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A graph is 2K,-free if it does not contain an independent pair of edges as an induced
subgraph. We show that if G is 2K,-free and has maximum degree A(G) = D, then G has at
most 5D%/4 edges if D is even. If D is odd, this bound can be improved to (SD*— 2D + 1)/4.
The extremal graphs are unique.

1. Introduction

We call a graph 2K,-free if it is connected and does not contain two
independent edges as an induced subgraph. The assumption of connectedness in
this definition only serves to eliminate isolated vertices. Wagon [6] proved that
x(G)=o(G)w(G)+1}/2 if G is 2K,-free where x(G) and w(G) denote
respectively the chromatic number and maximum clique size of G. Further
properties of 2K,-free graphs have been studied in [1, 3, 4 and 5].

2K ,-free graphs also arise in the theory of perfect graphs. For example, split
graphs and threshold graphs are 2K,-free (see [2]). On the other hand, the strong
perfect graph conjecture is open for the class of 2K,-free graphs.

In this paper we solve the following extremal problem posed by Bermond et al.
in [7] and also by Nesetfil and Erdos: What is the maximum number of edges in a
2K,-free graph with maximum degree D? Our principal result asserts that the
extremal graph is unique for all D and can be obtained from the five-cycle by
multiplying its vertices. The extremal problem solved here is a special case of a
more general conjecture of Erdos and Nesettil which can be viewed as a variation
on Vizing’s Theorem: Two edges are said to be strongly independent if there is no
edge incident to both edges. They conjecture that if A(G) = D, the edge set of G
can be partitioned into at most 5D?/4 color classes in such a way that any two
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edges in the same color class are strongly independent. It is not difficult to see
that 2D? colors suffices. Our result in this paper provides a lower bound
of 5D?/4 by showing certain graphs require 5D?/4 colors.

The proof of our result is based on some structural properties of 2K,-free
graphs. The most general of these properiies are coliecied in Section 2. The
special properties concerning 2K,-free graphs with clique size 3 or 4 are
established as-claims within the proof of the theorem in Section 3. Some of the
proof techniques we employ are similar to those used in [5].

Throughout the paper, V(G) and E(G) denote the vertex set and edge set of
the graph G. For a vertex x € V(G), N(x) is the set of neighbors of x. For disjoint
subsets A, B of V(G) we let [A, B] denote the bipartite subgraph of G whose
vertex set is A U B and whose edge set consists of those edges in G with one
endpoint in A and the other in B. For a vertex x € V(G) and a positive integer n,
we say H is obtained from G by multiplying x by n when H is formed by replacing
the vertex x by a stable (independent) set of n vertices each having the same
neighbors as x.

2. Structural properties of 2K,-free graphs

We will first prove several structural properties of 2K,-free graphs which turn
out to be very useful in the proof of the main theorem.

Theorem 1. Let G be a 2K,free graph, A be a stable set of G, and
B =V (G) — A. There exist x € B such that N(x) meets all edges of [A, B].

Proof. Consider the bipartite graph G’ determined by the edges of [A, B]. We
choose x € B such that x has maximum degree in G’. Consider N(x) in G and set
A'=N(x)NA, B'=N(x)N B. Assume that x does not satisfy the conclusion of
our theorem, i.e. assume that N(x)N {p, g} =0 for some pq e E(G), peA,
g€ B. For any t€A;, 1p ¢ E(G) because A is stable, xp, xq ¢ E(G) by the
definition of A’ and B’. Since G is 2K,-free, 1q € E(G), and it follows in G' that
the degree of g is larger than the degree of x in G’, contradicting the choice of
x. O

Corollary. If G is a bipartite 2K ,-free graph then both color classes of G contain
vertices adjacent to all vertices of the other color class of G.

Theorem 2. Assume that G is 2K,-free, ®(G)=2 and G is not bipartite. Then G
can be obtained from a five-cycle by vertex multiplication.

