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Abstract

In this paper, we consider the attractors for the two-dimensional nonautonomous Navier—Stokes equations
in nonsmooth bounded domain £2 with nonhomogeneous boundary condition u = ¢ on 92. Assuming
f=fx,te LIZOC((O, T); D(A“/4)), which is translation compact and ¢ € L°°(9£2), we establish the
existence of the uniform attractor in L2([2) and D(Al/ 4).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let £2 be nonsmooth bounded domain in R?. We consider two-dimensional Navier—Stokes
equations in a bounded Lipschitz domain £2 with nonhomogeneous boundary condition:

%—?—vAu+(u-V)u+Vp=f,
divu =0, (L.1)
u=¢ onoas2,
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where f = f(x,1) € L} ((0, T); E), where E = D(A%*), « = —1 or —2, and ¢ € L>(3£2) is
time-independent functions. We consider this equation in an appropriate Hilbert space and show
that there is an attractor 2l which all solutions approach as ¢ — oo. The main interest of this work
lies in our assumptions on the domain £2 occupied by the fluid as well as on the nonhomogeneous
boundary data ¢. Indeed, we will only assume that §2 is a (simply connected) Lipschitz domain

in R? and
e L®0R2), ¢-n=0 ae.onds, (1.2)

where 7 is the outward unit normal to 9£2. Such assumptions are much more physically realistic
than the ones in the existing estimates.

In this paper, we reduce the problem (1.1) to the Navier—Stokes equations with homogeneous
boundary condition. This will be done by constructing a function 1 (background flow) such that

divy =0 in £2 and Yv=¢ onaf2. (1.3)

The basic idea of our construction, which is motivated by the works of Miranville and Wang [17]
and Brown et al. [3], is to localize the solution of the Stokes system with boundary data ¢ to a
e-neighborhood of 9£2.

In addition, we assume that the function f(-,¢) =: f(¢t) € L
This property implies that

2

ioc(R; E) is translation bounded.

t+1
2
||f||§£=||f||ii(R;E)=§gg / | £()|3ds < oo. (1.4)
t

In the last decade the study of the nonautonomous infinite-dimensional dynamical systems
has been paid much attention and fast developed. In the book [11] Haraux considers some spe-
cial classes of such systems and studies systematically the notion of uniform attractor paralleling
to that of global attractor for autonomous systems. Later on, Chepyzhov and Vishik [7,8] present
a general approach that is well suited to study equations arising in mathematical physics. In this
approach, to construct the uniform (or trajectory) attractors, instead of the associated process
{Us(t,7) |t > T, T € R} one should consider a family of processes {U, (¢, 7)}, 0 € X, in some
Banach space E, where the functional parameter og(s), s € R is called the symbol and X is
the symbol space including oq(s). Naturally from the applications, there is some invariant semi-
group acting on X' and satisfying the so-called translation identity. If the family of processes
is (E x X, E) continuous, i.e., the mappings (#, ) — U, (¢, T)u are continuous from E x X
to E, it can be reduced to semigroup by constructing skew product flow. The approach preserves
the leading concept of invariance which implies the structure of uniform attractor described by
the representation as a union of sections of all kernels of the family of processes. The kernel
is the set of all complete trajectories of a process. Moreover, the methods of autonomous sys-
tems are applicable. For example, Moise et al. [19] formulate in a systematic way the energy
method (the idea belongs to Ball [1]) for the noncompact semiprocesses which extends their ear-
lier work [18] on noncompact semigroup. Following these ways, the strongly compact uniform
attractors are obtained for the systems with symbols of strongly compact hulls. In Chepyzhov and
Vishik [4,6], a different approach based on the concept of trajectory attractor is developed and
has many applications (cf. Bona and Dougalis [2], Chepyzhov and Vishik [5,7,8], Karch [12],
Ladyzhenskaya [14], Lu et al. [15], Ma et al. [16], Robinson [20], Temam [22]). For further ap-
plications to the nonautonomous systems on unbounded domain, we refer to Efendiev and Zelik
[9], Karachlios and Stavrakakis [13], Zelik [23].
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In the paper, we study the existence of compact uniform attractor for the nonautonomous
Navier—Stokes equations in nonsmooth bounded domain £2 with nonhomogeneous boundary
condition u = ¢ on 9£2. We apply a new method to nonautonomous Navier—Stokes equation with

external forces f(x,t) in leoc(R ; E) which is translation compact. To this end, some abstract

results are established in Section 4. We give a characterization by the concept of measure of
noncompactness as well as a method to verify it.
Throughout this paper we introduce the spaces

H={L*$2)|divu=0in 2, u-n=00n 3},

V ={H}(2) |divu =0in £2},

|-|p, the LP(£2) norm,

Il -1, thenormin V,

(,) the inner product in H or the dual product between V and V',
((, ) the inner productin V.

We can define the powers A® of A for s € R. The space Vs = D(A*/?) turns out to be a Hilbert
space with the inner product and the norm

w, v)y, = (Au, A7), ully, = @, wy,.

Here V' is the dual of V = V). The constants C;(c;), i € N, are considered in a generic sense.
2. Setting of the problem

Let £2 be a bounded domain in R?. We say that £2 is a Lipschitz domain if its boundary 92
can be covered by finite many balls B; = B(Q, ro) centered at Q ; € 92 such that for each B},
there exists a rectangular coordinate system and a Lipschitz function v/ : R4~! — R with

B(Qj,3r())ﬂ.Q={(X1,...,xd)|xd>lﬁj(xl,...,xd,1)}ﬂf2.

