the software architect re-

iewing the code base manually or with a tool. The tool used

or identification was SonarQube. The software architect ran the

onarQube tool every night when the new version of the software

as out and used it to gather statistics about TD. If the tool re-

orted any major issues, it was the responsibility of the software

rchitect to report and go through every critical issue and try to

x them before the end of the iteration.

TD prioritization was done by simple low, medium, high, and

locker scales. High and blocker TD issues were repaid immedi-

tely or in the next iteration. Medium TD issues were also re-

aid in the next iteration or the one after that. Low TD issues

id not usually get repaid ever, because the backlog was usually

ooded with them. The software architect felt that fixing low pri-

rity issues would not bring any value to the software. The man-

gement and software architect also assigned story points to TD

ssues, based on the Fibonacci scale. For example a medium case

as usually assigned 5 or 8 points, while high or severe cases got

3 or 21 points. The management and software architect responsi-

le for prioritization did not use any specific calculations to create

hese prioritizations. The decision about a single prioritization was

ostly based on a hunch and the experience of the software archi-

ect with the code base.

TD measurement was conducted with the SonarQube tool by

he software architect. The results of the SonarQube were used to

ave a measurement of the current TD. The team manager also

sed Fibonacci scale prioritization to measure the velocity in the

J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218 205

d

t

s

b

t

t

o

a

t

a

a

m

o

d

t

t

t

c

p

t

t

e

r

c

v

n

c

t

i

c

t

b

t

c

s

T

t

T

r

4

c

m

s

p

a

m

s

i

e

r

n

m

a

a

n

i

t

m

v

t

T

v

v

t

w

s

h

m

a

w

t

I

f

h

i

t

f

b

c

f

J

s

c

m

b

t

i

t

i

s

T

C

w

r

w

d

t

w

t

c

d

c

f

fi

a

w

m

t

4

t

r

s

d

r
evelopment in order to understand how much the development

eam could repay TD in the next iteration. The management and

oftware architect felt that these two measurements for TD could

e used to have good TD estimation.

TD monitoring was conducted with the JIRA and SonarQube

ools. The management was able to use JIRA as a tool to moni-

or the development time for various tasks on either new features

r TD reduction. The management used this information to gener-

te reports at the end of each iteration. The software architect also

ried to use the data received from the SonarQube tool constantly

s a way of monitoring TD.

TD communication was performed between the team manager

nd software architect, who discussed the importance of TD repay-

ent. The team manager initiated the discussion at the beginning

f each iteration to discuss and list things that would need to be

one in the next iteration. The software architect mentioned that

he development team was currently in a lucky situation, because

he team manager understood the concept of TD and was eager

o help the development team in dealing with it. Even though the

urrent team manager was not described as someone who took

art actively in technical decisions, she still understood the impor-

ance of TD and the fact that software quality would be an impor-

ant factor in the long term, which gave increased visibility to the

ffort of reducing TD.

TD prevention was conducted with coding standards and code

eviews. The development team had created a rule that nobody

ould not commit anything to the code base before another de-

eloper had reviewed it and it fulfilled the standards of the Defi-

ition of Done. Of course in reality this meant that if a developer

hanged a minimum amount of code, it would not be necessary

o be reviewed, but in a case where there was a risk of break-

ng the software, a review was mandatory. In the most challenging

ases, more than one review was needed. Also a discussion with

he whole team was organized to understand, learn and find the

est solution. The software architect mentioned that even though

his rule was good to have, it was not always followed very strictly.

The overall TDM strategy in software development team D was

onstructed well. The management had a clear vision and under-

tanding of the fact that 20% of the development would be used for

D repayment. This was compounded with the JIRA and SonarQube

ools that were used to document, measure, monitor, and identify

D. The development team had also well-conducted rules in code

eviews and standards to prevent TD.

.5. Case E

TD repayment and improvement decisions of the code base were

reated on the basis of a stakeholders’ meeting once a month. The

anager of the development team would make a suggestion in the

takeholders’ meeting on how much time would be needed to re-

ay TD and improve the code base in the next month. The man-

ger of the team mentioned that for example in the three previous

onths, the development team had made an agreement with the

takeholders that one third of development was assigned to repay-

ng TD. However, the problem with the repayment of TD was that

ven if the development team got the time agreed to refactor or

ewrite issues, in reality it was not possible to do so, because the

ew features would always take more time to complete than esti-

ated, which took away time that was reserved for TD repayment.

TD representation/documentation was done by creating a backlog

pproach for TD issues. When a development team member made

 decision to create a shortcut to some solution, or identified a

eed to refactor old technology or bad design, it was documented

n a separate ‘technical debt backlog’ in the JIRA management sys-

em. This process was used by the development team to make TD

ore visible in the development process. As the nature of the de-
elopment team was to act as a platform for other product lines in

he organization, the backlog was also used to communicate about

D issues in the platform with other development teams. The de-

elopment team was able to present the backlog to the other de-

elopment teams with information about possible issues in the fu-

ure where TD would be most disturbing.

TD identification was mostly done by the software architects,

ho spent a lot of time with the code base, trying to identify pos-

ible improvements regarding TD. The development team did not

ave any special tool to identify TD in the code base, and it was

ostly done by just “smelling the code”.

TD prioritization was done by the team manager and software

rchitects. However, the prioritization process was described as not

ell constructed. The team manager and software architects men-

ioned that they would categorize the first TD according to its type.

ssue types were usually related to refactoring, security and per-

ormance. After this, the actual prioritization was mostly done at a

unch, based on opinions and experience with the issue. The most

mportant factors taken in consideration when making a prioritiza-

ion were often related to how TD would affect the customer and

uture projects. Also security and performance were mentioned to

e important when deciding on the most important refactoring

ases.

TD measurement and TD monitoring were mainly done with in-

ormation that was available in the JIRA issues. The TD backlog in

IRA was used to gather some statistics and to estimate the current

tatus regarding TD in the platform. The manager and software ar-

hitects used some basic information in the backlog to monitor and

easure how much TD the platform had by calculating the num-

er of issues and prioritizing them according to their importance,

o make refactoring.

TD communication was done mainly in the stakeholders’ meet-

ng. The management and software architects gave suggestions to

he stakeholders in the meeting about the currently highest prior-

tized TD and why it should be important to repay and refactor as

oon as possible to prevent future issues with it.

TD prevention was done with code guidelines and code reviews.

he developed code was always checked with a tool called Style-

op to ensure that it was written according to the guidelines. It

as also mentioned that the developers did sometimes do code

eviews, but this was not described as mandatory. If a developer

anted someone to check the code, he/she could ask someone to

o it. However, code reviews were instructed to be conducted if

he developed code was done in a section of the code base that

as known to be extremely complex. The management mentioned

hat the reason for not conducting code reviews in all developed

odes was that most of the developers’ time was assigned to the

evelopment of new features, and there was no time to have all

odes reviewed.

Overall, the TDM strategy in development team E was mainly

ocused on the documentation of current TD issues, and trying to

nd time to refactor on the basis of stakeholders’ meeting once

 month. The management did not currently have any systematic

ay to identify, measure or monitor TD. The management also

entioned that TD prevention was currently not the most effec-

ive, and more time should be reserved to it.

.6. Case F

TD repayment was not done in any organized process. One of

he software architects mentioned that in the current process, the

epayment of a TD issue was usually started only when the issue

tarted to be highly problematic for the development team to han-

le and there was no other way than just to refactor, rewrite or

edesign it. If a developer noticed a need for refactoring, it was

206 J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218

a

e

t

l

g

m

s

j

b

m

a

f

o

m

o

T

w

c

g

c

i

t

t

m

r

s

t

i

t

v

o

d

d

s

o

w

c

w

v

u

s

l

m

v

w

l

n

e

b

t

s

a

t

c

4

i
often taken care of by the developer, without any actual system-

atic repayment process.

TD representation/documentation was not a part of the devel-

opment process. Sometimes the software architects of the team

would add some major issues identified in the code analysis tool

which would need to be addressed, to the main backlog. In a case

where a developer took a shortcut or noticed a need for refactor-

ing, it was often just left in that developer’s memory, and may be

documented somewhere.

TD identification was conducted by using SonarQube, CheckStyle

and FindBugs as tools to analyze the code base to find possible

TD. The software architect used the data gathered with the tools

to understand the current status of TD in the software. However,

similarly to Case C, opinions about the actual data acquired from

the tool varied. The issue was that the tools did not necessarily

give the needed information about TD in deep architectural struc-

tures of the code base. However, the software architects took the

most critical issues identified by SonarQube and tried always to fix

them. The common opinion was that the actual identification was

done during the actual development, and the development team

had some self-assessment cases to identify TD issues. SonarQube

was not advised to be used by the developers, so identification

with a tool was done mostly by the software architects.

TD prioritization was mostly done at a hunch and the software

architects used their previous experience with the code base as the

starting point when prioritizing TD issues.

TD measurement and TD monitoring were not conducted by the

team manager and software architects, even though they used the

SonarQube tool actively to identify TD. The reason was that Sonar-

Qube did not give valuable numbers for actual measuring of the

real TD. The real metrics used were the actual global number of

TD issues in JIRA, which was used to measure the current TD.

TD communication was seen as a problem during development.

The development team felt that communication about TD to the

business people in the organization was difficult. The software ar-

chitects also felt that the development team did not currently dis-

cuss issues related to TD with the team management or software

architects.

TD prevention was not conducted at a good level within the de-

velopment team. The development team had set up some stan-

dards with the SonarQube, CheckStyle and FindBugs tools. The de-

velopment team mentioned that they did not currently have much

stuff related to coding standards or code reviews. However, the

team manager mentioned that they were currently developing a

definition of the done standard to improve TD prevention in the

future. The future Definition of Done should comprise at least code

reviews, unit tests, and errors found by SonarQube.

Overall, the TDM strategy in development team F was not

an important issue within the development process. The de-

velopment team did not currently have any systematic way to

document, monitor or measure TD items. Repayment was of-

ten based on a hunch and was conducted when some TD is-

sues started to grow too large, and the only way was to refac-

tor or rewrite the solution. The reason why the management

thought that implementing TD processes to development would

be challenging was that if the team conducted constant identifi-

cation and repayment of TD, it would not be cost-beneficial to the

organization.

4.7. Case G

The TD repayment process was often started on the basis of a

feeling that something should be improved. When the software

architect or a developer noticed that there was a need for big-

ger refactoring or rewriting in the code base, it was mentioned

to the management. After this the management would organize
 discussion about the issue, where the development team would

stimate the effort to fix the issue. The team manager then used

hese estimations to insert TD issues into the development back-

og in future sprints. However, sometimes these issues were for-

otten in the JIRA system, and they were never repaid. The team

anager mentioned that currently the development team did not

pend very much time on TD repayment. Smaller TD issues were

ust fixed during the actual coding.

