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Eukaryotic cells contain a variety of subcellular organelles, each of which performs unique tasks. Thus follows
that in order to coordinate these different intracellular functions, a highly dynamic system of communication
must exist between the various compartments. Direct endoplasmic reticulum (ER)–mitochondria communica-
tion is facilitated by the physical interaction of their membranes in dedicated structural domains known as
mitochondria-associatedmembranes (MAMs),which facilitate calcium (Ca2+) and lipid transfer between organ-
elles and also act as platforms for signaling. Numerous studies have demonstrated the importance of MAM in en-
suring correct function of both organelles, and recently MAMs have been implicated in the genesis of various
human diseases. Here, we review the salient structural features of interorganellar communication via MAM
and discuss themost common experimental techniques employed to assess functionality of these domains. Final-
ly, we will highlight the contribution of MAM to a variety of cellular functions and consider the potential role of
MAM in the genesis of metabolic diseases. In doing so, the importance for cell functions of maintaining appropri-
ate communication between ER and mitochondria will be emphasized.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Eukaryotic cells are characterized by a high degree of compartmen-
talization of biological and biochemical functions within specialized
membrane-bound organelles [1–3]. These cellular compartments are
often further partitioned into subdomains, thus providing a mechanism
to segregate specific processes into different regions within the same
organelle. Although this division is essential for separating potentially
incompatible activities, regulated integration of cellular physiology de-
pends upon effective cross-talk and functional coordination between
multiple organelles [4–6]. Such inter-organelle communication is fre-
quently achieved by direct physical contact between organellar mem-
branes and the necessary interactions are often highly regulated as
well as dynamic in time and space [4–7]. One of the best characterized
such inter-organellar communication sites is the connection between
the endoplasmic reticulum (ER) and mitochondria. The first evidence
for the existence of sites of physical interaction between these mem-
branes came from electron microscopy studies over 50 years ago [8].
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Rather interestingly, ER–mitochondria contacts were only isolated
some 30 years later, by means of subcellular fractionation using Percoll
density gradients [9,10]. This early evidence for the existence of physical
ER–mitochondria interactions led to the genesis of the term MAMs,
standing for Mitochondria-associated ER membranes [11]. Ever since
their discovery, the importance of these contact sites in organelle
cross-talk has been confirmed using numerous approaches (Fig. 1)
[4–6,12].

ER–mitochondria contact sites permit reciprocal regulation of func-
tion in both organelles, thereby impacting various cellular activities, in-
cluding energymetabolism, Ca2+ handling [13], lipid homeostasis [9] as
well as regulation of cell death and survival [4–7]. In this review, we
highlight the role of a number of proteins important in regulating the
ER–mitochondria interface, as well as key experimental approaches
used to study these inter-organellar contact sites and their physiological
function. We will also discuss how alterations in ER-to-mitochondria
communication contribute to the pathogenesis of major metabolic
diseases.

2. ER–mitochondria coupling

ER and mitochondria communicate through close physical juxta-
positioning of the two membranes, with distances between the two
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Fig. 1. ER–mitochondria contacts research timeline. Since the identification of ER–mitochondria contacts using electron microscopy, many aspects of their functional roles have been un-
covered. Alterations in lipidmetabolism, Ca2+ homeostasis and stress responses, aswell as the development ofmetabolic diseases represent the perhaps best-characterized consequences
attributed to cross-talk between both organelles.
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ranging from 10 to 25 nm. Despite the close proximity of the two organ-
elles, their membranes do not fuse, thus preserving their identity and
functionality [4,5,14]. Domain-specific tethering structures help to
Fig. 2. ER–mitochondria contacts and cell physiology. A, Direct Ca2+ transfer occurs between
GRP75. The SERCApump is also present at theER–mitochondria interface. B, Crucial enzymes for
synthase (PSS) and fatty acid-CoA ligase 4 (FACL4). C, ER–mitochondria contacts have been sho
regulator complexmTORC2 is present atMAM, and increases there in response to growth factor
such as the proteases presenilins, quality control lectin calnexin and sorting factor PACS-2. F, P
constriction GTPase Drp-1, and the mitochondrial fusion GTPase Mfn-2.
establish andmaintain theMAM,which can be either stable or transient
[15]. At the molecular level, these tethering structures are composed of
proteins and lipids, residing in the outer mitochondrial membrane
ER and mitochondria via IP3R and VDAC channels coupled to the cytoplasmic chaperone
lipidmetabolism reside at the ER–mitochondria contacts, among themphosphatidylserine
wn to represent nucleation spots for autophagosomes via ATG14 enrichment. D, Metabolic
stimulation. E, ER–mitochondria contacts contain proteins involved inproteinhomeostasis,
roteins that regulate organelle dynamics are present in MAM, such as the mitochondrial
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(OMM) or the ER membrane, which interact to facilitate the formation
of MAM. These inter-organellar domains not only sustain communica-
tion between ER and mitochondria but also confer new properties and
functions to the associated organelles (Fig. 2).

