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Let N be a simply connected nilpotent Lie group and r a discrete uniform 
subgroup. The authors consider irreducible representations c in the spectrum 
of the quasi-regular representation N X Le(T\N) -+Le(r\N) which are in- 
duced from normal maximal subordinate subgroups M C N. The primary 
projection PO and all irreducible projections P Q P, are given by convolutions 
involving right r-invariant distributions D on I’\N, 

Pf(h) = D *f(h) = <D, n .f> all f E Cm(r/N), 

where n .f(<) = f ([ . n). Extending earlier work of Auslander and Brezin, 
and L. Richardson, the authors give explicit character formulas for the distri- 
butions, interpreting them as sums of characters on the torus Tk = (I’ A M) 

[M, m\M. By examining these structural formulas, they obtain fairly sharp 
estimates on the order of the distributions: if o‘ is associated with an orbit 
0!Glt*, and if Y C n* is the largest subspace which saturates 0 in the sense 
that 0 + V = 0, order(D) < d = 1 + [&(dim 0 - dim V)]. As a corollary 
they obtain Richardson’s criterion for a projection to map Cs(I’\N) into itself. 
The authors also resolve a conjecture of Brezin, proving a Zero-One law 
which says, among other things, that if the primary projection P, maps C’(r\N) 
into CO(F\N), so do all irreducible projections P Q P, . This proof is based on 
a classical lemma on the extent to which integral points on a polynomial 
graph in R” lie in the coset ring of Z” (the finitely additive Boolean algebra 
generated by cosets of subgroups in Z”). This lemma may be useful in other 
investigations of nilmanifolds. 
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1. INTRODUCTION 

Throughout this paper N will be a simply connected nilpotent Lie 
group, r a uniform discrete subgroup (r\N compact); we consider 
the induced quasi-regular representation Ur = Ind(I’T N, 1) on 
L2(r\N). Then U1 splits into a direct sum of certain irreducibles, the 
spectrum of r\N, which we denote by (N : lJ^, 

U1 = @ m(o)ff, 
oew:r)A 

each with finite multiplicity. For each u E (N : r)- let s0 C L2(r\N) 
be the u-primary subspace. We will study the projection P, onto a 
primary subspace, and also projections to irreducible invariant 
subspaces contained in y;“, . 

Auslander and Brezin [l] have shown that all bounded projections 
E : L2(I’\N) --f L2(I’\N) commuting with the action of N map C”(r\N) 
into itself, and are determined by convolution-type formulas from 
right r-invariant Schwartz distributions D, ((DE , y *f > = (DE , f ), 
all y E r), 

where n . $(x) = +( x * n). They show that these distributions have 
order < n + 1 (n = dim N), so that E actually maps C”+r(r\N) into 
Cs(r\N). One of our main goals is to extend these existence theorems 
to give a constructive description of the distributions associated with 
a o-primary projection P, and the irreducible projections P < P,, . 

In recent work [12] L. Richardson has studied the action on 
continuous functions of u-primary projections PO and of the irreducible 
projections P < PO . He asks: 

Question 1. Does P, always map CO(r\N) into CO(r\N) ? 

Question 2. If the u-primary projection PO maps Co into CO, 
do some (all) of the irreducible projections P < P, do so too ? 

The first question amounts to asking whether the associated distri- 
butions D, have order zero (are finite measures on r\N). He showed 
that the answer to Q. 1 is sometimes negative, and for a large class of 
u E (N : r)* gave necessary and sufficient conditions that P,, : Co -+ Co. 
This “smoothness” of P, is tested by associating u with a set of charac- 
ters on a certain torus Tk; the distribution D, is then of order zero o 
this set lies in the coset ring COS(P), the finitely additive Boolean 
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algebra of sets generated by the cosets of subgroups in 2” = Fk. 
These results applied essentially to those u E (N : F)^ induced from 
normal maximal subordinate subgroups M such that N = M - X 
(semidirect product of M with a closed abelian subgroup X). 

We simplify and extend this work by taking a different point of 
view. Our approach handles all u induced from normal maximal 
subordinate subgroups M; no additional structure N = M * X is 
required. Richardson worked with irreducible projections into x0 
by determining which functions inL2(r\N) can appear in their range, 
using earlier results of his [Ill to construct and describe these range 
spaces. We use the results of [ll], and some technical refinements 
presented in [4, Sect. 51, to describe the projection operators them- 
selves via integration formulas with distribution kernels, as in (1). 
These formulas directly yield character formulas for the associated 
distributions. In addition to extending Richardson’s results, we are 
able to give fairly sharp answers to a more general question: 

Question 3. When does the primary projection P, , or an ir- 
reducible projection P < P, , map C’(r\N) into CO(r\N) ? 
This amounts to giving estimates for the orders of the associated 
distributions. 

1.1. THEOREM. Suppose u E (N : P)^ is induced from a normal 
maximal subordinate subgroup M such that P n M\M is compact. Let 
0 C n* be the orbit associated with (T and let V be the largest subspace 
in n* which saturates 0 in the sense that f E 0 3 f + V 6 0. If 
d = dim(o) - dim(Y), then order(D) < s, where s = smallest integer 
greater than d/2, if D is associated with either P, or an irreducible 
projection P < P, . 

We also resolve Question 2 in the form of a Zero-One law which 
shows, among other things, that the irreducible projections P < P, 
are all as well behaved as the primary projection P,, . 

1.2. THEOREM. If u E (N : T)^ is induced from a normal maximal 
subordinate subgroup M such that T n M\M is compact, and sf the 
primary projection P, maps G(r\N) into CO(I’\N) for some r > 0, then 
the same is true for all irreducible projections P < P, . 

Thus the primary projection is already responsible for all loss of 
smoothness. (Our actual Zero-One law is somewhat more general, and 
technical, than the result just cited.) 

All of these results apply to cr induced from normal M. We offer 
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some speculations on the nonnormal case. Our basic result, set forth 
in detail in the next section, constructs the distributions associated 
with the primary projection PO and certain “constructible” irreducible 
projections P < PO . They are described as the (distribution) sums of 
certain sets of characters on the torus Tk = (I’n M)[M, M]\M. 
These formulas overlap some results presented by Jon Brezin in a 
note 121 which came to our attention after a preliminary version of the 
present manuscript had been prepared. Brezin’s methods are based 
on the Mackey Machine, and are very different from ours. They seem 
to give information only about the primary projection PO , but on the 
other hand they work for L2(r\G) in cases where G is not nilpotent. 
Information about irreducible projections P < P, is necessary in 
resolving the Zero-One law. We wish to thank Jon Brezin for com- 
municating his results to us, and for a continuing correspondence on 
harmonic analysis on nilmanifolds. His comments on the proper form 
of the basic Zero-One law (Theorem 6.1) were particularly helpful. 
We are also indebted to L. Richardson for an extensive exchange of 
correspondence concerning [ 121 and more recent developments, and 
for his hospitality in arranging a short conference on nilmanifolds 
at Louisiana State University, which led to a valuable exchange of ideas. 

2. THE CHARACTER FORMULAS 

We presume familiarity with the work of Kirillov [9] and Richardson 
[l l] (see also Howe [7]). W e refer to the one-dimensional unitary 
representations of a group G as its characters. Following [ll], a 
maximal character for N is any pair (x, M) such that 

(i) M is a closed connected subgroup and x is a character on it; 

(ii) there is an f~ n* such that x = ezrrifOlOs 1 M, and the Lie 
algebra m is maximal subordinate tof. 

Then (x, M) is an integraE maximal character if 

(iii) M is rational (i.e., r n M\M is compact); 

(iv) x-1onI’nM. 