TD representation/documentation was not done in any separate

acklog. When a developer took a shortcut during the develop-

ent, he/she would sometimes create a ticket to the JIRA man-

gement system, where information about quick solutions could be

ound. However, the software architect mentioned that the devel-

pment team often took shortcuts that were not mentioned to the

anagement, and this information was only stored in that devel-

per’s own notes.

TD identification was not conducted by the development team.

he manager mentioned that there was currently no systematic

ay to review the code and identify possible TD issues. Identifi-

ation would only start when there was a clear issue and an ur-

ent need for a fix. The software architect mentioned that he had

reated a memo in the development team’s WIKI page about TD

ssues he had identified and thought should be fixed.

TD prioritization was done by the manager and software archi-

ect. The prioritization process did not have any specific calcula-

ion to rate TD items, it was mainly done at a hunch. The team

anager mentioned that when making the decision on what to

epay next, factors like time, functionality, further maintenance,

calability, business value, and future plans with that feature were

aken into consideration and used to give priority to various

ssues.

TD measurement and TD monitoring were not currently done by

he manager or the software architect of the team.

TD communication was not described as active within the de-

elopment team. The software architect mentioned that the devel-

pment team was not currently talking about these kinds of issues

uring sprints. Also communication with the business owners was

escribed as challenging, and usually the priorities they gave con-

isted only of development of new features, and not improvement

f the code base.

TD prevention was not done by the development team. The soft-

are architect mentioned that the development process did not

urrently contain any coding standards or code reviews, and this

as a huge problem. Everyone just used their own style of de-

eloping, and there was no consistency. The team had tried to

se coding standards and code reviews before, but the usage was

topped because it was seen as time consuming. Another big prob-

em mentioned by the software architect was that the develop-

ent team did not have any proper Definition of Done to the de-

elopment. The only Definition of Done was that when the solution

as in production, it was considered to be ready. This was why a

ot of bad solutions were created in the code base.

Overall, the TDM strategy in development team G was not orga-

ized systematically. It seemed that the management and develop-

rs did not have an explicit process of how to repay TD on a clear

asis, and the development time was always put towards new fea-

ure development. The management did not have any way to mea-

ure or monitor TD, because the development team did not have

ny definite process to identify and document it. The development

eam was also lacking in the prevention of TD, by not having any

oding standards or reviewing of the developed code.

.8. Case H

TD repayment was organized systematically to conduct refactor-

ng during the software project. The management had decided to

J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218 207

u

c

i

h

t

o

d

t

d

o

fi

a

d

v

t

n

t

t

s

b

n

h

o

T

s

a

m

a

s

m

a

d

T

p

w

n

t

d

c

t

t

v

g

A

a

t

w

a

c

f

t

n

c

q

c

t

m

4

a

d

w

r

s

m

T

e

t

t

p

t

o

l

c

t

s

p

u

o

t

t

p

a

G

i

d

m

h

H

m

t

e

w

p

o

a

(

a

s

w

a

d

a

t

s

i

v

i

d

w

c

w

w

v
se a certain number of days each month for the improvement of

ode quality. In every month, two days were assigned for unit test-

ng, where the developer unit tested every code of their own that

ad been created in the last month. Also, one more extra day of

he month was dedicated to ‘your review day’, where every devel-

per’s code was reviewed by another developer. Also four to five

ays a month were dedicated for ýour development day’, where

he goal was to improve the quality of the code base. In case a

eveloper needed to take an intentional shortcut during the devel-

pment, he/she was guided to create a JIRA issue, which would be

xed in the next sprint.

TD representation/documentation was done by using a backlog

pproach to document all possible TD items happening during the

evelopment. When a developer took a shortcut during the de-

elopment, it was issued as a JIRA ticket to the system, where

he manager and the team could follow the possible improvement

eeds.

TD identification was conducted during the continuous integra-

ion process. If the development team noticed that some part of

he software needed technical improvement, it was something that

hould be focused on.

TD prioritization was based on story points that were assigned

y the team management and software architect. If there was

eed for a big change in the code base, it would be prioritized

igher. The prioritization was mostly based on a hunch and previ-

us knowledge of the issue and that certain area of the code base.

he team used figures from SonarQube and the opinions of project

takeholders to make the decision on what TD would be prioritized

s the most important to repay.

TD measurement was done with the SonarQube tool. The team

anager and software architect ran the code base with SonarQube

nd were able to measure the amount of TD every month. The re-

ults from the tool were compared to the standards and perfor-

ance that the management had set up. This way the team man-

ger was able to measure whether TD had increased or decreased

uring the previous month.

TD monitoring was based on JIRA and SonarQube information.

he team manager felt that information from SonarQube was im-

ortant information to monitor, to know how healthy the software

as at any point of time. He also admitted that SonarQube did not

ecessarily offer information about big architectural issues, but still

hought that it was valuable information to have.

TD communication was active between the management and the

evelopment team. If a developer identified a TD issue, it was dis-

ussed with the software architect, and the decision to allocate

ime for it was often granted.

TD prevention was conducted by creating a strict definition of

he done process to every code that was developed. When a de-

eloper created or changed something in the code base, it was

uided to be tested first locally in the developer’s own machine.

fter this, the code went to the acceptance environment, where

ll the other components were connected to the system. When

he code was tested and verified in the acceptance environment, it

ould go to the staging environment, where it would go through

utomated test cases. Finally, if no bugs or issues were found, the

ode would go to the production environment. In case an issue was

ound, the code would go back to the developer, who had to refac-

or or rewrite it.

Overall, the TDM strategy in development team H was orga-

ized systematically. The team manager described the process as

ontinuous refactoring, where the goal was to keep the overall

uality of the code base always on an acceptable level. This was

onducted by having a continuous TD repayment and TD preven-

ion strategy that was compounded with TD monitoring and TD

easurement by the team management.
.9. Summary of the cases

A summary of the cases is shown in Table 4 . In TD repayment,

ll the development teams used either refactoring, rewriting or re-

esigning as the main process to repay TD issues. TD repayment

as done during normal development and consisted of only small

epayment cases or TD repayment that was done from issues as-

igned to the actual development backlog. Some of the develop-

ent teams (Cases C, D, E, and H) had a systematic strategy to

D repayment, by assigning a certain amount of development time

very month to improving code quality by refactoring or rewriting

he solutions. We also identified teams (A, B, F, and G) that of-

en started TD repayment when the TD issue started to become a

roblem and there was free time allocated to it.

TD identification was done during the development or with

ools. In many cases, TD identification was done during the devel-

pment, when a developer or software architect noticed a prob-

em with a solution during normal development or analysis of the

ode base. Sometimes these identifications would happen acciden-

ally during the development, or a software architect would spend

ome time with the code base to identify if there was anything im-

ortant to refactor. In some cases (C, D, H) the SonarQube tool was

sed for TD identification.

Most of the development teams (A, B, E, F, and G) did not have

r did not know a good way for TD measurement. Some of these

eams (E, F) mentioned that the only TD measurement informa-

ion they had was the JIRA management tool, where there was a

ossibility to measure and calculate how many TD issues had been

ssigned to the system. Some of the development teams (C, D, and

) used the SonarQube tool to measure TD in the software.

Some teams (A, B, E, F, and G) did not have systematic TD mon-

toring, because measuring and identifying TD was considered too

ifficult. Some of the teams (A, B, F, and G) used some basic infor-

ation in the JIRA management tool to monitor how many issues

ad been assigned, and drew conclusions on the basis of that data.

owever, some teams (C, D, and F) used the SonarQube tool for TD

onitoring.

We did not observe any specific calculations for TD prioritiza-

ion, as prioritization was mostly based on hunches and previous

xperience and knowledge regarding the code base. The things that

ere taken into consideration when making a decision about TD

rioritization were often based on scalability, business value, use

f a feature, and customer effect, but they did not contain any ex-

ct numerical values.

TD communication was in a good shape in most of the cases

A, B, C, D, E, and H). The management and development team had

 good TD communication structure, where the team manager had

ufficient technical knowledge. However, we also saw cases (E, G),

here the development team felt that the current communication

bout TD issues was lacking a lot. The developers felt that all the

evelopment time went to new features, and there was no time

llotted by the business people to conduct refactoring of old solu-

ions.

Almost every studied development team had set up coding

tandards to prevent TD. However, they were not always followed

n reality, as they had been labeled as recommendations. Every de-

elopment team also tried to catch bad design and solutions by

mplementing a code review practice to ensure the quality of the

eveloped code before it would go to production. However, this

as not always possible, because the review process was time-

onsuming, and effort had to be assigned to new features that

ere more important to the development team.

TD representation/documentation was done in three different

ays: a development team with a unique TD backlog (Case E), de-

elopment teams with quality/development backlogs consisting of

208 J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218

Table 4

Summary of the cases.

Case/TDM TD repayment TD identification TD measurement TD monitoring TD prioritization TD TD prevention TD

activity representation/ representation/

communication documentation

Case A Issues from the

general

development

backlog.

Refactoring

during normal

development.

Team manager

and software

architects

identifying TD

manually. Mostly

during normal

development.

No measurement No monitoring.

Sometimes from

JIRA issues.

Mostly based on

a hunch. Business

value and

scalability taken

into

consideration.

Communication

structure good

with highly

technical team

manager.

Some coding

standards and

code reviews.

Some issues to

JIRA. No separate

backlog.

Case B Issues from the

general

development

backlog.

Refactoring

during normal

development.

Team manager

and software

architects

identifying TD

manually. Mostly

during normal

development.

No measurement No monitoring.

Sometimes from

JIRA issues.

Mostly based on

a hunch. The

number of places

affected by the

change taken into

consideration

Communication

structure good

with highly

technical team

manager.

Some coding

standards and

code reviews.

Some issues to

JIRA. No separate

backlog.

Case C 20% of

development

assigned to

improving the

code base.

Refactoring

during normal

development.

Software

architects

identifying TD

manually.

Identification

with SonarQube

tool.

Team manager

measuring from

JIRA, software

architects from

SonarQube

statistics.

Monitoring with

JIRA and

SonarQube.

Mostly based on

a hunch.

Sometimes taken

into

consideration

how much the

feature was used

now and would

be used in the

future.

Communication

about TD active

within the whole

development

team.

Some coding

standards and

code reviews. Not

always

conducted.

Internal quality

backlog on JIRA.

Not used

systematically by

the developers.

Case D 20% of

development

assigned to

improving the

code base.

Refactoring

during normal

development.

Software

architects

identifying TD

manually.

