The attractors for the nonhomogeneous nonautonomous Navier-Stokes equations ${ }^{\text {T}}$

Delin Wu*, Chengkui Zhong
School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China

Received 2 June 2005
Available online 15 September 2005
Submitted by M.C. Nucci

Abstract

In this paper, we consider the attractors for the two-dimensional nonautonomous Navier-Stokes equations in nonsmooth bounded domain Ω with nonhomogeneous boundary condition $u=\varphi$ on $\partial \Omega$. Assuming $f=f(x, t) \in L_{\mathrm{loc}}^{2}\left((0, T) ; D\left(A^{\alpha / 4}\right)\right)$, which is translation compact and $\varphi \in L^{\infty}(\partial \Omega)$, we establish the existence of the uniform attractor in $L^{2}(\Omega)$ and $D\left(A^{1 / 4}\right)$.

© 2005 Elsevier Inc. All rights reserved.
Keywords: Attractor; Measure of noncompactness; Uniformly ω-limit compact; Uniform condition (C);
Nonhomogeneous boundary; Navier-Stokes equation

1. Introduction

Let Ω be nonsmooth bounded domain in R^{2}. We consider two-dimensional Navier-Stokes equations in a bounded Lipschitz domain Ω with nonhomogeneous boundary condition:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-v \Delta u+(u \cdot \nabla) u+\nabla p=f \tag{1.1}\\
\operatorname{div} u=0 \\
u=\varphi \text { on } \partial \Omega
\end{array}\right.
$$

[^0]where $f=f(x, t) \in L_{\mathrm{loc}}^{2}((0, T) ; E)$, where $E=D\left(A^{\alpha / 4}\right), \alpha=-1$ or -2 , and $\varphi \in L^{\infty}(\partial \Omega)$ is time-independent functions. We consider this equation in an appropriate Hilbert space and show that there is an attractor \mathfrak{A} which all solutions approach as $t \rightarrow \infty$. The main interest of this work lies in our assumptions on the domain Ω occupied by the fluid as well as on the nonhomogeneous boundary data φ. Indeed, we will only assume that Ω is a (simply connected) Lipschitz domain in R^{2} and
\[

$$
\begin{equation*}
\varphi \in L^{\infty}(\partial \Omega), \quad \varphi \cdot n=0 \quad \text { a.e. on } \partial \Omega, \tag{1.2}
\end{equation*}
$$

\]

where n is the outward unit normal to $\partial \Omega$. Such assumptions are much more physically realistic than the ones in the existing estimates.

In this paper, we reduce the problem (1.1) to the Navier-Stokes equations with homogeneous boundary condition. This will be done by constructing a function ψ (background flow) such that

$$
\begin{equation*}
\operatorname{div} \psi=0 \quad \text { in } \Omega \quad \text { and } \quad \psi=\varphi \quad \text { on } \partial \Omega \tag{1.3}
\end{equation*}
$$

The basic idea of our construction, which is motivated by the works of Miranville and Wang [17] and Brown et al. [3], is to localize the solution of the Stokes system with boundary data φ to a ε-neighborhood of $\partial \Omega$.

In addition, we assume that the function $f(\cdot, t)=: f(t) \in L_{\mathrm{loc}}^{2}(R ; E)$ is translation bounded. This property implies that

$$
\begin{equation*}
\|f\|_{L_{b}^{2}}^{2}=\|f\|_{L_{b}^{2}(R ; E)}^{2}=\sup _{t \in R} \int_{t}^{t+1}\|f(s)\|_{E}^{2} d s<\infty . \tag{1.4}
\end{equation*}
$$

In the last decade the study of the nonautonomous infinite-dimensional dynamical systems has been paid much attention and fast developed. In the book [11] Haraux considers some special classes of such systems and studies systematically the notion of uniform attractor paralleling to that of global attractor for autonomous systems. Later on, Chepyzhov and Vishik [7,8] present a general approach that is well suited to study equations arising in mathematical physics. In this approach, to construct the uniform (or trajectory) attractors, instead of the associated process $\left\{U_{\sigma}(t, \tau) \mid t \geqslant \tau, \tau \in R\right\}$ one should consider a family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, in some Banach space E, where the functional parameter $\sigma_{0}(s), s \in R$ is called the symbol and Σ is the symbol space including $\sigma_{0}(s)$. Naturally from the applications, there is some invariant semigroup acting on Σ and satisfying the so-called translation identity. If the family of processes is $(E \times \Sigma, E)$ continuous, i.e., the mappings $(u, \sigma) \rightarrow U_{\sigma}(t, \tau) u$ are continuous from $E \times \Sigma$ to E, it can be reduced to semigroup by constructing skew product flow. The approach preserves the leading concept of invariance which implies the structure of uniform attractor described by the representation as a union of sections of all kernels of the family of processes. The kernel is the set of all complete trajectories of a process. Moreover, the methods of autonomous systems are applicable. For example, Moise et al. [19] formulate in a systematic way the energy method (the idea belongs to Ball [1]) for the noncompact semiprocesses which extends their earlier work [18] on noncompact semigroup. Following these ways, the strongly compact uniform attractors are obtained for the systems with symbols of strongly compact hulls. In Chepyzhov and Vishik [4,6], a different approach based on the concept of trajectory attractor is developed and has many applications (cf. Bona and Dougalis [2], Chepyzhov and Vishik [5,7,8], Karch [12], Ladyzhenskaya [14], Lu et al. [15], Ma et al. [16], Robinson [20], Temam [22]). For further applications to the nonautonomous systems on unbounded domain, we refer to Efendiev and Zelik [9], Karachlios and Stavrakakis [13], Zelik [23].

In the paper, we study the existence of compact uniform attractor for the nonautonomous Navier-Stokes equations in nonsmooth bounded domain Ω with nonhomogeneous boundary condition $u=\varphi$ on $\partial \Omega$. We apply a new method to nonautonomous Navier-Stokes equation with external forces $f(x, t)$ in $L_{\text {loc }}^{2}(R ; E)$ which is translation compact. To this end, some abstract results are established in Section 4. We give a characterization by the concept of measure of noncompactness as well as a method to verify it.

Throughout this paper we introduce the spaces

$$
\begin{aligned}
& H=\left\{L^{2}(\Omega) \mid \operatorname{div} u=0 \text { in } \Omega, u \cdot n=0 \text { on } \partial \Omega\right\}, \\
& V=\left\{H_{0}^{1}(\Omega) \mid \operatorname{div} u=0 \text { in } \Omega\right\}, \\
& |\cdot|_{p}, \text { the } L^{p}(\Omega) \text { norm, } \\
& \|\cdot\|, \text { the norm in } V, \\
& (,) \text { the inner product in } H \text { or the dual product between } V \text { and } V^{\prime}, \\
& ((,)) \text { the inner product in } V .
\end{aligned}
$$

We can define the powers A^{s} of A for $s \in R$. The space $V_{s}=D\left(A^{s / 2}\right)$ turns out to be a Hilbert space with the inner product and the norm

$$
(u, v)_{V_{s}}=\left(A^{s / 2} u, A^{s / 2} v\right), \quad\|u\|_{V_{s}}^{2}=(u, u)_{V_{s}}
$$

Here V^{\prime} is the dual of $V=V_{1}$. The constants $C_{i}\left(c_{i}\right), i \in N$, are considered in a generic sense.

2. Setting of the problem

Let Ω be a bounded domain in R^{d}. We say that Ω is a Lipschitz domain if its boundary $\partial \Omega$ can be covered by finite many balls $B_{j}=B\left(Q_{j}, r_{0}\right)$ centered at $Q_{j} \in \partial \Omega$ such that for each B_{j}, there exists a rectangular coordinate system and a Lipschitz function $\psi_{j}: R^{d-1} \rightarrow R$ with

$$
B\left(Q_{j}, 3 r_{0}\right) \cap \Omega=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid x_{d}>\psi_{j}\left(x_{1}, \ldots, x_{d-1}\right)\right\} \cap \Omega .
$$

Throughout this paper we will assume that Ω is a simply connected Lipschitz domain in R^{2}.
For a function u on Ω, we define its nontangential maximal function $(u)^{*}$ by

$$
\begin{equation*}
(u)^{*}(Q)=\sup \{|u(x)||x \in \Omega,|x-Q| \leqslant 2 \operatorname{dist}(x, \partial \Omega)\}, \quad Q \in \partial \Omega . \tag{2.1}
\end{equation*}
$$

As is mentioned in Brown et al. [3], if $\varphi \in L^{2}(\partial \Omega)$ and $\int_{\partial \Omega} \varphi \cdot n d \varsigma=0$, our background flow will be constructed using the solution to the Stokes system:

$$
\left\{\begin{array}{l}
-\Delta u+\nabla q=0 \quad \text { in } \Omega \tag{2.2}\\
\operatorname{div} u=0 \text { in } \Omega, \\
u=\varphi \text { a.e. on } \partial \Omega \text { in the sense of nontangential convergence. }
\end{array}\right.
$$

There exists a unique u and a unique (up to a constant) q satisfying (2.2) and $(u)^{*} \in L^{2}(\partial \Omega)$. In fact, the solution (u, q) will satisfy

$$
\begin{equation*}
\int_{\partial \Omega}\left|(u)^{*}\right|^{2} d \zeta+\int_{\Omega}|\nabla u(x)|^{2} \operatorname{dist}(x, \partial \Omega) d x+\int_{\Omega}|q(x)|^{2} \operatorname{dist}(x, \partial \Omega) d x \leqslant C_{0} \int_{\partial \Omega}|\varphi|^{2} d \zeta . \tag{2.3}
\end{equation*}
$$

If, in addition, $\varphi \in L^{\infty}(\partial \Omega)$, then

$$
\begin{equation*}
\sup _{x \in \Omega}|u(x)|+\sup _{x \in \Omega}|\nabla u(x)| \operatorname{dist}(x, \partial \Omega) \leqslant C_{0}\|\varphi\|_{L^{\infty}(\partial \Omega)} \tag{2.4}
\end{equation*}
$$

Let $u=\left(u_{1}, u_{2}\right)$ be the solution of (2.2) with $\varphi \in L^{\infty}(\partial \Omega)$ and $\varphi \cdot n=0$. Fix $P \in \partial \Omega$. We define

$$
\begin{equation*}
g(x)=\int_{P}^{x}\left(-u_{2}, u_{1}\right) \cdot T d s \tag{2.5}
\end{equation*}
$$

where T denotes the unit tangent vector to the path from P to $x=\left(x_{1}, x_{2}\right)$. Since Ω is simply connected and $\operatorname{div} u=0$ in Ω, g is well defined by Green's theorem, and

$$
\begin{equation*}
u=\left(\frac{\partial g}{\partial x_{2}},-\frac{\partial g}{\partial x_{1}}\right) . \tag{2.6}
\end{equation*}
$$