This is not quite Richardson’s definition in [Ill. He imposed addi- 
tional “speciality” requirements on M; these can be eliminated using 
refinements of his paper given in [4, Sect. 51. For a while we will 
allow M to be nonnormal. Beginning with Section 3 we confine our 
attention to normal M. 
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As explained in [l l] or [4, Sect. 51, if (x, M) is maximal integral the 
induced representation 0 = Ind(M t N, x) lies in the spectrum, 
u E (N : r)^. Furthermore, every CJ E (N : r)^ arises in this way. 
For each maximal character we get an explicit intertwining isometry 
B : X( q -+ q,y, M) - C ZO via the following averaging process. 
Regarding %( U x as a space of functions on N, we define ) 

all n EN. (2) 

Here r, = r n M; the sum is taken over any set of coset representa- 
tives for r,-,\r and is independent of this arbitrary choice. In [4] we 
showed that this pointwise formula (2) is valid for FE S(W),,, = 
functions which are bounded and measurable, and have compact 
support modulo M; then the sum has only finitely many nonzero 
terms and determines an isometry B on L%?( Ux). Actually, the arguments 
in[4] work just as well (the sum is now absolutely convergent pointwise) 
if FE S( Ux), = f unctions which are bounded, measurable, and 
rapidly vanishing transverse to M cosets in the sense that 

Formula (2) ’ p is recisely what Richardson used [l l] to determine 
which functions in L2(r\N) belong to the “lift space” &‘tX,M) = 
range(B), and thus to study what he called the “constructible projec- 
tions” P(x, M) : L2V-7N) -+ *tx. M) 9 those corresponding to integral 
maximal characters which induce u. We shall study the constructible 
projections PC,,,) by directly computing the adjoint B* : L2(r\N) + 
&( Ux) and Ph. M) = BB*. 

2.1. LEMMA. If f E CO(T\N) then 

whet-en-f(x) = f( x * n) and &z is normalized so that Vol(r,,\M) = 1. 

Proof. The right-hand side gives a function Af (n) which is well 
defined for all n EN, bounded, continuous; Af also has the desired 
covariance, Af(mn) = x(m) Af(n) for m E M. If h E %‘( Ux),, , then 
(2) insures that if C is a bounded measurable fundamental domain for 
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r\N, and dx = Haar measure on N normalized so that C has mass 1, 
then 

(sincef(x) = f(rx) for all y E r) 

=I s M\N I-,,\A4 
(h(m - n) 1 f(m - n)) dti dti 

It follows that Af is square integrable. Thus ALE G%‘( Ux) and B*f = 
Af- Q.E.D. 

Now, formally at least, we may compute BB*f((m) from (2). If 
f E cO(r\N), 

BB*f(m) = c B*f(p) 
yer,\r 

Why doesn’t this work? The difficulty is in the first line. The 
pointwise formula (2) is only known to be valid if B*f = F vanishes 
rapidly transverse to M cosets as in (3). In the next section we will 
show that B*f satisfies (3) .if M is normal and if f E Ck+l(IjN), 
k = dim m - dim[m, nt]. Meanwhile, we give a geometric inter- 
pretation for this formula, when it is valid. For n E iV let (x, M) * n = 
(x . n, M * n) = (xn, AP) be the maximal character 

f(m’) = X(nm’frl) for m’ E Mn = n-lMn . 
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We write xn or x . n as convenience dictates. If M is normal, only x 
moves. Let ((x, M) * N)+ be the integral maximal characters in this 
N-orbit. For integral points (x’, M’) = (x, M) - n E ((x, M) * N), let 
p’ = pn be a normalized Ml-invariant measure on r n M’\M’. By 
integrality, x’ may be regarded as a continuous function on r n M’\M’. 
Define ~GY,,+&dti) = x’(m> ~‘(dti) on r n M’\M’. This may be 
regarded as a signed measure on r\N of total variation 1, if we 
identify r n M’JM’ m I’\rM’ 2 r\N. 

Elements 1z = y E r preserve integrality. Thus Formula (5) can be 
written 

%44)f(W = BBYP> 

= ,T;,, LfY,M~ ~ 
x’(m) fm4 PYW) 

= j, (“(x.Mbv T n *f>. (6) 
0 

Formulas (1) and (6) strongly suggest that the sum Cv~(X,M).v should 
converge as a distribution, to QM) . This would yield a satisfying 
interpretation for Dc~,~) . It would be precisely the sum of complex 
conjugates of all characters in the r-orbit {(x, M) * y : ,y E rO\r} which 
determined the projection PfX, M), if we identify characters (x, M) * y 
with the measures v(,., M) .y on I’\N; i.e., 

4x.M) = c kx’,M’) : (x’, M’) E (x, M) - q. (7) 

By the same token, if (xl , MI),..., (x, , M,J are representatives for 
the various r-orbits in ((x, M) = N)# ,. then as in [II] the projections 
Pi = BiBi* = P(,+J are orthogonal and P, = PI + *-I + Pq . 
Thus P, is associated with the distribution obtained by adding up all 
the integral characters in the orbit (x, M) * N instead of those in a 
single r-orbit, 

Q = 1 h’.M’) : (x’9 w E ((x, w * W,). (8) 
In the next section, where M is normal, we will prove the validity of 

Formulas (7) and (8). In the normal case all characters live on M, are 
integral, and annihilate [M, M], so we may simplify things by regarding 
them as characters on the torus Tk = r,,[M, M]\M, and the sums (7) 
and (8) as sums over certain sets in @ = Zk. 

In the nonnormal case M moves and the picture is more com- 
plicated. We conjecture that Formulas (7) and (8) remain valid. We 
have actually proved (7) and (8) valid f or certain classes of nonnormal 
subgroups, but the proofs are complicated and we will not go into 
them here. 
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3. PROOF OF FORMULA (7) 

Of course (7) * (8). Let (x, M) be an integral maximal character 
with M normal. Let u = Ind(M t N, x). We start by elaborating the 
connection between the sum (7) on r n M\M and the associated sum 
of characters on the torus T” = r,,[M, M]\M. Let Ml = [M, M], 
M2 = F,,[M, M], and let p : I’,\M + Tk = M,\M be the canonical 
map. We define a “global” averaging map p* : CO(r\N) -+ CO(N), 

P *f(n) = s, f Pn> dh all n e N, (9) 

where H is a bounded measurable fundamental domain for 
r n M,\M, = r,\M, and dh is Haar measure on M, normalized so H 
has mass one. Now p*f is constant on cosets of the closed subgroup 
r*M,;ify,~r,rn,~[M,M],n~Nwehave 

= 
s j(rhm,n) dh 
r&J;’ 

= 
s f(W dh = PYW, 
H7?Zi1 

because the integrands (left I’,,-periodic functions of h E M,) have the 
same integral over the various fundamental domains H, Hm (m E Ml), 
@b-l (Y E r). 

If a: N + r\N is the canonical map, r(M) = r\rM M r,\M is 
a closed submanifold. The values of p*f on M are determined by the 
values f 1 n(M) of f on r(M), so Formula (9) induces a map p,*: 
co(r,\M) = qr\rq -+ C”(Tk) such that pl*(f 1 T(M)) = p*f 1 M 
when we identify the latter with a function on Tk = M,\M, just set 
n = m E M in (9). This restricted operation suffices for our immediate 
purpose and has the following easily verified properties: 

G) A* is II - IL- norm continuous ; 
(ii) p,*(4 0 p) = 4 for all + E C”(Tk); 
(iii) if dt is normalized measure on Tk, 

for all f E CO(r,\M); 
(iv) for all 0 < r < co, p,* maps C’(r,\M) onto C’(Tk) and is 

continuous with respect to the /I * I(,-norms. If X1 ,..., X, em, if 



INTEGRAL FORMULAS FOR PROJECTIONS 263 

$ : M + M&VI = Tk and d$ : m -+ tk are the canonical homo- 
morphisms, then 

Pl”(JG -** Lf) = 4wl) *** 4wJ Pl*f 

for all fE C’(r,\M). 