Identification

with the

SonarQube tool.

Team manager

measuring from

JIRA, software

architects from

SonarQube

statistics.

Monitoring with

JIRA and

SonarQube.

Mostly based on

a hunch. The

management

using

low/medium/

high/blocker -

story points

-Fibonacci scale

Communication

about TD active

within the whole

development

team.

Code reviews and

coding standards.

Definition of the

done standard.

Internal quality

backlog.

Developers using

systematically.

Case E Decided once a

month in a

meeting.

Refactoring

during normal

development.

Software

architects

identifying TD

manually.

Measurement

from the TD

backlog.

Monitoring TD

backlog.

Mostly based on

a hunch. Taken in

consideration

how much it

would affect the

customer and

future projects.

Communication

in stakeholders’

meeting monthly.

Some coding

standards and

code reviews. Not

always

conducted.

Separate backlog

for TD items.

Case F Refactoring only

when TD became

a huge problem.

Identification

with tools

(SonarQube,

CheckStyle,

FindBugs). Mostly

during normal

development.

Measurement

from JIRA issues.

Monitoring with

JIRA.

Mostly based on

a hunch.

Communication

currently

challenging with

business people.

Some minor

coding standards

and reviews of

the used tools.

Some issues in

JIRA. No separate

backlog.

Case G Refactoring only

when TD became

a huge problem.

Identification

rarely done.

No measurement. No monitoring. Mostly based on

a hunch. Time,

functionality,

further

maintenance,

scalability,

business value

and future plans

taken into

consideration.

Current

communication

of TD lacking.

No coding

standards or code

reviews.

Some issues in

JIRA. No separate

backlog.

Case H Number of days

in a month

assigned for

improvement.

Mostly during

normal

development.

Identification

with the

SonarQube tool.

Team manager

measuring from

JIRA and

SonarQube

statistics.

Monitoring with

JIRA and

SonarQube.

Mostly based on

a hunch. Story

points based on

how important

the issue was.

Communication

active within the

development

team and

stakeholders.

Definition of

Done to ensure

code quality.

Issues reported to

JIRA.

i

s

u

i

i

y

h

o
TD issues (Cases C, D, and H), and development teams not using

any backlog for TD items (Cases A, B, F, and G).

5. Technical debt management framework

We developed a TDM framework based on the analysis of the

eight studied development teams. The framework is presented
n Table 5 . The framework explains the activities, practices/tools,

takeholders, and responsibilities of TDM. After analyzing individ-

al cases, we started to compare the cases to understand the sim-

larities and differences of approaches and practices in TDM activ-

ties. We took all the approaches and practices found in the anal-

sis and put them into the same table (Table 4) to understand

ow each activity was conducted in general, across the cases. We

bserved that all practices had a defined responsibility. We were

J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218 209

Table 5

TDM framework.

TDM TD repayment TD prevention TD TD identification TD measurement TD monitoring TD TD prioritization

activity/TDM representation/ communication

levels documentation

Organized (Level

3)

Continuous

repayment with

monthly

assigned

percentage of

the development

tasks.

Mandatory

prevention

practices used

by the team.

Continuous

practice during

development.

Documentation

is a mandatory

practice in

development.

Issues are

documented in a

separate TD

backlog.

Continuous

identification

conducted

manually and/or

with tools

during

development.

Continuous

measurement

during

development.

Data analysis

(various data

used (e.g.

quality,

performance)).

Assisted with

tools.

Continuous

monitoring

during

development

with various

data (e.g. quality,

performance).

Tools used to

support.

Continuous

discus-

sions/meetings

about TD issues

with all the

necessary

stakeholders

involved.

Prioritization

conducted

continuously

during

development.

Prioritization

follows a specific

method or

model.

Received (Level

2)

Repayment

during normal

development

tasks and

previously

identified

repayment tasks.

Repayment

conducted based

on current

needs.

Optional

prevention

practices. Not

mandatory to

use, but

recommended.

Conducted based

on current time

constraints.

Documentation

an optional

practice, but

recommended.

Issues

documented in a

general

development

backlog without

TD id.

Identification

optional during

normal

development.

Conducted based

on current time

constraints.

Measurement an

optional

practice.

Measurement

done with

simple data

(number of TD

issues) from

development,

and the data not

necessarily used

for other

activities.

Monitoring

based on simple

data (number of

TD issues).

Conducted

occasionally.

Discussions/

meetings

organized only

with some

stakeholders.

Prioritization

based on

hunches and

rough

estimations

based on

previous

experiences.

Prioritization

done in a simple

way without any

specific model.

Unorganized

(Level 1)

Repayment not

conducted at all

or only when it

is not possible to

avoid the issue

any longer.

Prevention not

assigned as part

of the

development

practices.

Conducted only

occasionally.

Documentation

not part of

development.

Issues are left in

developers’ own

minds and notes.

Identification

practices not

assigned as part

of development.

Conducted only

when issues

occur.

Measurement

not part of

development

practices.

Monitoring not

part of

development

practices.

TD not a topic in

discus-

sions/meetings

and often

handled only in

coffee table

discussions.

Prioritization not

conducted, and

decisions done

without

reasoning or

discussions.

Responsibility

for activity

Development

team, software

architect(s)

Development

team, software

architect(s)

Development

team, software

architect(s)

Development

team, software

architect(s)

Software

architect(s),

team manager

Software

architect(s),

team manager

Development

team, software

architect(s),

team manager

Software

architect(s),

team manager

Practices / tools

for activity

Refactoring,

redesigning,

rewriting

Coding

standards, code

reviews,

Definition of

Done.

Technical debt

backlog/list,

Documentation

practice, project

management

tool (JIRA, Wiki)

Time reservation

for manual code

inspection. Use

of code analysis

tools

(SonarQube,

CheckStyle,

FindBugs).

Data from

measurement

tools

(SonarQube) and

data from

project

management

tools (JIRA,

Wiki).

Monitoring tools

(SonarQube).

Project

management

tools (JIRA, Wiki)

Specific TD

meetings, TD

included in

discussion

topics.

Cost/Benefit

model, Issue

rating

t

t

a

c

T

t

i

i

t

d

fi

a

o

e

o

i

t

a

p

m

m

d

t

a

a

T

T

o

t

T

a

i

d

d

m

e

r

n

o

r

a

l

a
herefore able to add also the responsible person to each TDM ac-

ivity. When we had identified all the TDM approaches, practices

nd responsibilities, we started to compare the cases. During this

omparison we realized that there was a lot of variation in the

DM approaches and practices.

The results indicated differences in the maturity of TDM. By

he term maturity we mean the ability of the development team

n TDM activities. Firstly, we identified cases where a TDM activ-

ty was not at all conducted during the development. We defined

his as the lowest level of maturity, where a development team

oes not conduct a particular TDM activity. Secondly, we identi-

ed development processes where TDM activities were organized

nd conducted continuously by the development teams as a part

f their normal development process. We defined this as the high-

st level of maturity, where the TDM activity is an integral part

f the continuous development process. These two extremes were

dentified as the lowest and highest levels of maturity. TDM activi-

ies that were conducted only sometimes and were not considered

n important part of the continuous development process, were

laced on a level between these two extremes. We used these

aturities to assign every identified TDM activity with their own

aturity levels. On the basis of the process described above, we

eveloped a TDM framework divided into five sections: TDM ac-
ivities, TDM levels, TDM stakeholders, TDM responsibilities, and TDM

pproaches.

We use the eight activities identified by Li et al. (2015a) as TDM

ctivities in the framework. The TDM activities are TD repayment,

D prevention, TD documentation, TD identification, TD measurement,

D monitoring, TD communication, and TD prioritization. Based on

ur findings in the studied development teams, we believe that

he eight TDM activities are suitable for giving an overall view on

DM. During the analysis of the cases, we identified some level of

pproach in each TDM activity. In addition, we were not able to

dentify any new TDM activities during the analysis of the cases.

The analysis revealed that the TDM activities were conducted at

ifferent maturity levels. For example, we observed that while one

evelopment team focused on and put effort to measurement and

onitoring activities, another development team did not put any

ffort to them. We defined three TDM maturity levels: unorganized,

eceived, and organized . A TDM activity can be considered unorga-

ized when a software team does not put any effort to the activity

r when the focus is minimal. A TDM activity can be considered

eceived when the software team has acknowledgd the need for

 certain TDM activity and when it already conducts it on some

evel. However, the activity is not yet considered as a constant one

nd only a few people conduct it occasionally. A TDM activity can

210 J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218

r

s

6

6

d

s

6

6

i

d

a

f

t

h

d

n

q

a

g

a

t

h

i

i

r

w

a

t

6

6

r

t

W

a

o

t

i

c

a

i

d

a

i

t

f

s

f

f

T

o

v

s

e

a

w

u

o

o

c

g

be considered as organized when the development team has rec-

ognized the TDM activity as an essential part of software develop-

ment, and it is conducted continuously by the whole development

team.

We identified three main stakeholders and one additional

stakeholder related to TDM. These stakeholders came from the re-

sponsibilities found in the cross-case analysis. The first stakeholder

is the development team, which is responsible for software develop-

ment. The development team is often responsible for the TDM ac-

tivities that take place during the actual development of software.

These activities are TD repayment, TD prevention, TD documenta-

tion and TD identification. The development team works with the

code base, and is able to identify and refactor possible issues in the

software. The development team is also responsible for TD preven-

tion in terms of following coding standards and code review prac-

tices.

The second stakeholder is the software architect , who is respon-

sible for the architecture of the software. The software architects

have responsibilities in all TDM activities. The cross-case analy-

sis revealed that software architects often acted as a central mind

in TDM. This was because software architects often have the best

overall view on the software and its design issues. Therefore, all

TDM activities should be within the responsibility of software ar-

chitects.

The third stakeholder is the team manager , who is responsible

for managing the development. We observed that the team man-

ager was mainly responsible for four TDM activities: TD prioritiza-

tion, TD communication, TD monitoring, and TD measurement. The

team manager did not often deal with activities that were directly

related to technical development, and therefore his/her responsi-

bility was only on the management activities that required data

collection as well. The team manager has a lot of communication

with the business stakeholders to understand to what direction the

software is evolving. Therefore, the manager is highly involved in

the communication about TD, when there is a need to change the

software to a certain direction. This also has an effect on the pri-

oritization of TD, because business changes need to be evaluated

with TD issues, to understand what kind of development effort s

the software will need in the future.

An additional stakeholder is the business stakeholder who com-

municates about the software needs to the team manager. Business

stakeholders are not necessarily directly related to TDM, but the

needs coming from the business stakeholders do have an effect on

the TDM activities. The business need e.g. for a new feature may

change the current TD repayment activity or TD prioritization.