Throughout this paper we will assume that £2 is a simply connected Lipschitz domain in R.
For a function u on £2, we define its nontangential maximal function (u#)* by

@)*(Q) =sup{|ux)||x € 2, |x — Q] <2dist(x,92)}, Qedf. 2.1)

As is mentioned in Brown et al. [3], if ¢ € L?(9£2) and fa.rz ¢ -ndg¢ = 0, our background
flow will be constructed using the solution to the Stokes system:

divu =0 1in $2, 2.2)

{—Au+Vq:0 in §2,
u =@ ae. onds2 in the sense of nontangential convergence.

There exists a unique 1 and a unique (up to a constant) g satisfying (2.2) and (u)* € L%(3£2).In
fact, the solution (u, g) will satisfy

f|(u)*|2dg+/|W(x)yzdist(x,ag)dx+/|q(x)\2dist(x,39)dx<c0/ o2 de.
2

2 2 82

2.3)
If, in addition, ¢ € L®°(952), then
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sup |u(x)| + sup|Vu(x)]| dist(x, 382) < Collgll L~ 52)- (2.4)
xX€eN xXeNR

Let u = (1, up) be the solution of (2.2) with ¢ € L*°(9£2) and ¢ - n =0. Fix P € 952. We
define

g(x) =f(—u2,u1) -Tds, (2.5)
P

where T denotes the unit tangent vector to the path from P to x = (xy, x3). Since £2 is simply
connected and divu = 0 in £2, g is well defined by Green’s theorem, and

a 0]
u=(28 %) (2.6)
dxy  0xp
Moreover, since u = ¢ on 352 and ¢ - n =0 a.e., we have
g=0 onadsf2.
Next let € € (0, codiam($2)) be a constant. Let n, € C8°(R2) such that, 0 < n < 1,

ne =1 in{x € R?|dist(x,32) <cie}, 7
ne =0 in{x € R?|dist(x, 382) > c2¢}, '
and
|V e| < /6. 2.8)

We remark that 1, can be found in the form f (@) where p € C* is a regularized distance
function to 32 and f is a standard bump function.
Finally, we define the background flow

0 d
Y=, = (8—(gng), ——(gns)>. (2.9)
X2 3)61

Clearly, divyy =0 in £2, ¥ = u in {x € £ | dist(x, 0§2) < c1¢}. Hence, ¥ = ¢ on 92 in the
sense of nontangential convergence. Also note that

supp ¥ C {x € 2 | dist(x, 92) < c2¢}. (2.10)
Therefore, we have from Brown et al. [3]:
Lemma 2.1. With ¢ and  as above, we have

IV llLo2y < CrllellLe@o)- 2.11)
Lemma 2.2. Let 2 < p < 0. Then

[Ivyidist, ) =7 o) < CallellLroe). (2.12)

Lemma 2.3. Let  be defined by (2.9). Then

Ay =V(gne) + F, (2.13)
where supp F C {x € £2 | c1e < dist(x, 0§2) < cp¢} and

C3
1Fll22) < W”‘P”LZ(aQ)- (2.14)
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We now set v =u — { where u is a solution of (1.1). Using (2.13), we see that

B —vAV+ - VIo+ @ VY + W - VIv+ V(p+vgne)

. =f+vF = -V)y; (2.15)
divv =0;
v=0 onadf2.

3. Preliminary results

Let E be a Banach space, and let a two-parameter family of mappings {U (¢, 1)} ={U (¢, 7) |
t>t, T€R}acton E:

Ut,t1):E—E, t>1, T€R.

Definition 3.1. A two-parameter family of mappings {U (¢, 7)} is said to be a process in E if

ui,s)Us,t)y=U(t, 1), Vi=s>rt, TER, 3.1
U(t,t)=1Id, te€R. 3.2)

By B(E) we denote the collection of the bounded sets of E. We consider a family of processes
{Us (¢, T)} depending on a parameter o € X'. The parameter o is said to be the symbol of the
process {Uy (¢, 7)} and the set X is said to be the symbol space. In the sequel X is assumed to
be a complete metric space.

A family of processes {U, (t,T)}, 0 € X, is said to be uniformly (with respect to (w.r.t.)
o € X) bounded if for any B € B(E) the set

U U U Uy (t,7)B € B(E). (3.3)

ceX teR 121

A set By C E is said to be uniformly (w.r.t. 0 € X') absorbing for the family of processes
{Us(t, 1)}, 0 € X, if for any T € R and every B € B(E) there exists ty = to(t, B) > 7 such that
Ugex Us(t, T)B S By forall ¢ > 1.

A set P C E is said to be uniformly (w.rt. o € X) attracting for the family of processes
{Us(t, 1)}, 0 € X, if for an arbitrary fixed 7 € R,

lim ( sup dist (Uy (1, 7) B, P)) —0. (3.4)
I>+00\  cx
A family of processes possessing a compact uniformly absorbing set is called uniformly com-

pact and a family of processes possessing a compact uniformly attracting set is called uniformly
asymptotically compact.

