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SUMMARY

Organisms maintain the correct balance of in-
tracellular metals primarily through metal-sens-
ing proteins that control transport and storage
of the target ion(s). Here, we reveal the basis
of metal sensing and genetic control by a metal-
loregulatory RNA. Our data demonstrate that a
previously uncharacterized orphan riboswitch,
renamed the ‘‘M-box,’’ is a divalent metal-sens-
ing RNA involved in Mg2+ homeostasis. A com-
bination of genetic, biochemical, and biophysi-
cal techniques demonstrate that Mg2+ induces
a compacted tertiary architecture for M-box
RNAs that regulates the accessibility of nucleo-
tides involved in genetic control. Molecular de-
tails are provided by crystallographic structure
determination of a Mg2+-bound M-box RNA.
Given the distribution of this RNA element, it
may constitute a common mode for bacterial
metal ion regulation, and its discovery suggests
the possibility of additional RNA-based metal
sensors in modern and primordial organisms.

INTRODUCTION

Metal ions are a requirement for life but become an intra-

cellular threat when present in excess. Studies from many

laboratories have revealed how homeostasis mechanisms

are elegantly controlled for a variety of metals (Moore and

Helmann, 2005; Pennella and Giedroc, 2005). Despite

these advancements, relatively little detail is known re-

garding Mg2+ homeostasis even though Mg2+ is the most

abundant divalent metal within cells and is required for nu-

merous biochemical activities. Historically, proteins have

been shown to fulfill metalloregulatory roles in organisms,

but the extent to which these functions should be solely

ascribed to proteins has not been determined.

Biological roles for RNAs have expanded rapidly in re-

cent years and recent data suggest that RNA can adopt

discrete structures that efficiently regulate gene expres-

sion. These RNAs, commonly known as riboswitches,

are widespread structures that become conformationally
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altered in response to metabolic or stress cues in order

to control gene expression (reviewed in Batey, 2006;

Winkler and Breaker, 2005; Winkler, 2005a). Riboswitches

typically are composed of two portions: a conserved ap-

tamer domain that senses metabolic signals followed by

sequence elements that control transcription termination

(e.g., Mironov et al., 2002), translation initiation efficiency

(e.g., Winkler et al., 2002), or mRNA stability (e.g., Winkler

et al., 2004), in response to ligand binding. As a reflection

of their importance for overall genetic circuitry, more than

70 cis-acting regulatory RNAs have been identified in

Bacillus subtilis that respond to proteins, tRNAs, or me-

tabolites (Winkler, 2005b). Recently, it was suggested

that the 50 untranslated region (50 UTR) of a Salmonella en-

terica Mg2+ transport gene employs a cation-responsive

riboswitch (Cromie et al., 2006). However, the exact basis

for metal ion recognition and the mechanism of metal-in-

duced genetic control have not been elucidated for this

interesting RNA. Folding studies have established clearly

that RNAs use divalent ions to stabilize tertiary interac-

tions (Draper et al., 2005; Woodson, 2005). Thus, RNA-

based divalent metal ion sensors would be expected to

carefully couple metal-induced RNA folding with genetic

control. Herein we describe an RNA element, coined the

M-box, that fulfills these criteria. Our studies of this regu-

latory RNA class reveal the underlying logic for an RNA-

based equivalent to metalloregulatory proteins.

RESULTS

Mg2+-Specific Regulation of B. subtilis mgtE

Bioinformatics-aided efforts have uncovered several RNA

elements that share traits with established riboswitches

but whose metabolic signals remain to be identified (Bar-

rick et al., 2004; Corbino et al., 2005). Typically, the ligand

binding domain (aptamer) of a riboswitch is evolutionarily

conserved while the remaining portions exhibit significant

sequence diversity and participate in genetic control pro-

cesses. Herein we designate the aptamer domain for one

orphan riboswitch class, originally termed the ykoK ele-

ment, as the ‘‘M-box.’’ This structural motif is generally lo-

cated upstream of Mg2+ transport genes in Gram-positive

bacteria (Figure S1 in the Supplemental Data available

with this article online) (Barrick et al., 2004; Griffiths-Jones

et al., 2005). Mg2+ transport in bacteria is achieved
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primarily through the use of three protein families: CorA,

MgtE, and MgtA/MgtB P-type ATPase proteins (Gardner,

2003; Hmiel et al., 1986; Kehres and Maguire, 2002; Mac-

diarmid and Gardner, 1998; Maguire, 2006; Smith and

Maguire, 1995, 1998). Depending on the organism, M-box

RNAs can be found in UTRs of all three classes of trans-

port genes, although they are primarily co-transcribed

with members of the mgtA and mgtE families. Although

M-box RNAs are usually coupled with transport proteins,

the RNA element in also localized with genes of unknown

function (Barrick et al., 2004; Figure S1).

B. subtilis contains at least one homolog for all three

Mg2+ transporter classes, although only the mgtE homo-

log is preceded by the M-box RNA (Figure S1). Speci-

fically, the B. subtilis genome contains two candidate

corA genes (yfjQ, yqxL), a candidate mgtA gene (yloB),

and one mgtE homolog (ykoK). Under Mg2+-limited condi-

tions, transcript abundance of mgtE was significantly in-

creased while corA and mgtA transcript levels were not

appreciably changed (data not shown). Manual inspection

of the mgtE locus revealed a candidate promoter element

that was confirmed by 50 mapping and fusion to a lacZ re-

porter (Figures 1E and S2). Together, these data indicated

that the mgtE mRNA contains a 409 nucleotide 50 UTR that

encompasses the M-box RNA element.

To investigate the basis of its regulation, the 50 UTR of

mgtE was fused to lacZ and ectopically integrated into

the genome. Cells were cultured under ‘normal’ defined

minimal medium conditions (i.e. adequate metal concen-

trations) except that a different divalent ion was selectively

depleted during each experiment (Figures 1B–1D). Ex-

pression of lacZ was substantially increased in response

to Mg2+ deprivation, but not upon depletion of Mn2+ or

Fe2+. As a correlative experiment, cells were depleted for

all divalent ions and lacZ expression levels were measured

upon supplementation of individual metals (Figure 1F).