Moreover, since $u=\varphi$ on $\partial \Omega$ and $\varphi \cdot n=0$ a.e., we have

$$
g=0 \quad \text { on } \partial \Omega
$$

Next let $\varepsilon \in\left(0, c_{0} \operatorname{diam}(\Omega)\right)$ be a constant. Let $\eta_{\varepsilon} \in C_{0}^{\infty}\left(R^{2}\right)$ such that, $0 \leqslant \eta \leqslant 1$,

$$
\left\{\begin{array}{l}
\eta_{\varepsilon}=1 \quad \text { in }\left\{x \in R^{2} \mid \operatorname{dist}(x, \partial \Omega) \leqslant c_{1} \varepsilon\right\}, \tag{2.7}\\
\eta_{\varepsilon}=0 \quad \text { in }\left\{x \in R^{2} \mid \operatorname{dist}(x, \partial \Omega) \geqslant c_{2} \varepsilon\right\},
\end{array}\right.
$$

and

$$
\begin{equation*}
\left|\nabla^{s} \eta_{\varepsilon}\right| \leqslant c_{s} / \varepsilon^{|s|} . \tag{2.8}
\end{equation*}
$$

We remark that η_{ε} can be found in the form $f\left(\frac{\rho(x)}{\varepsilon}\right)$ where $\rho \in C^{\infty}$ is a regularized distance function to $\partial \Omega$ and f is a standard bump function.

Finally, we define the background flow

$$
\begin{equation*}
\psi=\psi_{\varepsilon}=\left(\frac{\partial}{\partial x_{2}}\left(g \eta_{\varepsilon}\right),-\frac{\partial}{\partial x_{1}}\left(g \eta_{\varepsilon}\right)\right) \tag{2.9}
\end{equation*}
$$

Clearly, $\operatorname{div} \psi=0$ in $\Omega, \psi=u$ in $\left\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)<c_{1} \varepsilon\right\}$. Hence, $\psi=\varphi$ on $\partial \Omega$ in the sense of nontangential convergence. Also note that

$$
\begin{equation*}
\operatorname{supp} \psi \subset\left\{x \in \bar{\Omega} \mid \operatorname{dist}(x, \partial \Omega) \leqslant c_{2} \varepsilon\right\} \tag{2.10}
\end{equation*}
$$

Therefore, we have from Brown et al. [3]:
Lemma 2.1. With φ and ψ as above, we have

$$
\begin{equation*}
\|\psi\|_{L^{\infty}(\Omega)} \leqslant C_{1}\|\varphi\|_{L^{\infty}(\partial \Omega)} \tag{2.11}
\end{equation*}
$$

Lemma 2.2. Let $2 \leqslant p \leqslant \infty$. Then

$$
\begin{equation*}
\left\||\nabla \psi| \operatorname{dist}(\cdot, \Omega)^{1-1 / p}\right\|_{L^{p}(\Omega)} \leqslant C_{2}\|\varphi\|_{L^{p}(\partial \Omega)} \tag{2.12}
\end{equation*}
$$

Lemma 2.3. Let ψ be defined by (2.9). Then

$$
\begin{equation*}
\Delta \psi=\nabla\left(q \eta_{\varepsilon}\right)+F, \tag{2.13}
\end{equation*}
$$

where $\operatorname{supp} F \subset\left\{x \in \Omega \mid c_{1} \varepsilon \leqslant \operatorname{dist}(x, \partial \Omega) \leqslant c_{2} \varepsilon\right\}$ and

$$
\begin{equation*}
\|F\|_{L^{2}(\Omega)} \leqslant \frac{C_{3}}{\varepsilon^{3 / 2}}\|\varphi\|_{L^{2}(\partial \Omega)} \tag{2.14}
\end{equation*}
$$

We now set $v=u-\psi$ where u is a solution of (1.1). Using (2.13), we see that

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial t}-v \Delta v+(v \cdot \nabla) v+(v \cdot \nabla) \psi+(\psi \cdot \nabla) v+\nabla\left(p+v q \eta_{\varepsilon}\right) \tag{2.15}\\
\quad=f+v F-(\psi \cdot \nabla) \psi ; \\
\operatorname{div} v=0 \\
v=0 \text { on } \partial \Omega
\end{array}\right.
$$

3. Preliminary results

Let E be a Banach space, and let a two-parameter family of mappings $\{U(t, \tau)\}=\{U(t, \tau) \mid$ $t \geqslant \tau, \tau \in R\}$ act on E :

$$
U(t, \tau): E \rightarrow E, \quad t \geqslant \tau, \tau \in R .
$$

Definition 3.1. A two-parameter family of mappings $\{U(t, \tau)\}$ is said to be a process in E if

$$
\begin{align*}
& U(t, s) U(s, \tau)=U(t, \tau), \quad \forall t \geqslant s \geqslant \tau, \tau \in R, \tag{3.1}\\
& U(\tau, \tau)=\mathrm{Id}, \quad \tau \in R . \tag{3.2}
\end{align*}
$$

By $\mathcal{B}(E)$ we denote the collection of the bounded sets of E. We consider a family of processes $\left\{U_{\sigma}(t, \tau)\right\}$ depending on a parameter $\sigma \in \Sigma$. The parameter σ is said to be the symbol of the process $\left\{U_{\sigma}(t, \tau)\right\}$ and the set Σ is said to be the symbol space. In the sequel Σ is assumed to be a complete metric space.

A family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, is said to be uniformly (with respect to (w.r.t.) $\sigma \in \Sigma)$ bounded if for any $B \in \mathcal{B}(E)$ the set

$$
\begin{equation*}
\bigcup_{\sigma \in \Sigma} \bigcup_{\tau \in R} \bigcup_{t \geqslant \tau} U_{\sigma}(t, \tau) B \in \mathcal{B}(E) \tag{3.3}
\end{equation*}
$$

A set $B_{0} \subset E$ is said to be uniformly (w.r.t. $\sigma \in \Sigma$) absorbing for the family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, if for any $\tau \in R$ and every $B \in \mathcal{B}(E)$ there exists $t_{0}=t_{0}(\tau, B) \geqslant \tau$ such that $\bigcup_{\sigma \in \Sigma} U_{\sigma}(t, \tau) B \subseteq B_{0}$ for all $t \geqslant t_{0}$.

A set $P \subset E$ is said to be uniformly (w.r.t. $\sigma \in \Sigma$) attracting for the family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, if for an arbitrary fixed $\tau \in R$,

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left(\sup _{\sigma \in \Sigma} \operatorname{dist}_{E}\left(U_{\sigma}(t, \tau) B, P\right)\right)=0 \tag{3.4}
\end{equation*}
$$

A family of processes possessing a compact uniformly absorbing set is called uniformly compact and a family of processes possessing a compact uniformly attracting set is called uniformly asymptotically compact.

Definition 3.2. A closed set $\mathcal{A}_{\Sigma} \subset E$ is said to be the uniform (w.r.t. $\sigma \in \Sigma$) attractor of the family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, if it is uniformly (w.r.t. $\sigma \in \Sigma$) attracting and it is contained in any closed uniformly (w.r.t. $\sigma \in \Sigma$) attracting set \mathcal{A}^{\prime} of the family of processes $\left\{U_{\sigma}(t, \tau)\right\}$, $\sigma \in \Sigma: \mathcal{A}_{\Sigma} \subseteq \mathcal{A}^{\prime}$.

Let us return to general families of processes.
A family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, acting in E is said to be ($E \times \Sigma, E$)-continuous, if for all fixed t and $\tau, t \geqslant \tau, \tau \in R$ the mapping $(u, \sigma) \mapsto U_{\sigma}(t, \tau) u$ is continuous from $E \times \Sigma$ into E.

A curve $u(s), s \in R$ is said to be a complete trajectory of the process $\{U(t, \tau)\}$ if

$$
\begin{equation*}
U(t, \tau) u(\tau)=u(t), \quad \forall t \geqslant \tau, \tau \in R . \tag{3.5}
\end{equation*}
$$

The kernel \mathcal{K} of the process $\{U(t, \tau)\}$ consists of all bounded complete trajectories of the process $\{U(t, \tau)\}$:

$$
\mathcal{K}=\left\{u(\cdot) \mid u(\cdot) \text { satisfies (3.5) and }\|u(s)\|_{E} \leqslant M_{u} \text { for } s \in R\right\} .
$$

The set

$$
\mathcal{K}(s)=\{u(s) \mid u(\cdot) \in \mathcal{K}\} \subseteq E
$$

is said to be the kernel section at a time moment $t=s, s \in R$.
We consider two projectors Π_{1} and Π_{2} from $E \times \Sigma$ onto E and Σ, respectively:

$$
\Pi_{1}(u, \sigma)=u, \quad \Pi_{2}(u, \sigma)=\sigma
$$

Now we recall the basic results in Chepyzhov and Vishik [5,7].

Theorem 3.1. Let a family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$ acting in the space E be uniformly (w.r.t. $\sigma \in \Sigma$) asymptotically compact and $(E \times \Sigma, E)$-continuous. Also let Σ be a compact metric space and let $\{T(t)\}$ be a continuous invariant $(T(t) \Sigma=\Sigma)$ semigroup on Σ satisfying translation identity

$$
\begin{equation*}
U_{\sigma}(t+s, \tau+s)=U_{T(s) \sigma}(t, \tau), \quad \forall \sigma \in \Sigma, t \geqslant \tau, \tau \in R, s \geqslant 0 \tag{3.6}
\end{equation*}
$$

Then the semigroup $\{S(t)\}$ corresponding to the family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$ and acting on $E \times \Sigma$:

$$
S(t)(u, \sigma)=\left(U_{\sigma}(t, 0) u, T(t) \sigma\right), \quad t \geqslant 0, \quad(u, \sigma) \in E \times \Sigma,
$$

possesses the compact attractor \mathcal{A} which is strictly invariant with respect to $\{S(t)\}: S(t) \mathcal{A}=\mathcal{A}$ for all $t \geqslant 0$. Moreover,
(i) $\Pi_{1} \mathcal{A}=\mathcal{A}_{1}=\mathcal{A}_{\Sigma}$ is the uniform (w.r.t. $\sigma \in \Sigma$) attractor of the family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$;
(ii) $\Pi_{2} \mathcal{A}=\mathcal{A}_{2}=\Sigma$;
(iii) the global attractor satisfies

$$
\mathcal{A}=\bigcup_{\sigma \in \Sigma} \mathcal{K}_{\sigma}(0) \times\{\sigma\}
$$

(iv) the uniform attractor satisfies

$$
\mathcal{A}_{\Sigma}=\mathcal{A}_{1}=\bigcup_{\sigma \in \Sigma} \mathcal{K}_{\sigma}(0)
$$

Here $\mathcal{K}_{\sigma}(0)$ is the section at $t=0$ of the kernel \mathcal{K}_{σ} of the process $\left\{U_{\sigma}(t, \tau)\right\}$ with symbol $\sigma \in \Sigma$.

