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Abstract 

Cutting forces and acoustic emissions signals while machining Fiber Reinforced Plastics (FRP) depends strongly on the tool wear. Fractal 
analysis can be adapted to those signals to characterize their variations. This tool wear monitoring technique is presented herein for the carbon 
FRP (CFRP) orbital drilling. Fractal parameters, characterizing the signal complexity and ruggedness, are very efficient for machining quality 
estimation and to follow the tool wear evolution. 
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1. Introduction 

Carbon fiber reinforced plastics (CFRPs) have been 
increasingly used in the aerospace industry over the past 
decades due to its lightweight vs mechanical properties. CFRP 
is constituted of two very different materials (carbon fiber and 
epoxy resin). The CFRP machining usually involves only 
finishing operations, thanks to its manufacturing, allowing 
CFRP components to be produced close to their final shape. 
To evaluate the machining quality, surface integrity is 
examined. Several problems may occur during fibre 
reinforced plastic (FRP) machining, e.g. uncut fibres, pulled 
fibres, delamination and burnt resin [1-4]. Due to the 
abrasiveness and hardness of the carbon fibres, abrasion is 
considered as the main tool wear mechanism [5, 6]. With the 
tool wear increase, keeping sufficient machining quality is 
challenging, and the surface quality should be examined 
through the tool life. Hamedanianpour et al. found that, even 
if the tool wear is still considered as functional, the resin may 
be burnt during the CFRP machining leading to a lower 
surface quality [7]. 

New techniques of tool wear monitoring can emerge due to 
the FRP heterogeneity. With the tool wear increase, the 
cutting tool edge radius increases resulting in lower surface 
quality and the signals’ change of cutting forces and acoustic 
emissions (AEs). In addition to statistical parameters to 
extract quantitative data from such signals, fractal analysis 
was used to estimate the complexity of the signal [8, 9]. 
Therein, cutting force and vibratory signals were analyzed 
during homogeneous materials machining. However, the 
changes of the signal complexity through the tool life seem to 
be relatively low during the machining of homogeneous 
materials. Nevertheless, the cutting force and AE signals 
observed while machining CFRP show relatively high signal 
complexity variations for different tool wear. Thus, 
performing the fractal analysis of such signals would be 
relevant. In this study, the orbital drilling of composite/metal 
stack is investigated. The drilling of such stack is a major 
concern in the aerospace industry, which is part of the last 
assembly process of current airplanes’ structural parts. In 
addition to issues specific to each material of the stack, 
machining stacks constituted of very different characteristics 
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materials leads to further problems. So, process monitoring is 
crucial to maintain sufficient machining quality. 

2. Materials and methodology 

2.1. Machining setup 

The machined part was a stack composed of a quasi-
isotropic CFRP, prepared using 24 pre-impregnated plies, 
with a 3.3 mm thickness, and Ti-6Al-4V titanium alloy, with a 
3.0 mm thickness. The K2X10 Huron® high-speed machining 
center was used to conduct the machining tests. A dust 
extraction system was mounted onto the machine for health 
and safety purposes. The stack was machined by orbital 
drilling with different cutting parameters for each material of 
the stack. The cutting parameters, used to drill the 5.85 mm 
diameter holes, are presented in Table 1. The tool was a four 
flutes uncoated carbide shoulder mill with a 4 mm diameter, 
30° helix angle and 11 mm maximum depth of cut. The 
composite/metal stack was drilled using the same setup until 
the complete tool failure. A total of 44 holes was achieved 
even though the tool had already reached the end of its tool 
life. 

Table 1. Cutting parameters 

Material Helix step (mm) Feed (mm/min) Speed (RPM) 

CFRP 0.7 800 11 000 

Titanium 0.35 300 3 200 

2.2. Measurements 

The cutting force and AE signals were acquired during the 
tests using a dynamometer table and an AE sensor. The 
experimental setup is presented in Fig. 1. The input signal 
from both systems were acquired using the same amplifier 
and DAQ system at the 48 kHz frequency rate. The cutting 
force and AE signals from the CFRP machining were 
analyzed. The machining of titanium allowed generating a 
faster tool wear. 

 

 

Fig. 1. Experimental setup representation 

The tool wear was estimated between each drilling in order 
to evaluate the fractal parameters along the tool life. The tool 
wear was estimated using VHC 600+500F Keyence® optical 
microscope pictures which were taken on the clearance face 
of the tool tip edges. The maximum tool wear  was 
estimated according to ISO standard recommendations [10]. 
The tool wear  is introduced as the  average of the 
four tool cutting edges. 

Fig. 2 depicts the acquired signals (the cutting forces 
signals, the total cutting force signal and the AE signal) 
during the first drilling. The signal section analyzed 
corresponds to the area between the dash lines (Fig. 2), which 
is the relatively stable part of the CFRP machining using 
CFRP cutting parameters. 

 

 

Fig. 2. Filtered cutting forces (top), total cutting force (center) and filtered 
and root mean square (RMS) acoustic emission (AE – bottom) signals 

To highlight the changes of the signals’ shape through the 
tool life, Fig. 3 show magnified signal samples from the 
analyzed section for different tool wear. In Fig. 3, the signal 
sample of the total cutting force  is relatively steady for a 
new tool. Then, the passes due to the cutting edges, can be 
identified on the cutting force signal with higher tool wear. 

The signal samples from the AE sensor acquisition for 
different tool wear show similar trends (Fig. 3), in comparison 
with the cutting force signal samples. However, the periodic 
oscillation in those samples is more distinct with the tool wear 
increase. 