We also identified various approaches for each TDM activity.

The approaches varied from practices conducted by the whole de-

velopment team to practices conducted by a single person. We also

made observations about the tools used to support the TDM ap-

proaches. The practices, models, methods and tools are presented

in the framework in the section approaches to activity.

The framework can be used by software development compa-

nies to improve and evaluate internal and external processes re-

garding TDM. However, we cannot claim that working on the high-

est level of the TDM framework will reduce TD or produce health-

ier software. It is possible that a development team conducting

refactoring only when necessary has less TD in their software than

a development team that conducts all TDM activities continuously.

Instead, we believe that using the framework will increase the vis-

ibility and knowledgeability regarding TD in the software, which

can be used for smarter and safer decisions in TD reduction and

management.

It is also important to mention that this framework is pre-

sented only at a high level, and it has been derived from the

eight studied software development teams. Therefore, other re-

searchers should improve this framework by adding approaches,
esponsibilities, levels, and activities that were not included in this

tudy.

. Discussion

.1. RQ1.1-1.2: What TDM activities are used in the studied

evelopment teams? What methods, models, practices or tools do the

tudied development teams’ use for each TDM activity?

.1.1. Commonly used activities

.1.1.1. Communication. The most usual TDM activity in the stud-

ed development teams was communication . TD was an important

iscussion topic in most of the development teams. This is not

 surprise, considering the popularity of TD research in the past

ew years (Li et al., 2015a). The biggest issue with TD communica-

ion has been the gap between technical and non-technical stake-

olders (Klinger et al., 2011). Communication related to TD issues

oes not often transfer from the development team to the busi-

ess stakeholders, which leads to TD issues not receiving the re-

uired time to get fixed (Yli-Huumo et al., 2014). Our observations

lso support the fact that the starting point for successful TDM is

ood TD communication. If the development team does not have

ny communication of TD, it is difficult to gain any benefit from

he other TDM activities. Most of the studied development teams

ad organized TD communication successfully, which also helped

n the other TDM activities. Simply taking TD as a topic in var-

ous meetings and discussions between the stakeholders can al-

eady improve TD communication. Especially a product manager

ith high business and technical competence can work effectively

s a middle-man between business stakeholders and development

eams, and improve communication related to TD.

.1.2. Occasionally used activities

.1.2.1. Repayment. TD repayment was conducted with refactoring,

ewriting, and redesigning practices in the studied development

eams. Similar practices identified in a study by Codabux and

illiams (2013) were reengineering and repackaging. Even though

ll the practices mentioned for TD repayment had a similar goal

f improving the solutions in the code base, it is still important

o understand that they were not the same practices. Refactor-

ng, which is a known concept in the literature and probably most

ommonly used technique for code improvement, can be described

s a practice to improve code structures without changing the ex-

sting functional behavior of a program (Fowler et al., 1999). Re-

esigning can be an act to change the solution for example with

 better and faster algorithm, while rewriting is an act to re-

mplement a large portion of an existing solution without re-using

he previous source code. It is important to understand the dif-

erences between the concepts. Using refactoring as a term to de-

cribe large-size rewriting of a software feature can be misleading

or some stakeholders in the development. Understanding the dif-

erences between TD repayment practices can improve especially

D communication, when all stakeholders understand the nature

f the required improvements and the resources needed.

There are many strategies for conducting TD repayment. A de-

elopment team can either choose to repay TD continuously, occa-

ionally, or not at all. The decision to choose the repayment strat-

gy emerges from the question “do we have technical debt? ” In

 case where the development team is fighting with a large TD, it

ould be wise to have a systematic way to repay TD back contin-

ously to avoid a crisis in the future. In a case where the devel-

pment team has only little known TD, it is possible to repay TD

ccasionally e.g. during normal development. Development teams

an also choose not to repay any known TD, if they do not see any

ood reason for it.

J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218 211

t

t

m

g

s

o

i

6

s

c

A

o

p

p

g

f

v

f

2

o

d

a

i

d

s

p

b

p

T

d

s

s

s

a

m

w

m

s

t

n

m

v

p

a

6

t

s

s

a

t

t

t

t

n

m

m

T

o

t

a

d

c

f

h

n

c

q

c

c

T

a

b

p

a

d

s

6

d

t

fi

c

t

S

p

S

o

s

v

i

t

f

r

s

w

s

w

h

m

T

b

o

t

c

w

w

r

c

6

v

i

o

g

e

S

u

m

a

w

o
Companies react differently to TD repayment. Some teams opt

o reduce TD by a certain percentage every month, while some

eams opt to focus on new features, and leave TD reduction to

inimum (Power, 2013). Our observations in TD repayment strate-

ies suggest that there is not necessarily one right TD repayment

trategy and practices. The decision for the strategy has to be made

n the basis of the current needs and understanding of the signif-

cance of TD in the software product.

.1.2.2. Prevention. TD prevention activities happened only occa-

ionally during development. Practices used for TD prevention in-

luded coding standards, code reviews, and the Definition of Done.

 set of other practices for TD prevention have been identified in

ther studies (Codabux et al., 2014; Krishna and Basu, 2012). These

ractices include approaches such as education and training, pair

rogramming, test-driven development, refactoring, continuous inte-

ration, conformance to process and standards, tools, and customer

eedback (Codabux et al., 2014) . Code reviews, where another de-

eloper checks your code can be used to prevent bad solutions

rom getting to the code base (Baker, 1997; Kemerer and Paulk,

009), while setting up coding standards/guidelines for the devel-

pment team to ensure as much cohesion as possible during the

evelopment (Green and Ledgard, 2011) can improve understand-

bility and learnability.

TD prevention can be seen as one of the most influential activ-

ties of the eight TDM activities that a development team can con-

uct. When the development team has set up mandatory coding

tandards, assisted with e.g. code reviews and Definition of Done

ractice, it is possible that the amount of TD that gets to the code

ase will decrease (Davis, 2013). When TD is prevented as much as

ossible, it also helps other TDM activities. In addition, setting up

D prevention practices helps especially in catching unexperienced

evelopers’ ‘not-so-good’ solutions.

Even though the benefits of TD prevention are quite clear and

imple to implement in real-life software development, we ob-

erved that they are still not necessarily used. The biggest is-

ue was that they were conducted only occasionally, because they

re not mandatory. The software development teams in this study

entioned having coding guidelines and reviews set up, but they

ere not often used. There are possible reasons for the develop-

ent teams not using TD prevention practices. First, working with

trict standards and guidelines in software development can some-

imes be exhausting and annoying for developers, when they are

ot allowed to use their own creativity in the development, but

ust follow strict guidelines instead. Second, adopting TD pre-

ention practices requires resources. Using various TD prevention

ractices requires time and competence, which are always taken

way from something else.

.1.2.3. Representation/documentation. TD representation/documen-

ation was conducted only occasionally. There can be several rea-

ons for why developers do not conduct documentation. In tight

chedules documentation is often not seen as a useful practice,

nd therefore writing TD documentation can be seen as waste of

ime. Developers may also value documentation differently, and

hey document only issues that they personally think are impor-

ant (Lethbridge et al., 2003). The biggest reason why TD represen-

ation/documentation was lacking in our cases was that TD was

ot generally considered as something that could/should be docu-

ented.

The development teams had a variety of approaches for docu-

enting TD. Some teams had a specific TD list, which consisted of

D issues only and nothing else. Some teams used a normal devel-

pment backlog as the place to store TD issues. The tools used for

hese two approaches were JIRA and Wiki, which made the data

vailable for everyone. There were also teams that did not use any
ocumentation for TD issues, and just decided to leave them as

ommon knowledge in the development team.

We believe that TD representation/documentation is essential

or a successful TDM strategy. When TD issues are not stored, it is

ighly possible that they will be forgotten at some point and will

ever be repaid. Without proper tracking and documentation of ar-

hitectural changes and issues, it is also extremely challenging to

uantify TD (Klinger et al., 2011). The inability to quantify TD also

reates more challenges to other TDM activities, such as communi-

ation, repayment, monitoring, and measurement, due to the lack of

D data.

Documentation is a valuable practice that improves understand-

bility and communication (Das et al., 2007; Forward and Leth-

ridge, 2002). Therefore, adopting even a simple documentation

ractice for TD representation/documentation improves other TDM

ctivities and the overall TDM strategy. A systematic process to

ocument and store all the TD issues can be used for creating a

ystematic TD repayment strategy (Lim et al., 2012).

.1.2.4. Identification. TD identification was conducted occasionally

uring the development. In manual identification a person tries

o locate the sources of a TD problem. Also tools can be used to

nd bad code. Most of the identification in the studied cases was

onducted manually because of lacking tools or knowledge about

hem. Some development teams used tools like SonarQube, Check-

tyles, and FindBugs to scan the code base to find possible com-

lexities and badly developed code.

TD can be completely different for different development teams.

ome development teams consider smaller issues, such as bugs

r single line errors, to be TD. These types of smaller errors are

impler and easier to fix and they can be found with tools de-

eloped to scan the source code, such as SonarQube. Identifying

ssues found with these tools can mean for some development

eams that TD has been identified, and they will use this TD data

or other TDM activities.

However, the challenge in identification is that TD is not just

elated to simple errors, but especially to the architectural and de-

ign issues of software. It is challenging to identify this type of TD

ith tools. The challenge is how the tools tackle architectural or

tructural issues and technology gaps (Kruchten et al., 2012a). This

as also mentioned by the architects and developers who did not

ave any tool available to find the types of issues that required

anual identification. This issue has also been raised in a previous

D study (Zazworka et al., 2014), questioning how TD issues could

e identified from the code base. It seems that TD identification is

ften done during the actual development, where a developer no-

ices that something bigger might be wrong in some part of the

ode base. An interesting question related to TD identification is

hether developer-identified TD should be considered as “real TD”,

hile tool-identified TD should not, because it is not necessarily

elated to the effects of external (such as customer and market)

hanges in the software architecture (Zazworka et al., 2013).

.1.2.5. Prioritization. Another occasionally used activity for the de-

elopment teams was TD prioritization. When TD issues were

dentified, there was no precise model or method used to calculate

r estimate the effects or costs of the TD. The literature has sug-

ested approaches for TD prioritization (Eisenberg, 2012; Seaman

t al., 2012; Theodoropoulos et al., 2011; Zazworka et al., 2011a).

ome of the approaches are based on calculating technical val-

es (e.g. duplicate code, test coverage, rules compliance, code com-

ents etc.), some take aspects from the finance environment, such

s cost-benefit analysis into consideration, while some use soft-

are quality attributes for the evaluation.

