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Abstract

The Stiefel manifolds V,._; , are shown to be non-neutral for m>5, 2" '+2<k=2/<
2™ — 2. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Let V,, denote the Stiefel manifold of orthogonal k-frames in R". Thus V,, =
{15y yieRY yill = 1, y; Ly; for i # j} where || || is the usual Euclidean norm on R". Each
(V1,---» i) can be viewed as an n x k matrix. Note that V,; = §""! and V,, = O(n).

The orthogonal group O(k) acts on V,; via the matrix multiplication

V1> ) 9, geO(k).

Thus each geO(k) defines a self-map g:V,, — V,,. Consider the homotopy class [g] in the
semi-group of homotopy classes of self-maps of V, ;. If g€ SO(k), the rotation group, then [§] = 1
since SO(k) contains the identity matrix and is path connected. The set {[§]|g € O(k) — SO(k)} also
consists of only one homotopy class since O(k) — SO(k) is the other path component of O(k). Denote
this class by A. A contains the self-maps which change the sign of any column. It is clear that 4> = 1.
Following James [4], we say V, is neutral if 1 = 1.

The neutrality problem on V,; is

to determine, for what n and k, V,; is neutral. ()
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So far, the following are known.

(1) If nis even and k is odd then V,; is neutral.

(2) If n — k is even then V,; is non-neutral.

(3) Vuau-1 1s neutral for all n > 2.

(4) If nis odd and k is even then V,; is non-neutral for n + 1 # 2™ and for (n, k) # (n,n — 1).
(1

) and (2) are not difficult and are proved in [4]. A summary of these proofs is given in [7]. (3) is
also fairly easy and a proof of it is given in [7]. (4) is non-trivial. James proves it in [4] for the case
n <2k — 1 and the cases n = 2k + 1 with k = 2,4 or 8. The remaining cases for n = 2k + 1 are
proved in [7].

It remains to consider the problem (x) for V,»_; ; with k = 2/ < 2™ — 2. For k = 2, the problem
is connected to a problem in the homotopy theory of spheres. James proves in [4] that Vyn_y ; is
neutral if and only if the Whitehead product [1,n_ 1,151 J€Tam+1_3(S? ~ 1) can be halved. In fact,
he proves this for all V, , with n odd. Whether [1,»_,1,»_ ;] can be halved is an important problem
in the homotopy theory of spheres. This problem is known as the strong Kervaire invariant
conjecture [2]. The conjecture is known true for m < 6. The cases m = 1,2, and 3 are trivial since
the corresponding [1,m— 1,1,m— 1 ] are zero. The case m = 4 is due to Toda [11], the case m = 5 is due
to Mahowald and Tangora [8] and the case m = 6 is due to Mahowald (see [6]). These imply
Vyn_1 ., is neutral for m < 6. The conjecture for m > 7 is presently unknown. Equivalently, the
neutrality problem on V,»_, , for m > 7 is still open.

The problem (x) for V,»_ , is a difficult one as just described. It is conceivable that the problem
for Vyn_y =2, is also difficult for small k. The purpose of this paper is to show that one can give
a definite answer to the problem when k is large enough. The result is the following.

Theorem 1.1. For m > 5, Vyn_ 1y is non-neutral for 2" ' +2 <k =2/ < 2™ — 2.

This solves approximately “a half” of the problem (*) on the remaining V,»_; ; for m > 5. For
m = 2, V3 , is neutral as remarked above. For m = 3, V5, (k = 2,4,6) is known to be neutral since it
is an equivariant retract of Vg, 1, see [4]. We conjecture Theorem 1.1 is also true for m = 4. The
method to prove Theorem 1.1 for m > 5 in this paper probably can be refined to cover the case
m = 4 also.

The proof of Theorem 1.1 will be a contradiction proof. For 1 < ¢ < nlet P} denote the stunted
real projective space P"/P’~! Assuming Von_ 1 x 18 neutral, for m, k as in Theorem 1.1, we will show
that there are space maps YP3%.% 5 A Van gn-145 and XP3=3 5 = Cy = Van yn —1+3u¢CZP2 =8,
with ¢* =0, g% = 0 in mod 2 cohomology H*( ) such that S¢*" (xon1_) = Z2x,m_5 in H* (Cy,)
where x,»-1_; is a nonzero class in A>" ~Y(Vyn pn143) € H*" 71(C,,) and Z2x,»_ 5 is the gener-
ator of A*"~1(22P3.23) = Z/2 = H*'~!(C,,). This is a contradiction to the fact that in H*(X) of
any space X, Sq"x = 0 if |x| < n. This contradiction proves V,»_ ; is non-neutral.

In Section 2 we recall some basic facts about V, ;. In Section 3 we recall, from [7], some other
facts on V,; and prove some more results that we will need. In Section 4 we show P xSt =

P? x S'/St, for 2 </ < n/2 and n < 3/ — 3, is the cofiber of a space map P%,_, EN Pty XP? 2

The construction of the space C,, above will depend on this recognition of P? x S* as the cofiber
C;. The proof of Theorem 1.1 will be given in Section 5.
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All cohomology and homology of spaces in this paper have mod2 coefficients except in
Section 4 where integral cohomology will also be considered.

2. Some basic facts about the Stiefel manifolds 1, ;

In this section we recall from [4,10] some basic facts about V, ;. We need only consider k < n,
and from now on we assume this.

Let P" denote the n-dimensional real projective space. For each pair (n, k) of positive integers
with k < n there is a standard inclusion P, = P"~'/P""*~1<, ¥, , such that the pair (V,, P,.) is
(2n — 2k)-connected. These inclusions have the following compatibility properties:

Pn,k _i’Vn,k Pn,k —t> Vn,k
J, Jp J” jq @.1)
P,,,k' ;‘)Vn,k' Pn+l,k+l e Vn+1,k+l

where n > k > k', t is the collapsing map P*~!/P"~k~1 — pr=1/pr=¥ =1 pis the map obtained by
taking the last k' vectors in each k-frame, p is the inclusion P*~1/P" "%~ 1<, P"/P""*~1 and q is the
inclusion defined by ¢(yq,..., V) = V1, ..., Vk.€n+1) Where e, 1 =(0,...,0,,1,)eR"" 1. The se-
quence

q p
Vn,k—’ Vn+1,k+1 - Vn+1,1 =

1s a fibration. The~reduced cohomology FI*(P,,,k) has {x,_,...,x,—1} asa g/2-base where x, is the
nonzero class of H(P, ;) = Z/2. The mod 2 Steenrod algebra A acts on H*(P, ;) by

. l
SqJX/ = <J >X/+j. (22)
We refer to [10, Chapter 1V] for the following.

Theorem 2.1. For each pair (n,k) of positive integers with k <n there is a canonical choice
of an A-submodule H*(P,)) of H*(V,,) which is A-isomorphic to H*(P,,). The generator of
H/(P,x)=7Z)2 for n —k </ <n—1is also denoted by x,. These classes are called cohomology

normal classes (of length one) in H¥(V, ). They have the following properties, where i,q and p are as in
(2.1).

(1) B*(V,) > AP, has i5(x,) = x, forn —k </ <n— 1.

Q) B Vosrxs1) > H*(V,e) has q¢(c)) = x, for n —k </ <n— 1 and ¢*(xy) = 0.

(3) H*(V,x) it A%V, ) has p*(x,) = x, forn —k' </ <n— 1.
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(4) The cohomology algebra H*(V,, ) is generated multiplicatively by {x, |n — k </ < n — 1} subject
to the relations

5 {xz/, 20 <n—1,
x/, =

0, 2/ >n—1.
So {x;,xi, - xi [r=1n—k<iy <iy < - <i, <n—1}is a Z/2-base for H*(V, ). The A-
module H*(V, ) is determined by (2.2) and the Cartan formula.

We recall from [4] the following.

Theorem 2.2. P, is a stable retract of V, ., that is, there is a stable map V, 5 B, such that the
composite of stable maps

i r
Pn,k g Vn,k - Pn,k

is homotopic to the identity map on P, . Furthermore, r can be chosen so that H*(P, ) N (V)
maps H*(P, ) onto H*(P,,) isomorphically.

Let A€[V,x, Vax] be as defined in Section 1. It has the following properties.

A contains the self-maps which change the sign of any vector in
each k-frame. It also contains the self-map (y1,..., Vi, ..., Vs oo Vi) = (%)

(ViseeesVjseeos Vis oo yi) for any i,j with 1 <i <j <k (k> 2).
The following fact is proved in [7].
AFH*(V, ) = H*(V,,) 1s the identity map. (2.3)

A special case of the facts above is the following. For i with 1 <i < klet p;:V,, = V,1 = S" ! be
the map p;(y1,..., Vi, ..., Vk) = Vi; SO pr, = p where p is as in (2.1).
For k=2 H" \(V,, =8"" 1Y) =1Z)2 7 "~ Y(V,,) maps the nonzero
class x,_; e H" }(S"" 1) to the class x,_; e H* Y(P,;) < H* '(V,x) (2.4)
for each i with 1 <i<k.

This follows from Theorem 2.1(3), (*) and Eq. (2.3).

3. Some other facts on V,

Let Z, = {1,g} act on V,, (resp. S') by letting g: V, , — V,.x (resp. g:S* — S') be the map which
changes the sign of the last vector in each k-frame (resp. the antipodal map €' » — €'%). Consider
the resulting space V, ; % 2, S*. In this section we recall, from [7], the construction of a space map
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Vi Xz, St 5 Vo+1x+1 for n odd, k even and the behavior of the induced map ¢* in mod 2
cohomology. In addition, we will also show here that if V, ; is neutral then there is a space map
[ Vuu xSt >V, x,, S' that induces a specific isomorphism f*:H*(V,; x z,S') = H*(V,, x S").
The main conclusion of the section, which is based on these facts, is Lemma 3.6 of which we want to
make use to prove Theorem 1.1.