Using selective trypsin digestion, Csordás et al. initially demonstrat-
ed that the binding between ER andmitochondria is protein-dependent
[14].More recent studies then identified proteins involved in the forma-
tion of the MAM. Two independent studies using mass spectrometry
each identified approximately 1000 proteins localized to the MAM
(991 and 1212 proteins, respectively) [16,17]. Despite the large number
of proteins identified, only 44% of them identifiedwere common to both
studies. This difference may be due, in part, to differences between cell
types, i.e., human fibroblasts versusmouse brain, respectively [16,17]. In
addition, the samples analyzed, though highly enriched for MAM, were
most certainly contaminated with other cellular components reflecting
the tissue or cell type of origin.

Mitochondria obtain most of their proteins by direct import from
cytosolic ribosomes [18,19]. In addition, mitochondrial membrane bio-
genesis requires the import of membrane phospholipids. The ER is the
main site of phospholipid biosynthesis and plays a fundamental role in
intracellular vesicular trafficking pathways. Because mitochondria are
not connected to classical vesicular trafficking mechanisms, they
require direct lipid transfer from the ER [6]. More importantly, bio-
synthesis of some phospholipids depends on this communication.
Phosphatidylserine (PS), synthesized at ER, is transported tomitochon-
dria for its conversion to phosphatidylethanolamine (PE) by the mito-
chondrial enzyme PS decarboxylase [9,20]. Then, PE returns to the ER
for conversion to phosphatidylcholine (PC), which is ultimately trans-
ferred back for mitochondrial membrane biosynthesis [6,20].
2.1. The ERMES complex in yeast

The best characterized ER–mitochondria tethering complex is the
ER–mitochondria encounter structure (ERMES) identified in yeast
(Saccharomyces cerevisiae). This complex is composed of 4 proteins:
Mmm1 localized at the ER membrane, Mdm10 and Mdm34 in the
OMM, and the cytosolic protein Mdm12 [21–23]. The ERMES complex
has been implicated in many cellular functions, including phospholipid
exchange and Ca2+ cross-talk between ER and mitochondria, protein
import and mitochondrial genome maintenance [23].

The ERMES is thought to facilitate lipid exchange at the ER–mito-
chondria interface by establishing a zone where the distance between
organelles is relatively small, thus ensuring the specificity and efficacy
of the exchange reaction [6]. Three of the ERMES proteins (Mdm12,
Mdm34 and Mmm1) contain a synaptotagmin-like-mitochondrial-
lipid binding protein (SMP) domain. The SMP domain is related to the
TULIP domain (tubular lipid-binding), which binds and transports
lipids, thereby providing a structural basis to explain how lipid
exchange occurs between adjacent membranes at ER–mitochondria
contacts [24]. According to one study, deletion of ERMES components
alters PS conversion to PC, demonstrating that the ERMES complex is re-
quired for optimal lipid exchange between cellular compartments.
These defects can be partially rescued by the expression of an artificial
ER–mitochondrial tether, suggesting that close membrane proximity
alone can facilitate transfer [22,23]. Nevertheless, another study by
Nguyen et al. shows that the deletion of ERMES proteins in yeast neither
directly affects PS to PE conversion nor altersmitochondrial inheritance,
because both these effects are secondary to morphological changes in
mitochondria [25]. Accordingly, these observations suggest that the
ERMES complex plays a structural role, linking ER to mitochondria and
regulating mitochondrial morphology, without participating directly
in lipid transfer [25]. Recent studies suggest that maintenance of
ER–mitochondria tethering and phospholipid transfer requires, in addi-
tion to the ERMES complex, ER-shaping proteins [26] and components
of the ER membrane protein complex (EMC) [27], underscoring that
the regulation of this process is complex and is still not completely
understood.

2.2. Tethering complexes in mammalian cells

Homologues of the core components of ERMES have not yet been
identified in mammalian cells, where the ER–mitochondrial interface
appears to be more complex. Many proteins and protein complexes
have been implicated in ER–mitochondria tethering, as well as facilitat-
ing functional transit of metabolites and signaling molecules between
both organelles. Most of these proteins are components of the MAM
and contribute to their stability (Fig. 2) [28].

