THE MAXIMUM NUMBER OF EDGES IN $\mathbf{2 K}_{\mathbf{2}}$-FREE GRAPHS OF BOUNDED DEGREE

F.R.K. CHUNG
Bell Communications Research Inc., Morristown, NJ 07960, USA
A. GYÁRFÁS and Z. TUZA*
Computer and Automation Institute of the Hungarian Academy of Sciences, Hungary

W.T. TROTTER**

Department of Mathematics, Arizona State University, Tempe, AZ 85287, USA
Received 19 May 1987
Revised 5 April 1988

Abstract

A graph is $2 K_{2}$-free if it does not contain an independent pair of edges as an induced subgraph. We show that if G is $2 K_{2}$-free and has maximum degree $\Delta(G)=D$, then G has at most $5 D^{2} / 4$ edges if D is even. If D is odd, this bound can be improved to $\left(5 D^{2}-2 D+1\right) / 4$. The extremal graphs are unique.

1. Introduction

We call a graph $2 K_{2}$-free if it is connected and does not contain two independent edges as an induced subgraph. The assumption of connectedness in this definition only serves to eliminate isolated vertices. Wagon [6] proved that $\chi(G) \leqslant \omega(G)[\omega(G)+1] / 2$ if G is $2 K_{2}$-free where $\chi(G)$ and $\omega(G)$ denote respectively the chromatic number and maximum clique size of G. Further properties of $2 K_{2}$-free graphs have been studied in [1, 3, 4 and 5].
$2 K_{2}$-free graphs also arise in the theory of perfect graphs. For example, split graphs and threshold graphs are $2 K_{2}$-free (see [2]). On the other hand, the strong perfect graph conjecture is open for the class of $2 K_{2}$-free graphs.

In this paper we solve the following extremal problem posed by Bermond et al. in [7] and also by Nešetřil and Erdös: What is the maximum number of edges in a $2 K_{2}$-free graph with maximum degree D ? Our principal result asserts that the extremal graph is unique for all D and can be obtained from the five-cycle by multiplying its vertices. The extremal problem solved here is a special case of a more general conjecture of Erdös and Nešetřil which can be viewed as a variation on Vizing's Theorem: Two edges are said to be strongly independent if there is no edge incident to both edges. They conjecture that if $\Delta(G)=D$, the edge set of G can be partitioned into at most $5 D^{2} / 4$ color classes in such a way that any two

[^0]edges in the same color class are strongly independent. It is not difficult to see that $2 D^{2}$ colors suffices. Our result in this paper provides a lower bound of $5 D^{2} / 4$ by showing certain graphs require $5 D^{2} / 4$ colors.

The proof of our result is based on some structural properties of $2 K_{2}$-free graphs. The most general of these properties are collected in Section 2. The special properties concerning $2 K_{2}$-free graphs with clique size 3 or 4 are established as claims within the proof of the theorem in Section 3. Some of the proof techniques we employ are similar to those used in [5].

Throughout the paper, $V(G)$ and $E(G)$ denote the vertex set and edge set of the graph G. For a vertex $x \in V(G), N(x)$ is the set of neighbors of x. For disjoint subsets A, B of $V(G)$ we let $[A, B]$ denote the bipartite subgraph of G whose vertex set is $A \cup B$ and whose edge set consists of those edges in G with one endpoint in A and the other in B. For a vertex $x \in V(G)$ and a positive integer n, we say H is obtained from G by multiplying x by n when H is formed by replacing the vertex x by a stable (independent) set of n vertices each having the same neighbors as x.

2. Structural properties of $\mathbf{2 K} \boldsymbol{K}_{\mathbf{2}}$-free graphs

We will first prove several structural properties of $2 K_{2}$-free graphs which turn out to be very useful in the proof of the main theorem.

Theorem 1. Let G be a $2 K_{2}$-free graph, A be a stable set of G, and $B=V(G)-A$. There exist $x \in B$ such that $N(x)$ meets all edges of $[A, B]$.

Proof. Consider the bipartite graph G^{\prime} determined by the edges of $[A, B]$. We choose $x \in B$ such that x has maximum degree in G^{\prime}. Consider $N(x)$ in G and set $A^{\prime}=N(x) \cap A, B^{\prime}=N(x) \cap B$. Assume that x does not satisfy the conclusion of our theorem, i.e. assume that $N(x) \cap\{p, q\}=0$ for some $p q \in E(G), p \in A$, $q \in B$. For any $\tau \in A ;, \tau p \notin E(G)$ because A is stable, $x p, x q \notin E(G)$ by the definition of A^{\prime} and B^{\prime}. Since G is $2 K_{2}$-free, $\tau q \in E(G)$, and it follows in G^{\prime} that the degree of q is larger than the degree of x in G^{\prime}, contradicting the choice of x.