Only the addition of Mg2+ repressed lacZ expression under

these conditions. Together, these data demonstrated that

mgtE-lacZ expression is selectively repressed by Mg2+ in

vivo. This regulatory response did not occur at the level

of transcription initiation as expression of a promoter-

lacZ construct is unchanged with varying Mg2+ (Figure 1E).

To rule out the possibility that Mg2+-responsive regulation

was due to RNA structural defects in general, we also

tested lacZ fusions to unrelated RNAs. In contrast to mgtE,

Mg2+ limitation did not increase expression of either S-

adenosylmethionine- or glucosamine-6-phosphate-sens-

ing RNAs (Figure 1E).

Transcription Attenuation In Vivo
Inspection of the mgtE 50 UTR revealed the presence of

a candidate intrinsic transcription terminator, an observa-

tion supported by reverse transcriptase stop experiments

and structural probing data (Figures 1A, 2, 3F, and S2).

The 50 portion of the terminator helix appeared to be capa-

ble of pairing with the 30 portion of a helix (P1) within the

M-box domain, thereby forming an antiterminator. Most

other members of this regulatory RNA class were also
found to contain candidate terminator and antiterminator

elements (Figure S1 and unpublished data) (Barrick

et al., 2004; Griffiths-Jones et al., 2005). Together, these

observations suggest that M-box RNAs control expres-

sion of downstream genes via regulated terminator forma-

tion, a mechanism commonly referred to as transcription

attenuation (Landick and Yanofsky, 1987).

As a preliminary test of this mechanism, the aptamer do-

main was fused to lacZ, thereby deleting the downstream

terminator region. Expression was increased �6.5-fold

relative to the full-length sequence, reflecting the loss of

the termination signal (Figure 1E). This construct also ex-

hibited a loss of Mg2+-induced repression, demonstrating

that the terminator helix is required for regulation. Similarly,

site-specific mutation of the terminator (M5) also led to

an increase (�5-fold) in Mg2+-independent expression. In

contrast, compensatory mutations designed to restore

the terminator helix but disrupt the antiterminator (M6) de-

creased overall expression and diminished responsive-

ness to Mg2+. The M6 mutant’s partial responsiveness

to Mg2+ is due to the lack of disruption in the 50 portion of

antiterminator helix. Together, these mutational analyses

demonstrate that interruption of the interplay between ter-

minator and antiterminator elements deleteriously impacts

Mg2+-responsive regulation of mgtE in vivo.

To test whether structural integrity of the aptamer do-

main was required for Mg2+ repression, mutations were

introduced (M1-M4) into this region (Figure 1A). M1 was

altered within a nonconserved portion of the P5 helix and

reduced Mg2+ repression to 2.2- from 7.5-fold (Figure 1E).

Compensatory mutations designed to restore this helix

(M2) partially restored Mg2+ repression, supporting the

P5 pairing as predicted by sequence analyses. M3 was

altered at a highly conserved portion of P5 and exhibited

almost complete elimination of Mg2+-induced repression.

A similar loss in Mg2+-responsiveness resulted from alter-

ation of a conserved side-bulge within P2 (M4). Together,

these data are consistent with our expectations that the

aptamer region functions as a sensory domain for an intra-

cellular metabolic signal and regulates expression via

transcription attenuation.

Mg2+-Induced Transcription Termination In Vitro
The recapitulation of transcription attenuation mecha-

nisms in vitro has been accomplished for a variety of me-

tabolite-sensing RNAs (e.g., Mironov et al., 2002; reviewed

in Winkler and Breaker, 2005). These experiments typically

include only RNA polymerase, ribonucleotides, and DNA

templates that encompass the regulatory RNA. A specific

effect upon termination through addition of a metabolite

is taken as strong evidence that accessory protein factors

are not required for attenuation. We therefore measured

the effect of Mg2+ on transcription termination within the

mgtE 50 UTR in vitro. These reactions result in transcription

run-off products and transcripts truncated at the termina-

tor helix (Figure 2A). Data collected at several Mg2+ con-

centrations reveal an increase in termination in response

to Mg2+, albeit a modest �15% overall (Figure 2B).
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Figure 1. Magnesium-Responsive Regulation of B. subtilis mgtE In Vivo

(A) Secondary structure of the 50 portion (nucleotides +1 to 228) of B. subtilis mgtE (Figure S1). Green nucleotides match the consensus pattern for

positions that are conserved at 95% or greater. The AUG start codon for mgtE begins 180 nucleotides downstream of the terminator. Site-directed

mutations are denoted in red letters. Cyan indicates the putative antiterminator pairing. The boxed region denotes the M-box, the aptamer domain, of

the regulatory RNA.

(B–D) Nucleotides �486 to + 25 relative to the translational start were fused to lacZ. Line plots reflect OD600 measurements and correspond to the

right-side y axis (shaded and open circles indicate conditions of ‘high’ and ‘low’ metals). Bar graphs reflect expression of the lacZ reporter fusion

(Miller Units) (filled and open bars indicate conditions of ‘‘high’’ and ‘‘low’’ metals). Cells were cultured to mid-exponential phase whereupon they

were pelleted, washed, and resuspended to OD600 = 0.1 in medium containing ‘‘high’’ or ‘‘low’’ extracellular metal concentrations. Aliquots were

removed for analysis at hourly intervals.
880 Cell 130, 878–892, September 7, 2007 ª2007 Elsevier Inc.



Typically, intrinsic terminators consist of a G+C-enriched

helix followed by a polyuridine tract (de Hoon et al., 2005;

Gusarov and Nudler, 1999). Unique within the current

members of its riboswitch class and rare compared to all

intrinsic terminators, the mgtE regulatory RNA has an

unpaired nucleotide between its terminator helix and poly-

uridine stretch (C221). Deletion of C221 improved the

dynamic range for Mg2+-induced termination in vitro to

�40% overall (Figure 2C). Furthermore, transcription ter-

mination by the M3 mutant was unresponsive to Mg2+

levels, indicating that aptamer integrity was required for

termination (Figure 2B). As a control for aptamer-indepen-

dent effects of Mg2+ on termination, the mgtE promoter

was fused immediately upstream of the terminator helix.

Increased Mg2+ had little effect on termination for this con-

struct, demonstrating that the terminator alone is not stabi-

lized by Mg2+ (Figure 2C). To further validate transcription

attenuation as the general genetic control mechanism for

M-box RNAs, the region upstream of B. cereus bc4140

(mgtA) was assayed under these conditions (Figure 2D).