4. Existence and structure of uniform attractor

For convenience, let $B_{t}=\bigcup_{\sigma \in \Sigma} \bigcup_{s \geqslant t} U_{\sigma}(s, t) B$, the closure \bar{B} of the set B and $R_{\tau}=$ $\{t \in R \mid t \geqslant \tau\}$. Define the uniform (w.r.t. $\sigma \in \Sigma$) ω-limit set $\omega_{\tau, \Sigma}(B)$ of B by $\omega_{\tau, \Sigma}(B)=$ $\bigcap_{t \geqslant \tau} \bar{B}_{t}$ which can be characterized, analogously to that for semigroup, by the following:

$$
\left\{\begin{align*}
y \in \omega_{\tau, \Sigma}(B) & \Leftrightarrow \text { there are sequences }\left\{x_{n}\right\} \subset B,\left\{\sigma_{n}\right\} \subset \Sigma,\left\{t_{n}\right\} \subset R_{\tau} \tag{4.1}\\
\quad \text { such that } t_{n} & \rightarrow+\infty \text { and } U_{\sigma_{n}}\left(t_{n}, \tau\right) x_{n} \rightarrow y(n \rightarrow \infty) .
\end{align*}\right.
$$

We will characterize the existence of uniform attractor for a family of processes satisfying (3.6) in term of the concept of measure of noncompactness that is put forward first by Kuratowski.

Let $B \in \mathcal{B}(E)$. Its Kuratowski measure of noncompactness $\kappa(B)$ is defined by
$\kappa(B)=\inf \{\delta>0 \mid B$ admits a finite cover by sets of diameter $\leqslant \delta\}$.
It has following properties (see Hale [10], Sell and You [21]).
Lemma 4.1. Let $B, B_{1}, B_{2} \in \mathcal{B}(E)$. Then
(1) $\kappa(B)=0 \Leftrightarrow \kappa(\mathcal{N}(B, \varepsilon)) \leqslant 2 \varepsilon \Leftrightarrow \bar{B}$ is compact;
(2) $\kappa\left(B_{1}+B_{2}\right) \leqslant \kappa\left(B_{1}\right)+\kappa\left(B_{2}\right)$;
(3) $\kappa\left(B_{1}\right) \leqslant \kappa\left(B_{2}\right)$ whenever $B_{1} \subset B_{2}$;
(4) $\kappa\left(B_{1} \cup B_{2}\right) \leqslant \max \left\{\kappa\left(B_{1}\right), \kappa\left(B_{2}\right)\right\}$;
(5) $\kappa(\bar{B})=\kappa(B)$;
(6) if B is a ball of radius ε then $\kappa(B) \leqslant 2 \varepsilon$.

Lemma 4.2. Let $\cdots \supset F_{n} \supset F_{n+1} \supset \cdots$ be a sequence of nonempty closed subsets of E such that $\kappa\left(F_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then $F=\bigcap_{n=1}^{\infty} F_{n}$ is nonempty and compact.

Definition 4.1. A family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, is said to be uniformly (w.r.t. $\sigma \in \Sigma$) ω-limit compact if for any $\tau \in R$ and $B \in \mathcal{B}(E)$ the set B_{t} is bounded for every t and $\lim _{t \rightarrow \infty} \kappa\left(B_{t}\right)=0$.

Proposition 4.1. If $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, is uniformly (w.r.t. $\sigma \in \Sigma$) ω-limit compact, then for any $\left\{x_{n}\right\} \subset B \in \mathcal{B}(E),\left\{\sigma_{n}\right\} \subset \Sigma,\left\{t_{n}\right\} \subset R_{\tau}, t_{n} \rightarrow+\infty$ as $n \rightarrow \infty$, there exists a convergent subsequence of $\left\{U_{\sigma_{n}}\left(t_{n}, \tau\right) x_{n}\right\}$ whose limit lies in $\omega_{\tau, \Sigma}(B)$.

Proof. For any $\varepsilon>0$, it derives from Definition 4.1 and (3)-(4) of Lemma 4.1 that for a sufficiently large N_{0},

$$
\begin{equation*}
\kappa\left(\left\{U_{\sigma_{n}}\left(t_{n}, \tau\right) x_{n} \mid n \in N\right\}\right)=\kappa\left(\left\{U_{\sigma_{n}}\left(t_{n}, \tau\right) x_{n} \mid n \geqslant N_{0}\right\}\right) \leqslant \varepsilon . \tag{4.2}
\end{equation*}
$$

Let $\varepsilon \rightarrow 0$, then by (1) of Lemma $4.1\left\{U_{\sigma_{n}}\left(t_{n}, \tau\right) x_{n}\right\}$ is precompact. (4.1) informs all limits of the convergent subsequences lie in $\omega_{\tau, \Sigma}(B)$.

Proposition 4.2. If $\left\{U_{\sigma}(t, \tau)\right\}$ is uniformly (w.r.t. $\sigma \in \Sigma$) ω-limit compact, then for any $\tau \in R$ and $B \in \mathcal{B}(E)$,
(i) $\omega_{\tau, \Sigma}(B)$ is nonempty and compact;
(ii) $\lim _{t \rightarrow+\infty}\left(\sup _{\sigma \in \Sigma} \operatorname{dist}\left(U_{\sigma}(t, \tau) B, \omega_{\tau, \Sigma}(B)\right)\right)=0$;
(iii) if Y is a closed set uniformly (w.r.t. $\sigma \in \Sigma$) attracting B then $\omega_{\tau, \Sigma}(B) \subseteq Y$.

Also let Σ be a compact metric space and let $\{T(t)\}$ be a continuous invariant $T(t) \Sigma=\Sigma$ on Σ satisfying translation identity (3.6). Then
(iv) $\omega_{\tau, \Sigma}(B)=\omega_{0, \Sigma}(B)$, that is, the set $\omega_{\tau, \Sigma}(B)$ is independent on $\tau \in R$.

Proof. (i) Obviously, for any increasing sequence $\left\{t_{n}\right\} \subset R_{\tau}$ such that $t_{n} \rightarrow+\infty$ as $n \rightarrow \infty$, $\omega_{\tau, \Sigma}(B)=\bigcap_{n=1}^{\infty} \bar{B}_{t_{n}}$. Since $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, is uniformly (w.r.t. $\sigma \in \Sigma$) ω-limit compact and $B \in \mathcal{B}(E)$, we can find such a sequence of $\left\{t_{n}\right\}$ that $\kappa\left(\bar{B}_{t_{n}}\right) \leqslant 1 / n$. Thanks to Lemma 4.2, $\omega_{\tau, \Sigma}(B)$ is nonempty and compact.
(ii) and (iii) Noticing Proposition 4.1, the proofs are similar to those of Proposition VII.1.1 in Chepyzhov and Vishik [7]. So we omit here.
(iv) If $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, satisfies (3.6), then its uniformly (w.r.t. $\sigma \in \Sigma$) absorbing set B_{0} is independent of τ. In fact, let B_{0} be the one for $\tau=0$. Then for any fixed $\tau \in R$ and $B \in \mathcal{B}(E)$, by $\bigcup_{\sigma \in \Sigma} U_{\sigma}(t, \tau) B=\bigcup_{\sigma \in \Sigma} U_{\sigma}(t-\tau, 0) B$ which implies $T_{0}(\tau, B)=\tau+T_{0}(0, B)$. Similarly from (4.1), we find $\omega_{\tau, \Sigma}(B)=\omega_{0, \Sigma}(B)$ for all $\tau \in R$.

Theorem 4.1. Let Σ be a compact metric space and let $\{T(t)\}$ be a continuous invariant $T(t) \Sigma=\Sigma$ on Σ satisfying translation identity (3.6). A family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, acting in E is $(E \times \Sigma, E)$-(weakly) continuous and possesses compact uniform (w.r.t. $\sigma \in \Sigma$) attractor \mathcal{A}_{Σ} satisfying

$$
\begin{equation*}
\mathcal{A}_{\Sigma}=\omega_{0, \Sigma}\left(B_{0}\right)=\omega_{\tau, \Sigma}\left(B_{0}\right), \quad \forall \tau \in R \tag{4.3}
\end{equation*}
$$

if and only if it
(i) has a bounded uniformly (w.r.t. $\sigma \in \Sigma$) absorbing set B_{0}; and
(ii) is uniformly (w.r.t. $\sigma \in \Sigma$) ω-limit compact.

Proof. The sufficiency follows immediately from Proposition 4.2.
We now prove the necessity. First, any ε-neighborhood of A_{Σ} is a uniformly (w.r.t. $\sigma \in \Sigma$) absorbing set. Second, for any $\tau \in R, B \in \mathcal{B}(E)$ and $\varepsilon>0$, there exists $t_{\varepsilon}=t(\tau, B, \varepsilon) \geqslant \tau$ such that $B_{t_{\varepsilon}} \subset \mathcal{N}\left(\mathcal{A}_{\Sigma}, \varepsilon / 2\right)$. Since A_{Σ} is compact, by Lemma $4.1 \kappa\left(B_{t_{\varepsilon}}\right) \leqslant \kappa\left(\mathcal{N}\left(\mathcal{A}_{\Sigma}, \varepsilon / 2\right)\right) \leqslant \varepsilon$ which implies the uniform ω-limit compactness.

We present now a method to verify the uniform (w.r.t. $\sigma \in \Sigma$) ω-limit compactness.