Corollary. If G is a bipartite $2 K_{2}$-free graph then both color classes of G contain vertices adjacent to all vertices of the other color class of G.

Theorem 2. Assume that G is $2 K_{2}$-free, $\omega(G)=2$ and G is not bipartite. Then G can be obtained from a five-cycle by vertex multiplication.

Proof. Since G is $2 K_{2}$-free, minimum-length odd cycles of G must be of length 5 . If $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are the vertices of a five-cycle C of G, let A_{i} denote the set of
vertices in G adjacent to x_{i} and x_{i+2} for each $i=1,2, \ldots, 5$ (cyclically). Clearly the sets A_{i} are stable and form a partition of $V(G)$. From this, it follows easily that G can be obtained from C by multiplying x_{i} by $\left|A_{i}\right|$.

For a subset $X \subset V(G)$, we let $\operatorname{Dom}(X)$ denote the set of vertices dominated by X, i.e. $\operatorname{Dom}(X)=X \cup\{y \in V(G)$; there exists $x \in X$ such that $x y \in E(G)\}$. The set X is said to be dominating if $\operatorname{Dom}(X)=V(G)$. A dominating clique of a graph G is a dominating set which induces a complete subgraph in G. The following result is a variant of a theorem of El-Zahar and Erdös [1].

Theorem 3. If G is $2 K_{2}$-free and $\omega(G) \geqslant 3$, then G has a dominating clique of size $\omega(G)$.

Proof. Let $\omega(G)=p \geqslant 3$. Among all the p-element cliques in G, choose one, say $K=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ so that $t=|V(G)-\operatorname{Dom}(K)|$ is minimum. If $t=0$, then K is dominating, so we may assume $t>0$. Let $Z=V(G)-\operatorname{Dom}(K)$. Since $p \geqslant 2, Z$ is a stable set. For each $i=1,2, \ldots, p$, let $Y_{i}=\left\{y \in \operatorname{Dom}(K): y x_{j} \in E(G)\right.$ if and only if $i=j\}$. Since $p \geqslant 3$, each Y_{i} is a stable set.

Choose an arbitrary element $z_{0} \in Z$ and let $y_{0} \in \operatorname{Dom}(K)$ be any neighbor of z_{0}. Since G is $2 K_{2}$-free and p is maximal, there is a unique integer $i \leqslant p$ so that $y_{0} x_{j} \in E(G)$ if and only if $i \neq j$. Therefore $K^{\prime}=\left(K-\left\{x_{i}\right\}\right) \cup\left\{y_{0}\right\}$ is a clique of size p. Furthermore, any vertex dominated by K is dominated by K^{\prime} except possibly those vertices in the set $Y_{i}^{\prime}=\left\{y \in Y_{i}: y_{0} y \notin E(G)\right\}$. Since $z_{0} \in \operatorname{Dom}\left(K^{\prime}\right)$, the minimality of t requires that $Y_{i}^{\prime} \neq \emptyset$. Let $y_{1} \in Y_{i}^{\prime}$. Then the edges $z_{0} y_{0}$ and $x_{i} y_{1}$ force $z_{0} y_{1} \in E(G)$. Choose distinct $j, k \in\{1,2, \ldots, p\}-\{i\}$. Then $z_{0} y_{1}$ and $x_{i} x_{k}$ are independent edges. The contradiction completes the proof.

3. The extremal result

The main result of this section is the determination of the maximum number of edges in a $2 K_{2}$-free graph with a given maximum degree. It is convenient to introduce the notation $C_{5}(D)$ for the following graph. If D is even, then $C_{5}(D)$ denotes the graph obtained from the five cycle C_{5} by multplying each vertex of C_{5} by $D / 2$. If D is odd then $C_{5}(D)$ denotes the graph obtained from C_{5} by multiplying two consecutive vertices by $(D+1) / 2$ and the other three vertices by $(D-1) / 2$. Let $f(D)=|E(G)|$ denote the number of edges of $C_{5}(D)$. Obviously $f(D)=5 D^{2} / 4$ if D is even and $f(D)=\left(5 D^{2}-2 D+1\right) / 4$ if D is odd.

Theorem 4. Let $D \geqslant 2$. If G is $2 K_{2}$-free and the maximum degree of G is at most D, then $|E(G)| \leqslant f(D)$. Equality holds if and only if G is isomorphic to $C_{5}(D)$.