This M-box RNA exhibited Mg2+-induced termination

with a dynamic range of �70%. In contrast, varying Mg2+

had no effect on termination for an established S-adeno-

sylmethionine (SAM)-responsive transcription attenuator.

Therefore, M-box RNAs are direct divalent metal sensors

that promote transcription attenuation in the absence of

accessory proteins.

Mg2+ Induces a Compacted Conformation
To determine the impact of Mg2+ on RNA structure, we em-

ployed several structural probing methods (Figures 3 and

S3–S8). Specifically, we interrogated mgtE M-box RNAs

via selective 20-hydroxyl acylation analyzed by primer ex-

tension (SHAPE) (Merino et al., 2005). This assay measures

the relative rates of reactivity of N-methylisatoic anhydride

(NMIA) to 20-hydroxyls, a reaction influenced by internucle-

otide flexibility. However, SHAPE is a recently described

method that has not been examined over a wide range of

divalent concentrations. Therefore, mgtE RNAs were also

analyzed by in-line probing, which measures the relative

rate of spontaneous scission at internucleotide linkages.

Previous experiments demonstrate that proper in-line con-

figuration between the 20-hydroxyl and the 50-oxyanion

leaving group is the predominant feature dictating these

cleavage rates (Li and Breaker, 1999; Soukup and Breaker,

1999). However, it is likely that nucleophilicity of the

20-hydroxyl is also influenced at high metal ion concentra-

tions. It was therefore important to apply both techniques

to verify that data obtained by either method were consis-

tent and not the result of a heretofore unrecognized Mg2+-

specific artifact introduced by each respective technique.
C

These reactions included the M-box domain alone (nu-

cleotides 14-172, relative to the transcriptional start site)

or ‘full-length’ RNAs, which completely encompass the

aptamer and terminator regions (nucleotides 1-265 and

1-220 for SHAPE and in-line probing, respectively). Re-

gions of NMIA reactivity (SHAPE) and spontaneous cleav-

age (in-line probing) largely agreed with the secondary

structure as predicted by comparative sequence analy-

ses, with bands primarily corresponding to unpaired

nucleotides. Addition of Mg2+ leads to lowered reactivity,

indicating greater structural constraint, for over 40 internu-

cleotide linkages (Figures 3A, 3B, 3D–3F, and S3–S5).

Each individual change in reactivity occurred at similar

Mg2+ concentrations, suggesting that the change in RNA

conformation was concerted with an EC50 of �0.6 mM

and �2.7 mM Mg2+ for aptamer and full-length RNAs,

respectively (Figures 3D and 3E). Furthermore, Mg2+-

specific changes in the aptamer acted in concert with al-

tered reactivity of terminator and antiterminator positions

(Figure 3F). Importantly, these latter probing changes

agreed well with the predicted switching between antiter-

minator and terminator base-pairing schemes (Figure 3F

inset). For example, positions 211-213 exhibited

increased NMIA reactivity upon exposure to the high

Mg2+ conformation, consistent with their relocation from

the antiterminator helix to the terminator terminal loop.

The data therefore provide biochemical evidence that

Mg2+-induced aptamer changes are responsible for

downstream terminator formation. Probing of the M3 mu-

tant, which exhibited a loss of Mg2+-induced transcription

attenuation in vivo and in vitro, revealed that structural fea-

tures within the L5 terminal loop were acutely disrupted

while the remaining structure appeared to be similar to

wild-type RNA in low [Mg2+] (Figure 3F inset and Fig-

ure S7). However, despite the close overall structural

resemblance to wild-type RNAs, M3 RNAs were incapable

of the Mg2+-induced conformational change, suggesting

a direct role for L5 in the Mg2+-folded state.

mgtE RNAs were also subjected to footprinting by hy-

droxyl radicals, which measures cleavage of the solvent

accessible backbone in a manner independent of se-

quence or secondary structure (Latham and Cech, 1989).

This test enriched the SHAPE and in-line probing data

by directly assessing whether the Mg2+-induced confor-

mational change correlates with formation of a closely

packed internal core, a feature of sophisticated RNA ter-

tiary structures. Footprinting of the aptamer domain in

the presence of 20 mM or 20 mM Mg2+ revealed an array

of Mg2+-induced protections within internal and terminal

loops (Figures 3C and 3F), demonstrating that indeed a

solvent inaccessible core was formed in the presence of

Mg2+. From these probing data, a model emerges wherein
(E) Variants of the mgtE-lacZ fusion were tested for expression with 2.5 mM or 0.005 mM Mg2+. All experiments were repeated at least in triplicate.

Construction of the B. subtilis yitJ-lacZ (SAM riboswitch) and glmS-lacZ (glucosamine-6-phosphate riboswitch) fusions are described elsewhere

(Winkler et al., 2003, 2004).

(F) B. subtilis strains containing the mgtE-lacZ fusion were grown in minimal media containing either no divalent ions or the indicated ion at 50 mM.

Under these conditions, only the addition of Mg2+ caused specific reduction in b-galactosidase activity.
ell 130, 878–892, September 7, 2007 ª2007 Elsevier Inc. 881



Figure 2. Mg2+ Induces Transcription Termination In Vitro

Bacterial RNA polymerase and NTPs were incubated with PCR-generated DNA templates. Mg2+ concentration was varied and transcript products

were resolved by denaturing 6% PAGE.

(A) Transcription assays using templates encompassing wild-type, M3, DC221, or terminator sequences from the B. subtilis mgtE 50 UTR, a B. cereus

M-box RNA, and a B. subtilis S-adenosylmethionine (SAM) riboswitch at multiple [Mg2+]. Lower and upper bands correspond to termination at the

intrinsic terminator (T) or run-off transcription (RO), respectively. A size marker for transcripts containing a 30 terminus at the base of the terminator

helix is shown in the last lane of the first three panels. Only M-box RNAs with an intact aptamer and terminator show Mg2+-dependent transcription

termination. Mg2+ levels do not affect the termination of M3, terminator alone, or the unrelated SAM riboswitch transcript. The mgtE promoter

(Figure S2) was fused immediately upstream of the terminator for the terminator-alone template.

