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We show that the Bethe–Salpeter equation for the scattering amplitude in the limit of zero incident 
energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The 
decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering 
observables and allows determining the scattering length from the Euclidean Bethe–Salpeter amplitude. 
Such a possibility strongly simplifies the numerical solution of the Bethe–Salpeter equation and suggests 
an alternative way to compute the scattering length in Lattice Euclidean calculations without using the 
Luscher formalism. The derivations contained in this work were performed for scalar particles and one-
boson exchange kernel. They can be generalized to the fermion case and more involved interactions.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Bethe–Salpeter (BS) equation [1] is an efficient tool for study of 
the relativistic systems in an explicitly covariant framework. One of 
the important properties of this formalism is that the formal object 
it deals with – the BS amplitude – has a Quantum Field Theoretical 
definition as a vacuum expectation value of the T-ordered product 
of Heisenberg field operators [2]. For instance, the two-body BS 
amplitude in a scalar theory φ reads

�(x1, x2; p) = 〈0 | T {φ(x1)φ(x2)} | p〉 (1)

where | p〉 is the state vector with total momentum p = k1 + k2. 
The BS amplitude � obeys an integral equation which is used to be 
written in momentum space. For that purpose, one first remarks 
that translational invariance imposes � to have the form

�(x1, x2; p) = 1

(2π)3/2
�(x, p) e−ip·(x1+x2)/2,

with x = x1 − x2 and where �(x, p) is called the reduced ampli-
tude. Its Fourier transform �(k, p) defines the momentum space 
BS amplitude usually computed:

�(x, p) =
∫

d4x �(k, p) e−ik·x.

The amplitude �(k, p) is related to the two-body scattering ampli-
tude of the process k1s + k2s → k1 + k2 as follows
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�(k, p) = S1(k, p)S2(k, p)F (k, p),

where S1,2 are the free one-body propagators and 2k = k1 − k2. 
Written in terms of F , the inhomogeneous BS equation for two 
spinless particles in Minkowski space reads:

F (k; p) = K (k,ks) − i

∫
d4k′

(2π)4

× K (k,k′)F (k′; p)[( p
2 + k′)2 − m2 + iε

][( p
2 − k′)2 − m2 + iε

] , (2)

where the interaction kernel K is given by a set of the irreducible 
Feynman graphs. The different steps of this derivation are detailed 
in [3,4].

For the bound state case, the inhomogeneous term drops out 
and the p-dependence of the off-mass shell amplitude F (k; p) in 
the center of mass (c.m.) frame appears only via p2 = M2 where 
M is the total mass of the system. The denotation F (k0, �k) is then 
currently used.

The off-mass shell scattering amplitude, F (k; p), depends also 
on a parameter 2ks = k1s − k2s – the incident relative momen-
tum – which in general is not related to p. For the results we 
are interested in (half off-mass shell quantities in c.m. frame) 
the p-dependence of the amplitude is however related to ks by 
p2 = M2 = 4ε2

ks
and will be replaced in the denotation by ks . We 

will write hereafter: F (k; p) ≡ F (k; ks) ≡ F (k0, �k; ks). Taken on the 
mass shell k0 = 0, k = ks , the value F (k0 = 0, k = ks) determines 
the phase shifts.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The original BS equation (2) was formulated in Minkowski 
space. Its numerical solution – made very difficult by the sin-
gularities of the free propagators, the interaction kernel and the 
amplitude itself – was not even tried until very recently [5–9].

For the bound state case the BS equation can be transformed, 
by the Wick rotation [10] of the integration contour of the vari-
able k0, in an Euclidean form over the variable k4 = −ik0. The 
Euclidean BS amplitude F E is related to the Minkowski one F M
by

F E(k4, �k) = F M(ik4, �k)

This change in the metric removes all the singularities for real 
values of the arguments and solving the corresponding Euclidean 
equation becomes an easy numerical task. It can be shown, at least 
for some simple interaction kernels [10,6], that the Wick rotation 
let invariant the total mass M and represents thus an efficient 
way to compute the binding energies. However the off-mass shell 
amplitude F (k0, k) in the Minkowski space remains mandatory to 
calculate the electromagnetic elastic form factors [11].