Mitofusins, Mfn-1 and Mfn-2, are two related GTPases that localize
to the mitochondrial surface, where they participate in mitochondrial
fusion. Notably, Mfn-2 is also present at the ER, specifically at MAM,
where it forms heterotypic or homotypic interactions with mitochon-
drial Mfn-1 or Mfn-2, thus forming ER–mitochondria bridges (Fig. 2F)
[29]. Accordingly, Mfn-2 silencing in embryonic fibroblasts and HeLa
cells has been shown to increase the distance between ER and mito-
chondria [29]. Furthermore,MAM composition is altered in cells lacking
Mfn-2, consistent with a loosening of the ER–mitochondria connection
in the absence of Mfn-2 [29]. Mfn-2 activity at the ER–mitochondria in-
terface is regulated by MITOL, a mitochondrial ubiquitin ligase [30].
MITOL mediates the addition of lysine 63-linked polyubiquitin chains
to mitochondrial-localized Mfn-2, but not to ER-localized Mfn-2.
Polyubiquitination of Mfn-2 induces oligomerization, a fundamental
step in Mfn-2-dependent ER–mitochondria tethering [30].

In mammals, Ca2+ transfer from ER to mitochondria is facilitated by
the cytosolic chaperone glucose-regulated-protein 75 (GRP75), which
forms a complex with the ER transmembrane Ca2+ release channel, the
inositol 1,4,5-trisphosphate receptor (IP3R), and the mitochondrial
porin voltage-dependent anion channel (VDAC) in theOMM[31]. This in-
direct interaction between IP3R and VDAC provides the juxtapositioning
required for efficient ER-to-mitochondria Ca2+ transfer (Fig. 2A). Once
Ca2+ ions have passed through the OMM, they enter into the matrix
through amitochondrial Ca2+ uniporter (MCU). Themany roles attribut-
ed to ER–mitochondria Ca2+ transfer will be discussed in Section 4.

ER–mitochondria contacts are also enriched in proteins that
participate in the synthesis and transport of phospholipids and
glycosphingolipids [9,32]. Phosphatidylserine synthase (PSS), the
enzyme responsible for generating PS in the ER was one of the first
described components of MAM [9,33]. Newly synthesized PS is pref-
erentially funneled from ER tomitochondria [10], where it is used for
the synthesis of PE [6]. In mammals, PE is also transferred back to the
ER for its conversion to PC, via PEmethylation by the hepatic enzyme
PE-N-methyltransferase [34]. This enzyme is enriched in MAM and is
actually a good marker for MAM fractions in hepatocytes [6,34]. The
fatty acid-CoA ligase type 4 (FACL4), which plays a key role in lipid
synthesis and degradation, is also present in MAM, and is frequently
used as a marker during subcellular fractionations [6]. These, and
other enzymes involved in lipid homeostasis, are considered struc-
tural components of the MAM, contributing both to the stability
and dynamics of this structure (Fig. 2B) [6,33]. For more details
concerning lipid management at the ER–mitochondria interface,
the interested reader is referred to additional literature [6].

Another protein complex that potentially aids in tethering ER tomi-
tochondria is that formed between the integral ER membrane protein
Bap31, and themitochondrialfission protein Fis-1 in theOMM.Upon in-
duction of apoptosis, this complex recruits and activates caspase-8,
which in turn cleaves Bap31 to yield a pro-apoptotic fragment
p20Bap31 [35]. Thus, this complex serves as a platform that couples
ER–mitochondrial communication directly to apoptotic signaling.

The ER–mitochondria interface is also a site for processes involved in
cellular proteostasis (Fig. 2E). The sorting factor, phosphofurin acidic
cluster sorting protein 2 (PACS-2), is present at the MAM. Depletion of
PACS-2 increases organelle distance and favors apoptosis by promoting
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caspase-dependent cleavage of Bap31 [36]. Other MAM components
associated with protein processing include the ER-resident chaperone
sigma-1 receptor (Sig-1R) [37], various presenilin proteases [38] and
calnexin, which is involved in protein quality control [39].

3. Assessment of ER–mitochondria contacts

Since the first observations of ER–mitochondria contacts in themid-
twentieth century [8], variousmethods have been employed to evaluate
physical and functional ER–mitochondria coupling (Fig. 3). The most
direct approach to visualize physical ER–mitochondria interaction is
by electronmicroscopy, which offers the resolution required to quantify
the distance between membranes, the number of contacts, and the
length of their interface [14]. This technique, coupled with thin tomog-
raphy, has been used to provide further insight to the 3D nature of or-
ganelle contacts (for instance, ER-mediated mitochondrial constriction
Fig. 3. ER–mitochondria communication toolkit. Currently, different strategies are available to
using electron microscopy, fluorescence microscopy and the proximity ligation assay. The comp
tion ofmitochondria fromMAM. For functionality, Ca2+ transfer and lipid exchange are two qua
and pharmacologic strategies that permit increasing or disrupting ER–mitochondria contact sit
[40]). These experimental strategies, however, are not widely available,
and thus are not well-suited for routine ER–mitochondria examination.
Recently, the use of IP3R–VDAC proximity ligation assay (PLA) has prov-
en useful for the quantification of ER–mitochondria interactions [39].
When combined with standard fluorescence microscopy, this approach
also provides a fairly simple method to analyze the cellular distribution
of organelle contacts. Colocalization of recombinant targeted proteins,
specific probes or immunofluorescent labels represents a third widely
used strategy in organelle research, which however is inherently limit-
ed by the fact that the distance between ER andmitochondria at contact
sites is below the resolution of optical systems (around 150 nm for
confocal microscopes). Therefore, this approach is more a measure of
organelle proximity, rather than actual ER–mitochondria contacts.