(B–D) The fraction termination is shown plotted against Mg2+ concentration for wild-type (closed circles), M3 control (open circles), DC221 (triangles),

terminator alone (stars), B. cereus M-box RNA (diamonds), and a B. subtilis SAM riboswitch (open squares).

(E) Representative assays were conducted using B. subtilis and E. coli RNA polymerase with DNA templates for B. subtilis mgtE and B. cereus mgtA

(bc4140). These reactions confirmed that similar termination control was exhibited by different bacterial polymerases.
882 Cell 130, 878–892, September 7, 2007 ª2007 Elsevier Inc.



the aptamer domain is dominated by secondary structure

in the presence of low or no Mg2+ but is substantially rear-

ranged upon Mg2+ association to include higher order

tertiary structure.

To investigate whether Mg2+ are specifically required for

tertiary structure formation, probing tests were repeated

in the presence of high (2 M) monovalent ions (Figure S3;

data not shown). Under these conditions monovalents are

expected to outcompete the loosely-associated divalent

ion atmosphere, leaving only high-affinity divalent sites

(Das et al., 2005; Draper et al., 2005). Probing patterns

were similar between the two conditions (2.1 M and 0.1

M monovalent ions), indicating that divalent ions are spe-

cifically required for the tertiary conformation. Further-

more, EC50 values for the Mg2+-induced conformational

change were similar between the two conditions (data

not shown). Therefore, although monovalent ions induce

tertiary structure formation for certain RNAs (Takamoto

et al., 2004), divalent ions are specifically required for

M-box tertiary structure. To investigate whether similar

effects may be observed for riboswitches in general, unre-

lated metabolite-sensing RNAs were also subjected to

probing assays (Figure S6). Probing of a flavin mononucle-

otide-sensing RNA revealed Mg2+-induced structural

changes under the low monovalent ion conditions. How-

ever, this effect was abolished upon an increase in mono-

valents. Further testing of SAM and thiamine pyrophos-

phate riboswitches revealed that they too exhibited a

lack of Mg2+-responsive structural changes under high

monovalent conditions. These data both contrast and

highlight the specific requirement for Mg2+ in folding of

the mgtE M-box RNA. Additionally, we conducted probing

reactions in the presence of cobalt hexammine, a fully hy-

drated Mg2+ mimic that can substitute at Mg2+ sites when

only outer-shell RNA-metal contacts are required (Cowan,

1993) (data not shown). M-box RNAs were not conforma-

tionally modified by increasing cobalt hexammine and the

resulting probing patterns closely resembled those ob-

tained under low Mg2+ conditions, suggesting that inner-

sphere Mg2+ coordination is required for tertiary structure

formation.

To directly measure whether the RNA undergoes a sig-

nificant change in overall shape in its ligand-bound form,

wild-type and M3 aptamer RNAs were subjected to ana-

lytical ultracentrifugation (AUC) (Figures 4A, 4B, and S8).

During conditions of low (30 mM) or high (10 mM) Mg2+,

single RNA species were observed that displayed a sedi-

mentation coefficient of 5.6 and 7.0, respectively, reveal-

ing that association of Mg2+ was indeed accompanied

by a significant decrease in hydrodynamic radius. Mg2+-

induced compaction was highly cooperative with a Hill co-

efficient of 4.29 ± 0.88 and exhibited an EC50 of 0.16 mM,

a value that approximately correlated with the structural

probing results (Figures 4B and S8). In contrast, the M3

mutant demonstrated a sedimentation coefficient of 5.9

even in the presence of 10 mM Mg2+, confirming that it

was incapable of forming the compacted structure and

was confined to a secondary structure-dominated state.
C

Based on these data, we reasoned that the extended

and compacted conformations might be separated by size

exclusion chromatography. Indeed, aptamer RNA equili-

brated in 30 mM Mg2+ eluted at an earlier retention time

relative to 10 mM Mg2+ (Figures 4C and S8). However,

M3 RNAs equilibrated in 10 mM Mg2+ exhibited a retention

time nearly identical to wild-type RNAs that had been

equilibrated in 30 mM Mg2+. This result supports the hy-

pothesis that M3 RNA is a reliable control for the extended

conformational state. Therefore, we exploited these ob-

servations for comparison of the retention times for M3

and wild-type RNAs equilibrated in divalent metals other

than Mg2+. These tests revealed that divalent ions other

than Mg2+ can also elicit the compacted tertiary confor-

mation (Figure 4C). Preliminary in-line probing confirmed

that at least one of these alternative metals, Ca2+, induced

a structural rearrangement identical to Mg2+, although po-

tential differences in EC50 values for the remaining divalent

ions were not assessed (data not shown). Additionally,

SHAPE probing of M-box RNAs in the presence of 5 mM

Ca2+ or Mn2+ revealed that alternative divalent ions could

induce terminator helix formation similar to Mg2+ (Fig-

ure 4D). Together these data indicated that the M-box

RNA structure is likely to be a general sensor for divalent

metals in vitro, although the compacted tertiary conforma-

tion is specifically tuned to in vivo Mg2+ levels.

Three-Dimensional Model of Mg2+-Bound
M-box RNA
Our genetic, chemical probing, and biophysical analyses

of the mgtE UTR strongly support a role for this RNA as

a direct Mg2+ sensor, but these data would benefit greatly

from a visualization of the mechanism of metal sensing. To

this end, we determined the crystal structure of the M-box

domain from mgtE at 2.6 Å with a refined model Rfree of

24.6% (Figures 5–7 and S10–S13; Table S1). Three-

dimensional structures have been determined for several

metabolite-sensing RNAs, offering a preview of the archi-

tectural features that might be expected for M-box RNAs

(Batey, 2006). In addition, multiple RNAs have structures

that employ specific metal binding sites, hinting at mech-

anisms that could be used for metal sensing. For example,

specific Mg2+ sites have been identified for thiamine pyro-

phosphate-binding RNAs, group I introns, and the ribo-

some, wherein the metal ions participate in ligand sta-

bilization, chemical catalysis, and structural stabilization,

respectively (DeRose, 2003; Hougland et al., 2005; Klein

et al., 2004; Selmer et al., 2006; Serganov et al., 2006;

Vicens and Cech, 2006). These different structures stabi-

lize Mg2+ through at least one inner-sphere contact, most

often via the nonbridging oxygen of a phosphate group,

although they also interact with nucleobase functional

groups and ribose oxygens. The fact that partially dehy-

drated Mg2+ are also required by M-box RNAs suggested

they will share similar features with these other sites.