Clearly p,* : C@(r,\M) + Cm(Tk) is cominuous with respect to the 
Schwartz topology, giving us an injective liftback of distributions 
PC* : H( Tk) -+ Y(I’,\M). Furthermore, if 7r : N ---f r\N is the 
quotient map, there is the obvious diffeomorphism i : I’,,\M -+ r(M) C 
r\N, n(M) a compact submanifold in I’\N, This gives the obvious 
injective map of distributions i”*: Q’(I’,,\M) -+ g’(r\N). Obviously, 
order(S) = order( p,**S) = order(i**(pT*S)) under these Iiftings. 

Note. C’ norms I[$ /Il. are defined in F,,\M and Y\N by fixing a 
weak Malcev basis XI ,.,., X, ,..., X, which runs through M and N. 
Then regard every X E n (resp. X E m) as a differential operator on 
r\N (req. r,\M), 

X+(5) = ~$$l/W(l * eWX>) - d(f)1 
(uniformly convergent if 4 E Cl). On P(I’,\M) let 

II d IIT = =Wll X: ..’ x2+ Ilm : 0 < il + ‘-- + i, < f}, 

and similarly on C’(flN). 
If x is an integral maximal character on M, write 2 for the associated 

character on Tk, x = 2 0 p. By (l&i), x = p,*(f 1 p). Thus (IO) 
insures that 

for all 4 E CO(I’,\M). On Tk any set of characters determines a dis- 
tribution of order < k + 1. Write ,!? for the distribution on Tk 
determined by the complex conjugates of the characters in the r-orbit 
txv~ro\q 

s = C{p: yErO\r). (11) 
By (IOiii) its liftback S to I’,\M or r\N is given by an absoluteIy 
convergent sum, 
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for 4 E Ck+l(rO\M>. Thus 5’ = C {v(~, M).r : y E rO\r) converges to 
a Schwartz distribution of order < k + 1 on r,\M or r\N. 

It remains to show that the Ieft and right sides of (6) agree for 
f~ C”+l (or f E Cm), and thus that D(x,M) = S = liftback from Tk 
of (6). Let K be a bounded, measurable fundamental domain for r\N. 
If f E ck+l(qv), set 

If we decompose n = y * k (k E K) we get 

x’(m) k -f(m) dni. 

For 0 < r < -/-CD the following maps are continuous, 

C’(F\N) restrict~ C’(T,\M) o*, C’( Tk), 

where we identify r,,\M w n(M) C_ r\N as above. Compactness of x 
insures precompactness of the set of functions (p,*(k -f) : k E K) C 
C’(Tk). If r = k + I th is means there is a bound A such that the 
Fourier transforms satisfy 

I A*@ * f)^ WI G I (1 + !pn H)“” ’ all nEZk = p’“, all kEK. 

Thus 

C 1 p,*(k .f)* (n)] < A’ < +a, all k E K. 
WZ’E 

This insures that 

< (A’)2 Vol(r\N) < $-co. 
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This is just the “rapid vanishing” estimate (3) needed to justify the 
pointwise formula (2) for BF(n), F E S( Ux). Thus, 

for all n E N, and Formula (7) is fully justified. 
The character formulas (7) and (8) for DC,, M) and D, = cj”=l D(rj,M~ 

show that these distributions have order < k + 1 where k = dim Tk = 
dim m - dim[m, m]. We will get sharper estimates below by examin- 
ing these formulas more carefully. Meanwhile, the theorems of 
Helson [6] and Rudin [13] on idempotent measures on tori im- 
mediately yield Richardson’s necessary and sufficient condition for 
Ddu,,,,) or D, to have order zero (be a finite measure on r\N), 

3.2. COROLLARY. If(x, M) is an integral maximal character with M 
normal, then D(,, M) has order zero o the set of characters {p: y E rO\r) C 
Fk = zk 1’ zes in the coset ring COS(Zk). Similarly, D, is a measure e 
the full set of integral characters (x’ : (x’, M) E ((x, M) - N),) lies in 
COS(Zk). 

Brezin has given an interesting variant of this criterion for the primary 
distribution in [2]. 

If we regard DG,+) and 0, as distributions on r\N, their values 
when bracketed with 4 E Ck+l(r\N) are determined solely by + ) n(M). 
Thus they are supported on r(M) * TO\&? and involve no differen- 
tiations transverse to the compact submanifold z(M). Finally, D, 
cannot depend on the particular choice of integral character (x, J!Q 
from which u was induced. If we have other maximal subordinate 
subgroups M’ such that D = Ind(M’ 7 N, x’), the remarks about 
supports still apply, so we conclude that supp(D,) C r)&(M’) : M 
normal, and n/r’ is associated with an integral maximal character 
(x’, M’) which induces u}. 

4. ORDER ESTIMATES FOR THE PRIMARY DISTRIBUTION 

Fix u E (N : r)^ and assume u is associated with an integral 
maximal character (x0 , M) such that M is normal. Action of r 
preserves integrality, so the set ((x0 , M) * N), of integral characters 
in the N-orbit splits into r-orbits. Let (x1 ,..., x,J be orbit representa- 
tives and let Dt = DC+ M) and D, be the distributions associated with 
Pi = PtX+) = BiBi* and P, . We now give an estimate for order(D,); 
later we will get the same estimate on order(D,) indirectly. These 



266 CORWIN AND GREENLEAF 

arguments are based on the following lemmas together with the 
character formulas (7) and (8). 

4.1. LEMMA.~ Let d = 0, I, 2 ,..., let PI ,..., P, be polynomials on Rd, 
and consider their “integral graph” in Z1+d = Zd x Z”, 

G = Zz+d n ((aI ,..., ad , PI(a) ,..., Pi(a)) : a = (a, ,..., ad) E Zd}. 

(If d = 0, interpret G as a single point in Z1+d.) Let E be any subset of 
this graph. Identifying the dual of the torus Tz+d as pl+d = Zz+d in 
the usual way, define a distribution on T”+d 

D = c {xv : v E E} where xv(t) = e2n’(r’t) 

(Take D = 0 if E = 0.) Th en order(D) < s, where s = smallest 
integer greater than d/2. 

Proof. Let 7~ be the projection of Zd x Z’ -+ Zd x (0) and let 
I=r(E).Forl ~i~dletIi={nEI:n#O,IniI >In,I,allK, 
and 1 n, 1 > j nk 1 for 1 < R < i}; then the IS are disjoint and 
I cl {O] u I1 u ***uId. LetEi = Enz- -r(&), so that except possibly 
for a single point in E sitting over n = {0} E Zd we have E = 
U{E, : 1 < i < d> (disjoint union). Now set 

fi = 2 (1 ni I-+ xn : n E EC} (taking s as above). 

Identifying Ifd+r = Zd+r, fi is square summable on Td+l; in fact, for 
fixed i, look at the possibilities 1 ni I = p, p = 1, 2,... . Then 
crd{m~Zd:m~li,~mi/=p}~crd{m~Zd:~mk~~p,allK,and 
/ mi 1 = p} = 2(2p + l)d-l. Hence 

11 fi 112 = C {I ni l-28 : n E Ei} 

< 5 2(2p + l)“-1 .p 
P-1 

- ~lp-.~ < +co 

by definition of s. Obviously PjJax$ is a scalar multiple of the 
distribution Fi = C h,, : n E E,) on the torus, so order(FJ < s. 
Finally, D = (single character) + Fr + -*- + Fd , so order(D) < s. 