Actually, we will prove a more technical result from which Theorem 4 is readily extracted.

Theorem 5. Let $D \geqslant 2$ and suppose that G is a $2 K_{2}$-free graph with maximum degree at most D.
(i) If G is bipartite, then $|E(G)| \leqslant D^{2}$. Equality holds if and only if G is the complete bipartite graph $K_{D, D}$.
(ii) If $\omega(G)=2$ and G is not bipartite, then $|E(G)| \leqslant f(D)$. Equality holds if and only if G is isomorphic to $C_{5}(D)$.
(iii) If $\omega(G) \geqslant 5$ then $|E(G)| \leqslant\left(5 D^{2}-5 D-20\right) / 4<f(D)$.
(iv) If $\omega(G)=4$ then $|E(G)| \leqslant\left(5 D^{2}-3 D-10\right) / 4<f(D)$.
(v) If $\omega(G)=3$ then $|E(G)|<f(D)$.

Proof of (i). The statement follows immediately from the Corollary to Theorem 1.

Proof of (ii). From Theorem 2, we know that G is obtained from C_{5} by vertex multiplications. Assume that C_{5} contains vertices $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and G is obtained from C_{5} by multiplying each x_{i} by a_{i}. It is elementary to show that $\sum_{i=1}^{5} a_{i} a_{i+1} \leqslant f(D)$ under the condition $a_{i}+a_{i+2} \leqslant D$ (subscript arithmetic is taken modulo 5) and that equality holds only for $C_{5}(D)$.

We will find it convenient to introduce some notation before proceeding with the proofs of the remaining parts. If $\omega(G)=p \geqslant 3$, then we can choose a dominating clique $K=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ in G using Theorem 3. Then let $Y=V(G)-K$. If S is a nonempty subset of $\{1,2, \ldots, p\}$, we denote by $A(S)$ the set of vertices defined by $A(S)=\left\{y \in Y: y x_{i} \in E(G)\right.$ if and only if $\left.i \in S\right\}$. The family $\{A(S): S \subseteq\{1,2, \ldots, p\}, S \neq \emptyset\}$ is a partition of Y. For a set $S=$ $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, p\}$, we will also write $A\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ for $A(S)$.

When $y_{1}, y_{2} \in Y$ and $y_{1} y_{2} \in E(G)$, we dcfinc the weight of the edge $y_{1} y_{2}$, denoted $w\left(y_{1} y_{2}\right)$, as $\left|N\left(y_{1}\right) \cap K\right|+\left|N\left(y_{2}\right) \cap K\right|$. The following claim follows immediately from the fact that G is $2 K_{2}$-free.

Claim 0. If $y_{1}, y_{2} \in Y$ and $y_{1} y_{2} \in E(G)$, then $w\left(y_{1} y_{2}\right) \geqslant p-1$.
Proof of (iii). There are at most $\binom{p}{2}+p(D-p+1)$ edges incident to the vertices of K. Moreover, since every $x_{i} \in V(K)$ has at most $D-p+1$ neighbors in Y, for the edges contained in Y, we obtain

$$
\begin{equation*}
\sum_{e \in Y} w(e) \leqslant p(D-p+1)(D-1) . \tag{*}
\end{equation*}
$$

By Claim 1, $w(e) \geqslant p-1$ for all $e \in Y$, so that

$$
\begin{aligned}
|E(G)| & \leqslant\binom{ p}{2}+p(D-p+1)+\frac{p}{p-1}(D-p+1)(D-1) \\
& =\frac{p}{p-1} D^{2}-\frac{p}{p-1} D-\frac{p(p-3)}{2} .
\end{aligned}
$$

For $p \geqslant 5$, this upper bound on the number of edges in G is a decreasing function of p, which completes the proof of (iii).

Proof of (iv). If $p=4$, inequality (*) above implies $|E(G)| \leqslant 4 D-6+(D-$ 1) $(D-3)+\frac{1}{4}\left|E_{3}\right|=\frac{1}{4}\left|E_{3}\right|+d^{2}-3$ where E_{3} is the set of edges $e \subset Y$ having weight three. Let A^{j} denote the subset of Y constiting of those vertices with exactly j neighbors in K. Then if e is an edge in E_{3}, then one end point of e is in A^{1} and the other is in A^{2}. Furthermore the set A^{1} is easily seen to be a stable set. By applying Theorem 1 to the subgraph of G induced by $A^{1} \cup A^{2}$, there exists a vertex $y \in A^{2}$ so that $N(y)$ meets all edges in $E_{3}=\left[A^{1}, A^{2}\right]$. Now y has at most $D-2$ neighbors in Y and each of these meets at most $D-1$ edges in E_{3}. We conclude that $\left|E_{3}\right| \leqslant(D-1)(D-2)$. Thus $E(G) \leqslant\left(5 D^{2}-3 D-10\right) / 4$.

