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We investigate meson’s spectrum, decay constant and form factor in a nuclear medium through 
holographic two- and three-point correlation functions. To describe a nuclear medium composed of 
protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show 
that due to the isospin interaction with a nuclear medium, there exist splittings of the meson’s spectrum, 
decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson’s 
form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density 
increases, while the interaction with a longitudinal part of an axial vector meson increases.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

For describing strongly interacting nuclear physics in a nuclear 
medium, it is important to figure out low energy physics of QCD. 
However, since the traditional perturbation method of the quan-
tum field theory (QFT) does not work in a strong coupling regime, 
we need a new paradigm or mathematical technique. In a medium, 
moreover, a numerical method called the lattice QCD suffers from 
a sign problem. In this situation, the AdS/CFT correspondence [1]
can shed light on accounting for a strongly interacting nuclear 
medium.

Recently using the AdS/CFT correspondence, spectra of mesons 
and nucleons in the vacuum have been studied in various holo-
graphic models, bottom-up and top-down models [2–25]. These 
works were further generalized to the medium case [26,27]. In 
the hard wall model, a thermal charged AdS (tcAdS) geometry 
has been used as the gravity dual of a nuclear medium [28–34]. 
Though it contains a singularity at the center, the IR cutoff of the 
hard wall model prevents all physical quantities from approaching 
to this singularity. Therefore, the tcAdS space is safe at least in the 
hard wall model.

A gauge field fluctuation on this background geometry is dual 
to a vector operator with a conformal dimension 3, so it can be 
identified with a quark current [7]. Especially, its time compo-
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nent corresponds to the quark density. The tcAdS geometry can 
be regarded as the dual of a confining phase at low temperature 
due to the IR cutoff, while the deconfining phase is described by 
a charged black hole geometry [26]. The Hawking–Page transition 
between these two geometries can be identified with the decon-
finement phase transition of the dual QFT [11]. In the confining 
phase, the fundamental excitations are not quarks but hadrons be-
cause of the confinement. Thus, the holographic model defined on 
the tcAdS space would be helpful to understand hadronic physics 
in a nuclear medium like a neutron star and nuclear physics in 
the strong coupling regime. In [28], various meson’s dispersion re-
lations and the decay constants in a nuclear medium have been 
studied, which was further generalized to the nucleon’s cases [32]. 
These quantities related to two-point correlation functions repre-
sent hadron’s spectrum and its stability. Another important thing 
in order to understand nuclear physics is a form factor describing 
hadron’s interaction which is generally associated with a three-
point correlation function [35–43]. In this work, we will clarify 
the meson’s holographic two- and three-point functions in a nu-
clear medium and study how they rely on the nuclear density and 
meson’s isospin charge.

The rest of this paper is organized as follows: After briefly sum-
marizing the holographic dual of the nuclear medium in Sec. 2, we 
investigate two-point functions of mesons in Sec. 3. We show that 
a specific Dirichlet boundary condition at the asymptotic boundary 
is related to the pole structure of the meson’s two-point function. 
Using the Sturm–Liouville theorem we obtain two-point functions 
of vector and axial-vector mesons with the well defined decay con-
stants. We also discuss about pion’s decay constants which are not 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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clearly identified in a nuclear medium. In Sec. 4, we study the 
ρ-meson’s form factors which are split because of the isospin in-
teraction with the nuclear medium. We finish this work with some 
concluding remarks in Sec. 5.

2. Holographic description for a nuclear medium

In general, a nuclear medium is a complex system including 
various nucleons and mesons together with their nontrivial inter-
actions. Although it is formidable to construct an exact gravity dual 
of such a system, the AdS/CFT correspondence is still useful to un-
derstand qualitative features of a strongly interacting system. In 
a holographic set-up, a nuclear medium can be imitated by an 
asymptotic AdS geometry including corresponding dual bulk fields. 
Since a global symmetry of a QFT maps to a local symmetry in the 
gravity dual, we should take into account an asymptotic AdS geom-
etry involving at least U (2) local gauge fields in order to describe 
a nuclear medium with two flavor charges. The tcAdS geometry 
has been regarded as such a dual for a nuclear medium [26,28]. 
The action governing the tcAdS space is given by (here we follow 
conventions in [28])

S =
∫

d5x
√−G

[
1

2κ2 (R− 2�)