In our cases, the estimation and prioritization was just based

n a hunch and previous knowledge of the person. The reason was

212 J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218

t

t

O

m

e

p

t

m

a

l

i

i

6

a

a

a

t

t

u

w

v

l

c

z

m

s

k

a

6

6

w

m

o

t

d

t

a

n

t

w

p

t

a

a

t

b

l

6

e

t

d

T

m

s

b
that calculating technical things like scalability and further mainte-

nance is extremely difficult, as business items like plans and busi-

ness value have to be considered as well. Therefore, the prioriti-

zations were often assessed on a low/medium/high scale or using

story points to estimate the importance and effort of TD, based on

hunches and rough estimations.

Ramasubbu et al. (2015) describe TD prioritization with three

dimensions: customer satisfaction needs, reliability demanded by the

business, and probability of technology disruption. These dimensions

are essential for decisions, but quantifying these with exact num-

bers is extremely difficult. Prioritization can also be based on cus-

tomer needs, but this can leave the most important TD from the

technical perspective out of sight (Codabux and Williams, 2013).

These prioritization issues exist also in requirements prioritization

(Lehtola and Kauppinen, 2006).

6.1.3. Rarely used activities

6.1.3.1. Measurement. TD was measured rarely in the studied cases.

The only identified measurement practices used either data avail-

able in project management tools (JIRA, Wiki), or a specific tool to

measure TD (SonarQube). The data gathered from JIRA consisted

usually of simple data only (reported TD issues, number of bugs

etc.), which was used to get some level of understanding about

the status of TD. The usefulness of this data could be question-

able. For example a decrease of TD issues from 50 to 48 in one

month does not necessarily mean that TD has been reduced, be-

cause there may exist unidentified TD issues. Some development

teams used also e.g. quality and productivity as a measurement to

see in which direction the software was going.

The data gathered with tools (e.g. SonarQube) provides an esti-

mate of TD based on calculations. This type of data could be easier

to interpret in development and management. For example, Sonar-

Qube calculates TD from seven deadly sins (SonarQube, 2015),

each one representing a major quality item: bad distribution of

the complexity, duplications, lack of comments, coding rule viola-

tions, potential bugs, no unit tests or useless ones, and bad design

(SonarQube, 2015). Some of the development teams in the studied

cases used this value to get an estimate of TD, which was followed

during the development.

An estimate based on a tool should be more accurate, faster and

reliable compared to an estimate based on simple data. However,

TD measurement has the same problem as TD identification: “what

technical debt do you want to estimate ?” When a development

team considers for example the criteria in SonarQube (2015) as

TD, in can guide TD management and other TD activities. How-

ever, TD can also be considered to consist of issues of a larger

scale, such as architectural or structural issues and technology gaps

(Kruchten et al., 2012a). There are not necessarily any automatic

tools available to measure these issues of a larger scale.

This can be currently seen as the biggest problem and challenge

in TD measurement. There are no valid tools to measure larger

TD issues related to the deep architectural structures of software.

Therefore, most TD measurement is done on the basis of human

evaluation, which can be seen as a challenge especially in decision-

making.

6.1.3.2. Monitoring. Similar to TDM measurement, TD monitoring

was also conducted rarely. The lack of TD monitoring is also re-

lated to the rare occurrences of TD measurement. Without any

measurable TD data from the software, it is also almost impossi-

ble to monitor anything related to TD. Most of the TD monitoring

was based on data derived from project management tools (JIRA,

Wiki) or specific tools to measure TD (SonarQube). The team mem-

bers responsible for monitoring TD used this data to monitor how

TD was increasing or decreasing during the development, and used

that information to assign work in other TDM activities.
TD monitoring and tracking is one of the most vital TDM ac-

ivities (Ernst et al., 2015). Without monitoring, the development

eam is not able to have any reasoning for other TDM activities.

ne of the questions related to TD monitoring that can be seen as

ajor obstacle is “what should you monitor?” Tools may help in

stimating technical aspects, such as bad distribution of the com-

lexity, duplications, lack of comments, coding rule violations, po-

ential bugs, and lack of unit tests. However, an essential part of TD

onitoring is also monitoring the overall quality of the software

nd the productivity of the development team. Evaluating how a

arge-scale architectural change affects the developers’ productiv-

ty or the overall quality makes it possible to reason why some TD

ssues are important to repay or not.

.2. RQ1.3: Are there any maturity differences on adopting TDM

ctivities between development teams?

In some development teams TDM focused on only two to three

ctivities, while some development teams conducted all eight TDM

ctivities. Some development teams opted to use tools for the ac-

ivities, while some teams did not have knowledge of available

ools. Some development teams opted to conduct activities contin-

ously, while some teams did it just occasionally.

The biggest maturity differences were in TDM activities that

ere conducted mostly by the development team (repayment, pre-

ention, representation/documentation, and identification), while the

east differences were in activities done mostly by the software ar-

hitects and the team manager (measurement, monitoring, prioriti-

ation). We suggest that this was because the activities conducted

ostly by the software architects and team managers were con-

idered the most challenging, and there was not necessarily many

nown tools or practices available, which resulted in the fact that

ctivities were not often conducted.

.3. RQ1.4: What are the biggest challenges in TDM?

.3.1. Lack of tools

One of the main challenges in TDM is the lack of tools. TDM

as mostly conducted as human activity, instead of using auto-

ated or enabling tools. Ernst et al. (2015 , p.?) state that devel-

pers “desire standard practices and tools to manage technical debt

hat do not currently exist”. If most of the current TDM activities are

one with rough estimations and are based on hunches, instead of

ools and models based on precise data from specific tools, there is

 risk that the choices made for TD reduction and management are

ot always the most optimal ones. In addition, conducting TDM ac-

ivities without tools is time-consuming, and the addition of tools

ould provide faster TDM activities.

As Ernst et al. (2015 , p.?) comment, “tooling is a necessary com-

onent of any technical debt management strategy ”, we also believe

hat an important research area currently in TDM is the research

nd development done for tools designed to tackle different TDM

ctivities. The development of new tools especially for identifica-

ion, measurement and monitoring activities can and should be

eneficial and should be in a high priority in future research re-

ated to TDM.

.3.2. Knowledge of TD priorities

Unlike the challenge with tools, TD prioritization is not nec-

ssarily as much dependent on tools, even though TD prioritiza-

ion needs data input from other TDM activities to support the

ecision-making. However, one of the current main challenges of

DM is TD prioritization. The challenge is the lack of models and

ethods to prioritize TD issues successfully. There are no proper

olutions to understand and explain why some TD items should

e a priority to the development team over other TD items. Some

J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218 213

t

t

l

2

h

i

n

a

b

a

i

n

o

n

w

h

s

v

a

i

t

f

s

p

t

s

o

t

m

p

6

o

T

r

d

i

d

f

m

a

t

f

h

t

a

i

t

p

6

T

i

r

d

t

o

v

i

f

s

e

c

m

c

T

l

6

6

(

n

e

t

C

u

o

T

6

a

r

w

r

a

s

v

D

n

b

t

d

i

t

p

s

fi

s

b

fi

c

d

s

6

i

x

d

n

h

W

e

w

m

c

w

a

6

s

i
ype of technical debt can be important for a development team

o fix, while a similar type of technical debt is not seen as a prob-

em for another team. Some papers (Eisenberg, 2012; Seaman et al.,

012; Theodoropoulos et al., 2011; Zazworka et al., 2011a) discuss

ow TD issues should be prioritized on various levels. They include

deas and suggestions of how to prioritize TD issues, but they have

ot been thoroughly tested empirically, or they do not take all the

spects related to TD prioritization into consideration, including

oth technical and business needs. In prioritization both technical

nd business needs need to be covered.

We believe that TD prioritization as an activity is currently lack-

ng models and methods that take both the technical and busi-

ess needs of TD into consideration. The development teams in

ur study had a hard time prioritizing TD issues, because they had

o model or method for doing it properly. Therefore, prioritization

as mainly done just by the opinions of single persons, based on

unches and previous experiences, instead of estimations and mea-

urements based on some precise data. There are cases where de-

elopers may have an idea of how to improve some part of the

rchitecture to decrease complexity or increase velocity. However,

f this improvement in architecture does not bring any value for

he customers, it may not be prioritized as high as it should be

rom the technical perspective. On the other hand, a minor TD is-

ue with lots of work and a high value to a customer could be

rioritized high, since it has business value.

This is a current challenge in TDM, because knowledge about

he most important TD issues to fix may be missing, which may re-

ult in wrong decisions. The development of new models or meth-

ds for TD prioritization would help development teams to explain

o the business people the real benefits of technical improvements

ore clearly, based on exact values (e.g. time, quality, maintenance,

roductivity, business value).

.3.3. Having a proper mindset with TDM

One of the challenges is the mindset of the developers. The goal

f TDM is to provide practices and tools to manage and reduce

D during software development (Li et al., 2015a). This obviously

equires more effort on the already existing practices of tracking

own and fixing issues to make technical improvements. Conduct-

ng TDM takes time, and it will have an effect on other software

evelopment activities. Instead of designing and developing a new

eature, it could more useful to identify a badly designed code

anually. There is a possibility that some stakeholders see this as

 waste of time. Therefore, the mindset towards TDM can some-

imes be negative, and the developers or managers just want to

ocus on developing something new, which will lead to the use of

otfixes and quick solutions.

One of the challenges in TDM is to get the whole organiza-

ion/team included in TDM with a proper mindset. Instead of only

 few people documenting TD issues to the backlog or taking part

n TD communication, it is important that every member of the

eam contributes to TDM. This way all the TDM activities will sup-

ort each other successfully.

.3.4. Time-consuming TDM

We also observed that TDM is time-consuming. Adopting new

D processes and tools can create more work on top of the exist-

ng development process. Therefore, it may difficult to justify the

eal need for TDM and its benefits. For example, why should the

evelopment team have mandatory coding reviews or documenta-

ion practices, if they take time away from other important devel-

pment practices, and there is no guarantee that they would pro-

ide immediate benefits? In addition, conducting e.g. manual code

nspection takes a lot of time, and its benefits are uncertain. There-

ore, adopting activities that require more time and resources to be

uccessful, can be hard to justify.
This is the reason why there is an urgent need to provide more

vidence of TDM. Doing research on the benefits of conducting

ode reviews, on how documentation helps in TD visibility, or how

anual code inspection can offer a possibility to detect serious ar-

hitectural issues, can bring justification for the reasons to have

DM, which will give confidence to the development teams to al-

ocate more time and resources for TDM.