In contrast to the bound state, the scattering states BS equa-
tion cannot be in general transformed into an equation for the 
Euclidean amplitude alone. As we will see later, when rotating 
the integration contour, some singularities are crossed and one 
must take into account the residues in these poles [12]. These 
residues are proportional to the BS amplitude in Minkowski space 
at the particular value k0 = εk − εks , with εk = √

m2 + k2 and cor-
respondingly for εks . Applying the Wick rotation one obtains thus 
a system of coupled equations for the two amplitudes F E (k4, k)

and F M(k0 = εks − εk, k). This system of equations was derived 
in [12,13]. Solving this system of equations is a simpler task 
than solving the initial BS equation in Minkowski space but does 
not provide the full off-shell solution of the scattering problem. 
Since the on-shell condition k0 = 0 is equivalent to k4 = 0, the 
Minkowski and Euclidean on-mass shell amplitudes coincide with 
each other F E (k4 = 0, ks) = F M(k0 = 0, ks) and the Euclidean am-
plitude F E (k0, k) obtained by solving the coupled equations is 
enough to provide the phase shifts.

The difficulties for solving directly the scattering state BS equa-
tion in Minkowski space were recently overcome. A first method 
is based on the Nakanishi integral [14] representation of the BS 
amplitude and solving the resulting equation for the Nakanishi 
weight function. It was successfully applied to bound states [5–7]. 
In Ref. [8] a scattering equation for the Nakanishi weight func-
tion was also derived. It was solved for zero incident momentum 
in [15].

A second method taking analytically into account all the sin-
gularities was developed and proved its efficiency for both the 
bound and, especially, the scattering states [16,13]. Correspond-
ing bound-to-scattering state transition electromagnetic form fac-
tor was found in [17].

The main aim of this work is to show that in the limit of zero 
incident momentum (ks → 0) the Euclidean BS amplitude F E (k4, k)

decouples from the Minkowski part and can be thus obtained by 
solving a single integral equation in Euclidean metric. Like in the 
case of the bound state problem, the solution of the Euclidean 
equation determining F E (k4, k) can be obtained with high preci-
sion and low numerical cost. Once F E (k4, k) is determined, the 
scattering length is given by a0 = −F E (0, 0)/m. The possibility, 
here illustrated, to obtain a scattering length from an Euclidean 
solution can have interesting applications in Lattice QCD calcula-
tions.

It is worth mentioning that an Euclidean formulation of the rel-
ativistic quantum mechanics has been recently developed in [18].

The paper is organized as follows. In Sec. 2 we derive the Eu-
clidean BS equation for the spinless scattering amplitude at zero 
Fig. 1. Singularities of the propagators for scattering state and the integration con-
tour after rotation in the complex plane k0, if k′ < ks .

incident momentum ks = 0. The numerical results for the scatter-
ing length (for the ladder kernel) and comparison with the results 
found in Ref. [15] are given in Sec. 3. Sec. 4 contains discussion 
and concluding remarks.

2. Deriving Euclidean equation

We will derive in this section the integral equation satisfied by 
the off-shell Euclidean amplitude F E (k4, k), corresponding to the 
zero incident momentum ks = 0.

One possible way to proceed would be to consider the coupled 
Euclidean–Minkowski system of equations derived in Ref. [13] (ap-
pendix C) and study their limit when ks → 0. However we prefer 
to present here an independent and self consistent derivation of 
this equation.

To this aim we will first consider the singularities of the four-
dimensional equation (2), find an appropriate integration contour 
ensuring the Wick rotation for non-zero ks and finally take the 
limit ks → 0.

In this study we will consider the one-boson exchange kernel:

K (k,k′) = − 16πm2α

(k − k′)2 − μ2 + iε
, (3)

where α = g2/(16πm2) is the dimensionless coupling constant.
Calculations are performed in the c.m. frame, defined by �p = 0. 

In this reference system one has, by definition of the incident mo-
mentum ks , p0 = 2εks = 2

√
m2 + k2

s . The on-shell conditions k2
1 =

k2
2 = m2, in terms of variables k0, k, are reduced to k0 = 0, k = ks .

