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Abstract 

We consider the three forms of self-duality that can be exhibited by a planar graph G, map 
self-duality, graph self-duality and matroid self-duality. We show how these concepts are related 
with each other and with the connectivity of G. We use the geometry of self-dual polyhedra 
together with the structure of the cycle matroid to construct all self-dual graphs. 

1. Self-duality of graphs 

1.1. Forms of  self-duality 

Given a planar graph G = (V,E), any regular embedding of  the topological real- 

ization of  G into the sphere partitions the sphere into regions called the faces of  the 

embedding, and we write the embedded graph, called a map, as M = (V,E,F).  G 

may have loops and parallel edges. Given a map M, we form the dual map M* by 

placing a vertex f *  in the center o f  each face f ,  and for each edge e o f  M bounding 

two faces f l  and f2 ,  we draw a dual edge e* connecting the vertices f~' and f~  and 
crossing e once transversely. Each vertex v o f  M will then correspond to a face v* of  

M* and we write M* = (F*,E*, V*). If  the graph G has distinguishable embeddings, 

then G may have more than one dual graph, see Fig. 1. In this example, a portion o f  

the map (V,E,F)  is flipped over a separating set of  two vertices to form (V,E,F') .  

Such a move is called a Whitney flip, and the duals o f  (V,E,F)  and (V,E,F t) are said 

to differ by a Whitney twist. If  the graph (V,E) is 3-connected, then there is a unique 

embedding in the plane and so the dual is determined by the graph alone. 

In general, an object is said to be self-dual if  it is isomorphic to its dual, the 

most famous example being the regular tetrahedron, and self-duality has been studied 
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(V ,E ,F)  , (F*,E*,V*) (V ,E ,F ' )  .* ,(F'*,E*,V*) 

Fig. 1. 

in various contexts, see, for example, [1,2,6,8]. Given a map X -- (V,E,F) and its 
dual X* -- (F*,E*, V*), there are three natural notions of self-duality. The strongest, 
map self-duality, requires that X and X* are isomorphic as maps, that is, there is 

an isomorphism 6 : (V,E,F) ~ (F*,E*, V*) preserving incidences. A weaker notion 
requires only a graph isomorphism 6 : (V,E) --* (F*,E*), in which case we say that 
the map (V,E,F) is graph self-dual, and we say that G -- (V,E) is a self-dual graph. 
More generally, we say that (V, E, F )  is matroM self-dual if  the cycle matroids of (V, E)  
and (F*,E*) are isomorphic, so there is a bijection between E and E* preserving the 
cycle structure, or, equivalently, there is a permutation E ~ E which sends cycles to 
cocycles and vice versa. We note that, since a graphic matroid M(G) is cographic if 
and only if G is planar, only planar graphs can be self-dual in any sense. 

1.2. The self-dual permutation 

Suppose that the map X = (V,E,F) is self-dual, so that there is a bijection 
6:(V,E,F) ~ (F*,E*, V*). Following 6 with the correspondence * gives a permu- 
tation A on V U E U F which preserves incidence but which reverses dimension. The 

collection of all such permutations, or self-dualities, generate a group Dual(X) in which 
the map automorphisms Aut(X) of (V,E,F) are contained as a subgroup of index 2. 

In the case of a self-dual graph G = (V,E), following the self-duality 6 : (V,E) --* 
(F*,E*), by * does not define a permutation on V U E, however we can define a 
self-dual permutation on the edges of G alone, which will be a permutation on the 
edges E sending cycles to cocycles. In general, given a matroid M with a bijection 
3 : M ---* M sending cycles to cocycles and vice versa, the group generated by all such 
permutations DuaI(M(G)) is called the self-duality group of M, and contains Aut(M) 

as a subgroup of index 2. 
We call Dual(X) D AutO() and Dual(M) D Aut(M) the self-dualpairing of the map 