A biochemical approach to studying ER–mitochondria communica-
tion is the purification of MAM using Percoll density gradients [41].
The main objective of this method is to analyze the composition of ER
study ER–mitochondria communication. Imaging of organelle proximity can be achieved
osition of ER–mitochondria contacts can be determined via cell fractionation, and separa-
ntifiable events that occur at the ER–mitochondria interface. Finally, there are somegenetic
es and, in doing so, assessing their importance in cell physiology.
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membranes in close interaction with mitochondria. Identification of
molecular entities residing at MAM, as well as how they change in re-
sponse to the cellular environment, yields important information
concerning the processes orchestrating ER–mitochondria cross-talk.
One example of MAM plasticity is the redistribution and repurposing
of the protein chaperone calnexin. In response to ER stress, calnexin
moves from the ER–mitochondria interface, where it regulates Ca2+ ho-
meostasis, to the ER protein folding compartment [42]. This exquisite
mechanism not only contributes to restoring protein homeostasis via
ER quality control, but also adjusts mitochondrial Ca2+ uptake, in
order to engage mitochondria in the adaptive response (see Section 4
for further details).

The functional impact of ER–mitochondria communication on lipid
exchange and Ca2+ transfer has been analyzed in both cell lines and
isolated tissues. Lipid exchange is quantified primarily as PS-to-PE
conversion, or as mitochondrial PS content [9]. These strategies require
radioisotopes to label phospholipids, which can then be identified
and quantified by thin layer chromatography [9] or mass spectroscopy
[43,44]. Ca2+ transfer is more widely used and is typically measured
in living cells as increases in mitochondrial Ca2+ elicited in response
to IP3-generating agents that provoke Ca2+ release from the ER (e.g.
histamine). For this purpose, both recombinant targeted protein
sensors [45] as well as fluorescent chemical indicators [46] have
been used. Interestingly, a pericam-based inducible OMM-ER linker
has been employed to directly measure Ca2+ microdomains at the
ER–mitochondria interface [47].

Finally, to demonstrate the importance of the ER–mitochondria
contacts in modulating cellular responses, several strategies have been
devised to alter the nature of ER–mitochondrial interactions. To artifi-
cially tighten organelle physical association, a synthetic linker targeted
simultaneously to the OMM and the ER has been used both in vitro
[14] and in vivo [48]. Similarly, an inducible linker has also been devel-
oped, consisting of anOMM-targeted FKBP (FK506 binding protein) and
an ER-targeted FRB (FKBP12-rapamycin binding domain), that rapidly
dimerize in response to rapamycin [47]. This strategy, however, does
not create new organelle contacts, but rather increases the contact sur-
face at sites where ER and mitochondria are already in close apposition.
In terms of endogenous targets, Sig-1R is a candidate target for altering
ER–mitochondria interactions, either throughpharmacologicalmodula-
tion [49] or via overexpression [50].Mfn-2 overexpression has also been
used to increase ER–mitochondria contacts [51,52]; however, the fact
that Mfn-2 also participates in mitochondrial fusion complicates the
interpretation of such experiments. Strategies to disrupt or decrease or-
ganelle interaction have primarily focussed on silencing the expression
of relevant proteins, such as PACS-2 [48], IP3R [48] andMfn-2 [45]. Like-
wise, disruption of functional coupling has been accomplished through
genetic or pharmacological inhibition of the ER-to-mitochondria Ca2+

handling axis by targeting the IP3R, VDAC, or MCU.

4. ER–mitochondria control of cell function

4.1. Mitochondrial Ca2+ in mitochondrial metabolism and cell death

Understanding the mechanisms controlling communication be-
tween ER and mitochondria is important because it impacts on a wide
spectrum of cellular fates, ranging from pro-survival metabolic re-
sponses to cell death. ER-to-mitochondria Ca2+ transfer through the
MAM is a central mechanism in both processes, despite the divergent
outcomes. A moderate increase in ER–mitochondria contacts can help
cells to adapt to stress conditions that require enhanced metabolic
output [24]. Moreover, constitutive, basal transfer of Ca2+ from ER to
mitochondria, throughMAM, is essential formaintaining cellular bioen-
ergetics [53]. When this basal transfer is abrogated, cells activate the
“self-eating” survival mechanism of autophagy to ensure an adequate
energy supply [53]. Ca2+ concentration in the mitochondrial matrix
acts as a rheostat for metabolism and oxidative phosphorylation
[54–56] by increasing the activity of key catabolic enzymes, such as
the pyruvate dehydrogenase complex (PDC), isocitrate dehydrogenase
and α-ketoglutarate dehydrogenase. The last two enzymes are directly
regulated by Ca2+ [57,58], while the regulation of the PDC ismore com-
plex. PDC,which catalyzes the conversion of pyruvate into acetyl-CoA, is
inhibited by phosphorylation. Ca2+ controls this process by activating
the pyruvate dehydrogenase phosphatase [59] and inhibiting the pyru-
vate dehydrogenase kinase (PDK) [60], which together results in
dephosphorylation and activation of PDC. Moreover, Ca2+ can directly
activate mitochondrial ATP synthase, thus increasing the production of
ATP [56,61].