In this paragraph a topological space is meant a compact Hausdorff space. Let X be such
a space. We suppose X is a Z,-space. Thus if ¢ is the generator of Z, then g: X —» X is an
involution. The mapping torus of g: X — X is defined to be the quotient space

T(g) = X xI/(x,0) ~ (9(x).1)

where I denotes the closed interval [0,1]. T(g) can be identified with X x ,_ S* as follows. Elements
of T(g) are denoted by <{x,t) and elements of X x, S' are denoted by [x,e]. Then the map
{x,t) = [x,e™] is a homeomorphism from T(g) onto X x ,, S' which is easy to see. Let Y be
another Z,-space and f: X — Y be an equivariant Z,-map. Then f induces a map f: X x , S' —
Y x4, S' given by

f([x,e]) = [f(x),e"].

Suppose 1y ~g: X - X and let H: X xI - X be such a homotopy. Then H induces a map
H:X xz,8" —> X given by

A(x,e™]) = Hix,t)  for 0<t<1. 3.1)
Finally we note that the map j: X — X x 2, S' given by
J(x) = [x,e""] (3.2)

is an embedding. Also, if H: 1y ~ g then the composite X I X x 2 St % X is the identity map.
For n > k > 0 there is a commutative diagram

V,, — v, =5"
‘q . (3.3)
Vn+1, k+1 L’ Vn+1,1 = Sn

where p, q are as in (2.1), py(V1, ..., Vi> Vk+1) = Vx and ¢, is induced by R"< R"@R! = R"*1, Let
Z, ={1,g9} act on V, (resp. V,+1. x+1) by letting g be the self-map which changes the sign of the
last vector in each k-frame (resp. the second last vector in each (k + 1)-frame) and act on $"~ ! and
S" by letting g be the antipodal map. Then (3.3) is commutative diagram of Z,-maps. This results in
a commutative diagram of induced maps:

1 12 n-1 1
1% —r
Xz, S S Xy S

"7 “71 (3.4)

1 5 1
p n
Vn+1,k+1xZ2‘S % 8 XZZS
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Now assume n is odd and k is even; so n + 1 is even and k + 1 is odd. Then V, . ;+; and
S"=V,+1.1 are neutral (by (I) in Section 1). So there are homotopies Hj:1 ~
g Ves1iks1 XI > Vi1 k41 and H:1 >~ g:S8"x I — S". It is shown in [7] that H, and H can be
chosen so that they are compatible with respect to the map p; in (3.3), that is, there is a com-
mutative diagram

ppXid
Vn+],k+]><1 : S"x I
14
Vn+1,k+1 —k>S”

This results in a commutative diagram

[ LY
Vit Xz, 8 —2— 8",
F i (3.5)
p
Vn+1,k+1 2 Sn

where H,, H are defined from H,, H as in (3.1). Composing (3.5) with (3.4) we get a commutative
diagram

Vi Xy 8 ———— 8"x

Px n
Vn+1,k+1 I —— S

where ¢ = H,g3,0; = Hg,. Note that g¢=¢j,q =¢1j; where j:V,, > V,ix2,S",
j1:8"" 1> 8" 1x, S' are as given by (3.2).

We stress that we get ¢ and ¢, only under the assumption that n + 1 is even and k + 1 is odd.
The map p is defined for all n > k > 0.

For arbitrary n and k with n > k > 0O there is a fibration

J n
Vn,k - Vn,k XZZSI - Sl

where m([y,e!’]) = e'2?. Also, we have a map of fiber spaces

V,, —< V. xZZSlL, 5!

P 12

‘ | (3.7
Sn—l —1> Sn—l>< Sl L} Sl

Z,
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The following is proved in [7].

Lemma 3.1. (1) For any (n,k) with n >k > 0, j*: H*(V, . x 2,S") > H*(V, ) is onto, and there is
a splitting map o : H*(V,, ;) > H*(V, i X 2, S"), which is an algebra homomorphism over 7,2, that is,
Jro =g,

(2) For any such o, the map w: H*(V, ) ® H*(S) > H*(V,; X 2, S") given by

Ux®Yy) = a(x) ()

is an algebra isomorphism.
(3) If we denote by o, and p, the maps for the case V, .y = S"~ ', then we can choose o (for k = 2)
and o so that p*a, = op*; thus u(p*®1) = p*u;.

We fix a ¢ and a ¢; such that p*s; = op* as in Lemma 3.1(3). Simply denote the class
o(x) m*(y) e H*(V,, X 2, S") by a(x)y. Since the Z/2-module H*(S') is generated by {1,y} where
[y| = 1, basis elements in H*(V,; x ,, S') are either a(x) = a(x)- 1 or o(x)y where x is a basis element
in H*(V,,) as in Theorem 2.1(4). Here, and also in later sections, if ye H(Y) then |y| denotes the
number /.

For n odd and k even, consider the map ¢:V, x 2,S* = V, 41 4+ in (3.6).

Proposition 3.2. ¢*:H"(V, 11 y+1) = H"(V,i X 2, S") maps x, to o(x,—1)y where x,€ H'(V,4+1.1+1)
(resp. x,—1 € H" '(V,1)) is the normal class x,€ H'(P,1+ 1 x+1) © H'(Vy+1.k+1) (resp. the normal
class x,—y e H""Y(P,x) = H" (V1)) as in Theorem 2.1.

To prove Proposition 3.2 we need the following fact proved in [7].

Lemma 3.3. Let G, :S" ' x,,S' > 8", S* be as in (3.4). Then,
gr #0:H(S"x 2, 8")=Z/2 > H"(S" ' x ., S") = Z)2.
Proof of Proposition 3.2. Consider the commutative diagram

1 ﬁ n-
4)
AN Sy,

1
@ ‘(/’1
S

Px n
V +1,k+1 ?

Sl

n

as in (3.6). Recall, from Theorem 2.1, that the generator of H"(S" = P+ 1.1 = V,+1.1) = Z/2 (resp.
H" YS""'=P,, =V,,)=12/2) is also denoted by x, (resp. x,—1). By (2.4), p§(x,) = x, and
p*(xs—1) = x,—1 where p is as in (3.3). Also recall that ¢ and ¢, are chosen to satisfy p*o; = ap*.
@, above is the_ composite $"" ! x , S? L osmx 2 S Z s where H is as in (3.5). The composite
S5 8%, St 2 s is the identity map on S". So j*H*(x,) = x, and this implies H*(x,) is the
generator of H'(S"x 5, S') = Z/2 which by Lemma 3.3, is mapped by gf to the generator of
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H"(S"" ' x,,S')=Z/2 which, by Lemma 3.1, is the class o;(x,-1)y. So @¥f(x,) = giH*(x,) =
01(x,-1)y. Then

P*(xa) = @*piE(xn) = P*@T(xn) = P*(01 (Xu=1)7)
= (p*o1(Xn-1))y
= op*(Xy—1)y
= 0(x,—1)7-

This proves Proposition 3.2.

We remark that Proposition 3.2 here, if imposed with the additional condition n > 2k + 1, is
Proposition 3.13 of [7]. What we have shown above for Proposition 3.2 is that Proposition 3.13
of [7] actually is also true without the condition n>2k +1 if x,eH"(V,+ r+1) and
X,—1 € H""Y(V, ) are chosen to be the normal classes as in Proposition 3.2.

Note that the splitting map o : H¥(V, ;) = H*(V, X 2, S') in Proposition 3.2 is chosen to satisfy
p*ay = ap* for some splitting map o, : H*(S" ') - H*(S"~ ! x ., S') and Proposition 3.2 is stated
and proved for such splitting maps. We will show below that Proposition 3.2 is also true for any
splitting map ¢’ not necessarily satisfying p*o,; = ¢'p* for some ¢,. This will be relevant in the main
conclusion Lemma 3.6 that follows.

Corollary 3.4. Still assume n is odd and k is even. Let ¢’ : H*(V,, ;) = H*(V, x X 2, S*) be any splitting
map to j* as in Lemma 3.1(1). Then ¢*: H"(V, 11 x+1) = H"(V, i X 2, S*) maps x, to 6'(x,—)y where
Xn, Xn—1 are as in Proposition 3.2.

Proof. Let o:H*(V,;)— H*(V,, X2, S') be a splitting map as in Proposition 3.2 so that
@*(x,) = a(x,-1)y. It suffices to show a(x,-1)y = ¢'(x,-1)y. Since both the composites

H™ (V) S H' ' (Vos % 1, SY) 5 H'™ (V)

a

H 1V, ) S H' \(Vyy x 2,80 5 H™ (V)

are equal to the identity map it follows that ¢'(x,-{) — a(x,- )€ kerj*. kerj* is the Z/2-sub-
module {yy|yeH" *(V,,)} by Lemma 3.1(2). So o'(x,—1) = o(x,—1) + yy for some y. Then
' (Xp_1)y = 0(x,—1)y + yp* = 6(x,_1)y since > = 0. This proves Corollary 3.4. [

In the remainder of this section we discuss some results on V,,, under the assumption that V,; is
neutral. We also assume n — k > 2 so that V,; is simply connected.
Since V,; is neutral there is a homotopy H:1 ~ g:V, k xI -V, C0n51der the induced map

H:V, %z, 8" > V,, asin (3.1). Since the composite V, EN Vo X z,8! et V.x 18 1y, the induced
map H*: H*(V, ;) —» H*(V,, % 2, S') is a splitting map to j*. Let ¢’ = H*.

Consider the product space V,, x S*. We have H*(V,, x S*) = H¥(V, , )@ H*(S'). Thus basis
elements in H*(V,; x S') are either x = x®1 or xy = x®7 where x is a basis element in H*(V, ;) as
in Theorem 2.1(4). Note that, since V,, is simply connected, H'(V,, x S')=~Z, generated by
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y=1®y. Let S! 5 wik X SY Vak LY Voi xS' be the maps defined by i,(e") = (x,€"),
i1(y) = (v,€'>") where * is a base point in V, ;. If V, . x S* 5 S' is a map such that gi, :S' > S'is a
degree 1 map then g*: H'(S') - H'(V,, x S') maps the generator y of H'(S') = Z/2 to 7. This is
clear. Note that gi; ~0:V,, — S* since V, is simply connected.