− 1

4g2

(
F (L)

MN F (L)MN + F (R)
MN F (R)MN

)
+ |D M�|2 + m2 |�|2

]
,

(1)

where � = −6/R2 is a cosmological constant and the gauge field 
strengths of U (2)L and U (2)R are

F (L)
MN = ∂M LN − ∂N LM − i [LM , LN ] with LM ≡ La

M T a,

F (R)
MN = ∂M R N − ∂N R M − i [R M , R N ] with R M ≡ Ra

M T a, (2)

where T a indicates U (2) generators. Above we considered two 
kinds of flavor group, U (2)L × U (2)R , in order to describe par-
ity of hadrons and introduced a massive complex scalar field with 
m2 = −3/R2 whose modulus represents the chiral condensate [7]. 
A covariant derivative of � is defined as

D M� = ∂M� − iLM� + i�R M . (3)

For describing a nuclear matter, it is sufficient to consider only 
the Cartan subgroups, U (1)2

L × U (1)2
R , because a nuclear medium 

can be classified by their quantum numbers. If turning on time 
component gauge fields, La

t and Ra
t with a = 0 or 3, they repre-

sent the quark number and isospin charge densities of the nuclear 
medium. Rewriting them in terms of symmetric and antisymmet-
ric combinations the symmetric one represents a parity even state, 
while the antisymmetric one describes a parity odd state. The low-
est parity even state is identified with proton or neutron relying 
on the isospin charge. Since the parity even state has lower en-
ergy than the parity odd state, the lowest parity even states are 
usually the main ingredients of a nuclear medium at sufficiently 
low energy scale. In the dual gravity, it can be accomplished by 
taking La

t = Ra
t , which picks up the parity even state only. Fur-

thermore, since fundamental excitations in the confining phase are 
not quarks but nucleons, we need to rewrite quark’s quantities 
in terms of nucleon’s ones. In the hard wall model, the confin-
ing phase is realized by an IR cutoff denoted by zI R and the tcAdS 
geometry with two flavor charges appears as a solution (see [26,
28] for details)

ds2 = R2

2

(
− f (z)dt2 + 1

dz2 + d�x2
)

, (4)

z f (z)
with

f (z) = 1 + 3Q 2κ2

g2 R2
z6 + D2κ2

3g2 R2
z6,

V 0
t = Q√

2

(
2z2

I R − 3z2
)

,

V 3
t = D

3
√

2

(
2z2

I R − 3z2
)

(5)

where V a
t = − 

(
La

t + Ra
t

)
/2. Above Q = Q P + Q N and D = Q P −

Q N ≡ αQ denote the total nucleon number density and density 
difference between proton and neutron, where Q p and Q N in-
dicate the number of protons and neutrons respectively. On this 
tcAdS space, the deconfinement phase transition, the symmetry 
energy and meson’s spectra with a SU (2) flavor charge have been 
studied in [28].

Before closing this section, it is worth noting that when a com-
plex scalar field � has a negative mass, m2 = −3/R2, it is dual to 
the chiral condensate. More precisely, parameterizing the complex 
scalar field as

� = φ1 ei
√

2π , (6)

φ describes the chiral condensate, while the SU (2) fluctuation, 
π , corresponds to pseudoscalar meson, the so-called pion. In the 
tcAdS space, the modulus satisfying the equation of motion is 
given by [26,28]

φ(z) = mq z 2 F1

(
1

6
,

1

2
,

2

3
,−

(
D2 + 9Q 2

)
z6

3 Nc

)

+ σ z3
2 F1

(
1

2
,

5

6
,

4

3
,−

(
D2 + 9Q 2

)
z6

3 Nc

)
, (7)

where mq and σ denotes the current quark mass and chiral con-
densate respectively and Nc denotes the rank of the gauge group. 
The gravitational backreaction of the scalar field slightly changes 
the background geometry and gives rise to an 1/Nc correction [44]. 
From now on, we ignore such a correction as usually done in the 
hard wall model.