Q.E.D. 

1 See “Note added in proof” concerning this lemma. 
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4.2. LEMMA. Let N be a simply connected nilpotent Lie group with 
discrete uniform subgroup P. Let N act as unipotent linear operators on a 
real finite dimensional vector space V in which there is a Jordan-Holder 
R-basis {e, ,..., e,> for the action of N, such that P maps the integral 
points Vz = Z-span{e, ,..., e,} into themselves. Identzfy each v E V with 
its coordinates a = (a, ,..., a,), v = Ci ajei . Fix an integral point 
a E V, and let d = dimension of its orbit 0 = v * N. Then there exist 
indices i1 < *+* < id such that 

(i) the forgetful projection p: (al ,..., a,) + (at1 ,..., aid) E Rd is a 
homeomorphism of 0 onto Rd; 

(ii) the inverse p-l : Rd -P 0 is given by polynomials with rational 
coe#icients, p-‘(a) = (T,(a),..., T,(a)) such that T,t(a) = ad, for 
1 <j<d. 

For any such choice, 

(iii) the image p(v . P) lies in the coset ring COS(Zd), where 
COS(Zd) is the finitely additive Boolean algebra of sets in Zd generated 
by all cosets of subgroups in Zd. 

Note. The original r-orbit v . r lies in Z” E Vz but need not lie 
in the coset ring of Zn. In essence, a proper choice of projection irons 
out the nonlinearities of the orbit. This will help us get sharp order 
estimates for sums of characters. We believe that this lemma will also 
be of use in other places. 

Proof. Let N, = stabilizer of v in N. It is not hard to see that N,, 
is rational, l’ n N,,\N,, compact, due to integrality of v and our other 
hypotheses about the action of N. Pick a weak Malcev basis (cf. [5, 
Sect. 31 for definition and basic facts) for N, Yr ,..., YnFd, X, ,..., X, 
so that Yi ,..., Ynmd spans NO. Write y(t, ,..., td) = exp(tlX,) * *** * 
exp(&XJ; then we get a homeomorphism t = (tl ,..., td) + v * y(t) 
from Rd to 0 which carries Zd one-to-one onto the r-orbit v * r. By 
adapting (and simplifying) the well-known arguments of Pukanszky 
[lo, pp. 50-541 we can find indices i1 < *** < id ‘such that the 
projection p: 0 --+ Rd is a homeomorphism. Write s = (sr ,..., sd) for 
the coordinates (aa, ,..., aaJ in the range of p. Since r preserves V, , 
p(v . r) lies within Zd. We now observe that 

The induced homeomorphism I/ : (sr ,..., sd) + 0 + (tr ,..., td) 
is given by rational polynomials ti = T,(s, ,.. ., sd) for 1 < i < d. 
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This is pretty obvious, so we omit details. Clearly, 

s = (Sl)...) sd) corresponds to a point a = (al ,..., a,) E z’ - r 

ifandonlyifscZdandti = T,(s,,...,s,)EZforeachl <i< d. (12) 

Since the Ti have rational coefficients there is an integer K such that 
that Ti = (l/K) Qi w h ere the Qi have integer coefficients. Thus, 

s = (Sl ,...) sd) E~(z, * r) * s E Zd and @(s) = 0 (mod K) 

for each 1 < i ,< d. 

Therefore to prove (iii) it suffices to show that Ef = {s : s E Z” and 
Qi(s) = 0 (mod K)) is in COS(rtd) f or each 1 < i < d. First note 
that, if s E Zd and Qi(s) = 0 (mod K), then 

Qi(s + KZd) = 0 (mod K), 

so that Ei is a union of cosets of the lattice KZd. This follows by 
binomial expansion: if Qi = C mi,...i,s$ -*- sg then, because si E Z for 
1 <j<d, we have 

(Sj + Krzj)’ = (Sj)’ + r(Knj)(sp + *a- + (Kn,) 

= (,), + (integer multiple of K) 

for r = 0, 1, 2 ,... . Consequently, if s E E, and n E Zd, 

Q&l + K% ,..., Sd + K%) 

= C w~,...~~(s~>il *-* (sd)id + (integer multiple of K) 

= Qi(s) + (integer multiple of K) 

= (integer multiple of K). 

On the other hand Ei can be a union of at most Kd cosets of KZd, so 
that Ei E COS(Zd). Q.E.D. 

By abuse of notation we write D, for the distribution on Tk from 
which the actual primary distribution Do is lifted. We shall apply 
Lemma 4.1 to estimate order(l),) after we establish some notation. 
Let H = [M, M]\M, so that its Lie algebra is Ij = [m, m]\m and 
lj* = [m, m]’ G m *. Since His abelian we identify H = (b, +) z Rk 
and its dual HA = Q* via xl = @nil, all I E [m, ml-L. Let A be the image 
of r n M in H under the canonical homomorphism; thus A\H m 
I’,[M, M]\M is a torus T k. Identify fk with the integral points 
I&* = (1 E b*: Z(log A) C Z} in b*. Now the adjoint action of N on n* 
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induces obvious actions on m* and h* = [m, m]J- C m* since m 4 n. 
Let 1, E m* correspond to the integral character x0 = e2nizo. Actually, 
1, E [m, m]’ = b*, and in fact I, E bz*. Write 0’ = I, 6 N and 0,’ = 
0’ n bZ* for the integral points in this orbit. (These correspond to the 
points in (x0 * N)#). Now D, is identified as the sum 

on Tk. 

D, = 1 {ezniz : 1 E O,l} (13) 

If we choose any f,, E n* such that f0 1 m = I, , let 0 = f0 * N and 
let V C n* be the largest subspace which saturates 0 in the sense 
that f E oi * f + Y C 0. Let V be the largest subspace of b* which 
saturates 0’. The elements in 0 and V all annihilate [m, m] since fO 
does. The natural linear surjection @: {f E n*: f [m, m] = 0) -+ lj* 
(with Ker @ = ml) carries 0 onto 0’ and V onto V’, since Y r> ml 
by a result of Pukanszky [lo, pp. 158-1591. Our estimate of order(D,) 
says: if d = dim(@) - dim(V) = dim(U) - dim(V), then 

order(D,) < s (S = smallest integer greater than d/2). (14) 

Before proving (14) we give a more algebraic interpretation of d by 
noting that 

dim@-dimV=dimi-dimr 115) 

where r is the radical of fO , and i is the smallest ideal in n which 
contains r. From (15) we see that the order estimate (14) refines the one 
(order < k + 1) in Section 3; since m u n we have [m, m] C r and 
i C m, so dim i - dim t < dim m - dim[m, m] = k. 

4.3. LEMMA. Let fO E n*, 0 = fO - N, r = radical of fO , and i = 
the smallest ideal in n such that i I r. Then 

(i) 0 is saturated with respect to iL; 
(ii) il is the largest subspace in n* which saturates 8; 

(iii) iff E 0, then f + iJ- = f - Ijo for a certain connected subgroup 
of N. 

Proof. If f is a typical point in 6, f = f. * x, then rf = radical of 
f = Ad(x-l)r lies in i. Let i,O = {X E n:f[X, i] = 0). This is an 
algebra which corresponds to a Lie subgroup If0 containing the stabil- 
izer R,={y~N:fmy=f}. Now f-ItoGf+i’ because y= 
exp( Y) E If0 * 

wwf, x> = (f, x- [Y, xl + w, [Y, XII - +> = (f, x> 
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for all X E i. On the other hand, the Ifs-orbit must fill f + iJ- because 
its dimension is dim(irO/q) = dim(n/q) - dim(i/q) = dim n - dim i = 
dim iJ-. Thus f - Ito = f + il for any f E 9, so that il saturates 0. 
To see that il is as large as possible, note that the tangent plane to 
f EO is ad’(n)f = f+ (q)l, where (4X)f, 0 = -(f, [X Yl>, 
and has dimension = dim q 1 If 0 is V-saturated we must have . 
f + V C (tangent plane); thus, 

= n {(Ad(x) rfO)l : x E N) 

= (1 {Ad(x)(r,,) : x E N})l = i,l . 