Lemma 3.5. With the assumptions and notations above, there is a space map [V, x S* >V, ; x 5, S*
such that f*: H*(V, ;. x 7, S") = H*(V, ;. x S') has f*(c'(x)) = x and f*(a'(x)y) = xy.
Proof. Let g, : Vi xI =V, xS and q5: V., X I >V, x 2, S* be the quotient maps defined by
q1(y,1) = (y,€'*™) and ¢5(y,t) = [y,e™]. Define a map f": ¥, x I > V,x x I by
, (1, 20), 0<t<y
f 1) = .
(Hy,2t = 1),1), ;<t<1

/" induces a map f: V,; x S' =V, x ,, S* such that the square

VoxI —I v ox1

-

1 1
VxS —L V%, S

is commutative. It is easy to see that the comp051te Vok N V kXSt Jg, Vok X z,8! et V. 1s the

identity map. The composite S! 5 Vi X S* EA Vi Xz, S 5 V,« 1s homotopically trivial since
Vik 18 s1mply connected. These imply [*(H*(x)) =f*(0'(x)) =x for xeH*(V,;). Let
Vik Xz, st5 S1 be asin (3.7). By Lemma 3.1(2), 7*(y) = ¢'(1)®y = 1®7y = 1 -y = y. The composite
s'h oy Vi X St I, Vo Xz, S' 5 S is the map
1,
2,
and so is a degree one map. Then f*(y) = f*(n*(y)) = 7. So f*(a'(x)y) = f*(¢'(x))f*(y) = xy. This
proves Lemma 3.5.
Now assume further that n is odd and k is even so that we can consider the map

O Vi Xz, S' > Vo1 x+1 as in (3.6). Let f:V,, xS' >V, xz,S' be the map in Lemma 3.5.
Consider the composite

int 1211:

eint_)eizm O
e™ —e 1

//\ //\
//\ //\

lP3Pn,k><Slix—id Vn,kxsll’ Vi Xzzsli’ Vi1 k+1 (3.3)

where i is as in (2.1). Note that H" 5P, , x S1) = Z,/2(x, ), H(Pos x SY) = Z/2(x,)®Z/2(x, 1) for
n—k+1</<n—1and H'(P,; xS') = Z/2(x,—7). Here if {y;,y2,...,ym} is a Z/2-base for

H(X) =720 ... ®Z)2
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then we write H'(X)=Z/2(y,)® ... ®Z/2(y,). Consider the set of normal classes
{X( | n—k < ! < n} in H*(I/nJrl,kJrl)- Then lp*(X/) = 5/X/ for/ =n— k, lp*(X/) = 5/X( + &/X,-17
forn—k+1</<n-—1and y*(x,) =¢&x,-1y for / =n where d,,¢, are either 0 or 1.

Lemma 3.6. (1) Yy*(x,—x) = Xp—1 Y¥(x,) =X, +&x,—1yforn —k + 1 </ <n—1and y*(x,) = X,-17,
thatis, 0, =1 forn —k</<n—1andeg, = 1.

@) If n and k satisfy n—k=3 and 2k —1>n then Y*(x,)=x,, that is, ¢ =0 for
n—k+1</<n—1

To prove Lemma 3.6 we recall a notion due to James [4]. For a space X, a pair of cohomology
classes x, y e H*(X) are said to be evenly connected if S¢'x = y for some even t > 0. This nonsym-
metric relation generates an equivalent relation on H*(X); we describe x, y are evenly related if they
are equivalent in this sense. James observes the following in [4]. Recall that n is odd and k is even.

All the normal classes x, with s odd and n — k < s < n are evenly

related in H*(V, 11 x11). (39)

This follows from the following relations (by (2.2)) when defined:
Sq*Xsi—1 = Xsi+3, Sq*Xsi+3 = Xsi+ss
Sq*xsi+s = Xsito, Sq*Xgi+7 = Xgito- (3.10)
We also need the following which is easy to see from (2.2).

(i) For t even and s odd with n — k <s <n, Sq'x; # 0 in H*(V, 1 x11)
if and only if Sq'x,_; # 0 in H*(P, ).

(ii) Sq'x, =0 for / even and Sq'x, ; =x, forn —k+1</=2g<nin
H*(Vwr 1.k+1) and also in H*(Pnk)

(3.11)

Proof of Lemma 3.6. First we prove (i). Consider the diagram

i
Pn, k Vn, k
i i

Pn,kXSl ixid ’Vn,kxsl ! "Vn,kaZSl—‘(p Vst k41
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where i;(y) = (y,¢*") as in Lemma 3.5 and i, =i, |P,. It is clear that i%(x,)=x, and
i5(x,_17) = 0. From the construction of f'in the proof of Lemma 3.5 we see fi; is the embedding
j: Vi = Vox X 2, 8" as in (3.2), and recall that the composite V,, > Vi X 2,8' > Vi1 xs1 is the
map Vi > Vi1 eerin(2.1).Soforn —k </ <n— 1, f*p*(x,) = i*j*@*(x,) = i*q*(x,) = x,.
Then

x, = iy f*e*(x,) = i3 X id)** o*(x,) = iTy*(x,)
=i3(0,X, + &/X/-17)
= 0,X,

forn — k </ <n—1whereg,_y is set to be zero. Thus o, = 1 forn — k </ < n — 1. This proves
the first two conclusions of Lemma 3.6(i).

By Theorem 2.1(1), #(x,1) = %, 1. By Lemma 3.5, f#(¢(x,1)7) = x,-17. By Corollary 34
@*(x,) = 0'(x,—1)y. Then

YH(xn) = (X id)5f*@*(x,) = (i xid)¥f*(0' (X - 1)y) = (I X id }*(xy~17)
= *(Xy—1)y = Xu-17-

This proves Lemma 3.6(i).
Next we prove Lemma 3.6(ii). First we show

X,—x 18 evenly related to some x, with s odd and n — k < s <n. (%)

If n—k=8i+3 or 8 +7 then S¢°x,_ = X,_x+> by (3.10), and n —k +2 is odd with
n—k+2<n(since 2k —1>n >k + 3 implies k > 3). If n — k = 8i + 5 then Sq*x, x = Xy _k+4
again by 3.10), and n —k +4isodd withn —k+4 <k —-1+4=k+3<n(as2k—1>n).If
n—k=8 + 1theni>1sincen —k>3,andifweletn —k =27*1g + 27 + 1 thenq >0, p > 3.
Note that k > 27 since 2k — 1 > n. We have S¢*'x,_ = X,_x+ 2 (by (2.2)). n — k + 27 is also odd
and has n — k + 27 < n since k > 27. This proves ().

For odd s and s; withn — k < s <s; < nsuppose Sq'x; = X, in H*(V, 41 1+1) for some even .
Then Sq'x, = x,, and Sq'x,_; = X, 1 in H*(P,;) by (3.11)(i). From Lemma 3.6(i) we have

Xy, F 86, X, —17 = YH(X,, ) = YH(Sq'x) = SqPH(xs)
= Sq¢'(xs + &Xs-17)
= 8q'xs + &8q'(xs—1)y
= X5, + &X5, —1)- ()

So & = ¢, . It follows, then, from the “evenly related” equivalence relation and from (3.9), that all
& with s odd and n — k < s < n are equal. By (%), x,,_ is evenly related to some xy with s odd and
n—k<s <n,say Sq"x,_, = xy. By making a similar calculation as (**) we see ¢ = 0 since
V*(x,—1) = X, by Lemma 3.6(i). Thus ¢ = 0 for all odd s withn — k < s < n. This proves Lemma
3.6(i1) for x, with # odd and n — k </ < n.
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If/isevenandn —k+1</<n—1then/ —1isoddandn —k </ — 1 <n. We have just
shown above that y*(x,_;) = x,_{. By (3.11)(ii), Sq'x,—; = x, in FI*(V,,H’,{H) and also in
H*(P, ;). Then y*(x,) = Y*(Sq'x,_1) = Sq*y*(x,—1) = Sq'x,_; = x,. This proves Lemma 3.6(ii).
This completes the proof of Lemma 3.6.

From the proof of Lemma 3.6 above we see the map y: P, x S' = V,; 4+ in (3.8) has the
following property.

The composite P, N P, xS? A Vu+1.k+1 18 the composite P, 4
Piiki1— Var1xi1 where ig(y) = (y,¢%) and p is the inclusion map (3.12)
P=Pi i Py =Py ks

Note that the map i; here is the map i, in the proof of Lemma 3.6 above.

4. P? x S' as a cofiber

For a space X with base point * we use iy,i,,p; to denote the inclusions x5 X xS,
S'5 X xS! and the projection X xS'>5 X defined by i;(x) = (x,e'2"), i»(e") = (,€) and
p1(x,e"%) = x. So p;i, = *. X and S* are considered as subspaces of X x S* via these inclusions. The
quotient space X x S!/S! is denoted by X x S!. Elements in X x S* are denoted by [x,e"?]. Let
X xS'% X % S! be the quotient map. So g(x, ') = [x, ¢*]. The composite X > X xS' 5 X x !
is denoted by i;. Define p;:X x S* — X by p,[x,¢e'’] = x. Since p;i, = *,p; is well defined. Let
G1: X xS'— X AS' = XX be the quotient map defined by g ([x,€"]) = x A€'’. Then

(i) X5 xxs'D X is the identity map 1y,
ST (4.1)
(i) X > XxS'S XX is a cofibration.

These are clear. We have H*(X x S') = H*(X)® H*(S'). Thus basis elements of H*(X x S') are
either x = x®1 or xy = x®y where x is a basis element in H*(X) and 7 is the generator of

HY(SY) = Z/2. H¥(X x SY) 5 H*(X x S!) is monomorphic. Elements in H*(X x S*) will be identi-
fied with the corresponding elements in H*(X x S') via ¢*. Thus basis elements of H*(X x S*) are
either of the form x = x®1 for xe H¥*(X) or of the form xy for xe H*(X). The induced maps
H*(X xS') > H*X) and H*X)5 H*(X x SY) satisfy 7¥(x) = x, if(xy) = 0, p¥(x) = x. The in-
duced map H*(ZX) S H*(X X S') has §¥(Zx) = xy where Xxe A*(XX) is the image of x € H*(X)
under the suspension isomorphism H*(X) = *(X'X). These are also clear.