Proof. Since G is 2K,-free, minimum-length odd cycles of G must be of length 5.
If x,, x5, x5, X4, X5 are the vertices of a five-cycle C of G, let A; denote the set of
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vertices in G adjacent to x; and x;,, foreach i=1, 2, ..., 5 (cyclically). Clearly
the sets A; are stable and form a partition of V(G). From this, it follows easily
that G can be obtained from C by multiplying x; by |4;]. O
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For a subset X « V(G), we iet Dom{X) denote the set of vertices dominated
by X, i.e. Dom(X) =X U {y € V(G); there exists x € X such that xy € E(G)}.
The set X is said to be dominating if Dom(X) = V(G). A dominating clique of a
graph G is a dominating set which induces a complete subgraph in G. The
following result is a variant of a theorem of El-Zahar and Erdos [1].

Theorem 3. If G is 2K,-free and w(G) =3, then G has a dominating clique of size
o(G).

Proof. Let w(G) =p =3. Among all the p-element cliques in G, choose one, say
K ={x;, x5, ...,x,} so that t =|V(G) — Dom(K)| is minimum. If ¢t =0, then K
is dominating, so we may assume ¢ >0. Let Z = V(G) — Dom(K). Since p =2, Z
is a stable set. For each i =1,2,..., p, let Y;={y e Dom(K): yx; € E(G) if and
only if i =j}. Since p =3, each Y; is a stable set.

Choose an arbitrary element 2z, € Z and let y, € Dom(K) be any neighbor of z,.
Since G is 2K,-free and p is maximal, there is a unique integer i <p so that
yox; € E(G) if and only if i #j. Therefore K’ = (K — {x;}) U {yo} is a clique of size
p. Furthermore, any vertex dominated by K is dominated by K’ except possibly
those vertices in the set Y;={y e Y::y,y ¢ E(G)}. Since z,€ Dom(K’), the
minimality of ¢ requires that Y;#@. Let y, € Y;. Then the edges z,y, and x;y,
force z,y, € E(G). Choose distinct j, k€ {1,2,..., p} —{i}. Then zyy, and x;x,
are independent edges. The contradiction completes the proof. O

3. The extremal result

The main result of this section is the determination of the maximum number of
edges in a 2K,-free graph with a given maximum degree. It is convenient to
introduce the notation Cs(D) for the following graph. If D is even, then Cs(D)
denotes the graph obtained from the five cycle Cs by multplying each vertex of Cs
by D/2. If D is odd then Cs(D) denotes the graph obtained from Cs by
multiplying two consecutive vertices by (D + 1)/2 and the other three vertices by
(D —1)/2. Let f(D) =|E(G)| denote the number of edges of C5(D). Obviously
f(D)=5D?/4if D is even and f(D) = (5D*~2D +1)/4 if D is odd.

Theorem 4. Let D =2. If G is 2K,-free and the maximum degree of G is at most
D, then |E(G)| <f(D). Equality holds if and only if G is isomorphic to Cs(D).

Actually, we will prove a more technical result from which Theorem 4 is readily
extracted.
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Theorem 5. Let D =2 and suppose that G is a 2K,-free graph with maximum
degree at most D.
(i) If G is bipartite, then |\E(G)|=< D?. Equality holds if and only if G is the
complete bipartite graph Ky, p.
(ii) If w(G)=2 and G is not bipartite, then |E(G)|<f(D). Equality holds if
and only if G is isomorphic to Cs(D).
(iii) If o(G)=S5 then |E(G)|<(5D*—5D —20)/4<f(D).
(iv) If o(G) =4 then |E(G)| < (5D*-3D - 10)/4<f(D).
(v) If (G) =3 then |[E(G)| <f(D).