.4. Limitations of the study and threats to validity

.4.1. Generalization of the results

A case study does not provide statistical generalizability

 Yin, 2003), i.e. a case study with a limited number of cases can-

ot be generalized over a population. We, however, consider gen-

ralization as theoretical (Lee and Baskerville, 2003), i.e. abstrac-

ion from concrete events and actions to theoretical constructs.

ase studies are generalizable to theoretical proportions, not pop-

lations or universes. We believe that the theoretical implications

f this study are needed for creating a more focused approach to

DM.

.4.2. Construct validity

The threats to the validity of a case study can be divided to four

spects: construct validity, internal validity, external validity, and

eliability (Runeson and Höst, 2008). Construct validity reflects ‘to

hat extent the operational measures that are studied really rep-

esent what the researcher has in mind and what is investigated

ccording to the research questions’ (ibid., p. 153). To improve con-

truct validity in this study, the data collection protocol was re-

iewed, discussed, and corrected if necessary by all the authors.

uring the interviews, we also put a lot of emphasis on the expla-

ation of each research question, and tried to improve the fact that

oth the interviewer and interviewee had similar understanding of

he research topic. In addition, most of the interviews were con-

ucted by two authors. This increased the possibility for the other

nterviewer to correct possible misunderstandings during the in-

erviews. We also let the interviewees review the first draft of the

aper, in order to identify issues in construct validity.

One limitation of the study is the difference in the interview

tructure between the first and second round interviews. As the

rst round interviews were conducted roughly one year before the

econd round interviews, and the interview structure was changed

etween the rounds, the collected data was not congruent. The

rst round interviews were analyzed first with a different data

oding protocol, but we reanalyzed them afterwards with the same

ata coding protocol as with the second round interviews, to en-

ure the same coding process.

.4.3. Internal validity

Internal validity is a concern when causal relations are exam-

ned. The concern is being certain that when a causality between

 and y is found, factor z is not included, which we did not identify

uring the interviews (Runeson and Höst, 2008). Improving inter-

al validity in case studies is challenging, because it is sometimes

ard to know if there is some underlying reason for the causalities.

e used semi-structured interviews to gain more in-depth knowl-

dge related to the data in the studied cases. Therefore, when we

ere not completely satisfied with the gained data, we could ask

ore specific questions to understand the factors related to the

ausalities better. In addition, we were also able to communicate

ith the interviewees after the interviews, if we had some smaller

dditional questions about issues related to the data analysis.

.4.4. External validity

External validity is concerned with ‘to what extent it is pos-

ible to generalize the findings, and to what extent the find-

ngs are of interest to other people outside the investigated case’

214 J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218

t

t

t

d

v

o

h

m

e

v

t

s

t

i

s

p

f

t

a

A

e

o

f

I

A

1

2

(Runeson and Höst, 2008 , p. 154). One limitation of this study was

the number of the studied software development teams and the

fact that all of them were from the same organization. Obviously,

adding more software development teams from several other orga-

nizations, the theory and framework could be possibly extended by

adding new data. The goal of this study was not to create a com-

plete and generalizable framework for TDM. Instead, the goal was

to understand how the selected software development teams were

managing TD in their current development environment. Therefore,

the developed framework is not necessarily generalizable, because

the data was derived only from one organization. However, the

framework can be used for future research, and it can be improved

and extended by adding new data from other empirical sources.

6.4.5. Reliability

Reliability is concerned with ‘to what extent the data and the

analysis are dependent on the specific researchers’ (Runeson and

Höst, 2008 , p. 154). One limitation of this study is the semi-

structured interview approach. In the semi-structured approach,

the interview questions are often open-ended. Therefore, the an-

swers from different interviewees can vary a lot, and the discus-

sion during the interviews can be different in each interview ses-

sion. In a situation where another researcher conducts the study,

the data from the interviews will not necessarily be exactly the

same. However, we improved the reliability of the study by de-

signing and describing the data collection, data coding, and data

analysis process carefully, which makes it more repeatable to other

researchers.

6.5. Implications for future research

On the basis of our findings we believe that TDM in software

development has similarities to the characteristics of the capabil-

ity maturity model (CMM) (Paulk et al., 1993). There are similar

differences in the maturity of TDM across projects and compa-

nies. The CMM was originally developed to present a set of rec-

ommended practices to enhance software development and main-

tenance capability. The fundamental concepts of CMM are capabil-

ity, performance and maturity. The five levels in CMM are initial

(chaotic), repeatable, defined, quantitatively managed, and optimizing

(Paulk et al., 1993) . A similar maturity model to CMM is also adapt-

able in TDM, where development teams have different TDM matu-

rities in activities and practices. This kind of maturity as a concept

has been applied to other processes and domains as well (De Bruin

et al., 2005).

It is important to point out that our results do not show if

there are any advantages or disadvantages in using some specific

approaches or their combination. The success of TDM is not nec-

essarily related to the number of approaches that a development

team uses. It is possible that development teams conducting refac-

toring only when it is necessary have a less TD than development

teams that monitor and measure TD constantly. However, we be-

lieve that having defined and structured TDM activities and ap-

proaches can increase the visibility and knowledge regarding TD in

software and projects. Therefore, we see the development of the

TDM maturity model beneficial for both practice and research. Fu-

ture research could focus on identifying TDM maturity levels and

developing a practice-oriented maturity model, to improve the vis-

ibility and manageability of TD in software projects.

7. Conclusion

This study explored how software development teams manage

technical debt in a real-life environment. We used the exploratory

case study method suggested by Runeson and Höst (2008) to study

eight software development teams in one large organization. For
he analysis of technical debt management, we used the eight ac-

ivities identified by Li et al. (2015a) . We interviewed 25 persons

o identify the processes, techniques and tools used for technical

ebt management.

We found that technical debt management was conducted at

arious levels. Some of the teams did not have any clear strategy

r tools to manage and reduce technical debt, while some teams

ad defined structured processes to reduce, monitor, measure, and

anage their technical debt. We also observed that there exist sev-

ral challenges of technical debt management, which software de-

elopment teams have to understand and acknowledge.

The study produced a technical debt management framework

hat describes the management activities, stakeholders and respon-

ibilities on three levels and approaches/practices/tools used in

hem. The framework can be used for the definition of activities

ncluded in TDM, and how the activities are divided between the

takeholders.

Technical debt management has many similarities with the ca-

ability maturity model (CMM). We believe that the developed

ramework can serve as the basic element for researchers and prac-

itioners in the development and improvement of technical debt

ctivities.

cknowledgments

The authors would like to thank the company and their employ-

es for participating in this research. The research has been carried

ut in the Digile Need 4 Speed program, and it has been partially

unded by Tekes (the Finnish Funding Agency for Technology and

nnovation).

ppendix A

. General information

1.1 Respondent’s name:

1.2 Email:

1.3 Role in company:

1.4 Responsibilities:

1.5 Company name:

1.6 Organizational unit:

1.7 Industry sector:

1.8 Number of employees:

. Technical debt

2.1 Have you heard of the term technical debt before?

2.2 Have you experienced situations where you had to take

shortcuts in your projects, for example writing a code of

lower quality or skipping a run of test cases to meet dead-

lines, and decided to fix them later?

2.3 Describe examples of shortcuts (technical debt) in your

projects.

2.3.1 What kind of effect did they have right after?

2.3.2 How did they evolve during the software life cycle?

- Poor customer responsiveness?

- Long delivery times?

- Late deliveries?

- Lots of defects?

- Rising development costs?

- Frustrated and poor performing teams (bad productivity)?

2.3.2 What were the main reasons for you having to take

these shortcuts?

2.3.3 Did you ever fix or make better the shortcuts you took?

2.3.4 Did you learn anything from these examples? Would

you take the same shortcuts again? Why or why not?

J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218 215

2.4 Have you ever taken shortcuts in development because of

pressure from business people or a customer due to dead-

lines?

2.5 Have you ever been “forced” to take shortcuts in a situation

where business people did not necessarily understand the

concept of technical debt and its effects on the project, and

you thought it was a bad idea?

2.6 Are you willing to take shortcuts in development that will

not cost much now but will cost more in the future, to meet

the deadlines?

2.7 What is the business manager’s opinion usually about tak-

ing these kinds of shortcuts?

2.8 How do you communicate between different organizational

units about taking shortcuts in a project? Do you communi-

cate about it with the customer?

2.9 How do you make decisions regarding taking shortcuts on

projects?

2.10 Do you have any strategies as regards managing or reduc-

ing these shortcuts?

2.11 Do you think business people should include these kinds

of shortcuts in their business strategy and budget?

2.12 How do you ensure that the quality level of your code is

high and easily changeable to maintain?

2.13 How often do you do refactoring? Do you inform about it

to the business people? What is their reaction to it?

2.14 What do you think are the positives and negatives of taking

shortcuts?

2.15 Do you have any ideas on how your company (or compa-

nies in general) should take care of managing, finding, re-

ducing and paying shortcuts?

2.16 Do you think technical debt actually exists? Is it a serious

threat to software companies and should they pay more at-

tention to it?

2.17 Do you think all shortcuts are bad and must be paid for

at some point? How would you describe the difference be-

tween a good and a bad shortcut?

2.18 What software development methods or models do you

use?

2.19 Have you used any other methods?

2.20 Do you think that there are differences between methods

as regards taking shortcuts? Is it easier to manage with one

or the other?

2.21 Do you have any other thoughts, comments, suggestions of

what you have learned about technical debt / taking short-

cuts in development what you would like to share?

Appendix B Interviewee introduction

◦ Respondent’s name:

◦ Respondent’s name:

◦ Respondent’s name:

◦ Email:

◦ Role in company:

◦ Responsibilities:

Introduction to the case

◦ Case history

� What is the history of this team/case?

◦ Product history

� What is the history of the product?

� What has changed during the history?

Stakeholders of the case
◦ Describe what teams are included in this case (development,

management etc.)?

◦ What are the sizes of the teams?

◦ Are there any problems with technical debt?

◦ Your team was interested in studying the topic of technical

debt, so do you have some kind of a problem currently with

technical debt?

Reasons for technical debt

◦ Intentional technical debt: Strategic decisions to incur technical

debt during a project.

� Do you have any examples of intentional technical debt in

this case?

� Why was the intentional technical debt taken?

◦ Unintentional technical debt: Lack of practices to retain the

code quality level

� Do you have any examples of unintentional technical debt in

this case?

◦ Software development methodologies/processes/tools

� What software development methodologies are you using

(waterfall vs. agile)?

� Do you think that software development methodology has

any effect on technical debt?

Effects of technical debt

◦ How does technical debt affect you?

◦ Time-to-market?

◦ Lack of productivity?

◦ Lack of quality?

◦ Extra work?

◦ Bugs/Errors/Defects?

Management of technical debt

◦ TD repayment

� How are you repaying technical debt back?

� How has refactoring been organized in your team?