From the signals observation of the AE and the cutting 
force, two outlines can be identified. At high frequency (so at 
low scale) the signal seems affected with noise for the first 
holes and becomes sharper with the tool wear increase. At a 
higher scale (around the tool rotation frequency), both signal 
types turns from a steady signal for the first holes, to 
increasingly clearer periodic oscillations for higher tool wear. 
The period corresponds to the tool rotation time per tooth. 

2.3. Fractal analysis 

Fractal analysis allows quantifying the signal complexity 
by  a  single   value,  the  fractal   dimension.  Adapted  to  the 
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Fig. 3. Zoom samples, from the analyzed section presented in Fig. 2, of the 
total cutting force ( ) signals – up – and of the acoustic emission (AE) 
signals – down – over two tool rotation periods for different holes 

cutting force and AE signal, several signal features changes 
(e.g. complexity, shape) can be tracked along the tool life. 

Various fractal analysis emerged such as box-counting but 
have some constraints e.g. relatively low robustness. The 
regularization fractal analysis, selected herein, was used to 
assess gear damage using accelerometer signals [11] and 
showed relatively good repeatability rates. This regularization 
dimension is estimated from the convolutions of the signal ‘ ’ 
with different kernels  with a width of ‘ ’ [12, 13]. Each 
convolution product  is written: 

aa gss  (1) 

The kernels  are based on a rectangle kernel which is an 
affine function. Then, the hypothesis that  has a finite length 
called , for the size of ‘ ’, is set. The regularization 
dimension  is calculated using: 
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The limit, in the equation 2, is usually estimated as the 
slope estimation, where the ‘ ’ values are the smallest and the 
coefficient of determination, R2, of the linear regression of a 
part of the curve (  vs ) is close to 1. From 
preliminary analyses, the range of the slope determination was 
selected for the low scale (from 2 kHz to 6 kHz so between 
eight and 23 sampling points). In the case where the cutting 
parameters would change, the range determination could be 
selected accordingly, and adapted depending on the cutting 
speed. 

Samples of curves (  vs ) determining the fractal 
dimension and fractal parameters are shown in Fig. 4. For 

both, cutting forces and AEs, the tool wear influence is easily 
identified from the fractal dimension determination curve 
characteristics. The curve is relatively straight for the first 
holes. With higher tool wear, the curves becomes bumpy with 
higher and more distinct arches. Those periodic arches 
illustrate the tool tooth rotations observable in the AE and 
cutting force signals (Fig. 3). 

 

 

Fig. 4. Graph of curve samples for the fractal dimension determination using 
the rectangular kernel of total cutting force and acoustic emission signals 

3. Results and discussion 

The fractal analysis results are shown in Fig. 5. The fractal 
dimension , the topothesy  and the  calculated for each 
drilling from the total cutting force and AE signals are 
presented hereafter. The fractal dimension  (slope value in 
the selected range) is a factor characterizing the signal 
complexity, the topothesy G (slope offset) quantifies the 
signal ruggedness and the  (slope coefficient of 
determination) stands for the auto-scale regularity of the 
signal. Results from the AE signals analysis reflect the tool 
wear evolution more efficiently than for the cutting force 
signals. A fractal index  is introduced in order to propose an 
efficient machining quality factor improving the monitoring 
process: 

2R

GD
I F  (3) 

Fig. 6 depicts this index, and the tool wear, vs the holes 
drilled, including the three wear stages. Due to the complexity 
of the tool wear evaluation for such a tool, the stages are fairly 
an indication of their positions. The primary stage (I) is found 
to end around the third hole and the steady state stage (II) to 
end around the 20th hole with the beginning of the rapid wear 
stage (III). All parameters and so the fractal index vs the 
holes drilled show humps, during the initial wear stage (A in 
Fig. 6)and at the beginning of the third stage (B in Fig. 6), 
characterized by a rapid tool wear increase. Both humps in the 
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fractal index (A and B in Fig. 6) are linked to the changes of 
the tool wear derivate. This  index humps point out high 
curve variations of the tool wear. 

In Fig. 6, the fractal index of AE signals analysis also 
presents a continuous decrease during the second stage which 
could be linked to the machining quality decreasing along the 
tool wear evolution. This stage II is crucial due to the critical 
point presence of machining quality turnaround within this 
second stage. This abrupt change of surface quality occurs 
around the 15th hole. So, by setting up an  index threshold at 
0.5, low machining quality could be avoided. 

 

 

 

 

 

Fig. 5. Results of the fractal dimension , the topothesy  and the  from 
the analysis of  and AE signals vs the number of holes drilled 

 

Fig. 6. Fractal index, , results and the tool wear in function of the number of 
holes drilled 

4. Conclusion 

A promising online monitoring method of tool wear while 
machining composite is presented in this study based on 
fractal analysis of cutting force and AE signals. The fractal 
parameters and index are found efficient to assess the tool 
wear during CFRP machining. The fractal analysis used 
herein admits for only inputs the range of the observation 

scale for the fractal dimension determination. Adapting this 
monitoring technique is easy to setup contrary to e.g. 
statistical parameters which require rather long preliminary 
machining tests. 

Fractal parameters (fractal dimension , topothesy  and 
) obtained from AE signal analysis are efficient to describe 

the tool wear evolution and, to a further extent, the machining 
quality. In order to improve this technique further, the fractal 
index  can be calculated based on parameters such as fractal 
dimension and topothesy. In this study, this index is 
confirmed to be an excellent factor to evaluate the tool wear 
while drilling CFRP. Further experiments could be performed 
to investigate the robustness of this method e.g. with the 
online change of the cutting parameters. 
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