On the other hand, mitochondrial Ca2+ overload sensitizes mito-
chondria to apoptotic stimuli [62]. Highmatrix Ca2+ levels are associat-
ed with the activation of the permeability transition pore (PTP). PTP
opening results in the dissipation of the mitochondrial potential,
swelling of the organelle and release of pro-apoptotic factors, such
as cytochrome C, triggering programmed cell death [62–64]. Thus, if
ER–mitochondria connections are too widespread and prolonged
in time, the initially beneficial effects for the cell can convert into pro-
apoptotic stimuli. For a more detailed review of this dual regulation,
the interested reader is referred to [28]. For a better understanding of
the role of MAM in cell death, see also [65].

4.2. ER–mitochondria contact sites and autophagy

As alluded to earlier, ER–mitochondria contact sites are involved
in regulating autophagic activity. Macroautophagy is a self-eating
process, conserved in all eukaryotes, by which cells engulf cytoplas-
mic contents and organelles within double-membrane vesicles,
called autophagosomes, which then fuse with lysosomes for degra-
dation. Macroautophagy, the molecular basis of cellular quality con-
trol, participates in degrading damaged or useless components, and
is also employed as an adaptive response to nutrient deprivation
[62,63,66]. The origin of the isolation membrane for the formation
of autophagosomes has been a matter of debate for many years
[66]. In yeast, a membranous structure, called the omegasome, arises
from a specialized domain of the ER [67]. However, the exact origin of
the isolationmembrane in yeast appears to be dependent on the nature
of autophagy. While so-called non-selective autophagosomes originate
from the omegasome, the isolation membrane for selective autophagy
of mitochondria is derived from the ERMES complex at ER–mitochon-
drial contact sites [68]. In mammalian cells, various organelles have
been proposed as candidates that give rise to the isolation membrane,
including the ER, the ER-Golgi intermediate compartment, mitochon-
dria, the Golgi apparatus, plasma membrane and recycling endosomes
[66]. Although the exact origin continues to be an issue of debate,
there is strong evidence that isolation membranes can emerge from
MAM. To that end, Hamasaki et al. demonstrated that some elements
of the autophagic machinery, including Atg14, accumulate in MAM
under conditions of starvation (Fig. 2C) [69]. Additionally, disruption
of MAM, by knocking down PACS-2 or Mfn-2, can attenuate the forma-
tion of autophagosomes [69].

4.3. ER–mitochondria contact sites and ER stress

Disruption of normal ER function can lead to the accumulation of
misfolded or unfolded proteins in the ER lumen. The unfolded protein
response (UPR) is an adaptive cellular response to ER stress that re-
stores ER homeostasis by increasing synthesis of chaperones, inhibiting
general protein translation, enhancing degradation of misfolded pro-
teins, and increasing total ER volume [70]. This response also includes
changes in cellularmetabolism to providemetabolic support for cellular
adaptation. We have shown that in early stages of ER stress, there is a
microtubule-dependent redistribution of the ER and the mitochondrial
network towards the perinuclear area of the cell and an increase in
ER–mitochondrial contacts in this region [45]. This reorganization is
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associatedwith an increase inmitochondrial Ca2+ uptake,mitochondri-
al metabolism and ATP production [45]. Disruption of ER–mitochondria
contacts or blockage of Ca2+ transfer increases cell death in response to
ER stress, suggesting that this reorganization favors cell survival [45,70].
Other studies have shown that the MAM-resident chaperone Sig-1R
plays an important role in regulating ER–mitochondria contacts during
ER stress. Sig-1R helps to increase the efficiency of Ca2+ transfer to
mitochondria and ATP production promoting cell survival during condi-
tions of ER stress [28,50]. Sig-1R helps to stabilize IRE-1α, a main sensor
of ER stress, at theMAM, allowing the correct folding, dimerization, and
prolonged activation of IRE-1α supporting cell survival [37]. Although
ER–mitochondria contacts potentially aid in generating an adaptive
response in early stages of ER stress, one may also speculate that these
same organelle contacts ultimately promote cell death, if stress is main-
tained for extended periods of time, by producing mitochondrial Ca2+

overload and apoptosis.
Mfn-2 has also been associated with the ER stress response. Induc-

tion of ER stress increases Mfn-2 levels [71] and, otherwise, Mfn-2
deficiency can promote ER stress [71,72] further highlighting the impor-
tance of MAM function in the ER stress response.