Definition 4.2. A family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$ is said to be satisfying uniform (w.r.t. $\sigma \in \Sigma$) Condition (C) if for any fixed $\tau \in R, B \in \mathcal{B}(E)$ and $\varepsilon>0$, there exist $t_{0}=t(\tau, B, \varepsilon) \geqslant \tau$ and a finite-dimensional subspace E_{1} of E such that
(i) $P\left(\bigcup_{\sigma \in \Sigma} \bigcup_{t \geqslant t_{0}} U_{\sigma}(t, \tau) B\right)$ is bounded; and
(ii) $\left\|(I-P)\left(\bigcup_{\sigma \in \Sigma} \bigcup_{t \geqslant t_{0}} U_{\sigma}(t, \tau) x\right)\right\| \leqslant \varepsilon, \forall x \in B$,
where $P: E \rightarrow E_{1}$ is a bounded projector.

Proposition 4.3. A family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, satisfies uniform (w.r.t. $\sigma \in \Sigma$) condition (C) implies uniform (w.r.t. $\sigma \in \Sigma$) ω-limit compactness. Moreover, if E is a uniformly convex Banach space then the converse is true.

Proof. From (2), (3) and (6) of Lemma 4.1, for any $\tau \in R, B \in \mathcal{B}(E)$ and $\varepsilon>0$, there exists $t_{0}=t(\tau, B, \varepsilon) \geqslant \tau$ such that

$$
\begin{equation*}
\kappa\left(B_{t_{0}}\right) \leqslant \kappa\left(P B_{t_{0}}\right)+\kappa\left((I-P) B_{t_{0}}\right) \leqslant \kappa(\mathcal{N}(0, \varepsilon))=2 \varepsilon \tag{4.4}
\end{equation*}
$$

where $P: E \rightarrow E_{1}$ and dimension of E_{1} is finite. This means $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, is uniformly (w.r.t. $\sigma \in \Sigma$) ω-limit compact.

On the other hand, there exists $t_{0}=t(\tau, B, \varepsilon) \geqslant \tau$ such that $B_{t_{0}}$ is covered by some finite number of subsets $A_{1}, A_{2}, \ldots, A_{n}$ with diameters less than ε. Let $x_{i} \in A_{i}$ and $E_{1}=$ $\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Since E is uniformly convex, there exists a projection $P: E \rightarrow E_{1}$ such that for any $x \in E,\|x-P x\|=\operatorname{dist}\left(x, E_{1}\right)$. Hence

$$
\begin{equation*}
\|(I-P) x\| \leqslant \operatorname{dist}\left(x,\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right) \leqslant \varepsilon, \quad \forall x \in B_{t_{0}} . \tag{4.5}
\end{equation*}
$$

Namely $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, is satisfying uniform (w.r.t. $\sigma \in \Sigma$) condition (C).
It follows from Theorem 4.1 and Proposition 4.3 that
Theorem 4.2. Let Σ be a compact metric space and let $\{T(t)\}$ be a continuous invariant $T(t) \Sigma=\Sigma$ on Σ satisfying translation identity (3.6). A family of processes $\left\{U_{\sigma}(t, \tau)\right\}, \sigma \in \Sigma$, acting in E is $(E \times \Sigma, E)$-(weakly) continuous and possesses compact uniform (w.r.t. $\sigma \in \Sigma$) attractor A_{Σ} satisfying

$$
\begin{equation*}
\mathcal{A}_{\Sigma}=\omega_{0, \Sigma}\left(B_{0}\right)=\omega_{\tau, \Sigma}\left(B_{0}\right)=\bigcup_{\sigma \in \Sigma} \mathcal{K}_{\sigma}(0), \quad \forall \tau \in R, \tag{4.6}
\end{equation*}
$$

if it
(i) has a bounded uniformly (w.r.t. $\sigma \in \Sigma$) absorbing set B_{0}; and
(ii) satisfies uniform (w.r.t. $\sigma \in \Sigma$) condition (C).

Moreover, if E is a uniformly convex Banach space then the converse is true.

5. Translation compact functions

Let us describe a typical symbol space Σ for a particular problem. We are given some fixed symbol $\sigma_{0}(s), s \in R$. We choose an appropriate enveloping topological space $\Xi=\{\zeta(s) \mid s \in R\}$ such that $\sigma_{0}(s) \in \Xi$. Consider the closure in Ξ of the following set:

$$
\left\{T(h) \sigma_{0}(s) \mid h \in R\right\}=\left\{\sigma_{0}(h+s) \mid h \in R\right\} .
$$

This closure is said to be the hull of the function $\sigma_{0}(s)$ in Ξ and is denoted by

$$
\mathcal{H}\left(\sigma_{0}\right)=\left[\left\{T(h) \sigma_{0} \mid h \in R\right\}\right]_{\Xi}
$$

Here $[\cdot]_{\Xi}$ denotes the closure in Ξ. Evidently, $T(h) \mathcal{H}\left(\sigma_{0}\right)=\mathcal{H}\left(\sigma_{0}\right)$ for any $h \in R$.

Definition 5.1. The function $\sigma_{0}(s) \in \Xi$ is said to be translation compact in Ξ if the hull $\mathcal{H}\left(\sigma_{0}\right)$ is compact in Ξ.

Now recall the following facts which can be found in Chepyzhov and Vishik [7].
Lemma 5.1. A set $\Sigma \subset L_{\mathrm{loc}}^{p}(R ; E)$ is precompact in $L_{\mathrm{loc}}^{p}(R ; E)$ if and only if the set $\Sigma_{\left[t_{1}, t_{2}\right]}$ is precompact in $L^{p}\left(t_{1}, t_{2} ; E\right)$ for every segment $\left[t_{1}, t_{2}\right] \subset R$. Here $\Sigma_{\left[t_{1}, t_{2}\right]}$ denotes the restriction of the set Σ to the segment $\left[t_{1}, t_{2}\right]$.

Proposition 5.1. Assume that $f(s) \in L_{c}^{2}(R ; E)$ is translation compact, then for any $\varepsilon>0$, there exists $\eta>0$ such that

$$
\begin{equation*}
\sup _{t \in R} \int_{t}^{t+\eta}\|f(s)\|_{E}^{2} d s \leqslant \varepsilon \tag{5.1}
\end{equation*}
$$

Proof. $f(s) \in L_{c}^{2}(R ; E)$ means that $\{f(s+t) \mid t \in R\}$ is precompact in $L_{\mathrm{loc}}^{2}(R ; E)$ which is equivalent to that, from Lemma 5.1, $\left.\{f(s+t) \mid t \in R\}\right|_{s \in[0,1]}$ is precompact in $L^{2}(0,1 ; E)$. So for any $\varepsilon>0$ there exist finite number $g_{1}(s), \ldots, g_{N}(s) \in L^{2}(0,1 ; E)$ such that

$$
\begin{equation*}
\left.\{f(s+t) \mid t \in R\}\right|_{s \in[0,1]} \subset \bigcup_{i=1}^{N} B_{L^{2}(0,1 ; E)}\left(g_{i}, \frac{\varepsilon}{4}\right) \tag{5.2}
\end{equation*}
$$

Then there exists $0<\eta=\eta(\varepsilon)<1$ satisfying

$$
\begin{equation*}
\max _{i=1, \ldots, N} \int_{0}^{\eta}\left\|g_{i}(s)\right\|_{E}^{2} d s \leqslant \frac{\varepsilon}{4} . \tag{5.3}
\end{equation*}
$$

From (5.2) and (5.3), for any $t \in R$ there exists $i \in\{1, \ldots, N\}$ such that

$$
\begin{equation*}
\int_{0}^{\eta}\|f(s+t)\|_{E}^{2} d s \leqslant 2 \int_{0}^{\eta}\left\|f(s+t)-g_{i}(s)\right\|_{E}^{2} d s+2 \int_{0}^{\eta}\left\|g_{i}(s)\right\|_{E}^{2} d s \leqslant \varepsilon \tag{5.4}
\end{equation*}
$$

which implies

$$
\int_{t}^{t+\eta}\|f(s)\|_{E}^{2} d s \leqslant \varepsilon .
$$

6. Uniform attractor of nonautonomous Navier-Stokes equations

This section deals with the existence of the attractor for the two-dimensional nonautonomous Navier-Stokes equations in a bounded Lipschitz domain Ω with nonhomogeneous boundary condition (see Brown et al. [3]).

Let $A=-P \Delta$ denote the Stokes operator and $B(u, v)=P[(u \cdot \nabla) v]$, where P is the orthogonal projector in $L^{2}(\Omega)$ on the space H. We may rewrite the Navier-Stokes equations (2.15) for v in the form

$$
\begin{align*}
& \frac{d v}{d t}+v A v+B(v, v)+B(v, \psi)+B(\psi, v)=P(f+v F)-B(\psi, \psi) \tag{6.1}\\
& v(x, \tau)=v_{\tau}(x) \in H \tag{6.2}
\end{align*}
$$

We first establish the existence of solution of (6.1) and (6.2) by the standard Faedo-Galerkin method.

Since A^{-1} is a continuous compact operator in H, by the classical spectral theorem, there exists a sequence $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$,

$$
\begin{equation*}
0<\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{j} \leqslant \cdots, \quad \lambda_{j} \rightarrow+\infty \text { as } j \rightarrow \infty, \tag{6.3}
\end{equation*}
$$

and let $\left\{w_{j}\right\}_{j=1}^{\infty}$ be an orthonormal basis of H such that $A w_{j}=\lambda_{j} w_{j}$. Fix $m \geqslant 1$, let

$$
v_{m}=\sum_{j=1}^{m} g_{j m}(t) w_{j}
$$

We solve the system of ODE's

$$
\left\{\begin{array}{l}
\left(\frac{\partial v_{m}}{\partial t}, w_{j}\right)+v\left(\left(v_{m}, w_{j}\right)\right)+b\left(v_{m}, v_{m}, w_{j}\right)+b\left(\psi, v_{m}, w_{j}\right)+b\left(v_{m}, \psi, w_{j}\right) \tag{6.4}\\
\quad=\left(\bar{f}, w_{j}\right)-b\left(\psi, \psi, w_{j}\right), \quad j=1,2, \ldots, m \\
v_{m}(0)=P_{m} v_{0}
\end{array}\right.
$$

where $b(u, v, w)=(B(u, v), w), \bar{f}=P(f+v F)$, and $P_{m}: H \rightarrow \operatorname{span}\left\{w_{1}, \ldots, w_{m}\right\}$ is the projector. We claim that $b\left(\psi, v_{m}, w_{j}\right), b\left(v_{m}, \psi, w_{j}\right)$ and $b\left(\psi, \psi, w_{j}\right)$ are well defined. This follows easily from the estimate (see Brown et al. [3]).