We specialize to X = P} = P, ,+1-, the stunted projective space P"/P’~'. In this section we
use the notation P for B, ,+1-,. We will only consider P} forn >/ > 2.

It is well known that X(P?xS')~S?*vXP!vX2P!. Clearly this implies X(P?xS!) ~
XPrv X2P
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Lemma 4.1. Forn < 2/ 2, P x St is already the wedge of P} and X P , that is, there is a homotopy
equivalence P} x S* 2 P} v XP}. And we can choose an h Such that P! 2 P*x S! L P; v 2P} is the
obvious inclusion map, the composzte P/ x St LY P} v 2P} 4 X P! is homotopic to P! x S* 4 2P} and

the composite P} x S* L3 P v XP} 4 P? is homotopic to P} x S* Iy P} where qy1,py are as in (4.1)
and q;, i = 1,2, are projection maps.

This follows from the fact X(P? x S') ~ XP? v ¥*P} and the fact that a (k — 1)-connected finite
CW-complex Y = Y™, with k > 2,2k — 2 = m, can be homotopically desuspended uniquely.

Note that if n > 2/ then P} ><S1 is not the wedge of P} and XP} as x, X,y = X,,7 # 0 in
H*(P? x S").

Consider the cofibration P, 5 > P xSt 4 2P} as in (ii) of (4.1) for X = P}. If n <2/ — 2 then
P? x S is the cofiber of any homotopically trivial map P’ 4 P! as shown by Lemma 4.1 so that
there is a cofiber sequence

t i — q
P!> P! 5 PIxS'>S XPI

If n > 2/ then it is unlikely that P? x S! is the cofiber of any self-map of P%. This is a part of what we
will discuss next. Indeed, there are two main themes in this section. The first one is to show that, for
2</ <n/2and n <3/ — 3,P? xS!is the cofiber of a map P4, _, EN P? v XP? %50 that thereis a
cofiber sequence

Py, L opryspr-2d o pristd spy,

where j, when restricted to P}, is P} N P? x S and 6 is the composite

prxsty sprhospy,

with p the collapsing map. Precise description of the result will be given in Proposition 4.7. The
second one is to assume a map P’ x S! Y V,+2.n+2—-, having certain properties with respect to the

cofiber sequence above from which we want to construct a space map XP%,_, 4 Cy =
| P ,ud)CZPZ”Z, where ¢ =, (jIZP? ~2), such that H*(Cy) = H*(Vys2ps2-,)@®H*
(2P -2 5 A*(2P%,_,) maps all of H*(V,,,+2-,) to zero for * <n + 1 except the normal
class x,+; on which g*(x,+1) = 2Xx,. Details are given in Assumption 4.8 and Proposition 4.10.
These will be relevant to our proof of Theorem 1.1 in Section 5.

Before discussing these two main themes we give some preliminaries on maps from cofibrations
that we need.

All spaces to be considered are pointed spaces with base points denoted by * and have the
homotopy types of CW-complexes. All maps between two such spaces will be base-point-
preserving maps. If f,g: X — Y are two maps such that /;;¢ then the homotopy H is understood to
be a base-point- preserving homotopy.

For a space X the cone CX on X will be the reduced cone defined to be the quotient space
CX = X xI/(X x1u=* xI)where I is the closed interval [0, 1]. The reduced suspension 2 X is the
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quotient space CX/X x 0. Elements in CX or in 2 X are denoted by [x,¢]. For a map X LA Y, its
cofiber C; = YU ,CX is the quotient space YUCX/f(x) ~ [x,0] where “U” is the disjoint union.
The image of [x,t] € CX in C, under the quotient map CX — C; is also denoted by [x,t]. We take
[*,t] to be the base point for CX or 2X or YuU,CX. Let YU,CX % XX be the quotient map
defined by q(Y) = %,q([x,t]) = [x,t] for xe X. Call g the natural pinching map. Then

xhvdvoexdsx~c

is a cofibration sequence where i is the inclusion map. , \
Let Yu,CX be as above. Given two maps YquXL Z and XX — Z. Define a map
g +h:Yu,CX —>Z by

(¢ +hy) =gy foryeYcYu,CX,

g'([x,2t]) 0<t<3
(9" + h([x,t]) = {h([x %—1]) ber<l for xe X. ()
) - 2 X

Definition 4.2. Given two maps go,¢;:YuU,;CX — Z. If there is a map 2X % Z such that
g1 ~go +9:Yu,CX — Z then call g a homotopy difference of go and g, and we denote this
relation by g ~ g; — ¢go.

Lemma 4.3 below is straightforward. (1) and (2) in Lemma 4.4 are well-known elementary facts.

Lemma 4.3. (1) Let YU,CX LA Z,2X % Zbeasin (%) and let Z 5 Wbea map from Z to another

space W. Then
W)@ +h|Y=g1Y, (@)ag +h)=og + ah

(2) Let
x Ly YU,cx —L— sx
S
x Ly 4 yu.cx 4 sx

be a map of cofiber sequences. If go,g1:Y' Uy CX = Z and g: XX — Z have the relation g, ~ go + ¢
then g1 ~gop + g.

Lemma 4.4. (1) (g’ + hy* = (¢))* + g*h*: H*(Z,R) —» H*(Y U ;CX, R) for any coefficient ring R.
0591

(2) Given two maps YquXg—> Z.Letg;, =g;|Y,i=01.1fgo ~g,:Y > Z then there is a map
X 5 Z such that g=~gi —go-
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Let H:Y xI - Z be a homotopy from g, to g,. We recall the construction of a homotopy
difference g ~ g; — go for Lemma 4.4(2) with respect to H as follows.

g([x,t]) = (H(f(x),3t — 1) $<t<3 xeX. 2y
g1([x,3t —2]) i<t<1

Next we will consider a special situation Wthh is somewhat complicated. Again, given a map
xL v we suppose Y =Y, vY,. LetY, v Y2 % Y, fori= 1,2, bethe projection maps. Assume
there isa map Yu,CX = (Y, vY,)u,CX 5 Y, such that the square

v,vY, —L— (¥,v¥)U,cx
)41 r

Y, Y,

is commutative. Note that risa retractlon and r|Y, = *. We further suppose given two maps
—(Y1 \/Y2)UfCX—> Z and Y1 —> Z such that lp1|Y1 —¢1 Yl —Z. Let W—> Z be the
composite

W=(Y,vY,)u,CX5> Y, 5 Z
Clearly,_tpl | Yy ~y|Y 1 =¢:Y > Z Letdp =¢, =y |Y,:Y, » Zand consider C;, = Zu,CY,.
Let W L4 C,, for i = 1,2, be the maps defined as follows. y; is the composite
W=(Y,vYy)u,cx% z% ¢, =zu,cY,
where j; is the inclusion map. v/, is the composite
W=(Y,vY)u,cX5 v, 5 z5 ¢,

It is clear that 1Y, ~5|Y 1, ¥1|Y, ~0 and ,|Y, == So Y,|Y ~y,|Y: Y > C,. Let
H

Y, xI15 7 be a homotopy from v, | Y, to ¢;. Then a homotopy (Y =Y, vY,)xI—> C, =

ZUyCY, from ;| Y to y, | Y can be given by

- t_{H(y,t) yey,

0<r<l.
[y,t] yeY,

By Lemma 4.4(2) there is a homotopy difference g ~, — /; : X — C,.
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Lemma 4.5. Under the above assumptions, if we choose the homotopy difference g ~ 1, — i, to be
the map, as constructed in (2), with respect to the homotopy H in (a), then the composite

X5 Cy=20,CY, 5 Y,
is homotopic to the composite
zf 2p,
XS5 2Y=2Y,v2XY, > 2Y,.

Proof. It is easy to check that the homotopy difference g in (2) of Lemma 4.4 for go = V¥/1, g1 = {»
with respect to the homotopy H in (a) is given by

Ya(lx, — 3t + 1]), 0

N
/
-

H(f(x),3t — 1) for f(x)e Yy
g([x.t]) = . R
[f(x),3t — 1] for f(x)eY,), 3<t<3 xeX
¢1(7"([X,3t - 2]))3 % <t < 1
S0 qg:XX 5 Cy = ZU,CY, 5 XY, is given by
for0<t<! and %<t<1
qg([x,1]) =
[sz()3f—1] for 3 <r<3

Let G: XX xI— XY, be the homotopy defined by
for0<t<s/3 and (3—9)/3<t<1

G(lx. 1], ) = {[pz F(035] for s/3<t<(3—s)3.

Then X(p,f) = ZpZZf% qg. This proves Lemma 4.5.
We proceed to discuss the two main themes. In these discussions we assume
(b) n and ¢ satisfy 2 </ <n/2 and n < 3/ — 3.
By Lemma 4.1, P?/ "2 x S ~ P?'~2v XP}~2. We will identify P?’~2x §* with P?*~2v 2P’ "2

via a homotopy equivalence h having the properties in Lemma 4.1. Thus P?~? LY P¥72x St =
P?'~2v XP? ™2 is the obvious inclusion map. N

P? 72 x S is a subcomplex of P? x S! via the embedding P ~2 x s P? x S' where p is the
standard inclusion map as in (2.1). Consider the subcomplex

(© Prx+UP¥ 2%8'd, prxst
where P? x *+ = P? is the subcomplex of P? x S! via the embedding P” N P! x St

Lemma 4.6. P! x «UP? ~2xS! ~ P! v XP? 2
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Proof. Let Y = P'x#UP¥ 2xS'. Let P'5 y,PY-2xs'Y yzp¥-25 pr-25g61—
P# =2y XP? ~2 be the obvious inclusion maps. Then the composite

i3 Vigis

Prvrp¥ i YvyS y= P x«uP? 2% S!

is easily seen to be a homotopy equivalence where F is the folding map. This proves Lemma
46. O

Indentify P} x *UP? ~2x S' with P} v XP? ~? via the homotopy equivalence in the proof of

Lemma 4.6 above. Then the inclusion map j in (c) can be considered as an inclusion map
PrvEZP¥~23 prxS! It has the following properties.