4.4. ER–mitochondria contact sites and cellular signaling

In addition to its role in regulating cell metabolism, autophagy and
ER stress, ER–mitochondria contact sites also act as scaffolding hubs
for cell signaling. One of the best examples for MAM involvement is
the insulin signaling pathway, whereMAM integrity seems to be funda-
mental for effective signal transduction [39]. Several components of
insulin signaling (and other growth factor pathways) are enriched in
MAM. The protein kinase Akt localizes at the ER–mitochondria interface
[39,73,74]where it phosphorylates IP3R, thus reducing Ca2+ release and
preventing apoptosis [75,76]. Mammalian target of rapamycin complex
2 (mTORC2), another component of the insulin signaling pathway, is
known to localize to ER membranes, where it interacts directly with
ribosomes [77]. A more recent study shows that this interaction takes
place at ER–mitochondria contact sites and increases in response to
growth factor stimulation (Fig. 2D) [73]. Moreover, mTORC2 is neces-
sary to maintain MAM integrity and mitochondrial function [73].
PTEN, a known tumor suppressor, is also enriched at MAM, where it
sensitizes cells to apoptosis by dephosphorylating IP3R and restoring
Ca2+ release [78]. Promyelocytic leukemia protein (PML), another
tumor suppressor, also localizes to these contact sites and modulates
sensitivity to apoptosis by sequestering the phosphatase PP2A together
with Akt and IP3R, and regulating Akt phosphorylation and Ca2+ release
by IP3R [74].

IP3R phosphorylation by Akt, in addition to regulating sensitivity to
apoptosis by preventing mitochondrial Ca2+ overload, also provides
negative feedback to the insulin signaling cascade. Recently we have
shown that mitochondrial Ca2+ uptake is crucial for effective insulin
signaling in skeletal muscle cells [79] and cardiac myocytes [80].
Pharmacological inhibition of mitochondrial Ca2+ uptake reduces
insulin-dependent Akt phosphorylation, Glucose transporter 4 (GLUT4)
membrane translocation and glucose uptake in these cells [79,80].

Tubbs et al. [39] recently described an important connection be-
tween MAM integrity and insulin signaling in hepatocytes. Disruption
of MAM, by silencing structural proteins, impairs insulin signaling in
hepatocytes. Conversely, overexpression of MAM proteins enhances
insulin signaling. In vitro treatment of hepatocytes under lipotoxic con-
ditions, which are commonly associated with insulin desensitization,
reduces MAM content. This effect is also seen in vivo, in both genetic
and diet-induced diabetic mice, which exhibit a reduction in hepatocyte
ER–mitochondria interactions. The pharmacologic rescue of insulin
sensitivity restores these interactions, highlighting the reciprocal regu-
lation of both processes [39]. Nonetheless, the nature of the molecular
mechanism that links MAM integrity to insulin signaling remains
unknown.
5. ER–mitochondria contacts in metabolic diseases

Over the past few years, various pathologies have been associated
with alterations in MAM composition and function. Here, we will
focus on the role of ER–mitochondria communication in the pathogen-
esis of metabolism-related diseases. For a more extensive review on
the role of MAM in redox-related pathologies and neurodegenerative
disorders, see [6,65,81].

5.1. Changes in ER–mitochondria contacts as a mechanism for obesity-
associated diseases

The last fewdecades have been characterized by a growing epidemic
of obesity, today representing a serious public health concern world-
wide. Research has shown that mitochondrial dysfunction and ER stress
play key roles in the pathophysiology of obesity-related comorbidities,
such as insulin resistance and type 2 diabetes mellitus (T2DM).

Mitochondrial dysfunction in various metabolically-relevant cell
types and tissues mediates several deleterious effects associated with
obesity and/or T2DM. This is supported by an association between
mitochondrial dysfunction and reduced insulin sensitivity, as well as
decreased adipocyte secretion of the anti-inflammatory, insulin-
sensitizing hormone adiponectin [82] and impaired β-cell function in
the pancreas [83] (Fig. 4). In mouse models, hepatic mitochondrial dys-
function is linked to impaired liver adiponectin signaling and non-
alcoholic steatohepatitis in response to high fat diet (HFD) [84]. Mito-
chondrial dysfunction has also been associated with a reduced ability
of skeletal muscle to respond to insulin, likely exacerbating ectopic
lipid accumulation and whole body insulin resistance [85].