� Do you refactor only when it is necessary or do you have a

plan for it?

◦ TD identification

� How do you identify technical debt?

� Do you have any tool for it or do you do it manually?

◦ TD measurement

� How do you measure technical debt?

� Do you have any tool for it or do you calculate it manually

from somewhere?

◦ TD monitoring

� How do you monitor technical debt?

216 J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218

D

D

E

E

F

F

F

F

G

G

G

G

K

K

K

K

K

L

L

L

L

L

� Do you have any tool for it?

◦ TD prioritization

� How do you prioritize technical debts?

� Do you do it based on a hunch and experience, or do you

have a model/method for it?

◦ TD communication

� How have you organized communication about technical

debt?

� Do you discuss technical debt often with the whole team?

◦ TD prevention

� How do you prevent technical debt?

� Coding standards?

� Code reviews?

� Definition of Done?

◦ TD representation/documentation

� Do you document technical debt issues in any way?

� Do you have a separate technical debt backlog?

Improvements for current technical debt

◦ Possible suggestions for improvements

� How would you like to improve you current practices re-

garding technical debt management?

� Is there anything else you would like to say?

References

Allman, E., 2012. Managing technical debt. Commun. ACM 55, 50–55. doi: 10.1145/

2160718.2160733 .
Al Mamun, M.A., Berger, C., Hansson, J., 2014. Explicating, understanding, and man-

aging technical debt from self-driving miniature car projects. In: 2014 Sixth In-
ternational Workshop on Managing Technical Debt (MTD), pp. 11–18. doi: 10.

1109/MTD.2014.15 .

Alves, N.S.R., Ribeiro, L.F., Caires, V., Mendes, T.S., Spinola, R.O., 2014. Towards an
ontology of terms on technical debt. In: 2014 Sixth International Workshop on

Managing Technical Debt (MTD), pp. 1–7. doi: 10.1109/MTD.2014.9 .
Baker Jr., R.A., 1997. Code reviews enhance software quality. In: Proceedings of the

19th International Conference on Software Engineering, ICSE ’97. New York, NY,
USA. ACM, pp. 570–571. doi: 10.1145/253228.253461 .

Barney, S., Aurum, A., Wohlin, C., 2008. A product management challenge: creating

software product value through requirements selection. J. Syst. Archit. 54, 576–
593. doi: 10.1016/j.sysarc.20 07.12.0 04 .

Boehm, B.W. , 2006. Value-based software engineering: seven key elements and
ethical considerations. In: Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grün-

bacher, P. (Eds.), Value-Based Software Engineering. Springer, Berlin Heidelberg,
pp. 109–132 .

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCormack, A.,

Nord, R., Ozkaya, I., Sangwan, R., Seaman, C., Sullivan, K., Zazworka, N., 2010.
Managing technical debt in software-reliant systems. In: Proceedings of the

FSE/SDP Workshop on Future of Software Engineering Research, FoSER ’10. New
York, NY, USA. ACM, pp. 47–52. doi: 10.1145/1882362.1882373 .

Charmaz, K. , 2014. Constructing Grounded Theory, second ed. SAGE Publications Ltd,
Thousand Oaks, CA .

Codabux, Z., Williams, B., 2013. Managing technical debt: an industrial case study.
In: 2013 4th International Workshop on Managing Technical Debt (MTD), pp. 8–

15. doi: 10.1109/MTD.2013.6608672 .

Codabux, Z. , Williams, B. , Niu, N. , 2014. A quality assurance approach to technical
debt. In: Proc. Int. Conf. Softw. Eng. Res. Pract. SERP Steer. Comm. World Congr.

Comput. Sci. Comput. Eng. Appl. Comput. WorldComp .
Cunningham, W. , 1992. The wycash portfolio management system (experience re-

port). OOPSLA .
as, S., Lutters, W.G., Seaman, C.B., 2007. Understanding documentation value in
software maintenance. In: Proceedings of the 2007 Symposium on Computer

Human Interaction for the Management of Information Technology, CHIMIT ’07.
New York, NY, USA. ACM doi: 10.1145/1234772.1234790 .

Davis, N., 2013. Driving quality improvement and reducing technical debt with the
definition of done. In: Agile Conference (AGILE), 2013, pp. 164–168. doi: 10.1109/

AGILE.2013.21 .
e Bruin, T. , Freeze, R. , Kaulkarni, U. , Rosemann, M. , 2005. Understanding the main

phases of developing a maturity assessment model. In: Campbell, B., Under-

wood, J., Bunker, D. (Eds.), Faculty of Science and Technology. Presented at the
Australasian Conference on Information Systems (ACIS), Australasian Chapter of

the Association for Information Systems, CD-ROM, pp. 8–19 .
isenberg, R.J., 2012. A threshold based approach to technical debt. SIGSOFT Softw.

Eng. Notes 37, 1–6. doi: 10.1145/2108144.2108151 .
rnst, N.A., Bellomo, S., Ozkaya, I., Nord, R.L., Gorton, I., 2015. Measure it? Man-

age it? ignore It? software practitioners and technical debt. In: Proceedings of

the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015. New York, NY, USA. ACM, pp. 50–60. doi: 10.1145/2786805.2786848 .

alessi, D., Kruchten, P., Nord, R.L., Ozkaya, I., 2014. Technical debt at the crossroads
of research and practice: report on the fifth international workshop on manag-

ing technical debt. SIGSOFT Softw. Eng. Notes 39, 31–33. doi: 10.1145/2579281.
2579311 .

orward, A., Lethbridge, T.C., 2002. The relevance of software documentation, tools

and technologies: a survey. In: Proceedings of the 2002 ACM Symposium on
Document Engineering, DocEng ’02. New York, NY, USA. ACM, pp. 26–33. doi: 10.

1145/585058.585065 .
owler, M., 2009. TechnicalDebtQuadrant [WWW Document]. URL

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html (accessed
7.7.14).

owler, M. , Beck, K. , Brant, J. , Opdyke, W. , Roberts, D. , 1999. Refactoring: Improving

the Design of Existing Code, first ed. Addison-Wesley Professional, Reading, MA .
reen, R., Ledgard, H., 2011. Coding guidelines: finding the art in the science. Com-

mun. ACM 54, 57–63. doi: 10.1145/2043174.2043191 .
riffith, I., Reimanis, D., Izurieta, C., Codabux, Z., Deo, A., Williams, B., 2014. The

correspondence between software quality models and technical debt estimation
approaches. In: 2014 Sixth International Workshop on Managing Technical Debt

(MTD), pp. 19–26. doi: 10.1109/MTD.2014.13 .

uo, Y., Seaman, C., 2011. A portfolio approach to technical debt management. In:
Proceedings of the 2nd Workshop on Managing Technical Debt, MTD ’11. New

York, NY, USA. ACM, pp. 31–34. doi: 10.1145/1985362.1985370 .
uo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G., da Silva, F.Q.B., San-

tos, A.L.M., Siebra, C., 2011. Tracking technical debt #x2014; an exploratory case
study. In: 2011 27th IEEE International Conference on Software Maintenance

(ICSM), pp. 528–531. doi: 10.1109/ICSM.2011.6080824 .

Holvitie, J. , Leppänen, V. , 2013. DebtFlag: technical debt management with a devel-
opment environment integrated tool. In: Proceedings of the 4th International

Workshop on Managing Technical Debt, MTD ’13. Piscataway, NJ, USA. IEEE
Press, pp. 20–27 .

emerer, C.F., Paulk, M.C., 2009. The impact of design and code reviews on software
quality: an empirical study based on PSP data. IEEE Trans. Softw. Eng. 35, 534–

550. doi: 10.1109/TSE.2009.27 .
linger, T., Tarr, P., Wagstrom, P., Williams, C., 2011. An enterprise perspective on

technical debt. In: Proceedings of the 2nd Workshop on Managing Techni-

cal Debt, MTD ’11. New York, NY, USA. ACM, pp. 35–38. doi: 10.1145/1985362.
1985371 .

rishna, V., Basu, A., 2012. Minimizing Technical Debt: developer’s viewpoint. In:
International Conference on Software Engineering and Mobile Application Mod-

elling and Development (ICSEMA 2012), pp. 1–5. doi: 10.1049/ic.2012.0147 .
ruchten, P., Nord, R.L., Ozkaya, I., 2012. Technical debt: from metaphor to theory

and practice. IEEE Softw. 29, 18–21. doi: 10.1109/MS.2012.167 .

ruchten, P., Nord, R.L., Ozkaya, I., Visser, J., 2012. Technical debt in software devel-
opment: from metaphor to theory report on the third international workshop

on managing technical debt. SIGSOFT Softw. Eng. Notes 37, 36–38. doi: 10.1145/
2347696.2347698 .

ee, A.S., Baskerville, R.L., 2003. Generalizing generalizability in information systems
research. Inf. Syst. Res. 14, 221–243. doi: 10.1287/isre.14.3.221.16560 .

ehtola, L., Kauppinen, M., 2006. Suitability of requirements prioritization methods

for market-driven software product development. Softw. Process Improv. Pract.
11, 7–19. doi: 10.1002/spip.249 .

Lethbridge, T.C., Singer, J., Forward, A., 2003. How software engineers use documen-
tation: the state of the practice. IEEE Softw. 20, 35–39. doi: 10.1109/MS.2003.

1241364 .
etouzey, J.-L. , 2012. The SQALE method for evaluating technical debt. In: Proceed-

ings of the Third International Workshop on Managing Technical Debt, MTD ’12.

Piscataway, NJ, USA. IEEE Press, pp. 31–36 .
Letouzey, J., Ilkiewicz, M., 2012. Managing technical debt with the SQALE method.

IEEE Softw. 29, 44–51. doi: 10.1109/MS.2012.129 .
im, E., Taksande, N., Seaman, C., 2012. A balancing act: what software practitioners

have to say about technical debt. IEEE Softw. 29, 22–27. doi: 10.1109/MS.2012.
130 .