Proof of (v). The proof for this case is somewhat complicated. The argument is by contradiction. We assume that $|E(G)| \geqslant f(D)$. Then $|V(G)| \geqslant 2 f(D) / D$. Since $p=3$, we know that $Y=A(12) \cup A(13) \cup A(23) \cup A(1) \cup A(2) \cup A(3)$. We will establish a series of claims which yield the proof.

Claim 1. $|Y|>(5 D-8) / 2$.
Proof. Suppose not. If D is even, then $|Y| \leqslant(5 D-8) / 2$ implies

$$
\begin{aligned}
|E(G)| & \leqslant|Y|(D-1) / 2+3+3(D-2) \leqslant(5 D-8)(D-1) / 4+3 D-3 \\
& =\left(5 D^{2}-D-4\right) / 4<5 D^{2} / 4=f(D) .
\end{aligned}
$$

If D is odd, then $|Y| \leqslant(5 D-9) / 2$, so $|E(G)| \leqslant\left(5 D^{2}-2 D-3\right) / 4<f(D)$.
Claim 2. $|A(1)|>|\dot{A(23)}|+D / 2,|A(2)|>|A(13)|+D / 2$ and $|A(3)|>|A(12)|+$ $D / 2$.

Proof. $|Y|=\left|N\left(x_{2}\right) \cap Y\right|+\left|N\left(x_{3}\right) \cap Y\right|+|A(1)|-|A(23)| \leqslant 2(D-2)+\| A(1) \mid-$ $|A(23)|$. Since $|Y|>(5 D-8) / 2$, we conclude $|A(1)|>|A(23)|+D / 2$. The other inequalities follow by symmetry.

Let $\lambda_{1}=|A(1)|+|A(2)|+|A(3)|$ and $\lambda_{2}=|A(12)|+|A(13)|+|A(23)|$. Then $|Y|=\lambda_{1}+\lambda_{2}$ and $3 D-6 \geqslant \lambda_{1}+\lambda_{2}$.

Claim 3. $\lambda_{2}<(D-4) / 2$.
Proof. Suppose $\lambda_{2} \geqslant(D-4) / 2$. Then $3 D-6 \geqslant \lambda_{1}+2 \lambda_{2}=\lambda_{1}+\lambda_{2}+\lambda_{2} \geqslant|Y|+$ ($D-4) / 2$. Thus $|Y| \leqslant(5 D-8) / 2$, contradicting Claim 1 .

Claim 4. $A(1) \cup A(2) \cup A(3)$ is not a stable set.

Proof. If $A(1) \cup A(2) \cup A(3)$ is a stable set, then $|E(G)| \leqslant 3 D-3+\lambda_{2}(D-2)<$ $3 D-3+(D-4)(D-2) / 2 \leqslant f(D)$.

Claim 5. $A(1) \cup A(2), A(2) \cup A(3)$, and $A(1) \cup A(3)$ are not stable sets.
Proof. Suppose $A(1) \cup A(2)$ is a stable set. By Claim 4, we know there is an edge in $A(1) \cup A(2) \cup A(3)$, so we may assume there is an edge $x z$ where $x \in A(1)$ and $z \in A(3)$. Now let y be an arbitrary vertex in $A(2)$. The edges $x z$ and $x_{2} y$ show $y z \in E(G)$. Now let $x^{\prime} \in A(1)$. Then the edges $x^{\prime} x_{1}$ and $z y$ show $x^{\prime} z \in E(G)$. Thus z is adjacent to every vertex in $A(1) \cup A(2)$. This is impossible since $\mid A(1) \cup$ $A(2) \mid>D$ by Claim 2 .

Claim 6. Let i, j be distinct integers from $\{1,2,3\}$. Then one of the following statements holds.
(i) There exists $x \in A(i)$ with $x y \in E(G)$ for every $y \in A(j)$.
(ii) There exists $y \in A(j)$ with $x y \notin E(G)$ for every $x \in A(i)$.

Proof. Assume statement (ii) does not hold. Choose $x \in A(i)$ so that $\mid N(x) \cap$ $A(j) \mid$ is maximum. If x has a nonneighbor $y \in A(j)$, choose a neighbor x^{*} of y from $A(i)$. Then x^{*} has more neighbors in $A(j)$ then x.