3. Meson’s two-point function in a nuclear medium

Now, let us take into account fluctuations of the gauge fields, 
La

M → La
M + laM and Ra

M → Ra
M + ra

M , which can be reinterpreted 
as various mesons of the dual field theory. Focusing on the spatial 
components by setting lat = ra

t = 0 with the axial gauge laz = ra
z = 0, 

the left and right gauge fluctuations are decomposed into vector 
and axial-vector fluctuations

lam = 1√
2

(
va

m + aa
m

)
and ra

m = 1√
2

(
va

m − aa
m

)
. (8)

In order to interpret them as mesons, we need to redefine the vec-
tor field as

va
m = ρ0

m, v1
m = 1√

2

(
ρ+

m + ρ−
m

)
and v2

m = i√
2

(
ρ+

m − ρ−
m

)
.

(9)

Hereafter, we denote a SU(2) flavor charge as a superscript and a 
spatial coordinate as a subscript. Similarly, axial-vector and pion 
are also rewritten as the form representing the SU(2) charge man-
ifestly
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aa
m = a0

m, a1
m = 1√

2

(
a+

m + a−
m

)
, a2

m = i√
2

(
a+

m − a−
m

)
,

π3 = π0, π1 = 1√
2

(
π+ + π−)

and

π2 = i√
2

(
π+ − π−)

. (10)

In general, the axial-vector field couples to the pseudoscalar field. 
In order to remove their coupling, we rewrite the axial-vector as

aa
m = āa

m + ∂mχa, (11)

and impose the gauge fixing, 0 = ∂māa
m . Then, the longitudinal 

mode of the axial-vector represents another pseudoscalar field.
In the vacuum dual to the thermal AdS geometry, meson’s 

masses in the confining phase and the deconfinement phase tran-
sition have been studied [7]. Mesons in the vacuum are degen-
erate and their energy satisfies a relativistic dispersion relation, 
m = √

ω2 − |�p|2, due to the Lorentz symmetry of the boundary 
space. In more detail, if the IR cutoff is fixed, the meson’s dis-
persion relation is uniquely determined by solving the equation 
of motion of the dual bulk field with two appropriate bound-
ary conditions, a Neumann boundary condition at the IR cut-
off and a Dirichlet boundary condition at the asymptotic bound-
ary. The same dispersion relation naturally appears as a pole 
of a meson’s two-point function. Since the analytic solution of 
ρ-meson in the thermal AdS space has been known as Bessel func-
tions [7], its exact two-point function is also known. By using the 
Kneser–Sommerfeld expansion (see [35] and references therein), 
the two-point function of the ρ-meson’s current, which corre-
sponds to the dual operator of ρa

μ , can be written as the covariant 
form

i

∫
d4x

(2π)4
eipx

〈
J a
μ(x) J b

ν(0)
〉
= δab Pμν �(−p2), (12)

where Pμν = pμ pν

p2 − ημν and �(−p2) denotes a two-point func-

tion in the momentum space. Here ημν indicates the Minkowski 
metric and −p2 = −pμpμ = ω2 − |�p|2. The two-point function in 
the momentum space is given by

�(−p2) =
∑

n

(
Da

(n)

)2

−p2 − m2
(n)

, (13)

where Da
(n) and m(n) are the decay constant and mass of the n-th 

ρ-meson resonance respectively. This result shows that the rela-
tivistic dispersion relation appears as a pole at the n-th resonance 
energy, ω =

√
|�p|2 + m2

(n) .

When a particle moves in a medium, its dispersion relation 
is affected from the interaction with a medium. Due to this rea-
son, one can easily expect that the meson’s dispersion relation 
in a nuclear medium is deviated from a relativistic one [28]. To 
understand the medium effect more precisely, let us consider the 
following Fourier mode expansion

ρ0
m(z, t, �x) =

∫
d4 p

(2π)4
ρ0(z,ω, �p) ρ̃0

m(t, �x;ω, �p) (14)

where the mode function ρ0 is governed by the linearized differ-
ential equation [26]

0 = ∂z

(
f (z)

∂zρ
0
)

+ 1
(

ω2

− |�p|2
)

ρ0, (15)

z z f (z)
and ρ̃0
m(t, �x; ω, �p) represents a neutral ρ-meson. Now, let us nor-

malize the kinetic part of vector meson to be [7,28]

∫
d4x

zI R∫
0

dz
√−G Gtt Gmn ∂tρ

0
m ∂tρ

0
n =

∫
d4x

√−η ω2
(
ρ̃0

m

)2
.