Li, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study on technical debt and

its management. J. Syst. Softw. 101, 193–220. doi: 10.1016/j.jss.2014.12.027 .
i, Z. , Liang, P. , Avgeriou, P. , 2015. Architectural technical debt identification based

on architecture decisions and change scenarios. In: Proc. 12th Work. IEEEIFIP
Conf. Softw. Archit. WICSA. .

http://dx.doi.org/10.1145/2160718.2160733
http://dx.doi.org/10.1109/MTD.2014.15
http://dx.doi.org/10.1109/MTD.2014.9
http://dx.doi.org/10.1145/253228.253461
http://dx.doi.org/10.1016/j.sysarc.2007.12.004
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0006
http://dx.doi.org/10.1145/1882362.1882373
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0008
http://dx.doi.org/10.1109/MTD.2013.6608672
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0011
http://dx.doi.org/10.1145/1234772.1234790
http://dx.doi.org/10.1109/AGILE.2013.21
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0014
http://dx.doi.org/10.1145/2108144.2108151
http://dx.doi.org/10.1145/2786805.2786848
http://dx.doi.org/10.1145/2579281.2579311
http://dx.doi.org/10.1145/585058.585065
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0019
http://dx.doi.org/10.1145/2043174.2043191
http://dx.doi.org/10.1109/MTD.2014.13
http://dx.doi.org/10.1145/1985362.1985370
http://dx.doi.org/10.1109/ICSM.2011.6080824
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0024
http://dx.doi.org/10.1109/TSE.2009.27
http://dx.doi.org/10.1145/1985362.1985371
http://dx.doi.org/10.1049/ic.2012.0147
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1145/2347696.2347698
http://dx.doi.org/10.1287/isre.14.3.221.16560
http://dx.doi.org/10.1002/spip.249
http://dx.doi.org/10.1109/MS.2003.1241364
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0034
http://dx.doi.org/10.1109/MS.2012.129
http://dx.doi.org/10.1109/MS.2012.130
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0037

J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218 217

M

M

N

N
P

P

R

R
R

S

S

S

S

S

T

T

T

Y

Y

Y

Y

Z

Z

Z

Z

antyla, M.V., Lassenius, C., 2009. What types of defects are really discovered in
code reviews? IEEE Trans. Softw. Eng. 35, 430–448. doi: 10.1109/TSE.2008.71 .

cConnell, S., 2007. Technical Debt-10x Software Development | Construx
[WWW Document]. URL http://www.construx.com/10x _ Software _ Development/

Technical _ Debt/ . (accessed 3.25.14)
ord, R.L., Ozkaya, I., Kruchten, P., Gonzalez-Rojas, M., 2012. In search of a metric for

managing architectural technical debt. In: 2012 Joint Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA) and European Conference on Software

Architecture (ECSA)., pp. 91–100. doi: 10.1109/WICSA-ECSA.212.17 .

orton, M., 2009. Doc On Dev: Messy Code is not Technical Debt.
aulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V., 1993. Capability maturity model,

version 1.1. IEEE Softw. 10, 18–27. doi: 10.1109/52.219617 .
ower, K., 2013. Understanding the impact of technical debt on the capacity and

velocity of teams and organizations: viewing team and organization capacity as
a portfolio of real options. In: 2013 4th International Workshop on Managing

Technical Debt (MTD), pp. 28–31. doi: 10.1109/MTD.2013.6608675 .

amasubbu, N., Kemerer, C.F., Woodard, C.J., 2015. Managing technical debt: insights
from recent empirical evidence. IEEE Softw. 32, 22–25. doi: 10.1109/MS.2015.45 .

obson, C. , 2002. Real World Research, second ed. Wiley- Blackwell .
uneson, P., Höst, M., 2008. Guidelines for conducting and reporting case study

research in software engineering. Empir. Softw. Eng. 14, 131–164. doi: 10.1007/
s10664- 008- 9102- 8 .

eaman, C.B., 1999. Qualitative methods in empirical studies of software engineer-

ing. IEEE Trans. Softw. Eng. 25, 557–572. doi: 10.1109/32.799955 .
eaman, C., Guo, Y., Zazworka, N., Shull, F., Izurieta, C., Cai, Y., Vetro, A., 2012. Using

technical debt data in decision making: potential decision approaches. In: 2012
Third International Workshop on Managing Technical Debt (MTD), pp. 45–48.

doi: 10.1109/MTD.2012.6225999 .
eaman, C., Nord, R.L., Kruchten, P., Ozkaya, I., 2015. Technical debt: beyond defi-

nition to understanding report on the sixth international workshop on manag-

ing technical debt. SIGSOFT Softw. Eng. Notes 40, 32–34. doi: 10.1145/2735399.
2735419 .

onarQube, 2015. http://www.sonarqube.org/evaluate-your-technical-debt-with-
sonar/ Accessed: 2015-10-29.

trauss, A. , Corbin, J.M. , 1998. Basics of Qualitative Research: Techniques and Proce-
dures for Developing Grounded Theory. SAGE Publications .
amburri, D.A., Kruchten, P., Lago, P., Van Vliet, H., 2013. What is social debt in soft-
ware engineering? In: 2013 6th International Workshop on Cooperative and Hu-

man Aspects of Software Engineering (CHASE), pp. 93–96. doi: 10.1109/CHASE.
2013.6614739 .

heodoropoulos, T., Hofberg, M., Kern, D., 2011. Technical debt from the stakeholder
perspective. In: Proceedings of the 2nd Workshop on Managing Technical Debt,

MTD ’11. New York, NY, USA. ACM, pp. 43–46. doi: 10.1145/1985362.1985373 .
om, E., Aurum, A., Vidgen, R., 2013. An exploration of technical debt. J. Syst. Softw.

86, 1498–1516. doi: 10.1016/j.jss.2012.12.052 .

in, R.K. , 2003. Case Study Research: Design and Methods. Sage Publications, Thou-
sand Oaks, Calif .

li-Huumo, J. , Maglyas, A. , Smolander, K. , 2015. The benefits and consequences of
workarounds in software development project. 6th International Conference on

Software Business .
li-Huumo, J. , Maglyas, A. , Smolander, K. , 2014. The sources and approaches to man-

agement of technical debt: a case study of two product lines in a middle-size

finnish software company. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Män-
nistö, T., Münch, J., Raatikainen, M. (Eds.), Product-Focused Software Process

Improvement, Lecture Notes in Computer Science. Springer International Pub-
lishing, pp. 93–107 .

li-Huumo, J. , Rissanen, T. , Maglyas, A. , Smolander, K. , Sainio, L.-M. , 2015. The rela-
tionship between business model experimentation and technical debt. 6th In-

ternational Conference on Software Business .

azworka, N., Seaman, C., Shull, F., 2011. Prioritizing design debt investment op-
portunities. In: Proceedings of the 2nd Workshop on Managing Technical Debt,

MTD ’11. New York, NY, USA. ACM, pp. 39–42. doi: 10.1145/1985362.1985372 .
azworka, N., Shaw, M.A., Shull, F., Seaman, C., 2011. Investigating the impact of

design debt on software quality. In: Proceedings of the 2nd Workshop on Man-
aging Technical Debt, MTD ’11. New York, NY, USA. ACM, pp. 17–23. doi: 10.1145/

1985362.1985366 .

azworka, N., Spínola, R.O., Vetro’, A., Shull, F., Seaman, C., 2013. A case study on
effectively identifying technical debt. In: Proceedings of the 17th International

Conference on Evaluation and Assessment in Software Engineering, EASE ’13.
New York, NY, USA. ACM, pp. 42–47. doi: 10.1145/2460999.2461005 .

azworka, N., Vetro, A., Izurieta, C., Wong, S., Cai, Y., Seaman, C., Shull, F., 2014.
Comparing four approaches for technical debt identification. Softw. Qual. J. 22,

403–426. doi: 10.1007/s11219- 013- 9200- 8 , n.d. .

http://dx.doi.org/10.1109/TSE.2008.71
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://dx.doi.org/10.1109/WICSA-ECSA.212.17
http://dx.doi.org/10.1109/52.219617
http://dx.doi.org/10.1109/MTD.2013.6608675
http://dx.doi.org/10.1109/MS.2015.45
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0043
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1109/32.799955
http://dx.doi.org/10.1109/MTD.2012.6225999
http://dx.doi.org/10.1145/2735399.2735419
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0048
http://dx.doi.org/10.1109/CHASE.2013.6614739
http://dx.doi.org/10.1145/1985362.1985373
http://dx.doi.org/10.1016/j.jss.2012.12.052
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30053-X/sbref0055
http://dx.doi.org/10.1145/1985362.1985372
http://dx.doi.org/10.1145/1985362.1985366
http://dx.doi.org/10.1145/2460999.2461005
http://dx.doi.org/10.1007/s11219-013-9200-8

218 J. Yli-Huumo et al. / The Journal of Systems and Software 120 (2016) 195–218

t Lappeenranta University of Technology, Finland. His research interests include technical
has a M.Sc. (Tech) in software engineering from Lappeenranta University of Technology.

Software at Lappeenranta University of Technology, Finland. His research interests include

gies. Maglyas has a D.Sc. (Tech) in software engineering from Lappeenranta University of
s from Saint-Petersburg State Electrotechnical University, Russia.

Science, Aalto University, Finland. His current research interests are in the area of soft-

e and systems development practices and software development organizations related to
a University of Technology, Finland.
Jesse Yli-Huumo is a Ph.D. student in the Department of Innovation and Software a
debt, process improvements and software development methodologies. Yli-Huumo

Andrey Maglyas is a post-doctoral researcher in the Department of Innovation and

software product management, process improvements and management methodolo
Technology and a M.Sc. (Tech) in management of information systems and resource

Kari Smolander is Professor of Software Engineering in Department of Computer

ware development practices and includes especially the ongoing change in softwar
digitalization. Smolander has a Ph.D. (2003) in Computer Science from Lappeenrant

	How do software development teams manage technical debt? - An empirical study
	1 Introduction
	2 Background
	2.1 Technical debt
	2.2 Technical debt management
	2.3 Empirical studies on technical debt management in practice

	3 Research process
	3.1 Research methodology
	3.2 Case study design and company selection
	3.3 Data collection
	3.4 Data coding and analysis

	4 Results
	4.1 Case A
	4.2 Case B
	4.3 Case C
	4.4 Case D
	4.5 Case E
	4.6 Case F
	4.7 Case G
	4.8 Case H
	4.9 Summary of the cases

	5 Technical debt management framework
	6 Discussion
	6.1 RQ1.1-1.2: What TDM activities are used in the studied development teams? What methods, models, practices or tools do the studied development teams’ use for each TDM activity?
	6.1.1 Commonly used activities
	6.1.2 Occasionally used activities
	6.1.3 Rarely used activities

	6.2 RQ1.3: Are there any maturity differences on adopting TDM activities between development teams?
	6.3 RQ1.4: What are the biggest challenges in TDM?
	6.3.1 Lack of tools
	6.3.2 Knowledge of TD priorities
	6.3.3 Having a proper mindset with TDM
	6.3.4 Time-consuming TDM

	6.4 Limitations of the study and threats to validity
	6.4.1 Generalization of the results
	6.4.2 Construct validity
	6.4.3 Internal validity
	6.4.4 External validity
	6.4.5 Reliability

	6.5 Implications for future research

	7 Conclusion
	 Acknowledgments
	 Appendix A
	 References