X and the cycle matroid M respectively. The possible symmetry groups of self-dual 
polyhedra were enumerated in [9] and in [12] the self-dual pairings of self-dual maps 
were enumerated and used to classify all self-dual maps. Briefly, given any self-dual 
map X, there is a drawing of the map and the dual map on the sphere so that Dual(X) 
is realized as a group of spherical isometrics. In the notation of [3] the possible pairings 
are among the infinite classes [2,q] l> [q], [2,q] + D [q]+, [2+,2q] D [2q], [2,q +] D 
[q]+, and [2+,2q +] l> [2q]+; or are among the special pairings [2] D [1], [2] D [2] +, 
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[4] D [2], [2] + l> [1] +, [4] + ~> [2] +, [2,2] D [2,2] +, [2,4] D [2+,4], [2,2] D [2,2+], 
[2,4] D [2,2], [2,4] + i> [2,2] +, [2+,4] 1> [2,2] +, [2+,4] D [2+,4+], [2,4 +] D [2+,4+], 
[2,2 +] D [2+,2+], [2,4 +] t> [2,2+], [2,2 +] D [1], [3,4] ~ [3,3], [3,4] + E> [3,3] +, and 
[3+,4] D [3,31 +. 

Given a pairing D D A on this list, a self-dual map realizing this pairing can be 
constructed by drawing any partial map and dual map in a fundamental region for D, 
observing the natural boundary conditions, and then using the action of D to complete 
the drawing to the whole of the sphere. 

2. Comparing forms of self-duality 

It is clear that for a map (V,E,F) we have 

map self-duality ~ graph self-duality ~ matroid self-duality. (1) 

We are concerned to what extent these implications can be reversed. The next two 
theorems assert that, in the most general sense, they cannot. 

Theorem 1. There exists a map (V,E,F) such that (V,E) ~ (E*, V*), but (V,E,F) 
(F*,E*,V*). 

Theorem 2. There exists a map (V,E,F) such that M(E) ~ M(E)*, but (V,E) 
(F*,E*). 

In Fig. 2 the map (V,E,F) in (a) is map self-dual, as shown in (b), however (c) 
illustrates embedding (V,E,F'), whose dual is isomorphic to (V,E,F') as a graph, but 

Fig. 2. 
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not as a map, and (d) shows a map embedding (V,E,F") whose dual is not even 
isomorphic to (V,E) as a graph. 

2.1. Self-dual maps and self-dual graphs 

In the previous examples the graphs were of low connectivity. We shall use n- 
connectivity for graphs and matroids in the Tutte sense, see [13, 14, 10], because Tutte 

n-connectivity is invariant under dualization. Note that the usual concept of 3- 
connectivity coincides with Tutte 3-connectivity for simple graphs, and similarly for 
2-connectivity and loopless graphs. 

By Steinitz's Theorem, a planar 3-connected simple graph has a unique embedding on 
the sphere, in the sense that if p and q are embeddings, then there is a homeomorphism 
h of the sphere so that p --- hq. By [15], any isomorphism between the cycle matroids 
of a 3-connected graph is carried by a graph isomorphism. Thus, for a 3-connected 

graph 

map self-duality ¢= graph self-duality ¢= matroid self-duality, 

so self-dual 3-connected graphs, as well as self-dual 3-connected graphic matroids, 
reduce to the case of self-dual maps. 

Since the examples in Fig. 2 are only 1-connected, we must consider the 2-connected 
case. In Fig. 3 we see an example of a graphically self-dual map whose graph is 
2-connected which is not map self-dual. One might hope that, as was the case in Fig. 2, 
that such bad examples can be corrected by re-embedding or rearranging, however we 
have the following stronger result. 

Theorem 3. There exists a 2-connected map (V,E,F) which is graphically self- 
dual, so that (V,E) ~ (F*,V*), but for which every map (V',E~,F ') such that 
M(E) ~- M(E') is not map self-dual. 

Proof. Consider the map in Fig. 3, which is drawn on an unfolded cube. The graph 
is obtained by gluing two 3-connected self-dual maps together along an edge (a,b) 
and erasing the common edge. One map has only two reflections as self-dualities, both 
fixing the glued edge, the other has only two rotations of order four as dualities, again 
fixing the glued edge. The graph self-duality is therefore a combination of both, an 
order 4 rotation followed by a Whitney twist of the reflective hemisphere. It is easy 
to see that all the embeddings of this graph, as well as the graph obtained after the 
Whitney flip, have the same property. [] 

We also have the following. 