(16)

Then, it leads to the following normalization of the mode function

1 =
zI R∫
0

dz

(
ρ0

)2

zf (z)
. (17)

The translation symmetry at the boundary relates ρ̃0
m to a plane 

wave, ρ̃0
m = ε0

me−i
(
ωt−�p·�x) , with a polarization vector ε0

m . In this 
case, the rest mass of ρ-meson is given by the energy at |�p| = 0. 
In the nuclear and isospin medium the medium effect on the rest 
mass has been studied in [32,44].

In the asymptotic region (Q 2z6 � 1), the mode function allows 
the following perturbative solution

ρ0 = c0 + c̃0 z2 + · · · , (18)

where c0 and c̃0 are two independent integral constants. In order 
to fix them, we impose the following boundary conditions

lim
z→0

ρ0 = c0 and lim
z→zI R

∂zρ
0 = 0. (19)

Since the equation of motion in (15) includes several free parame-
ters, Q , D , ω and p, the boundary value of ρ-meson can also have 
a nontrivial dependence on them. When the value of c0 is given, 
the free parameters have to satisfy a specific relation correspond-
ing to the dispersion relation.

Let us further investigate two-point functions in the nuclear 
medium. Since the analytic solution of (15) is not known, one can 
not directly be applied to the Kneser–Sommerfeld expansion unlike 
the vacuum case. In spite of this, one can find a similar two-point 
function form even in the nuclear medium. To see this, we first 
calculate the on-shell gravity action in the momentum space

S B ≡ −
∫

∂M

d4 p

(2π)4
LB = − 2

g2
5

∫
∂M

d4 p

(2π)4
c0 c̃0, (20)

where the minus sign appears because the direction of the normal 
vector is opposite to the z-direction. The two-point function of the 
neutral ρ-meson reads from the on-shell action,

�0(−p2) ≡ − lim
z→0

1

2

∂2LB

∂c0 ∂c0
= − 2

g2
5

∂ c̃0

∂c0
. (21)

Due to the Neumann boundary condition at the IR cutoff, c̃0 should 
be related to c0. Since ρ0 is the solution of the linearized homo-
geneous differential equation a new function, y = λρ0, scaled by a 
constant λ still remains as a solution. This scaling allows us to 
write c̃0 = Nc0 where N is independent of c0. As a result, the 
scaling independent two-point function becomes in terms of c0

and c̃0

�0(−p2) = − 2

g2
5

N = − 2

g2
5

c̃0

c0
. (22)

In general, resonances appear as a pole of the two-point function. 
Assuming that c̃0 corresponding to the decay constant is finite, the 
resonance can be obtained by imposing the additional condition, 
c0 = 0, on the above two-point function. Near the n-th resonance 
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energy, the boundary value of the mode function can be expanded 
into

c0 =
ω2 −

(
�0

(n)

)2

N

[
1 +O

(
ω2 −

(
�0

(n)

)2
)]

, (23)

where N is introduced as a normalization factor and the medium 
effect is encoded into the n-th resonance energy, �0

(n)
. This relation 

shows that the boundary value of ρ0 out of the exact resonance 
energy does not vanish, so the resonances appear at discrete en-
ergy values.

Taking the following normalization constant for consistency

N = −g5 D0
(n), (24)

the decay constant is determined from the n-th resonance, ρ0
(n) , 

satisfying ρ0 = 0 at z = 0

D0
(n) = lim

z→0

1

g5

∂zρ
0
(n)

z
= 2c̃0

(n), (25)

where c̃0
(n) indicates the value of c̃0 in ρ0

(n) . In general, the domi-
nant contribution to the two-point function comes from the reso-
nance with the energy, ω = �0

(n) ,

�0(−p2) =
(

D0
(n)

)2

ω2 −
(
�0

(n)

)2
. (26)

Following the Sturm–Liouville theorem, a general two-point func-
tion can be rewritten as the sum of resonance’s two-point func-
tions

�0(−p2) =
∑

n

(
D0

(n)

)2

ω2 −
(
�0

(n)

)2
. (27)

The two-point function of ρ0-meson in the nuclear medium has 
a similar form to that in the vacuum. Its pole represents a disper-
sion relation of the n-th resonance. However, due to the interaction 
with a medium, the dispersion relation in a nuclear medium can-
not be written as a relativistic form. Note that there exists an alter-
native way to derive (27) following the prescriptions used in [7], 
which also gives rise to the exact same result.