RNA crystals were grown in the presence of 10 mM

Mg2+, a concentration that resulted in a structure in

the ligand-bound state. The RNA adopts a complex
ell 130, 878–892, September 7, 2007 ª2007 Elsevier Inc. 883



Figure 3. Association of Mg2+ Leads to a Conformational Change

(A) Representative SHAPE probing of the mgtE regulatory RNA (nucleotides 1–265) incubated with increasing [Mg2+] (as indicated in mM), adjacent to

DNA sequencing ladders. Reactions contained 2.1 M monovalent ions to outcompete loosely associated divalent ions. Examples of SHAPE probing

of the aptamer domain alone or with lowered monovalent ions are included in Figure S3. Filled circles and the open square in panel (A) indicate

representative positions that decrease or increase in NMIA reactivity, respectively.

(B) Representative in-line probing of the aptamer region (nucleotides 14–172) incubated with increasing [Mg2+] (as indicated in mM), adjacent to

control lanes (NR, nonreacted RNA; OH, hydroxyl-mediated cleavage at all positions; T1, cleavage at G). Reactions contained 2.1 M monovalent

ions. Additional examples of in-line probing reactions for aptamer and full-length RNAs are included in Figures S4–S7. Open circles in panel (B)

indicate representative positions that decrease in spontaneous scission in response to increased Mg2+.
884 Cell 130, 878–892, September 7, 2007 ª2007 Elsevier Inc.



three-dimensional architecture, mostly comprising three

closely packed, nearly parallel helices. The P3 helix forms

a coaxial stack with P4, which folds alongside P2 and P5.

The secondary structure of the aptamer agrees well with

that based on covariation and conservation, but signifi-

cant changes are seen in the P2 region (cf. Figures 1A

and 5A). In total, the structure agrees well with the chem-

ical probing data, including the positioning of hydroxyl

radical protections within a closely packed internal core

(Figure 5E). Additionally, the majority of positions that

demonstrated decreased internucleotide flexibility in re-

sponse to Mg2+ (Figure 3F) are located at a region where

the three parallel helices converge via a network of long-

range contacts. A most exciting aspect of the structural

model involves the presence of six Mg2+ that also reside

predominantly in this region of tertiary contacts (Figures

5, 6, S10, and S11). Extensive inner- and outer-sphere

contacts to Mg2+, with coordination distances of 2.1 to

2.2 Å and 2.6 �3.2 Å, respectively, occur for nucleotides

in the P2, L4, and L5 regions of the RNA (Figures 6A and

S10). Mg2+ mediate multiple long-range interactions,

leading to stabilization of the compact three-helical ter-

tiary structure. Together, the chemical probing data, mea-

surements of changes in hydrodynamic radius, and the

tertiary structure combine to suggest a model wherein

the extended P4 and P5 helices clamp against P2 to

form the compacted three parallel helix structure in re-

sponse to binding of Mg2+.

In addition to the Mg2+, four potassium ions (K+) are also

modeled in the structure. To assess the role of K+ in the ter-

tiary structure of the RNA, probing assays were repeated in

the presence or absence of Mg2+ and a range of monova-

lent concentrations (Figure S9). These tests revealed that

the Mg2+-bound conformation could be induced even in

the absence of monovalent ions. Furthermore, sedimenta-

tion velocity measurements of Mg2+-associated RNAs

were identical in the absence or presence of K+ (Figure 4A).

In contrast, the presence of high monovalent ions in the ab-

sence of Mg2+ did not result in formation of the compact

tertiary conformation (Figure S3–S5). Therefore, tertiary
C

folding of M-box RNAs is strictly dependent upon divalent

ions, despite the presence of four K+ in the structural model.

Of the six Mg2+, Mg1 exhibits the most inner-shell RNA

contacts, consisting of three contacts to L5 nonbridging

phosphate oxygens (G100, C102, and A103) and a contact

to U104 O4 (Figures 6, S10, and S11). These interactions

ultimately engender a sharp change in backbone direc-

tionality to the looped residues. The same Mg2+ mediates

multiple outer-shell RNA contacts to L5 positions through

two associated waters. Although there is precedence for

RNA-bound Mg2+ with four inner-sphere RNA contacts

(Type IV) they are rare in published structures (Cate et al.,

1997; Klein et al., 2004). The low incidence of type IV Mg2+

in RNA structures and the fact that Mg1 organizes the L5

structure for docking with P2 and L4 indicate that Mg1

likely constitutes a key component in establishing the

tertiary architecture. Mg2 also appears to be important

for the tertiary conformation as it coordinates nonbridging

phosphate oxygens of G100 (L5) and U23 (P2), acting to

bring the parallel P5-P2 helices together (Figures 6A, 6B,

and S11). A third Mg2+, Mg3, helps position the P2 nonca-

nonical A25-C160 pair and the highly conserved U24

position, which flips out to stack together with A155, a

base that is itself flipped out from the P2 helix as a result

of a near-classical UAA/GAN motif (Figure 6A, 6B, and

S11) (Lee et al., 2006). As a result of the Mg3-stabilized

local structure, both U24 and A155 can form long-range

base interactions to L5 positions. Many long range pairing

interactions within the RNA structure involve residues

within L5 and P2; therefore, given the intimate involvement

of Mg2+ (Mg1-3) with these regions, they are likely to com-

prise the key metals for the tertiary conformation and

metal sensing. However, Mg4 may also be important as

it contacts the L4 tetraloop structure, which also mediates

several long-range base interactions to P2 and L5 (Figures

6A and S11). Interestingly, despite its sequence, CAAA,

the L4 tetraloop superimposes well with a common RNA

tertiary interaction motif, the GNRA tetraloop (Figure S12).

The two remaining Mg2+ associate to the modestly con-

served P4 internal loop (Figures 6A and S11).
(C) Hydroxyl radical footprinting of the aptamer domain in the presence of 0.02 mM or 20.0 mM Mg2+. Vertical blue bars indicate regions of Mg2+-

induced protection against hydroxyl radicals. NR, T1, and OH identify no reaction, partial digestion with nuclease T1, and partial digestion with alkali,

respectively.