The pole singularities associated with the propagators in (2) are 
given by

k′(1)
0 (k,ks) = εks + εk′ − iε = +a+ − iε

k′(2)
0 (k,ks) = εks − εk′ + iε = −a− + iε

k′(3)
0 (k,ks) = −εks + εk′ − iε = +a− − iε

k′(4)
0 (k,ks) = −εks − εk′ + iε = −a+ + iε (4)

with

a±(k′,ks) = εk′ ± εks (5)

In the case k′ < ks , their positions in the complex plane k0 are 
shown in Fig. 1. When the integration contour is rotated, the sin-

gularities k′(2)
0 and k′(3)

0 are crossed and the corresponding residues 
of the integrand at these poles should be taken into account.



272 J. Carbonell, V.A. Karmanov / Physics Letters B 754 (2016) 270–274
Equation (2) is then transformed into:

F E(k4, �k; �ks) = V B(k4, �k; �ks)

+
∫

d4k′

(2π)4

V (k4, �k′;k′
4,

�k′)F E(k′
4,

�k′; �ks)

(k′
4

2 + a2−)(k′
4

2 + a2+)

+ S(k4,k,ks) (6)

where the Wick-rotated interaction kernel (3) reads

V (k4, �k;k′
4,

�k′) = 16πm2α

(k4 − k′
4)

2 + (�k − �k′)2 + μ2
, (7)

and the Born term is given by

V B(k4, �k; �ks) = V (k4, �k;k′
4 = 0, �k′ = �ks) (8)

The remaining term S(k4, k, ks) denotes the contribution of the

two poles k′(2)
0 and k′(3)

0 shown in Fig. 1.
The residual contribution – existing only if k′ < ks – is the sum 

of two terms S = S1 + S2: S1 is the residue at the pole k′(2)
0 =

−a− + iε and S2 the one from k′(3)
0 = +a− − iε (multiplied by 2iπ ).

The first term S1 is given by:

S1(k0) = π g2

4(2π)4

∫
k′<ks

d3k′

× F̃ M (k′, z′)

εks εk′ [−a− + iε]
[
−a− +

√
( �k′ − �k)2 + μ2 − k0

][
−a− −

√
( �k′ − �k)2 + μ2 − k0 + iε

]

(9)

where F̃ M(k′, z′) is the particular value of the Minkowski ampli-
tude

F̃ M(k′, z′) = F (k′
0 = εks − εk′ ,k′)

and d3k′ = k′2dk′dφdz′ .
S2 is given by a simple substitution S2(k0) = S1(−k0). Notice 

that the sum S1 + S2 is symmetric relative to k0 → −k0, as it 
should be.

Setting k0 = ik4 we finally obtain for S = S1 + S2:

S = g2π

(2π)4

∫
k′<ks

d3k′ F̃ M(k′, z′)
2εk′εks (a− − iε)

×
[
k2

4 −
(

a− −
√

( �k′ − �k)2 + μ2
)(

a− +
√

( �k′ − �k)2 + μ2
)]

[
k2

4 +
(

a− −
√

( �k′ − �k)2 + μ2
)2][

k2
4 +

(
a− +

√
( �k′ − �k)2 + μ2

)2]

(10)

This expression, as well as Eq. (6) contains integrable singular-
ities which make difficult the numerical solution. However, it is 
worth noticing that this problem disappears in the limit ks = 0. 
Indeed, the integrand in (10) contains the singular factor

1

a− − iε
= 1

εk′ − εks − iε
= P V

1

εk′ − εks

+ iπδ(εk′ − εks )

= P V
εk′ + εks

k′2 − ks
2

+ iπδ(εk′ − εks ) (11)

In the limit ks → 0 the singularity of the principal value is canceled
by the factor k′2 from the integration volume and in the shrinking 
limits 0 < k′ < ks the integral (10) tends to zero. Therefore the 
contributions of two singularities shown in Fig. 1 disappear: S → 0
when ks → 0.
The last term S in Eq. (6) can be omitted and the four-
dimensional BS equation for the Euclidean amplitude in the zero 
energy limit takes the form

F E(k4, �k;0) = V B(k4, �k;0) +
∫

d4k′

(2π)4

× V (k4, �k′;k′
4,

�k′)
(k′

4
2 + a2−)(k′2

4 + a2+)
F E(k′

4,
�k′;0) (12)

This is a self-consistent integral equation for determining 
F E (k4, �k; �ks = 0) without any coupling to the Minkowski ampli-
tude F . The possibility of such a decoupling, is the vanishing of 
the S term in Eq. (6) and it is valid only in the limit ks → 0.