Definition 3.2. A closed set Ay C E is said to be the uniform (w.r.t. o € X) attractor of the fam-
ily of processes {U, (¢, T)}, 0 € X, if it is uniformly (w.r.t. o € X) attracting and it is contained
in any closed uniformly (w.r.t. o € X) attracting set A" of the family of processes {U, (¢, 7)},
ceX: Axs C A

Let us return to general families of processes.

A family of processes {U, (¢, T)}, 0 € X, acting in E is said to be (E x X, E)-continuous, if
for all fixed ¢ and t, t > 7, T € R the mapping (u, o) > Uy (¢, T)u is continuous from E x X
into E.
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A curve u(s), s € R is said to be a complete trajectory of the process {U (¢, 7)} if

Ut,Du(t)=u(), Vt=>t1, T€R. 3.5)

The kernel IC of the process {U (¢, t)} consists of all bounded complete trajectories of the
process {U (¢, 7)}:

K ={u() | u() satisfies (3.5) and |[u(s)| ; < M, fors € R}.

The set

K(s)={u(s) lu() e} S E
is said to be the kernel section at a time moment t = s, s € R.
We consider two projectors [1; and I, from E x X onto E and X, respectively:
Iy(u,0) =u, (u,0)=o0.
Now we recall the basic results in Chepyzhov and Vishik [5,7].
Theorem 3.1. Let a family of processes {Uy(t, T)}, 0 € X acting in the space E be uniformly
(w.rt. o € X) asymptotically compact and (E x X, E)-continuous. Also let X be a compact

metric space and let {T (t)} be a continuous invariant (T (t) X = X') semigroup on X satisfying
translation identity

Ust+s,t+s5)=Uruo(t, 1), YoeX, t21, 1€R, s20. 3.6)

Then the semigroup {S(t)} corresponding to the family of processes {U (t, T)}, 0 € X and acting
on E x X:

SO, o) = (Us (t,0u, T(t)o), >0, (u,0)€E x X,

possesses the compact attractor A which is strictly invariant with respect to {S(t)}: S@) A=A
forall t > 0. Moreover,

(1) A= A = Ax is the uniform (w.rt. o € X) attractor of the family of processes
{Us(t, D)}, 0 € X
(i) A=A, =%,
(iii) the global attractor satisfies

A= Ks0) x {o};
oeX
(iv) the uniform attractor satisfies

As = A1 = K (0).

oeX

Here K (0) is the section at t = 0 of the kernel K of the process {U, (t, T)} with symbol o € X.
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4. Existence and structure of uniform attractor

For convenience, let B; = J,cx Uy>; Us (s, 1) B, the closure B of the set B and R, =
{t e R_| t > t}. Define the uniform (w.rt. o € X) w-limit set w; x(B) of B by w; x(B) =
ﬂl>r B; which can be characterized, analogously to that for semigroup, by the following:

{ Yy € wr x(B) & there are sequences {x,} C B, {o,} C X, {t,} C R, @1

such that t, — 400 and Uy, (t,, T)x, — y (n — 00).

We will characterize the existence of uniform attractor for a family of processes satisfying
(3.6) in term of the concept of measure of noncompactness that is put forward first by Kuratowski.
Let B € B(E). Its Kuratowski measure of noncompactness « (B) is defined by

k(B) =inf{§ > 0| B admits a finite cover by sets of diameter < &}.

It has following properties (see Hale [10], Sell and You [21]).
Lemma 4.1. Ler B, By, By € B(E). Then

(1) k(B) =04 k(N (B, ¢)) < 2¢ < B is compact;
(2) k(B1+ B2) <«k(B1) +«(Ba);

(3) «(B1) < «(By) whenever By C B»;

(4) k(B1 U By) < max{k(B1), k(B2)};

(5) k(B)=«k(B);

(6) if B is a ball of radius ¢ then k(B) < 2¢.

Lemmad4.2. Let--- D F,, D Fy41 D - - - be a sequence of nonempty closed subsets of E such that
k(Fy) = 0asn — oo. Then F =( ;2| Fy is nonempty and compact.

Definition 4.1. A family of processes {U, (f, 7)}, o € X, is said to be uniformly (w.r.t. o € X)
w-limit compact if for any t € R and B € B(E) the set B; is bounded for every r and
limt_>oo K(B[) =0.

Proposition 4.1. If {U,(t, 1)}, 0 € X, is uniformly (w.rt. o € X) w-limit compact, then for
any {x,} C B € B(E), {0,} C X, {ty} C Ry, t, — +00 as n — 00, there exists a convergent
subsequence of {Ug, (ty, T)Xx,} whose limit lies in w5 (B).

Proof. For any ¢ > 0, it derives from Definition 4.1 and (3)—(4) of Lemma 4.1 that for a suffi-
ciently large Ny,

k({Us, (ta, Dxn | n € N}) =k ({Us, (tn. T)xn | n = No}) <& 4.2)

Let ¢ — 0, then by (1) of Lemma 4.1 {U,, (¢, T)x,} is precompact. (4.1) informs all limits of
the convergent subsequences lie in w; x(B). O

Proposition 4.2. If {U, (¢, )} is uniformly (w.r.t. o € X) w-limit compact, then for any t € R
and B € B(E),

(1) wr, x(B) is nonempty and compact;
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(i) lim;— oo (SUP, ey dist(Us (7, T) B, wr, 5 (B))) =0;
(iii) if Y is a closed set uniformly (w.r.t. o € X) attracting B then w, x(B) C Y.