Here the forcing functions f and ψ satisfy (1.3) and (1.4) for the nonhomogeneous boundary condition as is constructed in Brown et al. [3] and we have the following inequalities:

$$
\begin{align*}
& |\psi(x)|+|\nabla \psi(x)| \operatorname{dist}(x, \partial \Omega) \leqslant C_{4}, \quad \forall x \in \Omega \tag{6.5}\\
& \int_{\Omega}|\nabla \psi(x)|^{2} \operatorname{dist}(x, \partial \Omega) d x \leqslant C_{5} . \tag{6.6}
\end{align*}
$$

In Brown et al. [3], the authors have shown that the semigroup $S(t): H \rightarrow H(t \geqslant 0)$ associated with the autonomous systems (6.1) and (6.2) possesses a global attractor in H and a bounded absorbing set in $D\left(A^{1 / 4}\right)$. The main objective of this section is to prove that the nonautonomous systems (6.1) and (6.2) have uniform attractors in H and $D\left(A^{1 / 4}\right)$.

To this end, we first state some results selected from Brown et al. [3].
Lemma 6.1 (Hardy's inequality). There exists a constant C_{6} such that for any $u \in H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} \frac{|u(x)|^{2}}{[\operatorname{dist}(x, \partial \Omega)]^{2}} d x \leqslant C_{6} \int_{\Omega}|\nabla u(x)|^{2} d x \tag{6.7}
\end{equation*}
$$

Lemma 6.2. There exists a constant C_{7} such that for any $u \in D\left(A^{1 / 4}\right)$,

$$
\begin{align*}
& \int_{\Omega} \frac{|u(x)|^{2}}{\operatorname{dist}(x, \partial \Omega)} d x \leqslant C_{7} \int_{\Omega}\left|A^{1 / 4} u(x)\right|^{2} d x \tag{6.8}\\
& |u|_{4} \leqslant C_{7}\left|A^{1 / 4} u\right|_{2} \tag{6.9}
\end{align*}
$$

Proposition 6.1. Let $f \in D\left(A^{\alpha / 4}\right)$ where $\alpha=-1$ or -2 and let $v_{0} \in H$. ψ satisfies (6.5) and (6.6). Then the problem (6.1) and (6.2) has a unique solution $v(t)$ such that for any $T>0$,

$$
\begin{equation*}
v \in C([0, T] ; H) \cap L^{2}([0, T] ; V), \quad \frac{d v}{d t} \in L^{2}\left((0, T), V^{\prime}\right) \tag{6.10}
\end{equation*}
$$

and such that for almost all $t \in[0, T]$ and for any $w \in V$,

$$
\begin{align*}
& \left(\frac{\partial v}{\partial t}, w\right)+v((v(t), w))+b(v(t), v(t), w)+b(\psi, v(t), w)+b(v(t), \psi, w) \\
& \quad=(\bar{f}, w)-b(\psi, \psi, w) \tag{6.11}
\end{align*}
$$

Proof. The proof of Proposition 6.1 is similar to the autonomous Navier-Stokes in Brown et al. [3].

Recall that the power of the Stokes operator A are defined for $z \in C$ by

$$
A^{z} g=\sum_{j} \lambda_{j}^{z} a_{j} w_{j} \quad \text { for } g=\sum_{j} a_{j} w_{j}
$$

and

$$
D\left(A^{z}\right)=\left\{g \mid A^{z} g \in H\right\}=\left\{g=\left.\sum a_{j} w_{j}\left|\sum_{j} \lambda_{j}^{2 \operatorname{Re} z}\right| a_{j}\right|^{2}<\infty\right\}
$$

Now we will write (6.1), (6.2) in the operator form

$$
\begin{equation*}
\partial_{t} v=A_{\sigma(t)}(v),\left.\quad v\right|_{t=\tau}=v_{\tau}, \tag{6.12}
\end{equation*}
$$

where $\sigma(s)=f(x, s)$ is the symbol of Eq. (6.12). Thus, if $v_{\tau} \in H$, then problem (6.12) has a unique solution $v(t) \in C([0, T] ; H) \cap L^{2}([0, T] ; V)$. This implies that the process $\left\{U_{\sigma}(t, \tau)\right\}$ given by the formula $U_{\sigma}(t, \tau) v_{\tau}=v(t)$ is defined in H.

We now define the symbol space $\mathcal{H}\left(\sigma_{0}\right)$ for (6.12). Let a fixed symbol $\sigma_{0}(s)=f_{0}(s)=f_{0}(\cdot, s)$ be translation compact in $L_{\text {loc }}^{2}(R ; E)$; that is, the family of translation $\left\{f_{0}(s+h), h \in R\right\}$ forms a precompact set in $L_{\mathrm{loc}}^{2}\left(\left[T_{1}, T_{2}\right] ; E\right)$, where $\left[T_{1}, T_{2}\right]$ is an arbitrary interval of the time axis R.

As $f_{0}(x, s)$ is translation compact in $L_{\mathrm{loc}}^{2}(R ; E)$, the hull

$$
\mathcal{H}\left(\sigma_{0}\right)=\mathcal{H}\left(f_{0}\right)=\left[f_{0}(x, s+h) \mid h \in R\right]_{L_{\mathrm{loc}}^{2}(R ; E)}
$$

is compact in $\Xi=L_{\mathrm{loc}}^{2}(R ; E)$.
Now, for any $f(x, t) \in \mathcal{H}\left(f_{0}\right)$, the problem (6.12) with f instead of f_{0} possesses a corresponding process $\left\{U_{f}(t, \tau)\right\}$ acting on H. As is proved in Chepyzhov and Vishik [7], the family $\left\{U_{f}(t, \tau) \mid f \in \mathcal{H}\left(f_{0}\right)\right\}$ of processes is $\left(H \times \mathcal{H}\left(f_{0}\right) ; H\right)$-continuous.

Let

$$
\begin{array}{r}
\mathcal{K}_{f}=\left\{v_{f}(x, t) \text { for } t \in R \mid v_{f}(x, t)\right. \text { is solution of (6.12) satisfying } \\
\left.\left\|v_{f}(\cdot, t)\right\|_{H} \leqslant M_{f} \text { for all } t \in R\right\}
\end{array}
$$

be the so-called kernel of the process $\left\{U_{f}(t, \tau)\right\}$.

Proposition 6.2. The process $\left\{U_{f}(t, \tau)\right\}: H \rightarrow H\left(D\left(A^{1 / 4}\right)\right)$ associated with Eq. (6.12) possesses absorbing sets

$$
\mathcal{B}_{0}=\left\{\left.v \in H| | v\right|_{2} \leqslant \rho_{0}\right\} \quad \text { and } \quad \mathcal{B}_{1}=\left\{\left.v \in D\left(A^{1 / 4}\right)| | A^{1 / 4} v\right|_{2} \leqslant \rho_{1}\right\}
$$

which absorb all bounded sets of H. Moreover, \mathcal{B}_{0} and \mathcal{B}_{1} absorb all bounded sets of H and $D\left(A^{1 / 4}\right)$ in the norms of H and $D\left(A^{1 / 4}\right)$, respectively.

Proof. The proof of Proposition 6.2 is similar to that of the autonomous Navier-Stokes equation. We can obtain absorbing sets in H and $D\left(A^{1 / 4}\right)$ following Brown et al. [3], Chepyzhov and Vishik [7], and Temam [22].

The main results in this section are as follows.
Now we prove the existence of compact uniform (w.r.t. $f \in \mathcal{H}\left(f_{0}\right)$) attractors in H and $D\left(A^{1 / 4}\right)$ by applying the method established in Section 4.

Theorem 6.1. If $f_{0}(x, s)$ is translation compact in $L_{\mathrm{loc}}^{2}\left(R ; V^{\prime}\right)$, then the processes $\left\{U_{f_{0}}(t, \tau)\right\}$ corresponding to problem (6.12) possesses compact uniform (w.r.t. $\tau \in R$) attractor \mathfrak{A}_{0} in H which coincides with the uniform (w.r.t. $f \in \mathcal{H}\left(f_{0}\right)$) attractor $\mathfrak{A}_{\mathcal{H}\left(f_{0}\right)}$ of the family of processes $\left\{U_{f}(t, \tau) \mid f \in \mathcal{H}\left(f_{0}\right)\right\}:$

$$
\begin{equation*}
\mathfrak{A}_{0}=\mathfrak{A}_{\mathcal{H}\left(f_{0}\right)}=\omega_{0, \mathcal{H}\left(f_{0}\right)}\left(\mathcal{B}_{0}\right)=\bigcup_{f \in \mathcal{H}\left(f_{0}\right)} \mathcal{K}_{f}(0) \tag{6.13}
\end{equation*}
$$

where \mathcal{B}_{0} is the uniformly (w.r.t. $f \in \mathcal{H}\left(f_{0}\right)$) absorbing set in H and \mathcal{K}_{f} is the kernel of the process $\left\{U_{f}(t, \tau)\right\}$. Furthermore, the kernel \mathcal{K}_{f} is nonempty for all $f \in \mathcal{H}\left(f_{0}\right)$.

Proof. As in the previous section, for fixed N, let H_{1} be the subspace spanned by w_{1}, \ldots, w_{N}, and H_{2} the orthogonal complement of H_{1} in H. We write

$$
v=v_{1}+v_{2}, \quad v_{1} \in H_{1}, \quad v_{2} \in H_{2} \quad \text { for any } v \in H .
$$

Now, we only have to verify condition (C). Namely, we need to estimate $\left|v_{2}(t)\right|_{2}$, where $v(t)=v_{1}(t)+v_{2}(t)$ is a solution of Eqs. (6.1) and (6.2) given in Proposition 6.1.