(d) Let py : P x S* — P? be as in (i) of (4.1). Then

(i) pujlZP? "2 = x,
(ii) (j|PY) =i, :P? — P?xS!, and so the composite P} it P} x xSt P} is the identity map.

Furthermore, if we let P? x S* 2 2 P%,_1 be the composite
— q: 2t
PrxSt= YP'S YPh,
with g, as in (ii) of (4.1) and 7 as in (2.1), then
Py XP# - 2, P xSt AN 2P5, 4

is a cofibration. This is clear. The following (e) and (f) are also clear (for (f) with R = Z note that
2/ — 1 is an odd integer).
(e) The diagram
PvEP, I prx s

_ zp n
=P ———— P

is homotopy commutative where p, is the projection map and p is the inclusion map.
(f) There is a short exact sequence of cohomology groups

0— A*ZPS,_,R) S H*(P!X S, R) 5> A*P!vEP¥ 2 R)—0

where R is either Z or Z/2.



1276 W.-H. Lin | Topology 40 (2001) 1259-1293

Proposition 4.7. There is a map P%,_4 EN P v XP? ™2 such that

(i) the sequence P%5,_4 EN VAP i kA P/ x St AN 2P%,_1 is a cofiber sequence,

and

(i) the cofiber of the composite P%,_ LA P! v XP¥ 2 5 XP?' "2 has the homotopy type of XP!
where p, is as in (e).

Proof. Let F be the homotopy theoretical fiber of ¢ so that we have a fiber sequence

oxpy, L FL prxstS sz, (+)

Since 6j ~ 0, there is a map P} v X P ~2 % Fsuch thatj,j, ~j. We may assume j = j;j,. We may
also assume that F is a CW complex and that j, is cellular. From the integral Serre spectral
sequence of the fibration F RN Pt xSt 2 2P%,_, the short exact sequence (f) for R = Z and the

condition n < 3/ — 3 (in (b)), it is not difficult to see that P?v XP? ~2 can be considered as
a subcomplex of F via j, and that (F, P} v XP? ~?)is (3/ — 2)-connected, that is, the CW-complex
F is of the form

F =(P!vXIP¥ ?)ue¥ 1y
Recall, by James construction [5,12], that QX P5,_; has the homotopy type of a CW-complex
JP%,_ 1. We will identify QXP5,_; with JP5,_; via a suitable homotopy equivalence. Then

P5,_; is a subcomplex of QXP%,_, via the canonical embedding P%5,_, 4 QXP5, 1 and

QXpPy, = P53, _yue* 20 ... We may assume that the map fin () is cellular. Since n < 3/ — 3,
the restriction map

f1Ps = —
41— F=(P}vEPY ?ue¥ 'u.-

. . S J
can be consider as the composite P%,_, - P!vIP? 23

H*(P! v XP? 2, Z)g H*(P%,_,Z) is zero.
Let Y and Q denote the spaces P} v XP? =2 and QXP%,_, respectively. Since the cofiber C; of

YL PrxStis IP%,_,, the cofiber Cj of F=Yue¥ tu-- %, P % S* has the homotopy type of
a CW-complex of the form XP%, ;ue® U --- (noting again that n < 3/ — 3). Since j, f ~ 0, there is

F for some f. It is clear that

a map Cy LA P? x S' such that the square in the diagram

oL r—" ¢ =Fu.ce

H \h

F — P,S
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is commutative where i; is the inclusion map. This commutative square defines a map of
cofibrations

F iy Cf J1 C. =3XQ =3p* Ue¥ 'U..

2/-1

n

F—I pxs' % ,c =3P, , UelU-
1

where j,,js are inclusion maps. The map h is a homotopy equivalence through dimension
3 —1=n+ 2 (see [9, pp. 153]). Consider the diagram of maps of cofiber sequences

P2n/—14f’ Y LI G L G, = ZP;/—I
i J F zi
o —L— F "¢ b c. =30
B
F -2, pxzs 5, c,

where ig,js are inclusion maps. Let hy = hj,:C, > P} xS* and h; = hZi: XP%,_y — C;,. Then we
have a map of cofibrations

g Je n
Y Cf ZPZ/—I
‘jz hy E
F j] 77— ol jg

—— pxs —tc

Since H*(Y, Z)B H*(P3,_,7Z), there is a short exact sequence of integral cohomology groups

0« A%(Y,Z) & A*(C,.2) & AP, _,,Z)« 0.

Note that jij, = j: Y — P2 x S' and that, by (f), A*(P? x $,Z)" ", fi*(Y,Z) is onto with ker
¥~ H*(XP!_,,Z). Also note that /i, is a homotopy equivalence through dimension 3/ — 1 >n + 2
too, and this implies

A4(C), ~ EPY,_ 0¥ - Z) S BHEPS,_ 1 Z)
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is iso for * < 3/ — 1. From these we deduce that H*(P! X S',Z) = FI*(Cf,Z) is iso for all *. So
C, i P? x St is a homotopy equivalence. This proves the first conclusion (i) of Proposition 4.7.
To prove (ii), consider the diagram

P, L y- PvpX 7 L st 2P,
1 ‘Pa ) P (3) |
P, _h=pt, Y —E g e wp
” @) 2
P, 7t _EP . spr

described as follows. The map from the first row to the second row is a map of cofiber
sequences defined by the commutative square (1). We recall from (e) that the square in
the diagram

P;/_l—f> P;'VZP2,/_2 # P;>_<S1

) ‘Pz ® ‘ql

_ x n
b SR ¥

is homotopy commutative. Since jf ~ 0 it follows that Xp f; = Xpp, '~ g, jf ~ 0. So there is a map
Cy, 5 2 P? that makes square (4) homotopy commutative. Thus pqj, ~ 2p. We claim

there is a choice of p; with p;jo ~ Xp such that
p1P2 ~q1: P} xS' —>ZP}.

To see this, take any p; with p,jo ~ Xp. From squares (2), (4) and (5) we see

p1P2|Y = p1paj ~ 2pps ~q1j = q4|Y.

Since P/ xS'~C; =YuU,;CP5_,, by (2) of Lemma 4.4, this implies that there is a map
Py, 5 XP!suchthatg ~ g, — pip,, thatis, g, ~ p,ps +¢.Letp'y = p; +g: C;, — P} By
Lemma 4.3(2), p'1p2 ~ p1Pp2 + ¢ =~ G- By (i) of Lemma 4.3(1)

Pijo = /0,1|2P/2/_2 =(p1 + 9)|ZP?K_2 = P1|2P/2/_2 = pijo = 2p.
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This proves (xx). Let Cg, 5 2P} be a map with the properties in (). Consider the following
diagram of the induced maps in integral cohomology of squares (2)-(4):

. 7 ervsrt 7 I Feres' <5_H(ZP2,1,Z)<—O
» |
00— H*(ZP/Z/_z, ) — g G, 2) — (sz/ 1 L) 0
| g
~, 20-2 Zp " "
H@p,'\2) ——— HG@EP.D
It=r"p1=0

The first row is short exact by (f) and so is the second row since H*(XP? 2 Z)
A*(P3,_,Z). We want to show p¥ is iso. By (x), pipt = ¢ H*(ZP, Z) - H*(P} x S', Z). Since
gF is monomorphic (recall X(P}xS') ~ XP?v X?P? with X*P} coming from Xg,: X?P} —
X(PrxSY) it follows that p¥ is monomorphic. Recall P? x S! A 2P%,_{ is the composite
P xSt . - 2P} 5 2P%, 1. So imdé* < imgF. Note that Xp* is onto (since 2/ 2 is even) and p5 is
monomorphic (since p5 is monomorphic). By chasing diagram it is easy to see from these that p7 is
onto. Thus p} is an isomorphism. So C;, %ZPris a homotopy equivalence. This proves
Proposition 4.7(ii). This completes the proof of Proposition 4.7.

Next we discuss the second theme of this section which is Proposition 4.10 that follows. We will
consider the Stiefel manifold V,.,,+,-, where / and n satisfy the conditions in (b). Let
P =P isniay 5 Vitam+2-, and P} % P! be the inclusion maps as in (2.1). To discuss
Proposition 4.10 we make the following assumption. We recall that A*(X) means H*(X,Z/2).

Assumption 4.8. There is a space map P? x S* Y V,+2.n+2-, having the following two properties.

() H*(Vysams2-1) " H*(P" x S') has Yif(x,+1) = x,y and Yi(x;) = x; for £/ <j<n

. . Wi . ) . h
(1)) The composite Py N P!xS'> V,i2a+2-, is homotopic to the composite P} —
P 2 prti A w+2.n+2—, for some map h with h* = the identity map on H*(P}).

Note. The map y/; in Assumption 4.8 will be connected to the map ¥ in (3.8) later in Section 5 in
the following content. Assume V,»_ ; is neutral for 2"~ ! + 2 < k = 2j < 2™ — 2 (m = 5). Then by

(3.8) there is a space map Py»_ 14, xS = P3."2_; x S! 5 Vyn i +1 having the properties in Lemma
3.6. We will derive from this that there is a space map P3.725 X S' = Vm 1,3 having the

properties in Assumption 4.8 (Proposition 5.1). Thus n in Assumption 4.8 is n 4+ 1 in (3.8) in this
content.
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Let P! v XP% =2 P"x S! be as in Proposition 4.7. Let P2 2 A — V4 2.n+2-, be the composite

jlzpy

ZP}”‘ZJ?:J;T» P’ xsth wi2m+2—s. By Lemma 4.6 and (f) for R = Z/2 the induced map
A#(Prx SY) 5 A*ZP¥~2) has j*(x;) =0 for /<j<n and j*(x,y) =0 (since 2/ <n). So

~ ¢*

H*(V, 2+ 2- /)—’ H*(ZP/Z/_Z)- Thus

A4Cy = Vasoms2-1 9y CIPF "D Z (Vs a4 2 )OHHZ? P 7?)

as a Z/2-module. We describe such a Z/2-module decomposition more precisely as follows.