Impaired mitochondrial function is in turn related with ER stress,
which is recognized as an independent contributor to impaired insulin
production in pancreatic β cells and insulin resistance [86], in addition
to decreased human adipocyte adiponectin production, leptin resis-
tance and elevated inflammation [87,88]. Until very recently, obesity-
related research has viewed ER stress and mitochondrial dysfunction
as independent events that are increased in obesity and associated
metabolic diseases [89–91]. However, as discussed in previous sections,
these two organelles are intimately connected and physically linked via
MAM, making them functionally interdependent: mitochondria dys-
function is expected to affect the ER and vice versa. In support of this
notion, experiments impairing mitochondrial function have shown to
also activate ER stress in 3T3L1 adipocytes [92]. In vivo, mice on a HFD
(with the ensuing obesity and metabolic syndrome phenotype) show
signs of both mitochondrial dysfunction and ER stress in the liver and
skeletal muscle [93]. On the other hand, silencing of Mfn-2 (see
Section 2) leads to ER stress and reduced insulin signaling in the skeletal
muscle and liver, and greater susceptibility to developing insulin resis-
tance [72].

A recent study showed that obesity in mice is accompanied
by marked reorganization of MAM in the liver, with increased ER–
mitochondria contacts and simultaneous mitochondrial Ca2+ over-
load accompanied by mitochondrial dysfunction [48]. Animals
with artificially-induced ER–mitochondria interactions and fed a HFD
showed increased hepatic lipid accumulationwith impaired glucose ho-
meostasis and insulin sensitivity [48]. Interestingly, down-regulating
ER–mitochondria tethering (PACS-2) or Ca2+ transport (IP3R), im-
proved both cellular stress and glucose metabolism in obese mice.
These observations suggest that ER–mitochondrial coupling in obesity
may play a pathophysiological role in insulin resistance and T2DM
[48]. However, not all studies agree on the deleterious effects of
ER–mitochondria contacts, suggesting that there may be tissue- or
context-specific roles for the MAM. Ablation of Mfn-2 in pro-
opiomelanocortin (POMC) neurons in the hypothalamus (key in
appetite regulation, with an anorexigenic effect) resulted in loss of
ER–mitochondria contacts, ER stress-induced leptin resistance, hyper-
phagia, reduced energy expenditure and obesity [90]. Moreover,



Fig. 4. Atlas of ER–mitochondria contacts andmetabolic diseases. Recent evidence suggests that altered ER-to-mitochondria communication is associated with obesity, insulin resistance,
cardiac hypertrophy and pulmonary artery hypertension in different tissues.
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POMCneurons inHFD-induced obesemice showed less ER–mitochondria
contacts when compared to lean controls [90] (Fig. 4). Time-course
studies in these mice established that down-regulation of Mfn-2 expres-
sion in the hypothalamus was induced as early as four days on a HFD,
and was maintained throughout the observation period. Overexpression
of Mfn-2 improved the altered parameters, such as body weight, body
fat, plasma leptin and food intake, as well as attenuating markers of ER
stress.

Cardiovascular diseases are frequently associated with obesity,
metabolic syndrome, insulin resistance and T2DM. Pathological cardiac
hypertrophy, often associated with changes in cardiomyocyte metabo-
lism and insulin resistance [80,94], is the gateway tomore serious condi-
tions, such as heart failure. Using cultured rat neonatal cardiomyocytes,
we demonstrated that insulin can induce Ca2+ release from the ER [95]
and its subsequent uptake into mitochondria [80]. As described in
Section 4.4, Ca2+ transfer from ER tomitochondria is essential for insulin
signaling in cardiomyocytes [80]. The treatment of cardiomyocytes with
norepinephrine, mimicking a pro-hypertrophic milieu, enhances the
distance betweenERandmitochondria, decreasing insulin-inducedmito-
chondrial Ca2+ uptake, Akt phosphorylation and glucose entry, thereby
providing evidence for insulin desensitization [80]. Blocking mitochon-
drial Ca2+ uptake is sufficient to reproduce the effects of norepinephrine,
suggesting that ER–mitochondria communication is an essential compo-
nent in the pathogenesis of cardiac hypertrophy and associatedmetabolic
dysfunction (Fig. 4) [80].

Current evidence strongly suggests that ER–mitochondria interac-
tions play key tissue- and context-specific roles in the regulation of
energy metabolism and the pathophysiology of obesity-related
metabolic diseases. Further deciphering the intracellular mechanisms
involved in the pathogenesis of such disorders, in the perspective of
developing protective strategies in metabolically relevant tissues, hold
the potential of significantly reducing the deleterious consequences of
obesity.

5.2. The ER–mitochondria junction in pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is a severe disease of the
pulmonary circulation, characterized by excessive vascular remodeling
that causes right ventricular failure, and is ultimately lethal [96]. The
median survival of untreated patients is less than 3 years after diagnosis
and, despite the progress in current pharmacology, survival rates
remain low [97]. A key event in the development of PAH occurs in
smooth muscle cells derived from pulmonary artery (PASMCs), which
acquire a highly proliferative phenotype characterized by resistance to
apoptosis, leading to lumen occlusion of small vessels in the pulmonary
circulation, thereby causing an increase in mean pulmonary artery
pressure [98].