Multiplying Eq. (6.1) by v_{2}, we have

$$
\begin{align*}
& \left(\frac{d v}{d t}, v_{2}\right)+\left(v A v, v_{2}\right)+\left(B(v, v), v_{2}\right)+\left(B(v, \psi), v_{2}\right)+\left(B(\psi, v), v_{2}\right) \\
& \quad=\left(\bar{f}, v_{2}\right)-\left(B(\psi, \psi), v_{2}\right) \tag{6.14}
\end{align*}
$$

It follows that

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left|v_{2}\right|_{2}^{2}+v\left|A^{1 / 2} v_{2}\right|_{2}^{2} \leqslant & \left|\left(B(v, v), v_{2}\right)\right|+\left|\left(B(v, \psi), v_{2}\right)\right|+\left|\left(B(\psi, v), v_{2}\right)\right| \\
& +\left|\left(f, v_{2}\right)\right|+v\left|\left(F, v_{2}\right)\right|+\left|\left(B(\psi, \psi), v_{2}\right)\right| \tag{6.15}
\end{align*}
$$

We have to estimate each term in the right-hand side of (6.15).
First, by Hölder's inequality, Lemma 6.2 and Proposition 6.2,

$$
\begin{align*}
\left|\left(B(v, v), v_{2}\right)\right| & \leqslant \int_{\Omega}|v||\nabla v|\left|v_{2}\right| d x \leqslant|v|_{4}\left|A^{1 / 2} v\right|_{2}\left|v_{2}\right|_{4} \\
& \leqslant C_{7}^{2}\left|A^{1 / 4} v\right|_{2}\left|A^{1 / 2} v\right|_{2}\left|A^{1 / 4} v_{2}\right|_{2} \leqslant \frac{C_{7}^{2} \rho_{1}}{\lambda_{m+1}^{1 / 4}}\left|A^{1 / 2} v\right|_{2}\left|A^{1 / 2} v_{2}\right|_{2} \\
& \leqslant \frac{v}{12}\left|A^{1 / 2} v_{2}\right|_{2}^{2}+\frac{3 C_{7}^{4} \rho_{1}^{2}}{v \lambda_{m+1}^{1 / 2}}\left|A^{1 / 2} v\right|_{2}^{2} \tag{6.16}
\end{align*}
$$

Next, using (6.5), (2.10), (6.7) and the Cauchy inequality,

$$
\begin{align*}
\left|\left(B(v, \psi), v_{2}\right)\right| & \leqslant \int_{\Omega}|v||\nabla \psi|\left|v_{2}\right| d x \leqslant C_{4} \int_{\operatorname{dist}(x, \partial \Omega) \leqslant c_{2} \varepsilon} \frac{|v|}{\operatorname{dist}(x, \partial \Omega)}\left|v_{2}\right| d x \\
& \leqslant C_{4} c_{3}\left(\int_{\Omega} \frac{|v|^{2}}{[\operatorname{dist}(x, \partial \Omega)]^{2}} d x\right)^{1 / 2}\left|v_{2}\right|_{2} \leqslant \frac{C_{4} C_{6}}{\lambda_{m+1}^{1 / 2}} c_{3}\left|A^{1 / 2} v\right|_{2}\left|A^{1 / 2} v_{2}\right|_{2} \\
& \leqslant \frac{v}{12}\left|A^{1 / 2} v_{2}\right|_{2}^{2}+\frac{3 c_{3}^{2} C_{4}^{2} C_{6}^{2}}{v \lambda_{m+1}}\left|A^{1 / 2} v\right|_{2}^{2} \tag{6.17}
\end{align*}
$$

Similarly by (6.5),

$$
\begin{align*}
\left|\left(B(\psi, v), v_{2}\right)\right| & \leqslant \int_{\Omega}|\psi||\nabla v|\left|v_{2}\right| d x \leqslant C_{4} \int_{\Omega}\left|\nabla v \|\left|\left|v_{2}\right| d x \leqslant C_{4}\right| \nabla v\right|_{2}\left|v_{2}\right|_{2} \\
& \leqslant \frac{C_{4}}{\lambda_{m+1}^{1 / 2}}\left|A^{1 / 2} v\right|_{2}\left|A^{1 / 2} v_{2}\right|_{2} \leqslant \frac{v}{12}\left|A^{1 / 2} v_{2}\right|_{2}^{2}+\frac{3 C_{4}^{2}}{v \lambda_{m+1}}\left|A^{1 / 2} v\right|_{2}^{2} \tag{6.18}
\end{align*}
$$

We now estimate $\left|\left(B(\psi, \psi), v_{2}\right)\right|$ by (6.5), (6.7), (2.10), and (2.11),

$$
\begin{align*}
\left|\left(B(\psi, \psi), v_{2}\right)\right| & \leqslant \int_{\Omega}|\psi||\nabla \psi|\left|v_{2}\right| d x \leqslant C_{4} \int_{\Omega} \frac{\left|v_{2}\right|}{\operatorname{dist}(x, \partial \Omega)}|\psi| d x \\
& \leqslant C_{4}\left\{\frac{\left|v_{2}\right|^{2}}{[\operatorname{dist}(x, \partial \Omega)]^{2}} d x\right\}^{1 / 2}\left\{\int_{\operatorname{dist}(x, \partial \Omega) \leqslant c_{2} \varepsilon}|\psi|^{2} d x\right\}^{1 / 2} \\
& \leqslant c_{4} C_{1} C_{4}^{2} C_{6}|\partial \Omega|^{1 / 2}\left|A^{1 / 2} v_{2}\right|_{2} \cdot \sqrt{\varepsilon} \\
& \leqslant \frac{v}{12}\left|A^{1 / 2} v_{2}\right|_{2}^{2}+\frac{3 c_{4}^{2} C_{1}^{2} C_{4}^{4} C_{6}^{2}|\partial \Omega| \varepsilon}{v} \tag{6.19}
\end{align*}
$$

Finally, we estimate $\left|\left(\bar{f}, v_{2}\right)\right|$ by

$$
\begin{equation*}
\left|\left(f, v_{2}\right)\right| \leqslant|f|_{V^{\prime}}\left|A^{1 / 2} v_{2}\right|_{2} \leqslant \frac{v}{12}\left|A^{1 / 2} v_{2}\right|_{2}^{2}+\frac{3|f|_{V^{\prime}}^{2}}{v} \tag{6.20}
\end{equation*}
$$

Since supp $F \subset\left\{x \in \Omega \mid c_{1} \varepsilon \leqslant \operatorname{dist}(x, \partial \Omega) \leqslant c_{2} \varepsilon\right\}$, it then follows from Lemma 2.3 that

$$
\nu\left|\left(F, v_{2}\right)\right| \leqslant v \cdot|F|_{2}\left\{\int_{\Omega} \frac{\left|v_{2}\right|^{2}}{[\operatorname{dist}(x, \partial \Omega)]^{2}} d x\right\}^{1 / 2} \cdot c_{5} \varepsilon \leqslant v \cdot \frac{C_{3}\|\varphi\|_{L^{2}(\partial \Omega)}}{\varepsilon^{3 / 2}} \cdot\left\|v_{2}\right\| \cdot c_{5} \varepsilon
$$

$$
\begin{align*}
& \leqslant \frac{3 c_{5}^{2} C_{3}^{2} v}{\varepsilon}\|\varphi\|_{L^{2}(\partial \Omega)}^{2}+\frac{v}{12}\left|A^{1 / 2} v_{2}\right|_{2}^{2} \\
& \leqslant \frac{3 c_{5}^{2} C_{3}^{2} v}{\varepsilon}|\partial \Omega|\|\varphi\|_{L^{\infty}(\partial \Omega)}^{2}+\frac{v}{12}\left|A^{1 / 2} v_{2}\right|_{2}^{2} \tag{6.21}
\end{align*}
$$

where $\|\varphi\|_{L^{2}(\partial \Omega)} \leqslant|\partial \Omega|^{1 / 2}\|\varphi\|_{L^{\infty}(\partial \Omega)}$.
Putting (6.16)-(6.21) together, there exist constant C_{8}, C_{9} such that

$$
\begin{align*}
\frac{1}{2} & \frac{d}{d t}\left|v_{2}\right|_{2}^{2}+v\left\|v_{2}\right\|^{2} \\
\leqslant & \frac{v}{2}\left\|v_{2}\right\|^{2}+\frac{C_{8}}{v \lambda_{m+1}}\left|A^{1 / 2} v\right|_{2}^{2}+\frac{C_{8}}{v \lambda_{m+1}^{1 / 2}}\left|A^{1 / 2} v\right|_{2}^{2}+C_{9}+\frac{3}{v}|f|_{V^{\prime}}^{2} \\
\leqslant & \frac{v}{2}\left\|v_{2}\right\|^{2}+\frac{4 C_{8}}{v \lambda_{m+1}}\left(\left|A^{1 / 2} v_{1}\right|_{2}^{2}+\left|A^{1 / 2} v_{2}\right|_{2}^{2}\right) \\
& +\frac{4 C_{8}}{v \lambda_{m+1}^{1 / 2}}\left(\left|A^{1 / 2} v_{1}\right|_{2}^{2}+\left|A^{1 / 2} v_{2}\right|_{2}^{2}\right)+C_{9}+\frac{3}{v}|f|_{V^{\prime}}^{2} \\
\leqslant & \frac{v}{2}\left\|v_{2}\right\|^{2}+\frac{4 C_{8} \lambda_{m}^{1 / 2}}{v \lambda_{m+1}} \rho_{1}^{2}+\frac{4 C_{8}}{v \lambda_{m+1}}\left|A^{1 / 2} v_{2}\right|_{2}^{2}+\frac{4 C_{8} \lambda_{m}^{1 / 2}}{v \lambda_{m+1}^{1 / 2}} \rho_{1}^{2} \\
& \quad+\frac{4 C_{8}}{v \lambda_{m+1}^{1 / 2}}\left|A^{1 / 2} v_{2}\right|_{2}^{2}+C_{9}+\frac{3}{v}|f|_{V^{\prime}}^{2} \tag{6.22}
\end{align*}
$$

where we use

$$
\begin{equation*}
\left|A^{1 / 2} v_{1}\right|_{2}^{2} \leqslant \lambda_{m}^{1 / 2}\left|A^{1 / 4} v_{1}\right|_{2}^{2} \leqslant \lambda_{m+1}^{1 / 2}\left|A^{1 / 4} v_{1}\right|_{2}^{2} \tag{6.23}
\end{equation*}
$$

Therefore, we deduce that

$$
\begin{equation*}
\frac{d}{d t}\left|v_{2}\right|_{2}^{2}+\frac{1}{2} v \lambda_{m+1}\left|v_{2}\right|_{2}^{2} \leqslant M+\frac{3}{v}|f|_{V^{\prime}}^{2} \tag{6.24}
\end{equation*}
$$

Here M depends on λ_{m+1}, is not increasing as λ_{m+1} increasing.
By the Gronwall inequality, the above inequality implies

$$
\begin{equation*}
\left|v_{2}(t)\right|_{2}^{2} \leqslant\left|v_{2}\left(t_{0}+1\right)\right|_{2}^{2} e^{-\nu \lambda_{m+1}\left(t-\left(t_{0}+1\right)\right) / 2}+\frac{2 M}{v \lambda_{m+1}}+\frac{3}{v} \int_{t_{0}+1}^{t} e^{-v \lambda_{m+1}(t-s) / 2}|f|_{V^{\prime}}^{2} d s \tag{6.25}
\end{equation*}
$$