Theorem 4. There is a graphically self-dual map (V,E,F) with (V,E) 1-connected 
and having only 3-connected blocks, but for which every map (VP,E~,F ~) such that 
M(E) TM M(E') is not map self-dual. 
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Proof. Consider the 3-connected self-dual maps in Fig. 4. X 1 has only self-dualities of 
order 4, two rotations and two flip rotations, while X2 has only a left-right reflection 
and a 180 ° rotation as a self-duality. Form a new map X by gluing two copies of)(2 to 
X1 in the quadrilaterals marked with q's, with the gluing at the vertices marked v and 
v*. X is graphically self-dual, as can easily be checked, but no gluing of two copies 
of )(2 can give map self-duality since every quadrilateral in X] has order 4 under any 
self-duality. [] 

In particular, self-dual graphs of connectivity less than 3 cannot in general be re- 
embedded as self-dual maps. 

Xx X2 

Fig. 4, 
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2.2. Self-dual graphs and matroids 

If G is 1-connected, then its cycle matroid has a unique decomposition as the direct 
sum of connected graphic matroids, M(G)  = Mt ® . . .  ® Mk, and if G* is a planar 
dual of G, then M(G*) = M(G)* = M~ ~3 . . .  ® M;.  If G is graph self-dual, then 
there is a bijection 6 : M(G) --~ M(G*) sending cycles to cycles, and so there is a 
partition 7z of {1 . . . . .  k} such that 6 : Mi ~ M~*(i ), and we see that M(G) is the direct 
sum of self-dual connected matroids, together with some pairs of terms consisting of 
a connected matroid and its dual. 

In the next theorem we see that not every self-dual graphic matroid arises from a 
self-dual graph. 

Theorem 5. There exists a self-dual graphic matroid M such that for any graph 

G = (V,E) with M(G)  = M, and any embedding (V,E,F)  o f  G, (V,E) ~ (F*,E*). 

Proof. Consider M1 and M2, the cycle matroids of two distinct 3-connected self- 
dual maps Xl and )(2 whose only self-dualities are the antipodal map. The matroid 
M~ ® M2 is self-dual, but its only map realizations are as the 1-vertex union of Xl 
and )(2, which cannot be self-dual since the cut vertex cannot simultaneously be sent 
to both 'antipodal' faces. [] 

So for 1-connected graphs, the three notions of self-duality are all distinct. For more 
details about l-separable self-dual graphs, see [5]. For 2-connected graphs, however, 
we have the following. 

Theorem 6. I f  G : (V,E) & a planar 2-connected graph such that M(E)  ~- M(E)*, 
then G has an embedding (V,E,F)  such that (V,E) ~ (F*,E*). 

Proof. Let (V,E,F)  be any embedding of G. Then G is 2-isomorphic, in the sense of 
Whitney [15], to (F*,E*), and thus there is a sequence of Whitney flips which trans- 
form (F*,E*, V*) into an isomorphic copy of G, and act as re-embeddings of G. Thus, 
the result is a new embedding (V,E,F')  of G such that (V,E,F)  ~- (F*,E*,  V*). [] 

Thus, to describe 2-connected self-dual graphs it is enough, up to embedding, to 
describe self-dual 2-connected graphic matroids. 

3. Automorphisms of 3-block trees 

3.1. The 3-block tree 

Any graph is the disjoint union of its connected components. If a graph is connected, 
then its block-cutpoint tree, see [7], shows how the graph may be constructed from 
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Fig. 5. 

2-connected graphs and singleton edges by gluing them together at the cut vertices. 
If a graph is 2-connected, then there is a similar construction called the 3-block tree 
due to Tutte [13], which was generalized to matroids by Cunningham and Edmonds 

[4, 10]. 
Let Mi be a matroid on a set Ei, i = 1,2. The 2-sum of M1 and M2 along el and 

(el, e:) 
e2, denoted by M1 ® M2, is defined on the set ( E 1 U E 2 ) - e l - e 2  by taking the 

(eh e2) 
cycles in M1 ® M2 to consist of those cycles in Mi not containing el, as well as 
the sets (C1 - e l ) U  (6"2 - e 2 )  where Ci is a cycle of Mi containing el. We also write 

(ehe2) 
that the edges el and e2 have been amalgamated in M1 ® M2. 