Obviously i, = C {q, * x : x E N} is the smallest ideal in n generated 
by r = rfo , so i, = i. Q.E.D. 

Since IO is rational on m, we may take f. E n* to be a rational extension, 
f,(log F) C Q. Then R = {y E N : f. *y = fo} is rational and so are 
I = exp(i) and [IM, M]. Take a Malcev basis Xi ,..., X, which spans 
successively [M, M] C I C M C N (possible since [M, M], I, M are 
normal in N). Let X : M + H be the canonical map. Then Yr ,..., Y, 
with Yi = dh(X,,-,+,) f orm a Jordan-Holder basis for @ with respect 
to the action of N, and a Z-basis for the additive lattice of integral 
points lj, = log (1 = log X(F n M). The dual basis Yk*,..., Yr* is a 
Jordan-Holder basis for the contragredient action of N on lj*, and is a 
Z-basis for hz *. Since the X, ran through i, and since V = P, it 
follows that Yk*,..., Y$-r+r span V’, forming a Jordan-Holder basis 
for this N-invariant subspace and a Z-basis for the integral points 
Vz’ = V’ n I&* (r = dimV’ = dimV - dim& = dimm- 
dim i; Vz’ E Zr). Now let W’ = R-span{Y$-, ,..., Y,*>. Obviously 
I$,* decomposes into an internal direct sum 

lj,* = Z-span(Yk* ,..., Y&.+1) 0 Z-span(Y,*_, ,..., Y1*}. (16) 

Clearly Y&, ,..., Yr* form a Z-basis for the set of integral points 
Wz’ = W’ n Ijz*. 

Returning to our orbit 0’ = 1, . N, lo E I&*, let E = Tz’ n 8’. 
A fairly straightforward calculation shows that 

0,’ = Y-l @ E. (17) 
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Letting Tk = A\H and identifying pk = Zk = &-* as above, 
we want to determine the order of Do. Since D, is the sum of all 
characters in 0,’ = 9’ n $,* as in (13), its Fourier transform is the 
characteristic function of 0,‘. We have decomposed Zk = z’ @ Zk-+ = 
Vz’ @ ?#$’ and found that 0,’ is a union of cosets of Z’ + (0) = Vz’. 
Take A = annihilator in Tk of yz’ = Z’ + (0), a torus of dimension 
K - r. Let p : C”(Tk) -+ Co(A) be the restriction map. It is not hard 
to show that any distribution D E LV( Tk), such as D = Do , whose 
Fourier transform is constant on cosets of Vz’ = Z’ + (0) is in the 
range of the obvious injection p*: 9(A) -+ 9’( Tk). That is, supp(D) C 
A and D does not involve any differentiations transverse to A; to 
put it another way, (D, 4) is determined solely by the restriction 
4 [ A for all 9 E C”(Tk). Clearly, order(p*S) = order(S) for all 
s E W(A). 

Let Do E 59’(A) be the distribution such that p*(D,,) = D, . We 
study D, by passing to the quotient space (V’\b*). With respect to 
the induced actions of N and r in V’\E)*, the vectors Z,*_, = 
q-r + V’,..., Z,* = Yr* + llr’ form a Jordan-Holder basis. Fur- 
thermore, if 8: $* + V’\b* is the quotient map and we define integral 
points in this quotient space to be (V’\lj*), = e(bz*) = f3(flz’), 
these integral points are r-invariant and the {Z,“_, ,..., Z,*} form a 
Z-basis for them, in view of (16). N ow 0 is equivariant with respect to 
the actions of N, so Zg = 8(Zo) is an integral point in the N-orbit 
0” = 1;; - N = O(O’), which has dimension d = dim 8’ - dim VI. 
The integral points 03 = 0” n (V’\b*), in this orbit are precisely 
the points e(0,‘) = B(E) = e(0’ n wz’). Now characters on A are 
identified in an obvious way with the integral points (V’\b*)z: 
identify I+ V’ with e 2niz 1 A. Since D, is the sum of all characters on 
Tk in 0+‘, D0 is the sum of all characters on A = Tk-’ corresponding 
to the integral points O,k: . 

Apply parts (i) and (ii) of Lemma 4.2, identifying V = (V\ij*), 
Vz = (V’\E)*), , and {e, ,.,., e,> = {Z$*_, ,..., Z,*}. After permuting 
the labels on the basis Z$-, ,..., Z,* (which is all right since we will 
make no further use of the Jordan-Holder property), we see that 
0; is a subset of the integral points on a polynomial graph determined 
by d free variables, 

0; C Zk-” n ((aI ,..., ad , PI(a) ,..., P,+,(a)) : a E Zd}. 

Now apply Lemma 4.1 to conclude that order(D,) < s. This com- 
pletes the proof of Theorem 1 .l for the distribution associated with 
the primary projection P, . Q.E.D. 

dWd3-7 
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5. IRREDUCIBLE PROJECTIONS AS CONVOLUTIONS WITH MEASURES 

In this section we prove that the constructible projections Pfx,M) < 
P, have associated distributions such that order(Dt,,,)) < order(D,). 
In the next section we will prove a Zero-One law which implies, 
among other things, that all irreducible projections P < P, satisfy 
this estimate. 

As usual, we assume that (J is induced from an integral maximal 
character (x, M) such that M is normal. Form the N-orbit x . N, pick 
r-orbit representatives x1 ,..., xq in (x * N)# , and take ni E N such 
that xi = x * nz . (T a k e n, = e; the ni can be chosen to be rationaE 
elements in N.) Let Pz = BiBi* = PtXiSM) . 

5.1, PROPOSITION. Let (x, M) 6 e an integral maximal character 
such that M is normal and let u = Ind(M t N, x). Then the constructible 
irreducible projection P = Pt,, Mu maps CO(P\N) n ZU into itself. Thus, 

f e CO(r\N) and P,f = f j Pf E C”(l-\N). 

In fact, there exists a Jinite measure p on P\N (not necessarily right I’- 
invariant) such that P(x,M) f=p*fforallf~C"n~~. 

Note. If f E CO(l’\N) we define p *f(n) = (y, n *f) as a function 
on N. It does not follow automatically that p *f is left r-invariant; 
this might not be true for arbitraryf. It does turn out to be true for 
fECvl~O. 

Since f 6 Cr => Pi f = P,(P, f) = pLi * (PO f) E Co, it follows that 

5.2. COROLLARY. The primary projection P, maps C*(P\N) into 
CO(I’\N) for some r > 0 o the same is true of every constructible 
irreducible projection PC,, M) . 

By the Sobolev arguments of Auslander-Brezin [l] and the closed 
graph theorem, one can show that order(D,) < r 0 P maps Cr into 
CO. 