Applying Proposition 5.1 and Lemma II 1.3 in Chepyzhov and Vishik [7] for any ε,

$$
\frac{3}{v} \int_{t_{0}+1}^{t} e^{-\nu \lambda_{m+1}(t-s) / 2}|f|_{V^{\prime}}^{2} d s<\frac{\varepsilon}{3}
$$

Using (6.3) and letting $t_{1}=t_{0}+1+\frac{2}{\nu \lambda_{m+1}} \ln \frac{3 \rho_{0}^{2}}{\varepsilon}$, then $t \geqslant t_{1}$ implies

$$
\begin{aligned}
& \frac{2 M}{\nu \lambda_{m+1}}<\frac{\varepsilon}{3} ; \\
& \left|v_{2}\left(t_{0}+1\right)\right|_{2}^{2} e^{-\nu \lambda_{m+1}\left(t-\left(t_{0}+1\right)\right) / 2} \leqslant \rho_{0}^{2} e^{-\nu \lambda_{m+1}\left(t-\left(t_{0}+1\right)\right) / 2}<\frac{\varepsilon}{3} .
\end{aligned}
$$

Therefore, we deduce from (6.25) that

$$
\begin{equation*}
\left|v_{2}\right|_{2}^{2} \leqslant \varepsilon, \quad \forall t \geqslant t_{1}, \quad f \in \mathcal{H}\left(f_{0}\right) \tag{6.26}
\end{equation*}
$$

which indicates $\left\{U_{f}(t, \tau)\right\}, f \in \mathcal{H}\left(f_{0}\right)$, satisfying uniform (w.t.r. $\left.f \in \mathcal{H}\left(f_{0}\right)\right)$ condition (C) in H.

According to Propositions 6.1 and 6.2 , we can now regard that the families of processes $\left\{U_{f}(t, \tau)\right\}, f \in \mathcal{H}\left(f_{0}\right)$, are defined in $D\left(A^{1 / 4}\right)$ and \mathcal{B}_{1} is a uniformly (w.r.t. $f \in \mathcal{H}\left(f_{0}\right)$) absorbing set in $D\left(A^{1 / 4}\right)$.

Theorem 6.2. If $f_{0}(x, s)$ is translation compact in $L_{\mathrm{loc}}^{2}\left(R ; D\left(A^{-1 / 4}\right)\right)$, then the processes $\left\{U_{f_{0}}(t, \tau)\right\}$ corresponding to problem (6.12) possesses compact uniform (w.r.t. $\tau \in R$) attractor \mathfrak{A}_{1} in $D\left(A^{1 / 4}\right)$ which coincides with the uniform (w.r.t. $f \in \mathcal{H}\left(f_{0}\right)$) attractor $\mathfrak{A}_{\mathcal{H}\left(f_{0}\right)}$ of the family of processes $\left\{U_{f}(t, \tau)\right\}, f \in \mathcal{H}\left(f_{0}\right)$:

$$
\begin{equation*}
\mathfrak{A}_{1}=\mathfrak{A}_{\mathcal{H}\left(f_{0}\right)}=\omega_{0, \mathcal{H}\left(f_{0}\right)}\left(\mathcal{B}_{1}\right)=\bigcup_{f \in \mathcal{H}\left(f_{0}\right)} \mathcal{K}_{f}(0), \tag{6.27}
\end{equation*}
$$

where \mathcal{B}_{1} is the uniformly (w.r.t. $f \in \mathcal{H}\left(f_{0}\right)$) absorbing set in $D\left(A^{1 / 4}\right)$ and \mathcal{K}_{f} is the kernel of the process $\left\{U_{f}(t, \tau)\right\}$. Furthermore, the kernel \mathcal{K}_{f} is nonempty for all $f \in \mathcal{H}\left(f_{0}\right)$.

Proof. Using Proposition 6.2, we have the family of processes $\left\{U_{f}(t, \tau)\right\}$, $f \in \mathcal{H}\left(f_{0}\right)$, corresponding to (6.12) possesses the uniformly (w.r.t. $f \in \mathcal{H}\left(f_{0}\right)$) absorbing set in $D\left(A^{1 / 4}\right)$.

Now we prove the existence of compact uniform (w.r.t. $\left.f \in \mathcal{H}\left(f_{0}\right)\right)$ attractor in $D\left(A^{1 / 4}\right)$ by applying the method established in Section 4, that is, we testify that the family of processes $\left\{U_{f}(t, \tau)\right\}, f \in \mathcal{H}\left(f_{0}\right)$ corresponding to (6.12) satisfies uniform (w.r.t. $f \in \mathcal{H}\left(f_{0}\right)$) condition (C).

Multiplying Eq. (6.1) by $A^{1 / 2} v_{2}(t)$, similarly to Theorem 6.1, we have

$$
\begin{align*}
\left(\frac{d v}{d t},\right. & \left.A^{1 / 2} v_{2}\right)+\left(v A v, A^{1 / 2} v_{2}\right)+\left(B(v, v), A^{1 / 2} v_{2}\right) \\
& +\left(B(v, \psi), A^{1 / 2} v_{2}\right)+\left(B(\psi, v), A^{1 / 2} v_{2}\right) \\
= & \left(\bar{f}, A^{1 / 2} v_{2}\right)-\left(B(\psi, \psi), A^{1 / 2} v_{2}\right) . \tag{6.28}
\end{align*}
$$

It follows that

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left|A^{1 / 4} v_{2}\right|_{2}^{2}+v\left|A^{3 / 4} v_{2}\right|_{2}^{2} \leqslant & \left|\left(B(v, v), A^{1 / 2} v_{2}\right)\right|+\left|\left(B(v, \psi), A^{1 / 2} v_{2}\right)\right| \\
& +\left|\left(B(\psi, v), A^{1 / 2} v_{2}\right)\right|+\left|\left(\bar{f}, A^{1 / 2} v_{2}\right)\right| \\
& +\left|\left(B(\psi, \psi), A^{1 / 2} v_{2}\right)\right| \tag{6.29}
\end{align*}
$$

We have to estimate each term in the right-hand side of (6.29).
First, by Hölder's inequality and Lemma 6.2,

$$
\begin{aligned}
\left|\left(B(v, v), A^{1 / 2} v_{2}\right)\right| & \leqslant \int_{\Omega}|v||\nabla v|\left|A^{1 / 2} v_{2}\right| d x \leqslant|v|_{4}\left|A^{1 / 2} v\right|_{4}\left|A^{1 / 2} v_{2}\right|_{2} \\
& \leqslant C_{7}^{2}\left|A^{1 / 4} v\right|_{2}\left|A^{3 / 4} v\right|_{2} \frac{1}{\lambda_{m+1}^{1 / 4}}\left|A^{3 / 4} v_{2}\right|_{2} \leqslant \frac{C_{7}^{2} \rho_{1}}{\lambda_{m+1}^{1 / 4}}\left|A^{3 / 4} v\right|_{2}\left|A^{3 / 4} v_{2}\right|_{2}
\end{aligned}
$$

$$
\begin{equation*}
\leqslant \frac{v}{12}\left|A^{3 / 4} v_{2}\right|_{2}^{2}+\frac{3 C_{7}^{4} \rho_{1}^{2}}{v \lambda_{m+1}^{1 / 2}}\left|A^{3 / 4} v\right|_{2}^{2} \tag{6.30}
\end{equation*}
$$

Next, using (6.5), (6.7) and the Cauchy inequality,

$$
\begin{align*}
\left|\left(B(v, \psi), A^{1 / 2} v_{2}\right)\right| & \leqslant \int_{\Omega}|v||\nabla \psi|\left|A^{1 / 2} v_{2}\right| d x \leqslant C_{4} \int_{\Omega} \frac{|v|}{\operatorname{dist}(x, \partial \Omega)}\left|A^{1 / 2} v_{2}\right| d x \\
& \leqslant C_{4}\left(\int_{\Omega} \frac{|v|^{2}}{[\operatorname{dist}(x, \partial \Omega)]^{2}} d x\right)^{1 / 2}\left|A^{1 / 2} v_{2}\right|_{2} \\
& \leqslant C_{4} C_{6}\left|A^{1 / 2} v\right|_{2}\left|A^{1 / 2} v_{2}\right|_{2} \leqslant \frac{C_{4} C_{6}}{\lambda_{1}^{1 / 4} \lambda_{m+1}^{1 / 4}}\left|A^{3 / 4} v\right|_{2}\left|A^{3 / 4} v_{2}\right|_{2} \\
& \leqslant \frac{v}{12}\left|A^{3 / 4} v_{2}\right|_{2}^{2}+\frac{3 C_{4}^{2} C_{6}^{2}}{v \lambda_{1}^{1 / 2} \lambda_{m+1}^{1 / 2}}\left|A^{3 / 4} v\right|_{2}^{2} \tag{6.31}
\end{align*}
$$

Similarly by (6.5),

$$
\begin{align*}
\left|\left(B(\psi, v), A^{1 / 2} v_{2}\right)\right| & \leqslant \int_{\Omega}|\psi||\nabla v|\left|A^{1 / 2} v_{2}\right| d x \leqslant C_{4} \int_{\Omega}|\nabla v|\left|A^{1 / 2} v_{2}\right| d x \\
& \leqslant C_{4}|\nabla v|_{2}\left|A^{1 / 2} v_{2}\right|_{2} \leqslant \frac{C_{4}}{\lambda_{1}^{1 / 4} \lambda_{m+1}^{1 / 4}}\left|A^{3 / 4} v\right|_{2}\left|A^{3 / 4} v_{2}\right|_{2} \\
& \leqslant \frac{v}{12}\left|A^{3 / 4} v_{2}\right|_{2}^{2}+\frac{3 C_{4}^{2}}{v \lambda_{1}^{1 / 2} \lambda_{m+1}^{1 / 2}}\left|A^{3 / 4} v\right|_{2}^{2} \tag{6.32}
\end{align*}
$$

We now estimate $\left|\left(B(\psi, \psi), A^{1 / 2} v_{2}\right)\right|$ by (6.5), (6.6) and Lemma 6.2,

$$
\begin{align*}
& \left|\left(B(\psi, \psi), A^{1 / 2} v_{2}\right)\right| \\
& \quad \leqslant \int_{\Omega}|\psi||\nabla \psi|\left|A^{1 / 2} v_{2}\right| d x \\
& \quad \leqslant C_{4}\left\{\int_{\Omega}|\nabla \psi|^{2} \operatorname{dist}(x, \partial \Omega) d x\right\}^{1 / 2}\left\{\int_{\Omega}\left|A^{1 / 2} v_{2}\right|^{2} \frac{1}{\operatorname{dist}(x, \partial \Omega)} d x\right\}^{1 / 2} \\
& \quad \leqslant C_{4} C_{5}^{1 / 2} C_{7}^{1 / 2}\left|A^{3 / 4} v_{2}\right|_{2} \leqslant \frac{v}{12}\left|A^{3 / 4} v_{2}\right|_{2}^{2}+\frac{3 C_{4}^{2} C_{5} C_{7}}{v} \tag{6.33}
\end{align*}
$$