Also let ¥ be a compact metric space and let {T (t)} be a continuous invariant T(¢)X = X on
X satisfying translation identity (3.6). Then

(1v) w7, x(B) =wo, x(B), that is, the set w; x (B) is independent on T € R.

Proof. (i) Obviously, for any increasing sequence {t,} C R, such that #, — 400 as n — oo,
w3 (B) = ﬂ;’lozl E,n. Since {Uy (¢, 7)}, 0 € X, is uniformly (w.rt. 0 € X') w-limit compact
and B € B(E), we can find such a sequence of {f,} that K(E,n) < 1/n. Thanks to Lemma 4.2,
¢, 5 (B) is nonempty and compact.

(i1) and (iii) Noticing Proposition 4.1, the proofs are similar to those of Proposition VIL.1.1 in
Chepyzhov and Vishik [7]. So we omit here.

(v) If {Us(t, 1)}, 0 € X, satisfies (3.6), then its uniformly (w.r.t. o € X') absorbing set By is
independent of 7. In fact, let By be the one for t = 0. Then for any fixed r € R and B € B(E),
by Uyex Us(t, T)B =Jyex Us (t — 7,0) B which implies To(t, B) = v + Ty (0, B). Similarly
from (4.1), we find w5 (B) =wp, s (B) forallt e R. O

Theorem 4.1. Let X be a compact metric space and let {T (t)} be a continuous invariant
T ()X = X on X satisfying translation identity (3.6). A family of processes {Us(t,7)}, 0 € X,
acting in E is (E x X, E)-(weakly) continuous and possesses compact uniform (w.rt. o € X)
attractor Ay satisfying

Az =wo,5(Bo) = wr,x(Bo), VT €R, (4.3)
if and only if it

(i) has a bounded uniformly (w.r.t. ¢ € X) absorbing set By; and
(ii) is uniformly (w.r.t. o € X) w-limit compact.

Proof. The sufficiency follows immediately from Proposition 4.2.

We now prove the necessity. First, any e-neighborhood of Ay is a uniformly (w.rzt. o € X))
absorbing set. Second, for any 7 € R, B € B(E) and ¢ > 0, there exists t; =(t, B, &) > T such
that B, C N'(Ay,¢&/2). Since Ay is compact, by Lemma 4.1 x(B;,) < k(N (Ax,e/2)) < ¢
which implies the uniform w-limit compactness. 0O

We present now a method to verify the uniform (w.z.t. o € ¥') w-limit compactness.

Definition 4.2. A family of processes {U, (¢, 7)}, 0 € X is said to be satisfying uniform (w.r.t.
o € X) Condition (C) if for any fixed T € R, B € B(E) and ¢ > 0, there exist to = t(z, B,&) > 7
and a finite-dimensional subspace E; of E such that

(i) P(Uges U,>,o U, (t, T)B) is bounded; and
(i) 11 = P)(Upes Uiz Us . T)X) | <&, Vx € B,

where P: E — E| is a bounded projector.



434 D. Wu, C. Zhong / J. Math. Anal. Appl. 321 (2006) 426—444

Proposition 4.3. A family of processes {U, (t, T)}, 0 € X, satisfies uniform (w.r.t. o € X) condi-
tion (C) implies uniform (w.r.t. o € X) w-limit compactness. Moreover, if E is a uniformly convex
Banach space then the converse is true.

Proof. From (2), (3) and (6) of Lemma 4.1, for any T € R, B € B(E) and ¢ > 0, there exists
to =1t(t, B, &) > 7 such that

K(Biy) <k(PByy) +x((I — P)By) <k (N(0,8)) =2, 4.4)

where P: E — Ej and dimension of Ej is finite. This means {U, (¢, 7)}, 0 € ¥, is uniformly
(w.r.t. o € X) w-limit compact.

On the other hand, there exists #o = #(t, B, &) > t such that B, is covered by some fi-
nite number of subsets Aj, Ay, ..., A, with diameters less than ¢. Let x; € A; and E| =
span{xi, x2, ..., Xx,}. Since E is uniformly convex, there exists a projection P:E — Ej such
that for any x € E, ||x — Px| =dist(x, E1). Hence

| (1 = P)x| <dist(x, {x1,x2,...,x,}) <&, Vx € By, (4.5)

Namely {U, (¢, 1)}, o € X, is satisfying uniform (w.x.t. o € X') condition (C). O
It follows from Theorem 4.1 and Proposition 4.3 that

Theorem 4.2. Let X be a compact metric space and let {T (t)} be a continuous invariant
T (1) X = X on X satisfying translation identity (3.6). A family of processes {U(t,T)}, 0 € X,
acting in E is (E x X, E)-(weakly) continuous and possesses compact uniform (w.rt. o € X)
attractor Ay satisfying

Az = w0, 5(Bo) = wr 5(Bo) = | K5(0), VreR, 4.6)

oeX
if it

(1) has a bounded uniformly (w.r.t. o € X) absorbing set By; and
(1) satisfies uniform (w.r.t. o € X') condition (C).