(D) Filled circles and the open square in panel (A) indicate representative positions that decrease or increase in NMIA reactivity, respectively. The

decreasing reactivity for positions corresponding to 69–72, 97–100, and 159–163 was normalized, graphed, and subjected to curve-fitting analysis.

The increase in reactivity for positions 211–213 was normalized and graphed alongside this composite curve. These data indicate an EC50 value

of �2.7 mM for the construct that included the entire regulatory region (nucleotides +1 to +265), including the terminator.

(E) Open circles in panel (B) indicate representative positions that decrease in spontaneous scission in response to increased Mg2+. The decreasing

reactivity for positions corresponding to 65, 72, 104, and 154 was normalized, graphed, and subjected to curve-fitting analysis. These data indicate an

EC50 value of 0.56 mM for the aptamer alone (nucleotides 14–172). Additional in-line probing (shown in Figure S5) revealed an EC50 of �2.6 mM for

constructs that incorporated the entire regulatory region (nucleotides +1 to +220).

(F) Summary of hydroxyl radical, SHAPE and in-line probing data overlayed with the mgtE RNA sequence. Positions of Mg2+-induced protection

against hydroxyl radical cleavage are indicated in blue letters. Red, green, and yellow circles positioned adjacent to nucleotides denote internucle-

otide linkages that decrease, increase, or remain unchanged in their overall reactivity to NMIA (SHAPE) in response to increased Mg2+, respectively.

Red, green, and yellow circles that encircle nucleotides denote internucleotide linkages that exhibit decreased, increased, or unchanged spontane-

ous cleavage in response to increased Mg2+, respectively. Hydroxyl radical footprinting, in-line probing, and SHAPE data could be interpreted for

positions 29–161, 29–161, and 20–230, respectively. The probing pattern for M3 RNAs was identical to wild-type in low [Mg2+] (Figure S7), except

for disruption of L5, as shown in the inset. The second inset highlights the agreement between SHAPE probing data and the helical regions postulated

to be involved in genetic control (antiterminator, terminator, P1).
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Figure 4. Mg2+-Induced Compaction of M-box RNAs

(A) Wild-type and M3 RNAs were subjected to analytical ultracentrifugation (AUC) in the presence of high and low Mg2+ (wild-type in 5 mM

Mg2+ = open squares; wild-type in 0.1 mM Mg2+ = filled diamonds; wild-type in 5 mM Mg2+ and absence of potassium = filled triangles; M3 in

5 mM Mg2+ = filled circles). Wild-type aptamer RNA exhibited a change in sedimentation coefficient when equilibrated in high Mg2+ relative to low

Mg2+. However, M3 RNAs demonstrated a sedimentation coefficient most similar to low Mg2+ conditions, despite the presence of increased

Mg2+. When 100 mM KCl was added alongside 10 mM Mg2+, the RNA exhibited the same sedimentation coefficients as a reaction lacking KCl,

indicating that potassium ions are dispensable for Mg2+-induced tertiary formation.

(B) AUC of wild-type aptamer RNAs (filled triangles) revealed a highly cooperative change in sedimentation velocity in response to Mg2+. In contrast,

M3 RNAs (open triangles) underwent a considerably smaller change in hydrodynamic radius under identical conditions. Additional parameters are

shown in Figure S8.

(C) Given that M3 RNA serves as a control for the low-[Mg2+], extended conformation, retention times were compared for wild-type and M3 RNAs

equilibrated in alternate divalent metals. These data suggest that alternate divalent ions can also induce the compacted conformation.
886 Cell 130, 878–892, September 7, 2007 ª2007 Elsevier Inc.



The multiple long range base interactions in the struc-

ture occur predominately between L4, L5, P2, and J2/1,

regions in proximity to both Mg2+ and antiterminator

nucleotides (Figures 5A, 7, S12, and S13). A common

method for formation of long range contacts is through

the use of A-minor motifs, wherein an adenosine fits into

the minor groove of a Watson:Crick base-pair (Nissen

et al., 2001). There are four such motifs in our model (Fig-

ure 5A) between distant residues in the primary structure

that have been evolutionarily maintained. These motifs

likely play a significant role in reducing the energetic cost

of bringing the parallel helices in close proximity by con-

structing a network of helix-helix interactions. For exam-

ple, A88-G151-C33 affixes the J4/5 interhelical region

near P2 while A117-G83-C57 appears to assist in coaxial

organization of P3 and P4. The A71-G22-C163 motif

links L4 to P2, which induces a near-continuous array of

base stacking between P1, P2, L4, and L5 nucleotides

(Figure 7C). Interestingly, this base stacking involves posi-

tions within the antiterminator sequence, suggesting that

stacking energies are involved in the preferential seques-

tration of these nucleotides into P1 in response to Mg2+,

rather than the antiterminator helix. Finally, the A155-

G107-C99 motif anchors P5 to P2 via the UAA/GAN motif

and L5 residues (Lee et al., 2006).

Additional long-range base interactions occur within in-

terhelical junctions that mediate sharp directional changes

between adjacent helices or at the base of the molecule

where antiterminator nucleotides, P2, L5, and L4 converge

(Figure 7). For example, noncanonical pairings are present

at the apex of the structure in a region between P6 and P2,

facilitating the sharp angle between P2 and P3 helices.

Near Mg3 in P2, the conserved U24 nucleobase forms a

base-triple with G100 and A106 of L5. Additionally, an anti-

terminator nucleotide, U167, pairs to the Hoogsteen edge

of A101 as well as the A103 Watson-Crick edge. Both of

these interactions fasten L5 to the lower region of P2. An

additional base-pair between A72 and A105 adds a direct

contact between L4 and L5 and completes the network of

P2-L5-L4 connections.

In total, our data indicate that the function of the M-box

metalloregulatory RNA is to correlate intracellular Mg2+

with formation of terminator or antiterminator helices. The

convergence of the long-range base interactions and

A-minor motifs to the region of the structure that includes,

or is adjacent to, Mg2+ and antiterminator nucleotides is

likely to preferentially stabilize P1 rather than the mutually

exclusive antiterminator helix. Specifically, in addition to

Watson:Crick base pairing, certain antiterminator posi-

tions are sequestered into tertiary structure features in the

Mg2+-bound state, including base triples and base stack-

ing within the tripartite structure formed by L4, L5, and P2.