Convention 4.9. Suppose X LA Y is a map such that f* = 0 in mod 2 cohomology. Consider the cofiber

sequence X Lyl C,r=Yu,CX % ZX. Then we have a short exact sequence of A-modules

ak q>:<

0 HH(Y)— HA*C,)« HA*ZX)«0.

Indentify H*(XX) with img* = H*(C;). Let V be a Z,/2-submodule of H*(C) which is mapped
isomorphically onto H*(Y) under i*. Then FI(Cf)g V@®H*(X) as a Z/2-module. We will identify
V with H*(Y) so that there is a Z/2-module decomposition FI*(Cﬂ;H*(Y)@FI*(ZX). The names of
classes in H*(Y) will be the names of the corresponding classes in V < H*(C 1)

Proposition 4.10. Under Assumption 4.8 there is a space map XP5,_, 4 Cop = Vasomt2-rYy
CXP? ™2 having the following properties.

(1) The cofiber of the composite
TPy Cp=Visanra-0yCEPY "2 5 X2PY 72

has the homotopy type of X*P} where q is the natural pinching map.
(11) H*(C ) H*(I/;,,+2n+2 /)@H*(ZZPZ/ 2) H*(ZPZK 1) haS g (x,,+1) = an, g*(xj) = 0 fOI"
¢ <j < n on the normal classes x;€ H*(V, 1 5.4+,-,) and g*(H*(Z*P?¥ ~2)) =0

Proof. We shall use Lemma 4.5 and Proposition 4.7 to prove the proposition. For this purpose we
describe relevant data as those assumed in Lemma 4.5 as follows.
By Proposition 4.7(i) there is a cofiber sequence

X=pP, L y=pvip¥ 2l prxstayo,cX> 5X =3P, ()

where ¢ is equivalent to the natural pinching map Yu ,CX — 2 X. The mapj has the two properties
in (d) and these are equivalent to (d)" below.
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(d)" The square

y=pP/vEPy? —L - prxs'
lpl r:ﬁ'1
P, p;

is commutatlvg with j|P} = i; where p; is the projection, i; and p, are as in (i) of (4.1).

Let P} xS > Vs, ,,+2 ;= Z be as assumed in Assumption 4.8. By Assumptlon 4.8(ii) the
composite P} 3 P2 xSt —> Vitan+2-, 1s homotopic to the composite P} —> P} LN P"+1
Vitansa—, with h* = the identity map on H*(P}). Let ¢, = iph: P} — wtomt2—s =2Z. So
Y|P} =iy ~¢y: PP - Z. Let P? x S? n C, be the composite

Yy
PIXS'S Vivomsa- /—> Cop =Vitonta- /U¢C2P2/ 2

.. . . - V2 .
where j,; is the inclusion map, and let P} x S* - C, be the composite

r=p. n ¢ =iph 1
P} —— Vn+2,n+27/ - C¢-

PrxSi—

With these data, from Lemma 4.5, we conclude that there is a homotopy difference
g~y, — 1y 2P, - C, such that the composite

2P - > Cyp=Vatamr2-+UsCIP} 7?2 5 Xp3 -2
is homotopic to the composite
TPy, S SPIvEPY = X(Y = Piv EPY Y x2p22

By Proposition 4.7(ii), the cofiber of the latter map has the homotopy type of 2*P}. So C,, ~ X*P}.
This proves Proposition 4.10(i).

To see Proposition 4.10(ii) we recall that g ~ v, — ; means }, ~; + ¢g. By Lemma 4.4(1)
Y3 =W +9)* = YT + o*g* from H*(C )= H*(I/n+2,n+2—/)®ﬁ*( 2P} ~2) to H*(P} x S') where
0 is as in (*). From the constructions of Y, and Yy we see Yif(x;) = yi(x;), i = 1,2, for the

normal classes xJeFI (Ves2m+2-,) with /<j<n+1 where ¥, is the composite
rF=p, =iph

Py x S1— P/—’ Vit2m+2-¢. By Assumption 4.8(i), lﬁ (Xn+1) =Y (xp41) = x,7 and ‘Ff(xj) =
Yi(x;) = x; for £ <j < n. Since h*(x;) = x; for / <j < n we see

!pf(xj) = gb}k(xj) = I_?Th*[)*i*(xj) =x; for /<j<n
and

'7/7>2k( n+1) lpZ( n+1) = l_flkh*p*i*(xn+1) = l_flkh*p*(xn-%—l) = 0
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as p*(x,+1) = 0. g*(x;) are evaluated as follows. For j =n + 1 we have
5*g*(xn+1) = lek(an) - lpT(anrl) =0 Xn) = Xu? # 0

and this implies g*(x,+1) # 0 and therefore must be Xx,. For / <j < n we have
O*g*(x;) = 3 (x;) = Pi(x;) =x; —x; =0

and this implies g*(x;) =0 since ¢0* is monomorphic by (f) for R =Z/2. The conclusion
g*(H*(Z?P? ~2)) = 0 follows from Proposition 4.10(i). This proves Proposition 4.10(ii). This com-
pletes the proof of Proposition 4.10.

5. Proof of Theorem 1.1

We want to show for Theorem 1.1 that V,»_,, is non-neutral for m > 5 and 2" ' +2 <k =
2¢ < 2™ — 2. We will prove this by contradiction. From now on we assume V,»_; ; is neutral with
m>=5and 2" ' 4+2<k=2/<2"—2. All the results that we are going to state and prove
hereafter are consequences of this assumption. We will show that this would lead to a contradiction
as that described in Section 1.

As in Theorem 2.1, for general n and k, the notations x, will denote both the normal classes in
H*(V, ) and the generators in H*(P, ;) for n — k </ <n — 1. We will freely interchangeably use
the notation P2~} and the notation P, to denote the same space which is the stunted projective
space P"~'/P" %=1 The maps P,y = P!} 5 Pyt ka1 =Pl Py =PI} 5 P, = P21 for
n>k>k and Py g1 5 Vierrs: will be as in (2.1) and the maps P, — P, xS,
P, N P, xS' will be as in Section 4. In this section the inclusion map P, = PiZ{ —
Pom—n+x = Pt for n < m will also be denoted by p unless specified otherwise.

Since V,»_ 1 1s neutral, 2™ — 11is odd and k is even, from (3.8), Lemma 3.6 and (3.12), we have the
following.

There is a space map Py q  x S* A Vyn i +1 having the following properties.
(i) The induced map H*(Vyrps1) > H*(Pyr_ 14 x SY) has y¥(x,) = x,
for 2" —1 —k </ <2™—2and Yy*(xam_1) = Xamn_27. (5.1)
(i) The composite Pyn_ N Py q xSt 4 Vymi+1 18 the composite
PZ'"* 1,k ﬁ) PZ"',k+ 1 _l) V2"’,k+ 1-
Here we note the that the conditions n — k > 3 and 2k — 1 > n in Lemma 3.6(ii) are satisfied for

(n,k)=(2™ — 1,k) since 2" ' +2 < k=2/<2" — 4.
From (5.1) we will construct a map

m_ — - Vi
P%m*1273 XSI = P2m71,2m*|+2 XSI — V2m32m71+3

having the properties in Assumption 4.8. The result is precisely stated as follows.
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.o . — V1 . . .
Proposition 5.1. There is a space map Pyn_ | yn-1 45 X St — Vi yn-1 4 3 having the following properties.

(1) The induced map H*(Vzm,z""‘+3) w—i H*(Pz"'f 1,2" 142 X Sl) has Yi(xan—1) = Xan_27y and Y (x,) =

X, for 2" -3 </ <2m - 2.
.. . i - v . . .
(i) The composite Pyn_{ on-14 5 N Py q gniyy X S? > Van om-14 3 is homotopic to the composite

h P i
Py g omipa = Ponoqamtiy = Pomgnoi3 = Vorgneiyg
for some map h with h* = identity map on H*(Pyr_{ yn-14 ).
The construction of the map y; in Proposition 5.1 from the map y in (5.1) will be discussed

separately for the case k = 2"~ ! + 2 and the case k > 2™~ ! 4 4, and is given in the next several
paragraphs.

If k=2""1+2then Pyn_y yn1i5 xS' = Ppu_y,; xS* LA Vyns1 = Vamgn14 3 clearly factorizes
through the quotient map Ppr_qgn14, XSt 4 Py q 1y, xSt yielding a map
Py q gniy 5 X S? b Vm on-14 3 having the property in (i) of Proposition 5.1 by (1) of (5.1) and also
the property in (ii) of Proposition 5.1 with & = identity map by (ii) of (5.1).

Next consider the case 2™ ' +4<k=2/<2"—2 Note that k<2"—4. Then
k+1=2m""14+5>2" 1+ 3and2<k'=k—2""1—-2<2m" ! — 6. Consider the composite

~ X id v

WPy 30 X S5 Py i X St Vomk+1 5 Vam gn=143
where p is the map obtained by taking the last 2"~ ! + 3 vectors in each (k + 1)-frame.
Lemma 5.2. lp ~ O:Pzrn*l,:;,’kr X Sl g V2m52m4+3.