Moreover, if E is a uniformly convex Banach space then the converse is true.
5. Translation compact functions

Let us describe a typical symbol space X' for a particular problem. We are given some fixed
symbol o¢(s), s € R. We choose an appropriate enveloping topological space & = {¢(s) | s € R}
such that o¢(s) € Z. Consider the closure in = of the following set:

{T(h)oo(s) | h e R} ={oo(h+5) | h€R}.
This closure is said to be the hull of the function o¢(s) in = and is denoted by
H(oo) = [{T (h)oo | h € R}]
Here [-]z denotes the closure in &. Evidently, T (h)H (o¢) = H(op) for any i € R.

=
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Definition 5.1. The function oy (s) € & is said to be translation compact in Z if the hull H (o)
is compact in &.

Now recall the following facts which can be found in Chepyzhov and Vishik [7].

Lemma 5.1. A set ¥ C Lﬁ)c(R; E) is precompact in Lllf)c(R; E) if and only if the set X4 1] is

precompact in LP(t1, ty; E) for every segment [t1,t;] C R. Here Xy, 1, denotes the restriction
of the set X' to the segment [t1, 12].

Proposition 5.1. Assume that f(s) € Lg(R ; E) is translation compact, then for any ¢ > 0, there
exists n > 0 such that

t+n

sup / | ()| ds <e. (5.1)
terR p

Proof. f(s) € L%(R; E) means that {f(s +¢) | € R} is precompact in leoc(R; E) which is
equivalent to that, from Lemma 5.1, { f(s 4+ ) | t € R}|se[0,17 1S precompact in L?(0,1; E). So

for any ¢ > O there exist finite number g1 (s), ..., gn(s) € L2(O, 1; E) such that

N &
{fs+n1te R} on<UBr2ore g 7) (5.2)
i=1
Then there exists 0 < n =n(e) < 1 satisfying
n
2 &
max / &) ds < 7. (5.3)
0
From (5.2) and (5.3), for any 7 € R there exists i € {1, ..., N} such that
n n n
2 2 2
f!lf(s+r)|!Eds<2f||f(s+z> —g,-(s>||Eds+2f||g,-(s>||Eds <e, (54)
0 0 0

which implies
t+n

/||f<s)||§ds<g. o
1

6. Uniform attractor of nonautonomous Navier-Stokes equations

This section deals with the existence of the attractor for the two-dimensional nonautonomous
Navier—Stokes equations in a bounded Lipschitz domain §2 with nonhomogeneous boundary
condition (see Brown et al. [3]).

Let A = — P A denote the Stokes operator and B(u, v) = P[(u - V)v], where P is the orthog-
onal projector in L2(£2) on the space H. We may rewrite the Navier—Stokes equations (2.15) for
v in the form
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% +vAv+ B(v,v) + B(v,¥) + By, v) = P(f +vF) — B(y, ¥), (6.1)
v(x,7) =v.(x) € H. (6.2)

We first establish the existence of solution of (6.1) and (6.2) by the standard Faedo—Galerkin
method.

Since A™! is a continuous compact operator in H, by the classical spectral theorem, there
exists a sequence {)‘j}?iv
O<A <A< <A<+, Aj—>H0o0as j— 00, (6.3)

and let {w;}72, be an orthonormal basis of H such that Aw; =2;w;. Fixm > 1, let

m
Um Zzgjm(t)wj~

j=1
We solve the system of ODE’s

(%2, w) + V(W w)) + bW Vs ) + b, Vs W) + bV, ¥ w ;)
=(f,w) =b@, Y,w)), j=12,....m; (6.4)
vm (0) = Py vo,
where b(u, v, w) = (B(u, v), w), f: P(f +vF),and P, : H — span{wy, ..., wy} is the pro-
jector. We claim that b(¥/, vy, w;), b(vp, ¥, w;) and b(, ¥, w;) are well defined. This follows
easily from the estimate (see Brown et al. [3]).

Here the forcing functions f and v satisfy (1.3) and (1.4) for the nonhomogeneous boundary
condition as is constructed in Brown et al. [3] and we have the following inequalities:

Y(x)|+ | V(x)|dist(x, 082) < Cq, Vx €2, (6.5)
Vir(x) 2dist()c, 082)dx < Cs. (6.6)
| |
2

In Brown et al. [3], the authors have shown that the semigroup S(¢): H — H (¢t > 0) associ-
ated with the autonomous systems (6.1) and (6.2) possesses a global attractor in H and a bounded
absorbing set in D(A'/4). The main objective of this section is to prove that the nonautonomous
systems (6.1) and (6.2) have uniform attractors in H and D(A!/4).

To this end, we first state some results selected from Brown et al. [3].