Proof of (i). The statement follows immediately from the Corollary to Theorem
1. O

Proof of (ii). From Theorem 2, we know that G is obtained from Cs by vertex
multiplications. Assume that Cs contains vertices x;, X, X3, X4, Xs and G is
obtained from Cs by multiplying each x; by a,. It is elementary to show that
¥3_, a;a;.1 < f(D) under the condition a; + a;,, < D (subscript arithmetic is taken
modulo 5) and that equality holds only for Cs(D). O

We will find it convenient to introduce some notation before proceeding with
the proofs of the remaining parts. If w(G)=p =3, then we can choose a
dominating clique K ={x;,x3,...,x,} in G using Theorem 3. Then let
Y=V(G)— K. If S is a nonempty subset of {1,2,...,p}, we denote by A(S)
the set of vertices defined by A(S) ={y € Y:yx; € E(G) if and only if i € S}. The
family {A(S):S<={1,2,...,p}, S#@} is a partition of Y. For a set §=
(i, iay ..., ik} c{1,2,...,p}, we will also write A(iy, i,, . . ., ix) for A(S).

When y,, y,€Y and y,y, € E(G), we define the weight of the edge yy,,
denoted w(y;y,), as |[N(mw)NK|+|N(»)NK]|. The following claim follows
immediately from the fact that G is 2K,-free.

Claim 0. If y,, y, € Y and y,y, € E(G), then w(y,y,) =p — 1.

Proof of (iii). There are at most (5) + p(D — p + 1) edges incident to the vertices
of K. Moreover, since every x; € V(K) has at most D — p + 1 neighbors in Y, for
the edges contained in Y, we obtain

> w(e)<p(D—p+1)(D-1). (*)

eeY
By Claim 1, w(e)=p — 1 for all e € Y, so that
E@)=(5)+pD=p+ D+ L@ —p+ D -1

__P P o, P03
p—1 p—1 2
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For p =5, this upper bound on the number of edges in G is a decreasing function
of p, which completes the proof of (iii)). O

Proof of (iv). If p =4, inequality (*) above implies |E(G)|<4D -6+ (D —
1)(D —3)+3|E;| =% |E;| +d*—3 where E; is the set of edges ec Y having
weight three. Let A’ denote the subset of Y constiting of those vertices with
exactly j neighbors in K. Then if e is an edge in E;, then one end point of e is in
A' and the other is in A% Furthermore the set A' is easily seen to be a stable set.
By applying Theorem 1 to the subgraph of G induced by A' U A®, there exists a
vertex y € A% so that N(y) meets all edges in E;=[A!, A’]. Now y has at most
D —2 neighbors in Y and each of these meets at most D —1 edges in E;. We
conclude that |E;| < (D — 1)(D —2). Thus E(G)<(5D*-3D —10)/4. O

Proof of (v). The proof for this case is somewhat complicated. The argument is
by contradiction. We assume that |E(G)| = f(D). Then |V(G)|=2f(D)/D. Since
p =3, we know that Y =A(12)UA(13) UA(R3)UA(L)UAR)U A(3). We will
establish a series of claims which yield the proof.

Claim 1. |Y|> (5D — 8)/2.

Proof. Suppose not. If D is even, then |Y| < (5D — 8)/2 implies
[EG)=|Y|(D-1)/2+3+3(D-2)<(5D—-8)(D—1)/4+3D -3
=(5D*— D —4)/4<5D*/4=f(D).
If D is odd, then |Y| < (5D —9)/2, so |[E(G)|<(5D*—2D - 3)/4<f(D). O

Claim 2. |A(1)| > |A(23)| + D/2, |A(2)|>]A(13)| + D/2 and |A(3)| > |A(12)| +
D/2.

Proof. |Y|=|N(x;) N Y|+ |N(x;) N Y|+ |A(1)| — |A23)| <2(D - 2) + |JAQ1)| —
|A(23)|. Since |Y|> (5D — 8)/2, we conclude |A(1)| >|A(23)| + D/2. The other

inequalities follow by symmetry. [

Let A,=]A(1)|+|AQ)| +]AG)| and A,=|A(12)| + |A(13)| + |A(23)]. Then
|Y| =AI+A’2 and 3D "‘623.1"'1.2.

Claim 3. 4, <(D — 4)/2.