To obtain the scattering length, it is of practical interest to make 
the partial wave decomposition and isolate the S-wave contribu-
tion. Following the convention [3]:

F E(k4, �k;0) = 16π

∞∑
L=0

(2L + 1)F L(k4,k)P L(z), (13)

where P L(z) is the Legendre polynomial and F L is the partial am-
plitude depending only on k4 and k =| �k |. Since we are hereafter 
restricted to the case ks = 0, we omit the argument ks as well as 
the Euclidean label.

In the case of S-wave, Eq. (12) reduces to the following two-
dimensional integral equation:

F0(k4,k) = V B
0 (k4,k) +

∞∫
0

k′2dk′

×
∞∫

0

dk′
4

V 0(k4,k;k′
4,k′)

(k′
4

2 + a′−
2
)(k′

4
2 + a′+

2
)

F0(k
′
4,k′), (14)

where a′± =
√

m2 + k′2 ± m and

V B
0 (k4,k) = αm2

k2
4 + μ2 + k2

(15)

V 0(k4,k;k′
4,k′) = m2α

π2kk′

× log
[k2

4 + k′
4

2 + μ2 + (k + k′)2]2 − 4k2
4k′

4
2

[k2
4 + k′

4
2 + μ2 + (k − k′)2]2 − 4k2

4k′
4

2

(16)

Notice that in Eq. (14) we have limited the k4 integration to the 
half-interval 0 < k4 < ∞.

The factor (k′
4

2 + a′−
2
) in the denominator of (14) vanishes at 

k′
4 = 0, k′ = 0. In practical calculations this (integrable) singularity 

can be removed by the replacement of variable k′
4 = a′− y and use 

the relation a′+a′− = k′2. Then Eq. (14) obtains the form:

F0(k4,k) = V B
0 (k4,k) +

∞∫
0

a′+dk′

×
∞∫

0

dy
V 0(k4,k; ya′−,k′)

(y2 + 1)(y2a′−
2 + a′+

2
)

F0(ya′−,k′) (17)

This is the final non-singular equation for the Euclidean off-shell 
S-wave amplitude F0(k4, k) corresponding to the zero incident mo-
mentum ks = 0. As mentioned, taken on mass shell, F0(k4, k) de-
termines the scattering length:
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Fig. 2. Euclidean scattering amplitude F0(k4, k) as a function of k for different values of k4 (left) and as a function of k4 for different values of k (right). They correspond to 
m = 1, μ = 0.50 and α = 0.50. The scattering length value is given by a0 = −F (0, 0) = −3.66.
a0 = − 1

m
F0(k4 = 0,k = 0) (18)

In Ref. [13] we have obtained a system of two coupled equa-
tions – Eqs. (C1) and (C8) – relating the partial wave amplitudes 
in Euclidean and Minkowski spaces at arbitrary incident momen-
tum ks . One can show that in the limit ks → 0, equation (C1) 
reproduces Eq. (17). Note however that Eq. (C1) contains a few 
extra terms in comparison to (17) which in the limit ks → 0 either 
disappear or cancel each other. This cancellation is not straightfor-
ward and, to be proved, requires some analytical transformations.

The interest in deriving equation (14) is not only a significant 
simplification in the way to compute the scattering length in the 
BS framework but in the fact that this fundamental quantity can be 
obtained from the Euclidean solution. Indeed, the Euclidean BS am-
plitude (1) has been here calculated by solving the BS equation in 
the ladder approximation and with a simple one boson exchange 
kernel but it is actually accessible in the full Quantum Field The-
ory solution provided by the Lattice approach. For instance, it has 
been the basic ingredient of the HAL-QCD Lattice collaboration to 
obtain the first ab initio Nucleon–Nucleon (NN) potential from QCD 
[19,20] but never been used to extract the scattering observables 
in the way we propose. Notice however than in Ref. [20], the NN 
potential computed this way was inserted in the Schrodinger equa-
tion whose solution provided the scattering length. This approach, 
involving several uncertainties and approximations related to the 
inverse scattering problem, is in contrast with the direct method 
we suggest and which according to (18) requires only to compute 
the momentum space BS amplitude at the k0 = 0 = 0 values. See 
e.g. Ref. [21] and references therein for the history and technical 
details of HAL-QCD method.