Proof. Pyn1_3, x S' is a finite complex with

Pynr 340 X St = (Pyr1 3 X 51)2’”71_3 = Pyt 340 X 51)2m71_4U€2Wl_3
as Pyn-i 35 = P3n_ % . Recall that (Vyn yn-1 4 3, Pym n-1 4 3) is (2™ — 6)-connected with Py -1 4 5 the
subspace via the embedding Py» yni 4 3 - Vymgn-1 3. Let Pyt 350 x 81 2§23 be the pinching
map. Let P32} EN P3.51 3 = Py 143 be the inclusion map. Since 2" ! —3 < 2™ — 6 (as
m > 5) and P3.51 5 is (2™~ ! — 4)-connected it follows that the composite

U Poni 540 X SIM Py i xS! i Vam st 5 Vaman-143
is homotopic to the composite

q m-1_~ L m-1_~ J m_ i
Py 34 xS' = §? 3= P3iT3 5 Pinnly o Vyngeoys

for some i. To prove ¥ ~ 0 is to prove ijig ~ 0. It suffices to prove i ~ 0.
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Note that P3.:23 is the Moore space M =S ~3U,e?" "2 It is well known that
7~0:52""'"3 5 M if and only if the induced map H*" "3 (M) =Z/2 5> H* =38 '3 =Z/2 s
zero. The generator of H*" ~3(M = P3.:23)=17/2 is xi_5. Let 1 be the generator of
H?" ' 73(8%" ' 73) = Z/2. Let i*(x,m-1_3) = &1 where ¢ = 0 or 1. To prove i ~ 0 is to prove ¢ = 0. It is
clear that g*(1) = xo»1_47 # 0. We have j*i*(xym-1_3) = Xpn-1_3, p*(Xam-1-3) = Xm-1_3 (by The-
orem 2.1). By (1) of (5.1), Y*(xpm-1_3) = x,m1_3. By dimensional reasons, p*(x,»1_3) = 0 (since
Pyt 540 = P3n_i7%); 50 (p X id)*(x 1~ 3) = 0. Then

Q*f*j*i*(x2m*—3) = Q*?*(xzm"—s) = q*(e1) = eq*(1) = exam1 -4y
which is equal to
(p xidy*yr*p*(xom-1-3) = (p X id)*(xzn-1-3) = 0.

So & = 0. This proves i ~ 0 and therefore y ~ 0. This completes the proof of Lemma 5.2.

TXid
Let g, be the composite P,~ ,lka—l>P2m 1am sy XSt 4 Pyn_y 14, X ST where q is the

quotient map. It is easy to see that
led
Pyt 34 X S'—— Pyn_y; x S! % Py q gn1yy X S!

is a cofibration. From Lemma 5.2 we see the composite

1 11 pr
Py 1 XS = Vonyqg = Vorgniyg

factorizes through ¢, yielding a map Py yn14, X S! Vzm om-14 3 such that
! ¥ p ,
P2,,,_1,k><S — Ve —— Voym ym=1,4
(a) 9, ”
Y
Pz"’—1,z""’+2>_<sl 1 Voym yn=1,4

is homotopy commutative.
It is clear that

(b) H*(Pyn_y an-142 xS 4 H*(Pyn_y xS has qf(x,) = x,,qF(x,7) = x,7 for 2" ' —3 <
/ < 2™ — 2; thus ¢F is monomorphic.

Since p*(x,) = x, for 2"~! — 3 </ < 2™ — 1, from (a), (b) and (i) of (5.1) for y*, we see \/; has the
property in (i) of Proposition 5.1.
Next we show 1/, also has the property in (ii) of Proposition 5.1. Consider the cofiber sequence

p T o
(C) sz—l_&k, — PZ’"—I,k — sz_1’2n1—1+2 — szm’l—s,k’-
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Note that 6* = 0 in mod 2 cohomology. Consider the diagrams

T

Py ————— Ppuy o1y, P o — 5 Py 1y,
i 1) ‘ iy lp 3) "’
@ sz_l’ka1 L? sz_l,zm—uz;Sl Py ———— Pyngm-1,
A
Vom 1 p y Vomogm-1,4 Vam ket S N 2mam=143

(we recall that we use the same notations p,t,i for the maps among various F,; and V). Squares
(3) and (4) are commutative by (2.1). Square (2) is homotopy commutative by (a). Square (1) is also
commutative since it is the commutative diagram

T
Pz’"—l,k EE— Pz'”-l,z’"*1+2 = P2”’—1,2””1+2

S

1 q — Al
Pyn_ XS — 5 Pou et 2 XS —— Py o1, XS

noting that g; = g(t x id). Thus the diagrams in (d) are homotopy commutative. By (ii) of (5.1), the
composites i, and ip in the first columns of the two diagrams in (d) are equal. Thus the two maps
from Pyn_ 4 to Vym yn-1 4 3 in diagrams (d) are homotopic and both factorize through t, one via 4 i,
and the other via ip. From the cofiber sequence (¢) and from (2) of Lemma 4.4 we see there is
a homotopy difference g ~ iy — ip: XPyn-1_3,4 — V,u w143 which, by dimensional reasons is
homotopic to the composite

1

om=1_ g . g _ m_2 p i
ISP =Pyt s = Pon_gmiys = P32 5 Pongniiy > Vangnoiys

for some g. Let 1 be the identity map on Ppm_j,miy, and et
h=1+4 g Py_y 145 > Py 1y, Recall g ~ iy — ip means iy ~ip + g. Then

iy ~ip +g~ip+ipg=ipl +ipg=ip(1 +g) (by (ii) of Lemma 4.3(1))
= iph.

By (1) of Lemma 4.4, h* = (1 4 g)* = 1% 4 §*g*:H*(Pyn_ | yn14 ) = H¥(Pyn_ 1 3n-14,). Since 6% = 0
it follows that h* = 1*, Thus /; also has property (ii) of Proposition 5.1. This completes the proof
of Proposition 5.1.

We recall again that the properties in Proposition 5.1 are those in Assumption 4.8 for
PixS' =P332 3xS' S V,igni2-s = Vangnips. The conditions 2 </ <n/2 and n <3/ — 3
assumed in Section 4 for the results of Propositions 4.7 and 4.10 are satisfied for / = 2"~ 1 — 3 and
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n =2" — 2since m = 5. Thus from Propositions 5.1 and 4.10 we infer the following in which we use
go for g in Proposition 4.10.

There exist space maps XP3.58 A Vi yn-143 with ¢* = 0 in mod 2 cohomology, (52)
and P32 5 C, having the following properties. .

(i) The cofiber of the composite

Zpg :% 2 C¢ = Vzm’zm’lJrg,U(z)CZP%:’_le?, i’ 22P§:;§3
has the homotopy type of X2P%.5% 5 where ¢ is the pinching map.

(i1) H*(C(/))gﬁ*(Vr" 2"'*1+3)@I'~I*(ZZP%:38—3)E’ H*(sz —7) has go(xz'" 1) = sz'"—zagg(x') =0
for 2"~1 — 3 <j < 2™ —2 on the normal classes x; € H*(Vy ,n143) and g§(H*(Z2P3-78 3))
=0.

Here we use Convention 4.9 for the Z/2-module decomposition in (ii) of (5.2). This convention
will also be used for all similar Z/2-module decompositions hereafter.

Notation. Still assume m > 5. In what follows the numbers 2™ — i fori = 0,1,2,3,4,7,8 and 2™~ — i
for i = 0,1,3 will be considered. To simplify notations we use n to denote 2" — 1 and / to denote
2m~1 3, So these numbers are n — i fori = — 1,0,1,2,3,6,7 and / + i for i = 0,2,3 respectively. In
some instances we will use the original notations for some of these numbers, especially
2m=1om=1 _ 1 and 2™ — 3 in Proposition 5.3 and its equivalent statements given in Propositions
5.3, 5.3”, and 5.3"".

Let g; = go|XP"-2 = XP3.-3. (5.2) implies the following.

(i) The cofiber of the composite

SPimE5 Cyp=Vyrtiwe1 s U, CEPLT S 32P07

has the homotopy type of X2P?~ 2,

(i) HC) = T (Vi1 1 - NOAHE? P )"0 AHEPY})

(5.2)

(1) gf (5.2)"is clear. (ii) of (5.2) follows from (ii) of (5.2) since g7 (x;) = O for all the normal classes
X;€H*(Vys1,n+1-,) and these classes are the generators for the cohomology algebra
H*(I/rl+1,n+1*/’)'

Consider the space C,, = C,u,, CZP,%. (ii) of (5.2) shows that

A4(C, )= H¥(Cy )@ HH(Z*Pi=3) = H* (Vi1 e 1 - VO HH(Z2P} )@ HH(22P,23)

as a Z/2-module

Proposition 5.3. In H*(C,, )Sq C(xgrei—q) = 23Xyn_3 where Xyn-i_y is the normal class in
H” " YVyitini1-0) andZ Xyn_ 3 is the generator of H*'~Y(2?P1~2) = Z/2.
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This conclusion derived from the assumption that Vy»«_;, is neutral for 2"~ ' +2 <
k =2i < 2™ — 2 with m > 5is contradictory to the fact that, in the mod 2 cohomology of any space
X, S¢’x = 0 if |x| < j. Thus the proof of Theorem 1.1 will be completed if we can show Proposi-
tion 5.3.

Remark. S¢?" '(xn-1_;) = X2x,n_3 in Proposition 5.3 is well defined. This will be explained from
the following general situation. Let X - Y with /* = 0 be as in Convention 4.9 so that there is
a short exact sequence of A-modules

0« A%(Y) — A¥(C,) & A*EX) 0.
Given ye HY) with S¢’y = 0in H**/(Y). By our convention any element in i* ~ () is also denoted
by y. Thus y € HY(C/) is defined with indeterminancy H*(2X). If H(X) = 0 or H**/(XX) = 0 which
implies A2 X) > H**i(2X) is zero then S¢’y is a well-defined element in H**/(C,). In the case
Proposition 5.3 we have to apply this twice. First note S¢" (x,»_;)e H*"~}(C,) is well-defined

and is zero. For gy, the indeterminancy H>" ~Y(Z2P1-2) is zero. So Sq>" (xp»1-1)e H*"~YC,,) is
well defined. This Remark also applies to Propositions 5.3', 5.3” and 5.3 later.

We shall prove a stable version equivalent to Proposition 5.3.

For the remainder of this section all spaces and maps between them will be in the stable category
. In particular, the maps ¢,go,91,¢q in (5.2) and (5.2), will be considered as maps in % when
stabilized. In the following we introduce notions and notations for certain maps that we will need.