Proof of 5.1. Let IO E m* be chosen such that x = e2ffi10. 
We adopt the notation of Section 4, defining H = [M, M]\M, A, 

Tk = A\H, and then identifying pk = l&*. Thus 0, is the liftback 
to PnM\M= I’\PM of the distribution D,, on Tk obtained by 
summing the characters in 0,’ = 0’ n hz*, where 0’ = 1, . N. 
Similarly, the irreducible projection P = PG,~) associated with the 
r-orbit x . I’ is determined by the distribution D on Tk, 

D = C (e2nit : 1 E lo * r). (18) 
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In h* introduce the basis e, = Yk*,..., ek = Yi* used in the order 
estimate of Section 4. Since I, E hz*, and since the {Y4*> are a Jordan- 
Holder basis for the action of N on b* and a Z-basis for the r- 
invariant set of integral points t, z*, we may apply the full strength of 
Lemma 4.2. Taking coordinates (ui ,..., u3 ---t Ci ugei in h*, and 
choosing i, < *** < & (d = dim I,, * N) as in parts (i) and (ii) of the 
lemma, we are assured that the coordinate projection p: (ai ,..., uk) -+ 
(ai1 ,..., a,,) E Rd maps the r-orbit to p(Z, * r) E COS(Zd). Then 
F = p-l( p(ZO * r)) n Z” is in COS(Zk), if we identify I&* = Zk in 
these coodinates. Thus there is a finite measure p on Tk whose 
Fourier transform is PA = characteristic function of F. Obviously the 
primary distribution given by (13), and the irreducible distribution 
given by (I 8) on Tk have Fourier transforms 

Thus 

DcA = characteristic function of 9,’ = 0’ n hz*, 

DA = characteristic function of I,, * I’ = 0,’ n F. 

D=,*&, h () t d f w ere t s an s or convolution in the abelian group Tk, 

Let p be the liftback p?*(p). Formula (19) suggests that we have 
D = p J D, under a suitably defined convolution on r\N. If so, the 
proof is finished: f --f p *f carries C’s into CO so that f E CO n X0 G- 
Pf=D*f= p *(Do. *f) = p * (Pof) = p *f E Co n So. The 
main obstacle is that p (unlike D and D,) need not be right r-invariant, 
which makes for trouble in defining convolution on r\N. 

This idea can be made into a valid argument as follows. If D is any 
distribution, on r/N we define a map f + D *f from Cm(r\iV) into 
Cm(N) via D *f(n) = (D, n . f ). There is no guarantee that D *f 
is left r-invariant. Let D = p be a finite Bore1 measure on r\N; then 
TV *f is bounded on N. Let F be any bounded (compact closure) 
measurable fundamental domain for r\N. We assert that there is a 
constant C, such that 

for all f E CO(r\N). The proof follows a suggestion of L. Richardson. 
The canonical map r: N--f r\N is a Bore1 isomorphism between F 
and r\N. Define p on N via p(A) = F;(A n F) = p(n(A n F)). Since 
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-. 
FF 1s compact and F bounded, only a finite number of distinct trans- 
lates of F can meet m, so we get a cover U = ylF u *.- u ~$2 FF. 
Letting xA = characteristic function of a set A, we get 

jF I P * f(n)l” dn = jF 11, fP4 444 1’ dn 

< jF [ jN Ifv4l d I ci I @I]’ dn 
G II F II jF jN IfV412 d I F I (4 dn 

= II CL II IN jN x&) I fP412 d I P I (4 dn 

= II TV /I jN lf(Wi” [I x&-l4 * x& d I P I(X)] dn 

G II P II J^, IfW12 j x&I d I P I (4 dn 

= Q II I” II2 jF I fP>l” dn- 

When D E Y(r\N) is right r-invariant, (D, y *f) = (D, f ), then 
D J f is left r-invariant on N, hence is well defined as a function back 
in C”(P\N). (If p is a right invariant measure, the estimate (20) shows 
that T,f = p *f is a bounded operator on L2(F\N).) Now the 
distributions D, D, associated with P, PO are automatically right 
r-invariant, so we shall regard these convolutions as maps from 
C*(r\N) into itself, giving Pf = D f f and PO f = D, *f. If p = 
p:*(F) as in (19), we must regard f ---f p *f as a map from CO(r\N) 
into Co(N) since there is no reason to expect p to be right invariant. 
We want to show that 

(Pf).7r=p*PP,f=p*f a.e. on N, all f E Co n So . (21) 

The right side is obviously continuous on N, hence P maps Co n Xm 
into itself, which proves the theorem. But (21) follows if we can prove 

(D *f) o 77 = CL * (Q7 *f) forall ~EP~X~. (22) 

To see this, assume (22) and let F be any bounded, measurable 
fundamental domain for r\N. Identify L2(.F\N, dn) = L2(F, dn). If 
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f,;z “pTO there exist fnE C” n z?,, such that llfn -f Ilrn -0. 
1 n~~=~*(D,*fJ==~*fn, we may apply the L2 

estimate (20) to get (r being the map of N--P P\N), 

i.e., Pf 0 57 = TV *f a.e. on F. This is true for any choice of F, proving 
(21). 

We prove (22) from the convolution formula (19) on T”. Notice 
thatf E C” n tiO => f o 7~ is a constant on cosets of [M, M], hence also 
on r - [M, M] cosets. In fact, if f E C”(r\N) we have already noted 
that p*f is constant of cosets of Mi = [M, M]. Thus if m, E Ml we get 

Therefore the averaging process p*: C”(P\N) --P Co(N) is trivial on 
functions in C” n Y0 . But the map p,*: C”(r\I’M) --+ C”“(Tk) used 
to lift distributions in Section 3 is related to the global map p* by the 
formula 

p,*(f I Gf)) = p*f I M all f E Cm(T\N) 

where p*f 1 M is identified with the obvious function on Tk = M,\M. 
From this it is easy to verify that, for L-Z = M,x E Tk and f E C” n Zg , 

P,*P *f I .rr(W)(3i”) = CD, * . (p*f I JQ = @, P*(X -f )I M) 

and likewise for D, . Thus if n E N, f E C” n If,, we get 

P * (Q7 * f )(+I = <P7 n-(R*fD =<P>&r*(~~f)> 

= <iG P*(D, * n *f)l JO 

-1 TL <iib 7 P*@ * n -f) I W 4W 

= <FL*&,p*(n*f) I M) 
= (D, n -f) = D c f (h) = D *f (n(n)), 

which proves (22). Q.E.D. 
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Note. Another way to view this calculation is to say that since all 
functions f E C” A SG are constant on [M, Ml-cosets, we may as well 
assume that M is abelian. Then p* really is trivial. We actually get 
a stronger statement than (22); since D *f = D * (D, *f ), we get 
(D *f) 0 77 = p * (Ilo *f) for all f E Cm(F\N). 

6. THE ZERO-ONE LAW 

The following form of the Zero-One law was posed as a conjecture 
by Jon Brezin. 

6.1. THEOREM. (Zero-One law). Let u E (N : lJ^ be induced from 
an integral maximal character (x, M) such that M is normal. Then all 
bounded linear operators T: (SV, 11 - liz) -+ (Xq, /I - 112) which commute 
with the action of N are continuity preserving; they map CO(r\N) n Z. 
into itself. 

In particular, if the u-primary projection P, maps Cr into CO for some 
Y >, 0, so do all bounded linear operators on L2 which commute with 
the action of N and have range in SU . This follows because PO is in 
the center of the Von Neumann algebra generated by (Unl: n E N}, 
so APO = P,A. Thus all loss of smoothness is already due to the 
o-primary projection. 

Proof of Theorem 6.1. Let Xi be the subspaces of ZU associated 
with the r-orbits x1 . I’,..., X~ * r in (X . N)# . Every operator T is a 
linear combination T = Ci,j ciiTij (cij E C), where Tji is an isometry 
of #j onto Zi and Tji(Zr) = 0 if r # i. By irreducibility of the &r , 
Tji is unique up to a scalar of modulus one. Thus it suffices to prove 
the theorem for the basic operators T = Tj, . (Proposition 5.1 
assures us it is true for the diagonal terms Tii = Pi .) 