Currently, mitochondria are recognized to play a key role in vascular
remodeling observed in patients with PAH. PASMCs from these individ-
uals undergo a metabolic shift, away from utilizing fatty acid and
glucose oxidation to generate ATP, towards relying on cytoplasmic
glycolysis as the main source of energy. Suppression of mitochondrial
PDC and oxidative phosphorylation are crucial in the pathogenesis of
PAH. These events initiate a series of changes that include increased
mitochondrial membrane potential, an increased threshold for PTP
opening, and resistance to apoptosis as a consequence. Additionally,
the generation of mitochondria-derived reactive oxygen species and
metabolic intermediates decreases. All these factors contribute to the
activation of transcription factors, such as nuclear factor of activated
T-cells (NFAT), hypoxia-inducible factor 1α (HIF-1α), or epigenetic
mechanisms, all of which tend to stimulate cellular proliferation [99].

Severe PAH is associated with the induction of the mitochondrial
metabolic shift. Likewise, viral infections [100], inflammation [101],
drug or toxin exposure [102], mutations in the bone morphogenetic
protein (BMP) receptor 2 [103] and hypoxia [100] have similar effects.
Of note, these same factors also promote ER stress. Moreover, ER stress
is known to favor metabolic remodeling of mitochondria in pulmonary
arteries during PAH, due to the disruption of ER–mitochondria contacts
[104].

In PASMCs, the induction of ER stress leads to the activation of the
Activating transcription factor 6 (ATF6), promoting increased expres-
sion of Nogo-B, amember of the reticulon family of ER-shaping proteins
[104]. Nogo-B, in turn, increases the distance between mitochondria
and ER, resulting in a decrease in Ca2+ transfer fromER tomitochondria,
therefore inhibiting Ca2+-sensitive mitochondrial enzymes. This
contributes to the mitochondrial metabolic remodeling, which, as
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previously indicated, is critical in the pathogenesis of PAH [104,105].
The specificity of ATF6 activation and Nogo-B expression in the
pulmonary circulation during evolution of PAH, makes them attractive
therapeutic targets for future research.

As a result of themitochondrialmetabolic shift during PAH, a charac-
teristic phenotype is promoted that is associated with increased mito-
chondrial fragmentation and an increased proliferation of PASMCs
[98]. These structural changes have been associated in turn with
changes in levels of proteins involved in mitochondrial dynamics that
regulate both fission and fusion of themitochondrial network. Available
reports indicate that both in patients and experimental PAH models
there is an increase in Drp-1 (a protein promoting mitochondrial
fission) associated with decreased levels of proteins involved in the
fusion process, such as Mfn-1 and Mfn-2 [106]. Mfn-2 deficiency
contributes to PASMC hyperproliferation in patients with PAH and in
two well-established rodent models of PAH [107].

In summary, ER–mitochondria contact sites are able to regulate
processes, such as mitochondrial fragmentation and Ca2+ homeostasis,
and their disruption may be part of the molecular and cellular mecha-
nisms underlying several human diseases (Fig. 4).

6. Concluding remarks

The importance of the communication between ER and mitochon-
dria is widely recognized; however, we have yet to uncover the many
different facets of the exchange processes involved and their impor-
tance in cell physiology and the genesis of diseases.

Although data available on the proteins that constitute the structural
link between ER and mitochondria in mammalian cells are constantly
increasing, there are still many uncertainties concerning the exact com-
position of MAM and how it changes in response to various stimuli and
cellular stress. A better understanding of the dynamic structure of
MAMwill allow the development of new tools and strategies to modu-
late ER–mitochondria contacts, therebyproviding a solid basis for future
targeted therapies.

Communication between organelles is just beginning to be taken
into account in the study of human disease. Whereas in the past,
dysfunction of an individual organelle type was generally viewed as
contributing alone to a specific pathology, it is now clear that communi-
cation between organelles is widespread and that disruption of such
exchange is detrimental to human health. This is particularly apparent
for ER–mitochondria contacts in the pathogenesis of a growing number
of diseases, and particularly those related to the so-called metabolic
syndrome. However, it remains an important challenge to definitely
demonstrate the existence of a causal relationship between aberrant
organellar communication and the development of specific pathologies.
Despite a growing body of evidence demonstrating strong associations,
it is still remains unclear whether these abnormalities are a cause or a
consequence of disease.

With this in mind, the hope for the next few years is that the scien-
tific communitywill resolve these questions and develop a comprehen-
sive understanding of the functional components of MAM, how they
adapt to stress, and how alterations in this platform contribute to the
development of human disease.
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