Let i, j be distinct elements of $\{1,2,3\}$. We say $A(i)$ and $A(j)$ are linked if there exists an element $x \in A(i)$ adjacent to all points in $A(j)$ and an element $y \in A(j)$ adjacent to all points in $A(i)$.

Claim 7. There exist distinct integers $i, j \in\{1,2,3\}$ so that $A(i)$ and $A(j)$ are linked.

Proof. If $A(1)$ and $A(2)$ are not linked, we may assume without loss of generality that there exists $y_{0} \in A(2)$ so that $x y_{0} \notin E(G)$ for every $x \in A(1)$. By Claim 5, there exists an edge $x_{0} z_{0}$ between $A(1)$ and $A(3)$. Thus $z_{0} y_{0} \in E(G)$. Therefore $z_{0} x \in E(G)$ for every $x \in A(1)$. By Claim 2 we can choose $y_{1} \in A(2)$ so that $z_{0} y_{1} \notin E(G)$. Then $y_{1} x \in E(G)$ for every $x \in A(1)$. If $A(1)$ and $A(3)$ are not linked, then there exists $z_{1} \in A(3)$ with $z_{1} x \notin E(G)$ for every $x \in A(1)$. The edge $x_{0} y_{1}$ shows $y_{1} z_{1} \in E(G)$. The edges $y_{0} z_{0}$ and $y_{1} z_{1}$ require $y_{0} z_{1} \in E(G)$. But this implies that $y_{0} z_{1}$ and $x_{1} x_{0}$ are independent.

We are now ready to obtain the final contradiction. By Claim 7, we may assume that $A(1)$ and $\Lambda(2)$ are linked. We choose $a_{0} \in A(1), b_{0} \in A(2)$ so that $a_{0} b$ and $a b_{0}$ are edges in G for every $b \in A(2)$ and every $a \in A(1)$. Now every vertex of Y is adjacent to either a_{0} or b_{0} except possibly those points in $A(12)$. This implies that $|Y| \leqslant 2(D-1)+|A(12)|$. The inequality $|Y|>(5 D-8) / 2$ then re-
quires $|A(12)|>(D-4) / 2$. This contradicts Claim 3 since $|A(12)| \leqslant \lambda_{2}<(D-$ $4) / 2$. With this observation, the proof of our theorem is complete.

4. Concluding remarks

The problem we dealt with here can be viewed as a variation of Turan's Theorem. Namely, for a given forbidden graph H, it is of interest to determine the maximum number of edges in a graph G on n vertices which does not contain H as an induced subgraph subject to certain degree constraints on G. Turan's Theorem considers the case of H as cliques. In this paper we investigate the case of H as $2 K_{2}$. To consider the corresponding problem for a general class of H, it is essential to establish a clear understanding of the structural properties for graphs which does not contain H as an induced subgraph. This is indeed a fundamental problem in graph theory where more research is needed.

Another direction is along the line of the general conjecture of Erdös and Nešetril of coloring the edges of a graph such that two monochromatic edges are strongly independent. Such an edge coloring will be called a strong edge coloring. Their conjecture that $5 D^{2} / 4$ color suffices for graphs of maximum degree D is an intriguing problem. Clearly more ideas are required to attack this problem successfully. The problem of strong edge-coloring for general graphs opens up a wide range of problems of edge coloring which we will not discuss here.

References

[1] M. El-Zahar and P. Erdős, On the existence of two non-neighboring subgraphs in a graph, Combinatorica 5 (1985) 295-300.
[2] M.C. Golumbic, Algorithmic Graph theory and Perfect Graphs (Academic Press, 1980).
[3] A. Gyárfás, Problems from the world surrounding perfect graphs, MTA Sztaki Studies 177 (1985).
[4] A. Gyárfás and J. Lehel, On-line and first fit colorings of graphs, to appear in J. Graph Theory.
[5] M. Paoli, G.W. Peck, W.T. Trotter and D.B. West, The maximum number of edges in regular $2 K_{2}$-free graphs, submitted.
[6] S. Wagon, A bound on the chromatic number of graphs without certain induced subgraphs, J. Combinat. Theory B 29 (1980) 345-346.
[7] J.C. Bermond, J. Bond, M. Paoli and C. Peyrat, Surveys in Combinatorics, Proceedings of the Ninth British Combinatorics Conference, Lecture Notes Series 82 (1983).

[^0]: * Research supported by the AKA Research Fund of the Hungarian Academy of Sciences.
 ** Research supported in part by the National Science Foundation under DMS 84-01281.