These observations reveal a simple, yet elegant mecha-

nism for metal-mediated occlusion of antiterminator nu-
cleotides. Consistent with this model, the positions that

are most highly conserved for M-box RNAs are those

that interact with metals and assist in coordinating the

L4-L5-P2 tripartite structure (Figures 6, 7, S1, and S13).

Therefore, the structural features exhibited by the B. sub-

tilis mgtE aptamer domain are expected to be general fea-

tures for the other members of the M-box riboswitch class.

DISCUSSION

In this work, we have described an RNA-based divalent

cation sensor using a variety of in vivo and in vitro tech-

niques. As such, a comparison to the previously charac-

terized Salmonella enterica RNA, a proposed cation sen-

sor, could highlight general rules for RNA-based metal

sensors (Cromie et al., 2006). Unfortunately, as this RNA

and M-box RNAs share no similarity at the primary or sec-

ondary structure level, a direct structural comparison is

not particularly useful. The commonality between these

two RNA classes reside in the fact that both appear to

utilize a transcription attenuation-like genetic control

mechanism through predicted Mg2+-regulated switching

between mutually exclusive helices. However, while the

M-box RNAs described herein contain identifiable intrinsic

terminator sequences, the novel mechanism by which he-

lix switching in the Salmonella enterica RNA influences

transcription is not fully resolved. Nonetheless, the pres-

ence of two distinct RNA elements utilized as metal sen-

sors underscores the essential nature of metal ion homeo-

stasis at all possible levels (i.e. RNA and protein) and

raises the possibility of undiscovered RNA-based metal

sensors. The data presented herein provide a structural

and biochemical framework for comparative analyses of

such metalloregulatory RNAs.

The M-box RNA structure is unique in many ways but is

built upon principles observed previously for other RNAs.

First, the regulatory RNA is remarkably similar in character

to riboswitch RNAs, complete with a large evolutionarily

conserved aptamer domain that controls formation of

mutually exclusive terminator and antiterminator helices.

Given the ease to which divalent metals interact with RNA

polymers, it is reasonable to ask why such a large, highly

conserved RNA structure would be required for metal

sensing. The results of our biochemical and biophysical

tests suggest that a potential explanation emanates from

the cooperative binding of metal ligands. Where other ri-

boswitch aptamer domains have evolved to bind a single

ligand, the M-box RNA associates with multiple metal ion

ligands and tertiary formation is highly cooperative, per-

haps demanding the increased information content. This

feature may also allow the RNA to sense small changes

in Mg2+ concentration, thereby offering genetic control

over a more narrow range than for noncooperative
(D) SHAPE probing with 5 mM Mg2+, 5 mM Ca2+, 5 mM Mn2+, or in the absence of divalents revealed that multiple divalent metals could induce probing

changes indicative of terminator formation (cf. Figure 3F). The extent of these probing changes is highlighted by the graph and the line traces.
Cell 130, 878–892, September 7, 2007 ª2007 Elsevier Inc. 887



Figure 5. Global Architecture of an M-box RNA Bound to Mg2+

(A) Secondary structure diagram based on the tertiary structure of mgtE aptamer domain is shown with the following color scheme: P1-red; P2-blue;

P3-yellow; P4/L4-orange; P5/L5-green; P6-magenta; joining (J) regions-black; antiterminator-cyan. Open and closed circles mark G:U and nonca-

nonical pairs, respectively. Long-range base pairs are connected by heavy dashed lines. Four A-minor motifs are boxed and connected by

thin dashed lines. Gray shaded residues in P1 and P6 indicate positions that were added for crystallization and positions that are disordered in

the structure, respectively.

(B) Two views of the aptamer domain model are shown with six Mg2+ depicted as green spheres. The second panel is rotated 180� about the y axis

relative to the first panel. Colors are as in (A).

(C) A view of the structure rotated 90� about the x axis shows P1, the antiterminator, and the three parallel helices. Note the metal ions that decorate

the tripartite interface around L4, L5, and P2.

(D) The image in (C) was rotated 180 about the x axis to show P6 atop P2, P5 and P3, which coaxially stacks on P4. Disordered residues (128–135) in

P6 would connect the magenta strands on this face of the molecule.
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Figure 6. RNA-Metal Interactions

(A) Secondary structure shows the positions of inner- and outer-sphere contacts using shaded and open symbols, respectively, for the six Mg2+ co-

ordinated to the RNA. Each Mg2+ has a unique symbol denoted in the legend. All other symbols and coloring are as in Figure 5A.

(B) Nucleotides that contact Mg1-3 via inner- and outer-sphere interactions are labeled and shown as sticks on a ribbon model of the phosphate

backbone. P4 and L4, which would be located in the background of this image, have been omitted for clarity. A total of 4, 2, and 2 direct RNA oxygen

atoms are coordinated to Mg1, Mg2, and Mg3, respectively. Only one of these RNA contacts (U104 O4) does not involve a nonbridging phosphate

oxygen. Residue G100 is flanked by Mg1 and Mg2 coordinating to its two nonbridging phosphate oxygens. Residues that contact Mg1-3 cluster near

the tripartite region of long-range tertiary contacts formed by L4, L5, and P2. Stereo views with electron density maps for all six Mg2+ sites are in

Figure S11 and metal-RNA coordination distances are listed in Figure S10.

(C) The experimental electron density map contoured at 1.5 s is shown for Mg1 and nucleotides contacted through inner- and outer-sphere interac-

tions.
regulatory RNAs. Another key principle for RNA structures

that the M-box employs is the use of Mg2+ to transition

into a fully folded tertiary conformation (Draper et al.,

2005; Sigel and Pyle, 2007; Woodson, 2005). However,

two features of M-box RNAs render them as metal sen-

sors rather than simply another structured RNA region.