The 2-sum of graphs is defined similarly, being careful to note the orientation of the 
amalgamated edge. Let Gi be graphs, i = 1,2, with e~ = (xi, yi) an edge of G~. Define 
the 2-sum of G1 and G2 along el and e2 to be the graph obtained from the disjoint 
union of Gt - el and 6 : 2  - -  e2 when xl and x2 are identified, as well as Yl and Y2, see 

(e,f) (e~) 
Fig. 5. Clearly, M(G1) 0 M(G2)= M(G1 G2). 

A map is determined from a planar graph by choosing the faces, i.e., by choosing 
a dual graph. The 2-sum of maps is therefore obtained by simultaneously taking the 
2-sum of G1 and G2 along el and e2, with the 2-sum of G~' and G~ along e~" and e~, 
in other words, an orientation on ei and e i must be specified. 

A matroid is called a 3-block if it is either 3-connected, or has at least 3 elements 
and consists of either one cycle or one cocycle. 

A 3-block tree is a tree Y such that each node ~ is labeled with a 3-block M~ and 
each link r/ = {7, fl} is labeled to indicate which edge in M~ is to be amalgamated 
with which edge of MI~, and the labels satisfy: 

1. For each node ct the labels on the links (a, fl) from M, are distinct, and 
2. For each link (ct, fl) the matroids M~ and M~ are not both cycles nor both cocycles. 

The matroid M ( Y )  determined by J -  is obtained by taking the 2-sum of the matroids 
{M~} along the elements determined by the labels on the links of 3-. Every 2-connected 
matroid is encoded by a unique 3-block tree. 

Let ~- and ,Y--' be 3-block trees. An isomorphism of 3-block trees is a pair ( f ,  {f~}), 
where f : ~-- ~ :¢-' is a graph isomorphism and f~ : M~ ~ Mf(~) is a matroid 
isomorphism such that if (ct, fl) is an edge of 3- amalgamating e~ with eta, then f ( q )  
amalgamates f~(e~) with f~(e~). Since the 3-block tree decomposition is unique, every 
matroid isomorphism F : M ---* M' corresponds to a unique isomorphism ( f ,  {f~}) : 
~ ( M )  --, J - (M') .  
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4. Self-dual matroids 

As noted earlier, 3-connected self-dual graphic matroids are classified via self-dual 
polyhedra. On the other hand, 1-connected self-dual matroids are easily understood 

via the direct sum. In this section we show how a 2-connected self-dual matroid 

M with self-duality 6 arises via 3-connected graphic matroids by recursively con- 

structing its 3-block tree J ( M )  by adding orbits of  pendant nodes. The following 

theorem shows that this construction is sufficient to obtain all 2-connected self-dual 

matroids. 

Theorem 7. Let  M be a self-dual connected matroid with 3-block tree 3-. Let  3- '  

be the tree obtained f r o m  ~-- be deleting all the pendant nodes, and let M I be the 

2-connected matroid determined by 3--', Then M '  is also self-dual. 

Proof. Let M be a self-dual connected matroid on a set E, so there is a matroid 
isomorphism A : M ~ M*, so 6 is a permutation of E sending cycles to cocycles. 

The 3-block tree of  M* is obtained from that of  M by replacing every label with the 

dual label, so A corresponds to a bijection (6,{6~}) of  3-  onto itself, such that for 

each node ct of ~--, 6~ : M ,  --* My(s) sends cycles of  M~ to cocycles of  Mf(~). The 
restriction of (6, {6~}) to ~'-' has the same property and so corresponds to a self-dual 

permutation of M'.  [] 

To examine the base case we note that every finite tree has a well defined central 

vertex or central edge which is fixed under every automorphism of the tree. If  3-" 
has a central vertex ~, then M~ must be self-dual, hence, since it cannot be a cycle 

or cocycle, M~ is a 3-connected self-dual matroid. I f  ~-- has a central edge, (ct, fl), 

then M~ ~ M# must be self-dual and the self-dual permutation satisfies 6(~) = ct and 

6(fl) = fl or 6(ct) = fl and 6(fl) = ct. 
If  6(ct) = ~ and 6(fl) = fl then both M~ and M~ are 3-connected self-dual matroids 

with self-dualities 6~ and 6/~ both of which fix the edge e. 
If  6(~) = fl and 6(fl) = ~ then M~ = M~*, and 6p6~ is a matroid automorphism of 

M~ which fixes e. 
We have the following. 