Lemma 6.1 (Hardy’s inequality). There exists a constant Cg such that for any u € HO1 (£2),

Ju(x)I*

2
e g 47 < O [ [vuto . o
$ 2

Lemma 6.2. There exists a constant C7 such that for any u € D(AY*),

Ju(x)|? / Va2
————dx<C A dx, 6.8
/dist(x,a.Q) x<C7 [ |AT ueo] dx ©.8)
2 2

lula < C7|Aul,. (6.9)
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Proposition 6.1. Let f € D(AY*) where o = —1 or —2 and let vo € H. Y satisfies (6.5) and
(6.6). Then the problem (6.1) and (6.2) has a unique solution v(t) such that for any T > 0,

ve C([0,T]; H) N L*([0,T1; V), 2—’; e L*((0,7), V'), (6.10)

and such that for almost all t € [0, T] and for any w € V,

<2—;’ w) +v((v@®), w)) +b(v(®), v(©), w) + b(y, v(t), w) + b(v(), ¥, w)
=(f,w) — by, ¥, w). (6.11)

Proof. The proof of Proposition 6.1 is similar to the autonomous Navier—Stokes in Brown et al.
[3]. O

Recall that the power of the Stokes operator A are defined for z € C by
Atg = ijajwj forg = Zajwj
J J
and
D(AZ) — {g | AZg IS H} = {g = Zajw] ‘ Z)L?Rezmﬂz < OO}
J
Now we will write (6.1), (6.2) in the operator form

v =As(v), V= =y, (6.12)

where o (s) = f(x,s) is the symbol of Eq. (6.12). Thus, if v; € H, then problem (6.12) has a
unique solution v(¢) € C([0,T]; H) N L?([0, T1; V). This implies that the process {U, (t, 7)}
given by the formula U, (¢, T)v, = v(¢) is defined in H.

We now define the symbol space H(og) for (6.12). Let a fixed symbol oo (s) = fo(s) = fo(:, s)
be translation compact in LIZOC(R; E); that is, the family of translation { fo(s + &), h € R} forms
a precompact set in leoc([Tl, T»]; E), where [T1, T>] is an arbitrary interval of the time axis R.

As fo(x,s) is translation compact in L? (R; E), the hull

loc
H(oo) = H(fo) = [folr.s + 1) [h € R] 2 o

is compact in & = L120C(R; E).

Now, for any f(x,t) € H(fy), the problem (6.12) with f instead of fy possesses a corre-
sponding process {U (¢, T)} acting on H. As is proved in Chepyzhov and Vishik [7], the family
{Us(t, 1) | f € H(fo)} of processes is (H x H( fo); H)-continuous.

Let

Ky ={vy(x,1)fort € R |vs(x,1) is solution of (6.12) satisfying
v 0, <My foralls € R)

be the so-called kernel of the process {U(t, 7)}.
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Proposition 6.2. The process {Uy(t,7)}: H — H(D(AY%) associated with Eq. (6.12) pos-
sesses absorbing sets

Bo:{veH||v|2<po} and Blz{veD(A]/4)||A1/4v|2<p1}

which absorb all bounded sets of H. Moreover, By and By absorb all bounded sets of H and
D(AY* in the norms of H and DAY, respectively.

Proof. The proof of Proposition 6.2 is similar to that of the autonomous Navier—Stokes equation.
We can obtain absorbing sets in H and D(A'/%) following Brown et al. [3], Chepyzhov and
Vishik [7], and Temam [22]. O

The main results in this section are as follows.

Now we prove the existence of compact uniform (w.rt. f € H(fo)) attractors in H and
D(A'/#) by applying the method established in Section 4.
Theorem 6.1. If fo(x,s) is translation compact in leoc(R; V'), then the processes {U £t 1))
corresponding to problem (6.12) possesses compact uniform (w.rt. T € R) attractor Ay in H
which coincides with the uniform (w.rt. f € H(fo)) attractor %y (s of the family of processes
{Ur(t,T) | f € H(fo)}:

Ao = A (fy) = @0, H(fy) (Bo) = U K¢ (0), (6.13)
feH(fo)

where By is the uniformly (w.r.t. f € H(fo)) absorbing set in H and Ky is the kernel of the
process {Uy(t, T)}. Furthermore, the kernel K ¢ is nonempty for all f € H( fo).

Proof. As in the previous section, for fixed N, let H; be the subspace spanned by wy, ..., wy,
and H» the orthogonal complement of H; in H. We write

v=vi+uv2, vi€H], vyeH, foranyveH.

Now, we only have to verify condition (C). Namely, we need to estimate |v(f)|2, where
v(t) = v1(t) + va(¢) is a solution of Egs. (6.1) and (6.2) given in Proposition 6.1.
Multiplying Eq. (6.1) by v2, we have

dv
<E v2> + (vAv, v2) + (B(v, v), vz) + (B(v, v, vg) + (B(lp, v), v2)

=(f.v2) — (B, ¥), v2). (6.14)
It follows that
1d
5Em@ +0]A 20 < (B, v), v2)| + | (B, ¥), v2)| + | (BW, v), v2)|

+ (£ v2)| + v|(F, v2) | + | (B, ¥), v2) . (6.15)

We have to estimate each term in the right-hand side of (6.15).
First, by Holder’s inequality, Lemma 6.2 and Proposition 6.2,
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(B0, 0)] < [ 1011 vljualdx < ols] Aol unl
2

C3pi
2|1 21/4 1/2 1/4 7 1/2 1/2
< CFlat o] |AV2u],[AV ), < g 1A 2o],| A0yl
m+1
4 2
Vo 2, 3600 2
<A Pualy + 5t Aol (6.16)
m+1
Next, using (6.5), (2.10), (6.7) and the Cauchy inequality,
[v]
B(v, ¥), < Vv dx <C ——|wnld
(Bo )< [Piveimar e [
2 dist(x,082)<cz¢e
|U|2 12 C4Cs 1/2 1/2
< Cy4c — —dx vy < c3|AV2p] | A2y
4 3( [dist(x,a.Q)]z lv2l2 )\1/2 3| |2| 2|2
Q m—+1
2202
Vo172, 2 3¢5CLC5 172,12
<—|A — = 1A . 6.17
12| U2|2+ V)‘m+l | U|2 ( )