First, metal ions promote a compacted RNA tertiary struc-

ture for the explicit purpose of governing the accessibility

of a short nucleotide tract. The availability of this signaling

sequence can then be directly correlated to formation of
terminator or antiterminator helices. Second, the apparent

KD for the metal-induced tertiary conformation is tuned to

an appropriate intracellular concentration, thereby impart-

ing sensory function to the overall structure. In fact, our

data suggest that the B. subtilis M-box RNA is capable

of responding to multiple divalent ions in vitro at millimolar

concentrations (Figure 4). However, total metal ion con-

centrations reported for E. coli, which are likely to reflect

those of B. subtilis, predict that Mg2+ is the only divalent

ion present at a level sufficient to trigger the M-box
(E) Nucleotides that are protected based on hydroxyl radical footprinting in the presence of Mg2+ are highlighted in teal with other nucleotides shown

in gray, showing a clear correlation between protected residues and the inner core of the RNA structure (See Figures 3A and 3F).
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Figure 7. Sequestration of Antiterminator Nucleotides via Long-Range Base Interactions and Base Stacking

(A) A stereo view comprising the region of the molecule where P2, L5, L4, and antiterminator nucleotides converge is illustrated. Nucleotides involved

in long-range base interactions are shown as filled bases on a ribbon model of the phosphate backbone. A total of five such interactions stabilize the

region of the molecule adjacent to, or including, antiterminator nucleotides. Four canonical base pairs, involving G168–G171 as predicted from

secondary structure, complete the sequestration of antiterminator positions. Color schemes match with Figure 5A.

(B) The base interactions numbered in (A) are presented individually from a top-down perspective.

(C) In addition to base interactions highlighted in (A) and (B), this region of the molecule is enriched in base stacking between P1, P2, L4, and L5 res-

idues. These interactions are likely to be important in stabilizing the overall compacted tertiary conformation and for sequestration of antiterminator

nucleotides (cyan).
riboswitch (Outten and O’Halloran, 2001). The total con-

centration of divalent ions other than Mg2+ are no greater

than �200 mM, with free (unbound) concentrations pre-

sumed to be substantially lower. Thus, while the B. subtilis

M-box RNA is not specific for a particular divalent ion
890 Cell 130, 878–892, September 7, 2007 ª2007 Elsevier Inc.
in vitro, Mg2+ is the only ion that the RNA is likely to re-

spond to in vivo.

Based upon the insights provided by these studies on a

metalloregulatory RNA, one could imagine similar ele-

ments may be used to selectively sense other metal ions.



In support of this idea, several M-box RNAs reside in the

50 UTR of putative manganese transporters as well as

uncharacterized transporters. Furthermore, two other or-

phan riboswitch classes are in part associated with genes

that regulate metal ions. In total, the B. subtilis mgtE RNA

aptamer may serve as a model for additional RNA-based

metal sensors that are capable of regulating gene expres-

sion simply by tuning tertiary structure formation to a

particular metal binding affinity.

EXPERIMENTAL PROCEDURES

DNA Oligonucleotides, Chemicals, Strains, and Plasmids

DNA oligonucleotides were purchased from Integrated DNA Technol-

ogies. Chemicals were purchased from Sigma. All strains were derived

from IA40 (Bacillus Genetic Stock Center, Ohio). Fusions to lacZ were

accomplished via pDG1661, which ectopically inserts into the nones-

sential amyE locus. Correct transformants were checked for chloram-

phenicol resistance (5 mg ml-1) and spectinomycin sensitivity (100 mg

ml�1). In order to construct the mgtE-lacZ fusion, nucleotides �486

to + 25 relative to the mgtE translational start were cloned into

pDG1661 via restriction sites added to oligonucleotide primers. Nucle-

otides�487 to�143 and�487 to�235 were cloned into pDG1661 for

construction of promoter-lacZ and aptamer-lacZ fusions, respectively.

Mutations were introduced using the QuikChange mutagenesis proto-

col (Strategene) and were verified by DNA sequencing. DNA was trans-

formed as described (Jarmer et al., 2002).

Growth Conditions

In general, cells were incubated at 37�C in glucose minimal medium

[0.5% glucose, 0.5 mM CaCl2, 5 mM MnCl2, 15 mM (NH4)2SO4, 80

mM K2HPO4, 44 mM KH2PO4, 3.9 mM sodium citrate, and 50 mg

ml�1 amino acids (tryptophan, methionine, lysine)]. MgCl2 was added

as defined in text. Cultures containing 2.5 mM MgCl2 were grown at

37�C overnight, without shaking. The following day, cells were incu-

bated while shaking, cultured to mid-exponential growth phase, pel-

leted (t0), washed twice in medium lacking Mg2+, and resuspended

to a final OD600 of 0.1. MgCl2 was added to 5 mM or 2.5 mM for

‘‘low’’ or ‘‘high’’ conditions, respectively, prior to incubation again at

37�C. At t5.5 (hours), cells were harvested for analysis. Growth of man-

ganese-limited cells was achieved similarly except that 2.5 mM MgCl2
was maintained throughout the experimentation and at OD600 = 0.1

MnCl2 was either eliminated or added at 5 mM for ‘‘low’’ and ‘‘high’’

conditions, respectively. For control of iron levels, either 5 mM FeCl2
or 100 mM of the iron chelator 2,20-dipyridyl (Biachoo et al., 2002)

was added to cultures at OD600 = 0.1 to generate ‘‘high’’ or ‘‘low’’

iron conditions, respectively. For assays involving limitation of all diva-

lents, cell pellets were resuspended in glucose minimal medium lack-

ing MgCl2, CaCl2, and MnCl2. Each divalent was individually added to

cultures at a concentration of 50 mM. Measurements of b-galactosi-

dase activity are detailed in the Supplementary Materials.

RNA Structural Probing and Transcription Termination

Assays

Hydroxyl radical footprinting, SHAPE, and in-line probing techniques

as well as assays of Mg2+-induced termination in vitro are detailed in

the Supplemental Data.

Analytical Ultracentrifugation and RNA Size-Exclusion

Chromatography

Measurements of Mg2+-induced changes in hydrodynamic radius as-

sayed by AUC and size-exclusion chromatography are described in

detail within the Supplemental Data.
C

Structure Determination

The estimate for coordinate error in the model based on Rfree is 0.26 Å

calculated using the Cruickshank DPI method implemented in the pro-

gram Refmac5. Details for RNA production to structure determination

are included in Supplemental Data.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, thirteen figures, and one table and can be

found with this article online at http://www.cell.com/cgi/content/full/

130/5/878/DC1/.
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