Now, let us move to charged ρ-mesons whose mode function 
satisfies the following equation [28]

0 = ∂z

(
f (z)

z
∂zρ

±
)

+ 1

z

[
1

f (z)

(
w± ∓ V̄ 3

t

)2 − p2
]
ρ±. (28)

Near the asymptotic region, it allows the perturbative solution

ρ± = c± + c̃± z2 + · · · , (29)

where two integral constants, c± and c̃± , become near a resonance 
energy

c± = −
ω2 −

(
�±

(n)

)2

g5 D±
(n)

,

c̃± = D±
(n)

2
= lim

z→0

1

2g5

∂zρ
±

z
. (30)

Then, the holographic two-point function is reduced to

�±(−p2) =
∑

n

(
D±

(n)

)2

ω2 −
(
�±

(n)

)2
, (31)
with the following decay constants

D±
(n) = lim

z→0

1

g5

∂zρ
±
(n)

z
. (32)

In a nuclear medium, calculating the two-point function of axial-
vector mesons is parallel to the vector meson case, so we skip the 
details.

Lastly, let us discuss a two-point function of pions. Using the 
following Fourier mode expansion

πa(z, t, �x) =
∫

d4 p

(2π)4
πa(z,ω, �p) π̃a(t, �x;ω, �p), (33)

pions in the nuclear medium are governed by [28]

z3 f (z)

g2φ2
∂z

(
g2φ2 f (z)

z3
∂zπ

0
)

=
(

w2
0 − f (z)|�p|2

)(
χ0 − π0

)
,

z3 f (z)

4g2φ2
∂z

(
w2

0 − f (z)|�p|2
z

∂zχ
0

)

=
(

w2
0 − f (z)|�p|2

)(
χ0 − π0

)
,

z3 f (z)

g2φ2
∂z

(
g2φ2 f (z)

z3
∂zπ

±
)

=
(

w2± ∓ V 3
t w± − f (z)|�p|2

)
χ±

−
((

w± ∓ V 3
t

)2 − f (z)|�p|2
)

π±,

z3 f (z)

4g2φ2
∂z

(
w2± − f (z)|�p|2

z
∂zχ

±
)

=
(

w2± − f (z)|�p|2 +
(

V 3
t

)2
z2

4g2φ2
|�p|2

)
χ±

−
(

w2± ∓ V 3
t w± − f (z)|�p|2

)
π±. (34)

Unlike the vector and axial vector mesons, pions are described by 
two fields, χa and πa . πa corresponds to a fluctuation of a pseu-
doscalar field, while χa comes from the longitudinal mode of the 
axial-vector field. In the chiral limit (mπ = 0), the pion decay con-
stant in the vacuum is defined as 

〈
0| J a

m|π 〉 = iDa
π pm where J a

m
indicates an axial-vector current [7]. Due to this relation, the decay 
constant of pion is usually evaluated from the two-point function 
of a1-meson. In the holographic point of view, this is reasonable 
because π = 0 becomes a solution in the chiral limit and at the 
same time χa satisfies the same equation of axial-vector meson. In 
a nuclear medium, however, this is not the case because of a non-
trivial isospin interaction with the background matter. Even in the 
chiral limit, π± = 0 is not a solution and the equation for χ± does 
not reduce to that of axial-vector meson. These facts imply that we 
need a new method to define pion’s decay constant in the nuclear 
medium. We leave this issue as a future work. Although the pion’s
decay constant is not well defined in the nuclear medium [45], 
two-point functions of πa and χa should have the same dispersion 
relation. In the nuclear medium, we depict energies and decay con-
stant of ρ-mesons and pions with a specific momentum preserving 
SO(2) rotation symmetry (see Fig. 1 and Fig. 2). Since ∂mχa and ρa

m
have the same origin as shown in (9), (10) and (11), one can use 
the similar normalization used in (17)

1 =
zI R∫

dz

(
χa

)2

zf (z)
. (35)
0
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Fig. 1. The first resonance energies of mesons, �a
(1)

, in the nuclear medium. When α = −1/2, the energies of ρ-mesons with �k = {0,0,0.01} is depicted in (a). Pions with 
�k = {0.04,0.04,0.01} show their energies in (b). Above a solid (black) curve describes the energy of a neutral meson, whereas dotted and dashed curves represent those of 
negatively and positively charged mesons respectively.
Fig. 2. Decay constant of ρ-mesons in the nuclear medium with 0 < Q ≤ 0.05 and 
�k = {0,0,0.01}. Note that in the parameter range we used the splitting of decay 
constants is negligible.