Similarly by (6.5),

[(B(¥,v), )| </|¢|IVv||vzldx<C4/|Vv||v2|dx<C4|Vv|2|vzlz
2 2

Cy 172 1/2 Vo2, 2 3C3 172,12
X T2 |A / v|2|A / v2‘2< E|A / U2|2+T|A / U|2' (6.18)
m+1
m—+1
We now estimate |(B(i, ¥), v2)| by (6.5), (6.7), (2.10), and (2.11),
[v2]
B 3 3 < V d < C o A d
(B w)| < [ WITvildx < s [ 2w dx
Q Q
vy 2 1/2 / ) 1/2
Cyd ————————d d
4{ [dister, 02 V17 dx
dist(x,02)<cae
<esC1C5Col0821 2| A Puy |, - Ve
22 42
v 2 3c;CiC;CE1082)e
< APl + = 4v 6 : (6.19)
Finally, we estimate |(f, v2)| by
v 23ISR
(02| < 1flvr A o], < A P 4+ = (6.20)
Since supp F C {x € 2 | c1e < dist(x, 0§2) < ca¢}, it then follows from Lemma 2.3 that
lva|? 12 Gillel 20
V‘(F7v2)|<v'|F|2{/mdx . 58§ ‘T-”UZH-CSS
Q
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3c5C2
< - ||(P||L2(3_Q)

2 2,
35C3

Al

|A 2, (6.21)

< |8-Q|||(P||L00(ag)+

27

12
where [0l 1250y < 10212ll@llL>o0)-
Putting (6.16)—(6.21) together, there exist constant Cg, Cy such that

dl 3+ vllvall?
VT V2|5 +vllvz

" Cg 2 Cg 2 3
5””2” o A 20]5 + 12 AVl 4 Co+ = I
m+1 )”erl v
v 2 4Cy /2. 12 172, 12
<= —(|A A
3 lvall= + it (I vif, +| v25)
4Cg

1/2
v)»m+1

1/2 12
% 4Cg 4Cg > 4Cgh,
<l + Pt + AV ua|y + =50t
2 VAt V)‘m—&-l

4Cg

1/2
v)»m+1

3
F T (A 4 [A0f) + Co+ 211

VAt

_I_

2 3
|A1/2v2|2+C9+;|f|%//, (6.22)

where we use
|20, 3 <P | A A0 [ <02 AV 43 (6.23)

Therefore, we deduce that
1
SVhmi[val3 <M+ —|f|2/ (6.24)

Here M depends on A,,41, is not increasing as A,,41 increasing.
By the Gronwall inequality, the above inequality implies

dl 13+
— |V
dr' 2"

t

2M 3
‘Uz(l‘)@ < |U2(t() + 1)|§e—vknz+1(t—(to+1))/2 + 4+ f e_‘))‘m+1(t_3‘)/2|f|%// ds.
VAm+1 v
to+1 (6.25)

Applying Proposition 5.1 and Lemma II 1.3 in Chepyzhov and Vishik [7] for any &,

t

3 i &
- e ,,,+1(I—S)/2 2/dS < —.
» / [fly 3

fo+1

ln , then t > #; implies

Using (6.3) and letting 1; =19 + 1 + 5

2M £
<3
U)\,m+1 3

|v2(t0 + 1)}§e*\11m+1(f*(f0+1))/2 < 'Oze*‘))vmﬂ(t*(toJrl))/2 <
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Therefore, we deduce from (6.25) that

lwl3<e, Vi1, feH(fo), (6.26)

which indicates {Ur(t, 7))}, f € H(fo), satisfying uniform (w.t.r. f € H(fp)) condition (C)
inH. O

According to Propositions 6.1 and 6.2, we can now regard that the families of processes
{Us(t, 1)}, f € H(fo), are defined in D(AY*) and By is a uniformly (w.rt. f € H(fo)) ab-
sorbing set in D(A1/4).

Theorem 6.2. If fo(x,s) is translation compact in L120c(R; D(A™%)), then the processes
{Uy,(t, )} corresponding to problem (6.12) possesses compact uniform (w.r.t. T € R) attrac-
tor Ay in D(AY*) which coincides with the uniform (w.rt. f € H(fo)) attractor A o) of the
Sfamily of processes {Uy(t, T)}, f € H(fo):

A1 =Upy(fy) = w0 B= | K0, (6.27)
feHfo)

where By is the uniformly (w.r.t. f € H(fo)) absorbing set in D(AY*) and K ¢ is the kernel of
the process {U ¢ (t, T)}. Furthermore, the kernel Ky is nonempty for all f € H( fo).

Proof. Using Proposition 6.2, we have the family of processes {Ur(t, 1)}, f € H(fo), corre-
sponding to (6.12) possesses the uniformly (w.z.t. f € H(fo)) absorbing set in D(A!/4).

Now we prove the existence of compact uniform (w.r.t. f € H(fo)) attractor in D(A'/4) by
applying the method established in Section 4, that is, we testify that the family of processes
{Us(t, 1)}, f € H(fo) corresponding to (6.12) satisfies uniform (w.r.t. f € H(fo)) condition (C).