The action of Tji can be written out explicitly for smooth functions 
4 E CYr\N); by a completion argument at the end of the proof, our 
conclusions will be verified for 4 E CO(r\N), too. If x E N, 

(23) 

Here To = r n M, y = nilni , and Iii = %( uxi) --t =@( uXf) is 
defined by 

Ii,F(n) = F(yn) = F(n;‘n,n). 
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Now B,: &?( Uxt) -+ 2t Z go; its adjoint takes smooth functions 
q5 E Cm(r\N) to continuous functions Bi*+ vanishing rapidly trans- 
verse to M cosets. This rapid decrease (3) is also true of 4 = IjgBi*+ E 
Z( Vi), so the pointwise formula (2) is valid for B,$, which is what 
we have written out in (23). The sum x, (e-e) is absolutely convergent 
for I$ E C”(r\N). 

Let d = {r E l?y~y-~ ET). Then [r: d] < +CO (look at the 
rational map y --f yyy-1 in Malcev coordinates), and likewise 
[I’ : ydy-‘] < + 0~). Pick coset representatives S for F,,d\r (a finite 
set) and U for I’,,\I’,d. Under the map 8 + ySy-l = 8, U is mapped 
to a set u’ of coset representatives for F,\r’ where r’ = y(r,A) y-1 = 
I’,( ydy-‘). Now 

Since f’ A M = I’,, = F n M, a character on M is integral with 
respect to F 0 it is integral with respect to I”. Since (xz , M) is an 
integral maximal character with respect to r’, 0 = Ind(M t N, xi) 
belongs to the spectrum (N : I”)-. 

Let A:L2(F’\N) -+D(F’\N) be the projection A = B,‘(B,‘)* to 
the irreducible subspace Zt’ = Z’ (xi,M) C ,yt”,’ = o-primary subspace 
inF(r’\N), corresponding to the intertwining isometry Bi’: ST’{ UK*) + 
Xi’ constructed as in Section 2. If + is smooth, say # E C”(r’\N), then 
A+ is given by a sum over all characters in the F-orbit xz . r’ C 
(x * N)a+ f 

- 8’(m) a,h(I”mx) de), (25) 

the sum being absolutely convergent as in (2). Though this formula 
might not be valid for 4 E CO(r’\N), Proposition 5.1 insures that A 
maps CO(r’\N) n X0’ into itself, and that there is a finite measure p’ 
on r’\N such that 

SW = I*’ * # W(r’x) = <P 9 x - #>> 

for all $ E: CO(r’\N) n &$‘, where j lifts functions on r’\N to functions 
on N. 
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Define operators (s E S) Aus : CO(I’\N) n #o --+ Co(N) via 

A~S : Co n X0 i_ CO(T’\N) --% CO(T’\N) --& Co(N) --=+ Co(N) (26) 

where i is the obvious injection of L2(r\N) into L2(r’\N) and P”f(n) = 
f( ym). The composition (26) makes sense because i maps CO n SO 
into Co n SO’, so that j(A(i(q3))) = p’ * i(#) E CO(N). In fact, let 
X = i(Z?J. Then X is a closed subspace of L2(r’\N); but i obviously 
intertwines the right actions of N, so N acts irreducibly on X. Hence 
X lies within a single primary summand of L2(P\N). Since i inter- 
twines and is injective, the action of N on X is a copy of u, so X C x0’ 
and i maps x0 into ZO’. It also maps Co n x0 into Co n ZO’ since it 
certainly carries continuous functions to continuous functions. 

Next we make Avs into a map Ps: CO(r\N) n A$ +L2(l”\N) by 
taking a bounded, measurable fundamental domain K for r\N and 
defining 

V’“+(h) = Ay%j(n) for n E K. 

Evidently Ps+ is a bounded Bore1 function on r\N, even if Au”+ is 
not left r-invariant on N. We assert that Vu8 is a bounded linear 
map with respect to the L2 norms. In fact, if dn = Haar measure 
on N normalized so that K has mass one, and if 4 E Co n ZO , we get 

= K I P’ * d’(~s$l~ dn s 
= VI $ c +‘(ysy-Qz)12 dn. I 

Since A? is compact, only finitely many r-translates Ki ,..., KP meet 
yK (a bounded set), and these cover yK. Furthermore, the elements 
ySy-r = s’ are coset representatives for r’\r, so that Kj’ = SK, 
(1 <J’ ,< p) are each fundamental domains for r’\N. Therefore, the 
last expression above is dominated by 

< C i J‘,,K,l CL’ * 0>12 dn 
S'ES j=l 2 

= t1 J-,, I CL’ * 4’(412 (I s III s I> dn, 
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where 1 S 1 = 1 5” 1 = cardinality of S’. Obviously d’n = 1 S I-% 
is Haar measure on N normalized so that fundamental domains of 
F’\N have mass 1. Thus the last expression becomes 

as required. 
Now define 

for 4 E CO(r\N) n X0 . 

Obviously A& E C*(N), but it is actually left r-invariant and hence is 
a function on C*(r\N). Th’ ’ is is checked by proving it first for + E C” n 
X0 . In this case, if y. E r we may reverse the steps in (24) to get 

= A,&) (27) 

since the sum over I’,\I’ is independent of the choice of coset repre- 
sentatives. By writing 

A54 = c W(P’ * 9% *’ = i(4), 
ses 

which is valid for $ E Co n yi”, , it is obvious that Ij $, - 4 /Ia) ---t 0 
in CO n SU implies that Ari(&) -+ A,& pointwise on N, so that 
(27) remains valid for sup-nof$n limits of C” n X0 within Co n ZU. 
But C” n Se is sup-norm dense in Cq n Z. . 

We conclude that Vji = xses V@” is L2-norm continuous and maps 
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Co A 2g into CO(r\N). But for smooth functions 4 E C” n XV we 
have Vii+ = T&z if x E K, 

By La-norm continuity, T& = V,,+ for all 4 E Co n zD, so that 
Tji maps CO n x0 into itself, and the theorem is proved. Q.E.D. 

Note. If y E N is rational, it can be shown that there is a subgroup 
8 such that: (i) 0 is normal in I’ and of finite index, (ii) ykOyVk C 0 
for all K. The calculatians in this section can be simplified by replacing 
A, r’, F,\rl, I’,d\f with the simpler objects 8, 0, r,,\@, @\r. 

7. A FEW EXAMPLES 

7.1. EXAMPLE. Take the usual basis X, Y, 2 in the Lie algebra n 
of the Heisenberg group N = Na = upper triangular real 3 x 3 
matrices with ones on the diagonal, and let r = N3 n SL(3, Z). Let 
X*, Y*, 2” be the dual basis in n *. We shall consider the orbits in 
n*/Ad*(N) of maximal dimension, which are hyperplanes 0, = 
RX* + RY* + cZ* (c # 0). Now M = exp(RY + RZ) is normal, 
and is maximal subordinate for allf E n* such that (f, 2) # 0. It is 
rational since M is abelian and log(r n M) = ZY + ZZ. The only 
orbits 0c (c f 0) contributing multiplicity in lJ1 = Ind(r t N, 1) are 
those such that c E Z, the multiplicity being / c 1. Identify MA = m* by 
taking xr = @ail. If c E Z N (0), the irreducible representation o(c) 
associated with 0, is induced from the following integral maximal 
character on M, xl = xez* . Its N-orbit in M^ is identified in nt* 
with the N-orbit (~2”) . N, which is just the line cZ* + RY*. The 
integral points (x, * N), identify with the points on this line which 
belong to mZ * = {ZE m*: Z(log(r n J$)) c Z> = ZY* + ZZ*; these 
are precisely 

mz*n(cZ* + RY*) = cZ* +ZY*. (28) 
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The individual r-orbits within (x, * N)+ identify with the r-orbits in 
m,*. These r-orbits have representatives 