However, the different origin of the kinetic term for πa requires a 
different normalization [28]

∫
d4x

zI R∫
0

dz
√−G Gtt ∂tπ

a ∂tπ
a =

∫
d4x

√−η ω2 (
π̃a)2

, (36)

which yields the following normalization

1 =
zI R∫
0

dz

(
πa

)2

z3 f (z)
. (37)

In general, neutron in a nuclear medium is more stable than 
proton because of the electric interaction of protons. Therefore, the 
neutron dominant case (α < 0) is more physical. When α = −1/2, 
the nuclear medium we considered is composed of 75% neutrons 
and 25% protons. In this case, the energy of a negatively charged 
meson is usually larger than that of a positively charged meson 
because of the isospin interaction with the nuclear medium as 
shown in Fig. 1. In addition, their energy always increases when 
the nuclear medium density increases. Similarly, the decay con-
stant of ρ-mesons also increases as shown in Fig. 2. In general, 
there also exists the splitting of the decay constant in the nuclear 
medium [32]. However, since we have taken into account only a 
small Q range in Fig. 2, the splitting of the decay constant is neg-
ligible.
4. ρ-meson’s form factor

Following the AdS/CFT correspondence, bosonic bulk fluctua-
tions map to various mesons of the dual field theory. Their in-
teractions can be studied from higher point correlation functions. 
On the gravity side, those n-point functions are described by inter-
actions of dual bulk fluctuations. Since pions and ρ-mesons have 
relatively smaller mass than others, they are usually dominant in 
the low energy physics and play a crucial role in understanding the 
strongly interacting nuclear matter. In this section, we will focus 
on the form factor of ρ-mesons in the nuclear medium. This work 
can be easily extended to other massive mesons like a1-meson and 
higher resonances.

The form factor can be read from the three-point function, so 
that it is required to expand the bulk action into cubic order. Terms 
related to ρ-meson at cubic order are given by

Sρ =
∫

d5x
√−g

[
− 1

4g2
εabc

×
{(

∂mlan − ∂nlam
)

lbmlcn + (
∂mra

n − ∂nra
m

)
rbmrcn

}
− φ2εabc

{
∂mπa

(
lbm + rbm

)
π c − ∂mπaπb (

lcm + rcm)}]
,

(38)

where lam and ra
m are bulk gauge field fluctuations of SU (2)L

and SU (2)R sectors, respectively. Using the definitions in (9), (10)
and (11), the cubic order action governing the interaction between 
ρ-meson and pions reduces to

Sρ =
∫

d5x
√−g

[
− i

4
√

2g2

×
{
−

(
∂mρ0

n − ∂nρ
0
m

)(
∂mχ+∂nχ− − ∂mχ−∂nχ+)

+ (
∂mρ−

n − ∂nρ
−
m

)(
∂mχ+∂nχ0 − ∂mχ0∂nχ+)

− (
∂mρ+

n − ∂nρ
+
m

)(
∂mχ−∂nχ0 − ∂mχ0∂nχ−)}

− i2
√

2φ2
{
ρ0

m

(
π+∂mπ− − ∂mπ+π−)

+ ρ−
m

(
π+∂mπ0 − ∂mπ+π0

)
− ρ+

m

(
π−∂mπ0 − ∂mπ−π0

)}]
. (39)
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Fig. 3. Form factors in the nuclear medium with α = −1/2. Above, a solid (black) line represents the form factor of a neutral ρ-meson, whereas a dotted (blue in the web 
version) and dashed (red in the web version) curves indicate those of a negatively and positively charged ρ-meson respectively.
In terms of momentum, it can be further reduced to

Sρ = −
∫

d4x

×
[

Fρχχ (0,+,−) ρ̃0
mχ̃+χ̃− + Fρχχ (+,0,−) ρ̃+

m χ̃0χ̃−

− Fρχχ (−,0,+) ρ̃−
m χ̃0χ̃+ + Fρππ (0,+,−) ρ̃0

mπ̃+π̃−

+ Fρππ (+,0,−) ρ̃+
m π̃0π̃− − Fρππ (−,0,+) ρ̃−

m π̃0π̃+]
(40)

with the following form factors

Fρχχ (a,b, c)