Proof. Suppose A,=(D —4)/2. Then 3D —6=4,+24,=A + A, +A,=|Y|+
(D —4)/2. Thus |Y|=< (5D — 8)/2, contradicting Claim 1. O

Claim 4. A(1) U A(2) U A(3) is not a stable set.
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Proof. If A(1) UA(2) U A(3) is a stable set, then |E(G)|<3D -3+ A,(D-2)<
3D -3+(D—-4)(D-2)2<sf(D). O

Claim 5. A(1) UA(2), A(2) UA(3), and A(1) U A(3) are not stable sets.

Proof. Suppose A(1) U A(2) is a stable set. By Claim 4, we know there is an edge
in A(1) U A(2) U A(3), so we may assume there is an edge xz where x € A(1) and
z € A(3). Now let y be an arbitrary vertex in A(2). The edges xz and x,y show
yz € E(G). Now let x’ € A(1). Then the edges x'x, and zy show x'z € E(G). Thus
z is adjacent to every vertex in A(1) UA(2). This is impossible since |[A(1)U
A(Q2)|>D by Claim 2. O

Claim 6. Let i, j be distinct integers from {1,2,3}. Then one of the following
statements holds.

(i) There exists x € A(i) with xy € E(G) for every y € A(j).

(ii) There exists y € A(j) with xy ¢ E(G) for every x € A(i).

Proof. Assume statement (ii) does not hold. Choose x € A(i) so that |[N(x) N
A(j)| is maximum. If x has a nonneighbor y € A(j), choose a neighbor x* of y
from A(i). Then x* has more neighbors in A(j) thenx. O

Let i, j be distinct elements of {1,2,3}. We say A(i) and A(j) are linked if
there exists an element x € A(i) adjacent to all points in A(j) and an element
y € A(j) adjacent to all points in A(i).

Claim 7. There exist distinct integers i, j € {1, 2, 3} so that A({) and A(j) are
linked.

Proof. If A(1) and A(2) are not linked, we may assume without loss of generality
that there exists y, € A(2) so that xy, ¢ E(G) for every x € A(1). By Claim 5, there
exists an edge x,z, between A(l) and A(3). Thus z)y,€ E(G). Therefore
zox € E(G) for every x € A(1). By Claim 2 we can choose y, € A(2) so that
zon1 ¢ E(G). Then y;x € E(G) for every x € A(1). If A(1) and A(3) are not linked,
then there exists z; € A(3) with z;x ¢ E(G) for every x € A(1). The edge x,y,
shows y,z; € E(G). The edges yyz, and y,z, require yyz; € E(G). But this implies
that y,z;, and x,x, are independent. O

We are now ready to obtain the final contradiction. By Claim 7, we may
assume that A(1) and A(2) are linked. We choose a4 € A(1), by € A(2) so that apb
and ab, are edges in G for every b € A(2) and every a € A(1). Now every vertex
of Y is adjacent to either a, or b, except possibly those points in A(12). This
implies that |Y|<2(D — 1)+ |A(12)]. The inequality |Y|> (5D — 8)/2 then re-
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quires |A(12)| > (D —4)/2. This contradicts Claim 3 since |A(12)| <A, <(D ~
4)/2. With this observation, the proof of our theorem is complete. [

4. Conciuding remarks

The problem we dealt with here can be viewed as a variation of Turan’s
Theorem. Namely, for a given forbidden graph H, it is of interest to determine
the maximum number of edges in a graph G on n vertices which does not contain
H as an induced subgraph subject to certain degree constraints on G. Turan’s
Theorem considers the case of H as cliques. In this paper we investigate the case
of H as 2K,. To consider the corresponding problem for a general class of H, it is
essential to establish a clear understanding of the structural properties for graphs
which does not contain H as an induced subgraph. This is indeed a fundamental
problem in graph theory where more research is needed.

Another direction is along the line of the general conjecture of Erdds and
Nesetfil of coloring the edges of a graph such that two monochromatic edges are
strongly independent. Such an edge coloring will be called a strong edge coloring.
Their conjecture that 5D?/4 color suffices for graphs of maximum degree D is an
intriguing problem. Clearly more ideas are required to attack this problem
successfully. The problem of strong edge-coloring for general graphs opens up a
wide range of problems of edge coloring which we will not discuss here.
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