1, = cz* + qy* o<q<<cc/, qe 2, 

and the r-orbits themselves have the form 

I, * r = CZ” + qy* + 1 c) zy*. (29) 

Now Tk = r n M\M = T2 and p2 identifies with ntz* = Z2. On T2 
the distributions D, and D, corresponding to P,, and P(x,,,.,) (x, = 
e2sizq) are sums of the characters in the sets (28) and (29). These sets 
lie in the coset ring COS(Z2), so D, and the D, are measures. For 
Dote) we may actually identify the measure on r\N by Poisson sum- 
mation. The action of the center Z(N) = exp(RZ) fibers r\N into 
one-dimensional tori, the orbit through the origin I’e being r\E(N) w 
r n Z(N)\Z(N). The character xe annihilates r n Z(N) when 
restricted to give a character x,(exp(tZ)) = e2Vict on Z(N); thus we may 
identify xc as a continuous function on T1 =‘ r n Z(N)\Z(N). If p 
is normalized invariant measure on T1, then D,(,j is precisely the 
measure v,.(dt) = xc(t) I on T’, lifted over to a measure on 
r\rZ(N) M r n Z(N)\.Z(N). This measure v, on r\N is right 
r-invariant, and 

Thus the value of Pu(c)f at 5 E r\N is an average of the values off 
along the fiber 5 . Z(N), 

zzz 
s 

1 
e -““ic”f(exp(tZ) . n) dt 

0 

s 

1 
= ewznictf(13z * exp(t2)) dt. 

0 

In effect, Pow washes out the behavior off along each fiber t: * Z(N); 
P,,cc) f is covariant like X, along each fiber. Pofc) has no effect on the 
behavior transverse to these fibers. It is also possible to work out the 
measures on r\N associated with the constructible irreducible projec- 
tions P < Pow , but we omit this. 

7.2. EXAMPLE. Let n have basis IV, X, Y, 2 such that [IV, x] = 
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2Y and [IV, yl = 22. This defines a Campbell-Hausdorff multi- 
plication 

A *B = A + B + 4 [A, Bl + 9~ [A, [A, 41 + & P, [A, Bll. 

Take N = (n, *); then .Z’ = 3ZW * (ZX + ZY + ZZ) is a discrete 
uniform subgroup, and m = RX + RY + RZ a rational abelian 
ideal. This ideal happens to be maximal subordinate for all functionals 
f~ n* such that (f, 2) # 0; hence m is maximal subordinate for all 
orbits of highest dimension (dim 6 = 2) in n*. We shall consider the 
orbits of functionalsf = aW* + bX* + cY* + dZ* such that d # 0 
(a, b, c E R); this gives almost all highest-dimensional orbits. The 
corresponding orbits have orbit representatives of the form bX* + dZ*; 
for b E R, d E R N (0) write 9,,, = (bX* + dZ*) * N for the 
(distinct) N-orbits of these functionals. Identifying MA with m* = 
RX* + RY* + RZ*, we find that the corresponding orbit in iVIA 
is a parabola 

O;,, = {(b + 2s2d) X* + 2sdY” + dZ* : s E Rj 

lying in the hyperplane RX* + RY* + dZ* C m*. All N-orbits in 
m* -{I E m*: Z(Z) = O> have this form. 

Now log(r /I M) = 2X + ZY + 22, and the N-orbit Oh,, is the 
orbit of an integral maximal character on M e it meets the integral 
points mZ* = {I E m*: Z(log(r n M)) _C 2) = 2X* + ZY* + ZZ*. 
This happens o (i) d E Z N (0) and (ii) there exists an integer k 
such that 

b + (k2/2d) = 0 (mod 1). 

Fix a pair b, d satisfying conditions (i) and (ii). Let xbSd = e2xi(bX*+dZ*) 
(an integral maximal character on M), and let u = D~,,~ = 
Ind(M f N, xaJ E (N : r)^. The p rimary projection PO corresponds 
to the distribution on T3 = T’n M\M corresponding to the sum of 
all integral characters in Ok,, n m,*, the integral points on the 
parabola Oi,, C R 3. This orbit has no saturating linear variety V-’ C 
m*; by Theorem 1 .l and (14), we conclude that order(D,) < 
dim(@J = 1. It is not hard to show that the integral points are 
sufficiently numerous on the parabola that Si,, n mZ* is not in the 
coset ring of Z3 = mZ *. Therefore, order(D,) = 1. By the Zero-One 
law, all irreducible projections P < P, have order 1 too. The distribu- 
tion D, , which we may think of as living on T3, is being described by 
specifying its Fourier transform 0,” = characteristic function of 
0; d CI mZ* C Z3 r , p3. In this example it seems to be a difficult 
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classical problem to give a geometric description of D, back on the 
torus T3, as we did in the last example. 

1.3. EXAMPLE. Let N = N4 = upper triangular real 4 x 4 matrices 
with ones on the diagonal, and let r = N n S’L(4,Z). Realize n as 
upper triangular 4 x 4 matrices, and take basis vectors A, B, IV, X, Y, 
2 such that 

=aA+bB+wW+xX+yY+zZ. 

Let A*,..., Z* be the dual basis in n*. We shall consider the repre- 
sentation u E (N : r)^ associated with the orbit 0 = .Z* - N C tt*. 
Straightforward calculations show that if 

then 

Ad*(n)Z*=Z**n=Z*+(bw-y)A*+xB*-abW*-bX*+aY* 

and 

From this we see that the radical of 1 = Z* is r = RW + RZ, and 
that m = RW + RX + RY + RZ is an abelian ideal maximal 
subordinate to Z*. Both r and m are rational since log(r n M) = 
ZW + --a + ZZ, so all of our previous results apply. Let x = e2&r, 
an integral character on M. Since M is abelian, we identify M^ = M*, 
and integral maximal characters on M with 

mZ* = {I’ E m* : Z’(log(r n M)) C 2) = ZW* + ... + ZZ*. 

The orbit x * N in M^ is identified with the hyperbolic surface 

0’ = {Z* + t,X* + t,Y* + t&W* : tl , t, E R}. 

The integral points (x - N)+ correspond to 0,’ = 0’ n mZ* = 
(Z” + t,X* + t,Y* + t,t2W* : t, , t, E Z}. (It turns out that there is 
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just one r-orbit, so (T has multiplicity 1.) Now I’,\M is a torus T4, and 
the primary distribution D, is the liftback from T4 of the sum of 
characters in 0#’ _C mZ* z Z4 = p4. Since 0,’ is not in COS(Z4), 
D, is a not a measure on T4. Since 0’ has only V’ = (0) as a saturating 
subspace, our order estimate (14) says that 0 < order(I),) ,< 2. 
One can show that order(D,) = 1, so that the order estimate in 
Theorem 1.1 is not always the best possible. 

Notes added in proof. In 4.1 we originally proved order ;$ d, but Jon Brezin pointed 
out to us that a sharper estimate, roughly: order < d/2, should work; we have modified 
the proof, and strengthened the estimate (14) accordingly, and thank him for this 
comment. 

The Zero-One Law has been proved in full generality by R. Penney (unpublished 
manuscript). R. Howe also has an unpublished proof. 

The projection formula (7) has been proved without the normality hypothesis in a 
forthcoming paper by R. Penney and the authors. 

Corollary 3.2 has been proved without normality hypotheses by R. Penney in a 
paper “Central idempotent measures on a nilmanifold” (to appear). 
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