= 1

2
√

2g2

zI R∫
0

dz
√−g ka

n

(
kbnkcm − kcnkbm

)
ρaχbχ c,

Fρππ (a,b, c) = 2
√

2

zI R∫
0

dz
√−g φ2

(
kbm − kcm

)
ρaπbπ c . (41)

Recall that variables with the tilde symbol indicate mesons in the 
dual field theory and ones without tilde correspond to their mode 
functions in the dual gravity.

In order to see the medium effect on the ρ-meson form fac-
tor, we simplify the situation. Let us consider a ρ-meson moving 
along the z-direction with the momentum parameterized by �ka

m =
{0,0,−2kz}, which breaks the S O (3) rotational symmetry into 
S O (2). In addition, let us consider pions preserving the remain-
ing S O (2) symmetry for simplicity. Then, the momentum conser-
vation implies that two pions have the momenta, �kb

m = {
k,k,kb

z

}
and �kc

m = {−k,−k,kc
z

}
, with 2kz = kb

z + kc
z . Let us further assume 

that two pions have the same momentum along the z-direction, 
kb

z = kc
z = kz . Then, the form factor we are interested in can be pa-

rameterized by kb and kz only. Finally the form factors are reduced 
to

Fρχχ (a,b, c) = 2
√

2

g2
k2

zk

zI R∫
0

dz
√−g gzz gxx ρaχbχ c,

Fρππ (a,b, c) = 8
√

2 k

zI R∫
0

dz
√−g φ2 gxx ρaπbπ c, (42)

where the SO(2) invariance is used. Note that mode functions, ρa , 
χa and πa , nontrivially depend on the properties of the medium 
and meson’s momenta. In Fig. 3, we depict the ρ-meson form fac-
tors depending on the nuclear medium properties with a fixed mo-
menta, kz = 0.01 and k = 0.04. Intriguingly, Fρππ and Fρχχ show 
totally different behaviors. When the nuclear density increases the 
form factors of ρ and π decrease, while the form factors of ρ and 
χ increase.

Following the AdS/CFT correspondence, the results obtained 
here can be regarded as the ones including all quantum effects. In 
this sense, the form factor may be regarded as a non-perturbative 
effective coupling constant between ρ-meson and pions in the nu-
clear medium. If ignoring the isospin effect, the form factors of 
ρ-mesons become degenerate. In other words, there is no distinct 
between the form factors of neutral and charged ρ-mesons. Turn-
ing on the isospin effect, the split of the form factors occurs as 
expected (see Fig. 3). For α = −1/2, the interaction between a neg-
atively charged ρ-meson and π is stronger than that between a 
positively charged ρ-meson and π . On the contrary, the interaction 
between a negatively charged ρ-mesion and χ becomes weaker 
than that of a positive ρ-meson.

5. Discussion

In this work, we have investigated meson’s two-point func-
tions and form factors in a nuclear medium. Imposing the Dirich-
let boundary condition on the dual bulk field at the asymp-
totic boundary describes the pole structure of the meson’s two-
point function. Although the analytic solution of the dual bulk 
field is not known in the nuclear medium, the Sturm–Liouville 
theorem allows us to write the vector and axial-vector meson’s 
two-point function with a well-defined decay constant. In a vac-
uum, the pion’s decay constant can be evaluated by that of the 
axial-vector meson in the chiral and zero momentum limit where 
axial-vector meson and pion satisfy the same equation of mo-
tion. In a nuclear medium, however, they interact with the nuclear 
medium differently. Due to this reason, the pion’s decay constant 
is not well defined from the axial-vector’s one even in the chi-
ral and zero momentum limit. It would be interesting to find 
a new method to define the pion’s decay constant in a nuclear 
medium.

It has been shown that the isospin interaction of mesons with 
the nuclear medium causes the mass splitting depending on their 
isospin charges. In this work, we have also shown that ρ-meson’s 
form factors are also split in the nuclear medium. When the nu-
cleon’s density of the nuclear medium increases the form factor, 
Fρππ , between ρ and π decreases, while Fρχχ increases.
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