Theorem 8. Suppose M is a self-dual 2-connected matroid with self-dual permutation 

6 and let el E M. Let  {el . . . . .  ek} be the orbit o f  el under 6. Suppose one o f  the 

followino." 
1. k is even and Mo is a 3-connected matroid or a cycle and 6o is a matroid 

automorphism o f  Mo f ixing an edge eo. 
2. k is odd and Mo is a 3-connected self-dual matroid with self-dual permutation 

60 f ixin9 an edge eo. 
For i = 1 . . . . .  k set M2i+l = Mo and M2i = M~. Let  M '  be the matroid obtained 

f rom M by 2-sums with the matroids Mi, amalgamating eo or e~ in Mi with el. 
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Let  6' be defined by fi'(e) = 6(e) j b r  e E M - {ej . . . . .  ek}, tS' : Mi - e o  ~ Mi+l - e o  

is induced by * ]br i = 1 . . . . .  k and 61 = 60 : Mk ~ Ml. Then M'  is a 2-connected 

s e l f  dual matroid with sell:dual permutation 6'. 

Moreover, every 2-connected self-dual matroid and its sell:duality is obtained in 

this manner. 

Proof. The fact that this construction gives a 2-connected self-dual matroid follows at 

once, since to check if 6' is a self-duality, it suffices to check that (6')~ sends cycles 
to cocycles on each 3-block. The fact that M0 must be self-dual if k is odd follows 

by considering that t5 'k is a self-duality and maps M0 = MI onto itself. 

To see that all self-dualities arise this way, let tS' : M ~ ~ M'  be a self-duality, let 
be a pendant node of ,~, and set M0 = M~. Let M be the self-dual matroid that 

results by removing from ~ ( M ' )  the k nodes corresponding to the orbit of the node 

ct. 6' induces fi : M ~ M. Then the desired 60 is (tSk)~. [] 

5. The structure of self-dual graphs 

Given the results of the previous section, we may construct all 2-connected self- 

dual graphs; start with any self-dual 2-connected graphic matroid M and chose any 

I \1  

I I I I I 

I/ X I I / \  , 
I / U  \ \ 1 /  ~ ~ \ I / U  \ \ 1  / \ I 

Fig. 6. 
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realization of M as a cycle matroid of  a graph G. Theorem 6 asserts that G has 

an embedding as a self-dual graph. Alternatively, we may carry out a recursive con- 

struction in the spirit of Theorem 8 at the graph level, paying careful attention to the 

orientations in the 2-sums. The following theorem gives a more geometric construction. 

Theorem 9. Every 2-connected self-dual 9raph & 2-&omorphic to a 9raph which may 
be decomposed via 2-sums into self-dual maps such that the 2-sum on any two of  the 
self-dual maps is alon9 two edges, one of which is the pole of a rotation of  order 4 
and the other an edge fixed by a reflection. 

Proof. In case 1 of  Theorem 8 we can always choose 6o to be the identity, and simply 

glue in the copies of the maps corresponding to M0 and M~ compatibly to make a 

larger self-dual map. 
In case 2 we must have that M0 is a self-dual 3-block containing a self-duality fixing 

e0, hence it corresponds to a self-dual map and 60 must be a reflection or an order 4 

rotation fixing e0, see [11], and likewise the 3-block to which it is attached must be 
such an edge. If  both are of  the same kind, then the 3-blocks may be 2-summed into 

a self-dual map. This leaves only the mismatched pairs. [] 

To see that 2-isomorphism is necessary in the above, consider the self-dual graph in 
Fig. 6. The map cannot be re-embedded as a self-dual map, or does it have a 2-sum 

decomposition described as above, but the graph is 2-isomorphic to a self-dual map. 
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