The possibility to obtain scattering amplitudes from Euclidean 
correlator in infinite space is forbidden by the so called Maiani–
Testa no-go theorem [22]. This result is in agreement with the 
impossibility discussed above to obtain scattering observable with-
out a coupling to the Minkowski amplitudes, but does not apply to 
the zero scattering energy where the phase shifts vanish, as was 
already pointed out in [22,23].

On the other hand M. Luscher and collaborators [24,25] circum-
vented this problem taking benefit from what is in fact a limitation 
of any Lattice approach – its finite volume V – and proposed a 
method based on the V -dependence of the two-particle energies 
confined in a box with periodic boundary conditions. This ap-
proach has been very successful in computing scattering length 
and phase shifts of several hadronic systems from ab initio QCD 
[26–31]. One can find a more complete reference list in the re-
views [32,33].

The use of Eq. (18) constitutes an alternative method to com-
pute the scattering length in the Lattice calculations, directly from 
the Fourier transform of the Euclidean BS amplitude defined in (1). 
A similar suggestion was considered in [23] in connection with 
Luscher formalism and for finite volume calculation. In the frame-
work of BS equation, such a possibility is justified by the existence 
of Eq. (14) allowing to compute the Euclidean BS amplitude in a 
purely Euclidean formalism as it is the case in the Lattice approach.

The numerical results presented in the next section validate 
this approach in the simple case of the one boson exchange model 
where the results can be found by independent methods.

3. Numerical results

The numerical solutions of Eq. (17) with the kernel (16) have 
been obtained by spline expansion of the Euclidean amplitude 
F0(k4, k) and solving the corresponding linear system (see Ap-
pendix A of Ref. [13] for details).

The scattering lengths a0 are extracted by computing the value 
at the origin of the Euclidean amplitude (18). Their values are in 
full agreement with the results of our previous work [16] and from 
those of Ref. [15], both obtained using different and independent 
methods. Some deviations in the case μ = 0.15, noticed in Table 1 
of [15], were due to inaccuracies in [16] and have been corrected 
in benefit of [15]. This lack of precision in the μ = 0.15 results 
of Ref. [16] was due to an unadapted choice of the grid param-
eters for large values of the coupling constant α. In view of the 
agreement with the preceding results (Tab. 1 of [16] and Tabs. 1–3 
of [15]), it would be redundant to repeat here the numerical val-
ues. However, we give below the Euclidean off-shell amplitude 
F0(k4, k) determining by Eq. (18) the scattering length.

Fig. 2 displays the amplitude F0(k4, k) as a function of k at fixed 
values of k4 (left panel) and as a function of k4 at fixed values of k
(right panel) for the parameters m = 1, μ = 0.50 and α = 0.50. The 
scattering length a0 = −3.66 is directly readable in both panels. 
For these parameters the two-body system has no bound state and 
the amplitudes are monotonic function in both arguments.

The same amplitude is shown in Fig. 3 for μ = 0.15 and α =
2.50. For these parameter values the two-body system has two 
bound states with the second one having very small binding en-
ergy. This results in a large and positive value of the scattering 
length a0 = +12.3. The amplitude has consequently a richer struc-
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Fig. 3. The same as in Fig. 2 with the parameters μ = 0.15 and α = 0.50. The scattering length value is given by a0 = −F (0,0) = +12.3.
ture in both variables than in Fig. 2 and requires hence a finer grid 
to be properly described.

4. Conclusion

We have shown that in the limit of zero incident energy the 
Bethe–Salpeter scattering amplitude can be obtained by solving a 
purely Euclidean equation, as it was the case for the bound states.

The decoupling between Euclidean and Minkowski Bethe–
Salpeter amplitudes is only possible for zero energy scattering 
observables and allows determining the scattering length from the 
Euclidean amplitude alone.

These results have been established and tested in the frame-
work of the Bethe–Salpeter equation with a scalar ladder one-
boson exchange kernel, where the scattering lengths can be ob-
tained by independent methods. They can be generalized to the 
fermion case, since scalar and fermion propagators have the same 
singularities. The validity of the Wick rotation was already stab-
lished with more elaborated kernels, like the cross-ladder one [6].

Our results suggest the possibility to directly extract the scat-
tering length in Lattice calculations by computing the Euclidean 
Bethe–Salpeter amplitude (1) in momentum space, without using 
the Luscher formalism.
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