Multiplying Eq. (6.1) by A/2v,(t), similarly to Theorem 6.1, we have

<d—”, Al/zvz) + (vAv, AY?0)) + (B(v, v), A'?0))

dt
+ (B, ¥), A'%0) + (B(y, v), A'?v;)
=(f. A"?v)) — (B, ), A ?vy). (6.28)
It follows that
1d

AV 2 4| a3 <[ (B, v), AV20) | + (B, ), A'2w))|

2 dt
+ (B v). AV |+ [(F. A Pv2))|
+ (B ¥). AV?0y)]. (6.29)

We have to estimate each term in the right-hand side of (6.29).
First, by Holder’s inequality and Lemma 6.2,

|(B(v,v), A'?0,)| </|v||w||A1/2v2|dx < Jvla|A 20|, | APy,
2

< C2|AVAy| | A3/ 1 A3/4 < C%PI
< C7lal ol ”|2k1/4 vaf, < 1/4
m—+1 m—+1

Ao])| 4% v
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3C3p7
1/2
m+1

Next, using (6.5), (6.7) and the Cauchy inequality,

< %|A3/4v2|§+ |A3/4v|§.

v]

(B APw)| < [1vwi|aPufar<c
2

|v|2 12 172
<C ——d A
4( [dist(x, 052) P2 x) 47 %al,
2

C4Cg
< C4C6|A1/2U|2|A1/2U2|2 < W
1 m+1
22
v 3/4 |2 3C4C6 3/4. |2
< E|A / v2|2+71/2)\1/2 |AY 4],
1 m+1

Similarly by (6.5),

dist(x, 9§2)
2

|A1/2v2| dx

AV [ 440,

|(B(y, v), A ?v,)| <f|w||vU|yA1/2U2ydx<c4/|Vu||A1/2uzydx

2 2
Cy
1/4,1/4
)”1 )‘m+1
3C3 3/4 12

|A / v\z.

172,172
)”1 )‘m+1

< CalVua|A! P, <
v 2
S E|A3/4U2|2+

We now estimate |(B(, ), AY/2v)| by (6.5), (6.6) and Lemma 6.2,
[(B(W. v). AV vy)|
</I¢IIVWI|A‘/2vz|dx
2

1

12
) 2
<cl [ivtascamar| | [1nf gres
2 2 ’

3C2CsC
<G|l < a4

Finally, we estimate I(f, Al/zuz)l by

3
[(f. A P0)| < I f 2] A P02, < %|A3/4v2’§ + =1 pamsy:
Similarly (6.21) by Lemma 2.3,

|A1/ 2|

12 1/2 - =
v|(F, A vz)lsv/IFHA v2|dx<”/'F'[dist(x,am]
) 2

|A3/4v|2|A3/4v2‘2

172
dx}

72 dx - ce /e

(6.30)

6.31)

(6.32)

(6.33)

(6.34)
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|/§l/2U2|2 1/2
S Cé”“/aF'Z{ / dist(x, 02)
9 9

v )
< cévﬁ|F|2|A3/4v2|2 < 3ctve|FI3 + E|A3/4U2|2
2

C; v 2
< 3cévs—é||<p||i2(89) + 13 | A3 2

2
3c6v—|asz|||go||LOO(m) + — }A*/“v 5 (6.35)

12
Putting (6.30)—(6.35) together, using (6.23), there exists a constant C¢ such that

i|A1/4v2|2+v|A3/4v2|§
ClO

3/4
A1/2 A% ’2"’C10+ |f|D(A 1/4)
m+1
4C10 (1 4374 3/4
ST 12 (}A/ ’ +|A / U2| )+C10+ Ile(A 1/4)
)‘m+1
<4 172 1/4,, 2 M, 3/4, |2 3 )
<AC10h,, 1| A ui |y + 5[4 v2|2+M1+v|f|D(A,l,4). (6.36)

m+1

Here M depends on A,,+1, is not increasing as A, 41 increasing. Therefore, we deduce that

d 12 3
dt|A1/4U2|2+ U)\m+l|A /4 U2| C]])\-m/+1+C11+;|f|%(A,1/4). (637)
By the Gronwall inequality, the above inequality implies
2C
’A1/4v2(t)|§ < |A1/4v2(t0 + 1)|§e—vkm+|(t—(to+l))/2 + 12
VA1
3 t
4 ; / e—l))\,erl(l—S)/2|f|2D(A_1/4) dS. (638)
to+1

Applying Proposition 5.1 and Lemma II 1.3 in Chepyzhov and Vishik [7] for any &,

t

3 [ =92 2 £
5 / e VAmy1(t=s |f|D(A*1/4)ds < 3
to+1
Using (6.3) and lett; =190+ 1 + ux - In 3p1 , then r > 1] implies
2C12 &
<3
VAm+1 3

’A1/4v2(t0 + 1)| VA1 (=0 +1))/2 ,02 —VAnp1(t=(0o+1))/2 _ =
3
Therefore, we deduce from (6.38) that

AV w3 <e, Yizn, feH(fo), (6.39)
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which indicates {Ur(z, 7)}, f € H(fo), satisfying uniform (w.t.z. f € H(fp)) condition (C) in
D(AY*). Applying Theorem 4.2 the proof is complete. [
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