Finally, we estimate $\left|\left(\bar{f}, A^{1 / 2} u_{2}\right)\right|$ by

$$
\begin{equation*}
\left|\left(f, A^{1 / 2} v_{2}\right)\right| \leqslant|f|_{2}\left|A^{1 / 2} v_{2}\right|_{2} \leqslant \frac{v}{12}\left|A^{3 / 4} v_{2}\right|_{2}^{2}+\frac{3}{v}|f|_{D\left(A^{-1 / 4}\right)}^{2} \tag{6.34}
\end{equation*}
$$

Similarly (6.21) by Lemma 2.3,

$$
v\left|\left(F, A^{1 / 2} v_{2}\right)\right| \leqslant v \int_{\Omega}|F|\left|A^{1 / 2} v_{2}\right| d x \leqslant v \int_{\Omega}|F| \frac{\left|A^{1 / 2} v_{2}\right|}{[\operatorname{dist}(x, \partial \Omega)]^{1 / 2}} d x \cdot c_{6} \sqrt{\varepsilon}
$$

$$
\begin{align*}
& \leqslant c_{6} \nu \sqrt{\varepsilon}|F|_{2}\left\{\int_{\Omega} \frac{\left|A^{1 / 2} v_{2}\right|^{2}}{\operatorname{dist}(x, \partial \Omega)}\right\}^{1 / 2} d x \\
& \leqslant c_{6} \nu \sqrt{\varepsilon}|F|_{2}\left|A^{3 / 4} v_{2}\right|_{2} \leqslant 3 c_{6}^{2} \nu \varepsilon|F|_{2}^{2}+\frac{v}{12}\left|A^{3 / 4} v_{2}\right|_{2}^{2} \\
& \leqslant 3 c_{6}^{2} \nu \varepsilon \frac{C_{3}^{2}}{\varepsilon^{3}}\|\varphi\|_{L^{2}(\partial \Omega)}^{2}+\frac{v}{12}\left|A^{3 / 4} v_{2}\right|_{2}^{2} \\
& \leqslant 3 c_{6}^{2} v \frac{C_{3}^{2}}{\varepsilon^{2}}|\partial \Omega|\|\varphi\|_{L^{\infty}(\partial \Omega)}^{2}+\frac{v}{12}\left|A^{3 / 4} v_{2}\right|_{2}^{2} . \tag{6.35}
\end{align*}
$$

Putting (6.30)-(6.35) together, using (6.23), there exists a constant C_{10} such that

$$
\begin{align*}
\frac{d}{d t} & \left|A^{1 / 4} v_{2}\right|_{2}^{2}+v\left|A^{3 / 4} v_{2}\right|_{2}^{2} \\
& \leqslant \frac{C_{10}}{\lambda_{m+1}^{1 / 2}}\left|A^{3 / 4} v\right|_{2}^{2}+C_{10}+\frac{3}{v}|f|_{D\left(A^{-1 / 4}\right)}^{2} \\
& \leqslant \frac{4 C_{10}}{\lambda_{m+1}^{1 / 2}}\left(\left|A^{3 / 4} v_{1}\right|_{2}^{2}+\left|A^{3 / 4} v_{2}\right|_{2}^{2}\right)+C_{10}+\frac{3}{v}|f|_{D\left(A^{-1 / 4}\right)}^{2} \\
& \leqslant 4 C_{10} \lambda_{m+1}^{1 / 2}\left|A^{1 / 4} v_{1}\right|_{2}^{2}+\frac{M_{1}}{\lambda_{m+1}^{1 / 2}}\left|A^{3 / 4} v_{2}\right|_{2}^{2}+M_{1}+\frac{3}{v}|f|_{D\left(A^{-1 / 4}\right)}^{2} \tag{6.36}
\end{align*}
$$

Here M_{1} depends on λ_{m+1}, is not increasing as λ_{m+1} increasing. Therefore, we deduce that

$$
\begin{equation*}
\frac{d}{d t}\left|A^{1 / 4} v_{2}\right|_{2}^{2}+\frac{1}{2} v \lambda_{m+1}\left|A^{1 / 4} v_{2}\right|_{2}^{2} \leqslant C_{11} \lambda_{m+1}^{1 / 2}+C_{11}+\frac{3}{v}|f|_{D\left(A^{-1 / 4}\right)}^{2} \tag{6.37}
\end{equation*}
$$

By the Gronwall inequality, the above inequality implies

$$
\begin{align*}
\left|A^{1 / 4} v_{2}(t)\right|_{2}^{2} \leqslant & \left|A^{1 / 4} v_{2}\left(t_{0}+1\right)\right|_{2}^{2} e^{-\nu \lambda_{m+1}\left(t-\left(t_{0}+1\right)\right) / 2}+\frac{2 C_{12}}{\nu \lambda_{m+1}} \\
& +\frac{3}{v} \int_{t_{0}+1}^{t} e^{-\nu \lambda_{m+1}(t-s) / 2}|f|_{D\left(A^{-1 / 4}\right)}^{2} d s \tag{6.38}
\end{align*}
$$

Applying Proposition 5.1 and Lemma II 1.3 in Chepyzhov and Vishik [7] for any ε,

$$
\frac{3}{v} \int_{t_{0}+1}^{t} e^{-v \lambda_{m+1}(t-s) / 2}|f|_{D\left(A^{-1 / 4}\right)}^{2} d s<\frac{\varepsilon}{3}
$$

Using (6.3) and let $t_{1}=t_{0}+1+\frac{2}{v \lambda_{m+1}} \ln \frac{3 \rho_{1}^{2}}{\varepsilon}$, then $t \geqslant t_{1}$ implies

$$
\begin{aligned}
& \frac{2 C_{12}}{\nu \lambda_{m+1}}<\frac{\varepsilon}{3} \\
& \left|A^{1 / 4} v_{2}\left(t_{0}+1\right)\right|_{2}^{2} e^{-v \lambda_{m+1}\left(t-\left(t_{0}+1\right)\right) / 2} \leqslant \rho_{1}^{2} e^{-v \lambda_{m+1}\left(t-\left(t_{0}+1\right)\right) / 2}<\frac{\varepsilon}{3}
\end{aligned}
$$

Therefore, we deduce from (6.38) that

$$
\begin{equation*}
\left|A^{1 / 4} v_{2}\right|_{2}^{2} \leqslant \varepsilon, \quad \forall t \geqslant t_{1}, \quad f \in \mathcal{H}\left(f_{0}\right) \tag{6.39}
\end{equation*}
$$

which indicates $\left\{U_{f}(t, \tau)\right\}, f \in \mathcal{H}\left(f_{0}\right)$, satisfying uniform (w.t.r. $f \in \mathcal{H}\left(f_{0}\right)$) condition (C) in $D\left(A^{1 / 4}\right)$. Applying Theorem 4.2 the proof is complete.

References

[1] J. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst. 10 (2004) 31-52.
[2] J.L. Bona, V.A. Dougalis, An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl. 75 (1980) 503-522.
[3] R. Brown, P. Perry, Z. Shen, On the dimension of attractor for the non-homogeneous Navier-Stomes equations in non-smooth domains, Indiana Univ. Math. J. 49 (2000) 81-112.
[4] V.V. Chepyzhov, M.I. Vishik, Non-autonomous evolutionary equations with translation compact symbols and their attractors, C. R. Acad. Sci. Paris Sér. I 321 (1995) 153-158.
[5] V.V. Chepyzhov, M.I. Vishik, Trajectory attractors for reaction-diffusion systems, Topol. Methods Nonlinear Anal. 7 (1996) 49-76.
[6] V.V. Chepyzhov, M.I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl. 76 (1997) 913-964.
[7] V.V. Chepyzhov, M.I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., vol. 49, Amer. Math. Soc., Providence, RI, 2002.
[8] V.V. Chepyzhov, M.I. Vishik, On non-autonomous Sine-Gordon type equations with a simple global attractor and some averaging, Discrete Contin. Dyn. Syst. 12 (2005) 27-38.
[9] M. Efendiev, S. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math. 54 (2001) 625-688.
[10] J.K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., vol. 25, Amer. Math. Soc., Providence, RI, 1988.
[11] A. Haraux, Systèmes dynamiques dissipatifs et applications, Masson, Paris, 1991.
[12] G. Karch, Asymptotic behavior of solutions to some pseudoparabolic equations, Math. Methods Appl. Sci. 21 (1997) 271-289.
[13] N.I. Karachlios, N.M. Stavrakakis, Existence of global attractors for semilinear dissipative wave equations on R^{N}, J. Differential Equations 157 (1999) 183-205.
[14] O.A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Leizioni Lincei, Cambridge Univ. Press, Cambridge, New York, 1991.
[15] S.S. Lu, H.Q. Wu, C.K. Zhong, Attractors for non-autonomous 2D Navier-Stokes equations with normal external forces, submitted for publication.
[16] Q. Ma, S. Wang, C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J. 51 (2002) 1541-1559.
[17] A. Miranville, X. Wang, Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations, Discrete Contin. Dyn. Syst. 2 (1996) 95-110.
[18] I. Moise, R. Rosa, X. Wang, Attractors for noncompact semigroups via energy equations, Nonlinearity 11 (1998) 1369-1393.
[19] I. Moise, R. Rosa, X. Wang, Attractors for noncompact non-autonomous systems via energy equations, Discrete Contin. Dyn. Syst. 10 (2004) 473-496.
[20] J.C. Robinson, Infinite-Dimensional Dynamical Systems an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Univ. Press, 2001.
[21] G.R. Sell, Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002.
[22] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997.
[23] S. Zelik, The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dyn. Syst. 7 (2001) 593-641.

[^0]: ${ }^{\text {कx }}$ Supported in part by the NSFC Grant (19971036) and Trans-Century Training Programme Foundation for the Talents by the State Education Commission.

 * Corresponding author.

 E-mail addresses: wudelin03@st.lzu.edu.cn (D. Wu), ckzhong@lzu.edu.cn (C. Zhong).