Definition 5.4. Given three stable maps Z ER Y, X5 Zand W R C, = Zu,CX. The canonical
induced map C, = Zu,CX . Cyy = YU, CX is defined by

{f (2) = f(2), zeZ,
f([x,6]) =[x,1], xeX.
The iterated canonical induced map

Ch == CgUhCW(Q, Cf’h == Cngf'hCW

will be denoted by f”

By Theorem 2.2 there is a stable retraction map V,iq n+1-/ 5 Py n+1-,=Pj. Let
xpr7 i P’ be the composite XP? ™7 A w1 mt1—¢ 5 P" where ¢ is as in (5.2). Then ¢¥ = 0 in
mod 2 cohomology as well. Consider the canonical induced map

.
C¢ = Vn+1’n+1_/U¢CZP;’_7—> C¢o = P;’U¢OCZ;’_7
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1 9o

Let P!~} % — C,, be the composite XP,"s - C, 5 Cy,. From (5.2) we see the cofiber of the
composite XP"~} % - C,, =Pivu, CXP;~7 L x2pn-7 has the homotopy type of X2P?~! where
qo 1s the plnchlng map. We will identify C,,;, with 22P}~! via a suitable homotopy equivalence.

Fori= 1,2 let g; = go|2Ps=§ " By the identification C, ;, = X*P;~! and from (5.2) we have the
following.
(i) For i =0,1,2 the cofiber of the composite
spimivih ¢, = Pro, CxPTT S 22T
is x2pr-1-i
(i) F5(Cy,) = APH@IHZ?PLT) S HHZP,=E) has Gi(x,) = Ex,-1,
go(x;) =0 for £ <j<n—1on H¥P?) and g§(H*Z*P; 7)) = 0.
(i) A*(C,y,)" > AXEPI=17) for i =1.2.
Consider C;, = Cy, Uy, CEP,ZZ. (iii) of (5.2)" for i = 1 shows that
A%(Cy,) = H*(C,y, )@ A*(2> Py~ 3) = H*(PH@ H*(2° P~ )@ H*(2*P;~3)

(5.2)"

as a Z/2-module. It is clear that Proposition 5.3 is equivalent to:

Proposition 5.3. In H*(C, ),Sq¢*" (xp»1_1) = Z?xpn_3 where xp1_, is the generator of
H* '~Y(P!) = Z/2 and Z%x,»_5 is the generator of H*"~Y(22P*22%) = Z/2.

We will give two variants of Proposition 5.3

Let Pr=2 5 Pr=2 and P'=L 5 P'=) = §""20,,¢" ! be the inclusion map and the collapsing
map respectively as usual. We w111 use po,pl,pz,p3, j and 1, to denote the inclusion maps
Pt prprizsprolprtd s prtl P P2 St 58" 10,e" and the collapsing map
Pr-% — §" 2 respectively. So §; = go2p; and g, = go2p, where g;,i = 0,1,2, are as in (5.2)".
Consider the diagram

sprp X0 o
o
SPry X s XL gy e
2 9o 3) f
sppp % c, —h ¢y,

where the map from the second row to the third row is a map of cofibrations defined by the
commutative square (2). Square (1) also commutative by definition. Let S""'= C;, be the
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composite fj. From (iii) of (5.2)" for i=2 and the isomorphism H"(S" 'U,e") =
Z/ZZ% H"(XP!~%) = Z/2 we have the following.
(i) H¥(Cy,)= H*<C¢ )@ H*(22P,=3) = H*(P)@ H*(2*P;” @
A*(x2pn= ) H*(S"~'U,.e" has f*(x,) # 0. (5.3)
(i) A#(C, )"=5 Ax(s"1).

(i1) of (5.3) shows H*(Cf =C,;, Uy " H*(C )@ H*#(S") azs a Z/2-module. Let 1 be the generator of
A"(S") = Z/2. Since §; = goZpy and A" '(S"" ") =Z/2> A" '(XP;~3) = Z/2, from the com-

posite of squares (1) and (3) above we see Proposition 5.3’ is equivalent to:

Proposition 5.3". In H(C,,),Sq*" (>§2m ) =1e BTSN =AY NS =22 < BPTNCy,)
where X,n-1_ 1 is the generator of H*" Yy =122 < 4* 1_1(Cf0 ).
We will formulate Proposition 5.3” in terms of the (n — 1)-skeleton of C,,.

Recall the map ZP”’”)—L; P} in (5.2)". By dimensional reasons, ¢, is the composite
P’ ? pP;~ s P} for some ¢;. Clearly ¢7 =0 in mod 2 cohomology too. Consider the
canonical induced map

C, =P lu, CZPi TS ¢, = Plu,, CIPY.

Then C,, is the (n — 1)-skeleton of C,, via the embedding p’g and C,, = C¢ we" where the cell e" is
the top cell of P?. By dimensional reasons again, the map XPp-2 5 C,, is the composite

P23 5 C¢ 5> C,, for some §,. Consider the iterated canonical induced map
C;, = Cy 05, CEPI=3 8 €, = C,, 0, CEPI7R

Then C;, is the (n — 1)-skeleton of C;, via the embedding pg and C;, = C;, Ue” where the cell e is
the top cell of P} which is also the top cell of C,,. Let S"~* 5 P?~ ! be the attaching map for the top
cell of P}. Then the composite

028" 1S PTG Cy Gy
is the attaching map for the top cell of C;, so that there is a cofibration sequence
56 5 s

where & is the pinching map. Note that H"(C,, )= Z/2—> AYS") = Z/2. In fact, H*(C,,)=

H*(C )® H*(S") as an A-module since H*(P?)~ H*(P?~ )@ H*(S") as an A- module as n =2"—1
By dimensional reasons, S"~! = C;, in Proposition 5.3” is the composite S"~ 1 C;, 5 C;, for
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some f; .f; also has fi* = 0 in mod 2 cohomology. So
H*(C,, = C;, U, "= H¥(C;,)® H*(S")
~ [(Cy, )@ A*(Z2P1=3)@ A*(S")
= [0#(P} O H*(Z?P} @ H*(Z2P=3) @ H(S")

as a Z/2-module. It is clear that Proposition 5.3” is equivalent to:

Proposition 5.3". In A*(C;,),Sq>" (xy»1_1) = 1€ H*' (8" = Z/2 =« H*~Y(C,,) where x,n1_4 is
the generator of H* ~ (P}~ Y =722 <« >~ Y(Cy)).

The map f; in Proposition 5.3 has the following property.

21 1
Lemma 5.5. The composite S"~ ! - S"~1 i C;, is an odd multiple of the attaching map o, for the top
cell of Cy, = C3, Je".

Proof. Consider the diagram

Sn—l Sn—l S"—l U21 " Sn Sn
E_‘h‘ £1@3) fl‘ 1) f‘ @) h| 3) 2f1|
Sn—l g, C ?2 pg C§2 i) Sn L} 2C ?2

described as follows. The portion consisting of squares (1), (2) and (3) is a map of cofiber sequences
defined by the commutative square (1) (recall f, = fj) where 7, is the pinching map. X~ !(3) is the
desuspension of (3). Since f*,73 and 6* are isomorphisms in dimension n (for f*, this follows from (i)
of (5.3)) it follows that deg h is odd. So deg(2~'h) is odd. This proves Lemma 5.5.

We shall prove Proposition 5.3" by looking at the mod 2 Adams spectral sequence for 73, (C;,)
and 7},(Cy,) using Lemma 5.5 and also Lemma 5.6 below. To describe Lemma 5.6 consider the
commutative diagram

n-3 n— n— 7n—
TPy —2— Cy = P U, czP T 3T

pa‘

EPnn_;S 92 C¢0 — P/n U¢0 CZP;J 9o 2ZP;¢—7
where qo,¢; are pinching maps. By (i) of (5.2)", C,,;, = 2*P}~>.So C,,;, = X*P}~°>. Consider the

canonical induced map C;, > C, ; = 2P} 3 Let P}~ ' 5 C,, be the inclusion map,
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Lemma 5.6. There is a short exact sequence of A-modules

(g)*

0 A+~ L A, ) Axz2Pi=3) 0.

Proof. From dimy,, of the Z/2-module H*(C;,)=~H*(P!~ )Y@ H*(22P: )@ H*(Z*P1-3) we see
j3isontoand (¢y)*is 1 —1. O

For a space or a spectrum X we write Ext5'(X) to denote Ext%'(H*(X),Z/2) which is the E,-term
of the mod 2 Adams spectral sequence for the stable homotopy groups , 7} (X), to be abbreviated as
“the ASS the X”. Ext5{' *K(S*) = Ext3'(S°) = Ext%(Z./2,Z,/2) will simply be denoted by Ext%'. Recall
that Ext%*(X) is a right Ext¥*-module for any X. Note that Ext5{(P}) = Ext5{(P?~ 1)@ Ext5'(S")
and Ext$(C,,) = Ext5(C;,)@ Ext5'(S") since H*(P?) (resp. H(C,,)) is isomorphic to H*(P!~ 1)@ H*
(S™) (resp. H*(C;,)® H*(S")) as an A-module.

To prove Proposition 5.3” we need only the knowledge of Ext"“(P? %), for i = 0,1,3, s = 0,1,2
and certain t(s). These Ext groups are calculated in [3], but not explicitly stated there. In order to
describe these groups let H, (P$) be the reduced mod 2 homology groups of P, 1 < b < a. Let ¢, be
the generator of H,(P§) = Z/2 for b < k < a and set ¢, = 0 if k > a or k < b. H*(P{) is a right
A-module by

. k—j
exSq’ = Z( . >€k—j

ji>0 J

which is obtained by dualizing (2.2). If ¢, is a primitive element, that is, if ¢,Sq’ = 0 for all j > 0, then
let e, denote the corresponding class in Ext%*(Pg¢). The following is easy to see (recall
n=2"—1,/=2""1-3)

{eyn1_3,8m1_1} is a Z/2-base for Exty*(P;~Y), i = 1,3, and

_ ] i : 0 (5.4)
{eyn-1_3,8ym1_1,85n—1} is a Z/2-base for Exty*(P}).

Let h; e Exty? be the class corresponding to the generator Sq> € A. Recall [1] that {i;|j > 0} is
a Z/2-base for Exty*. Since Ext%*(P§) is a right Ext¥*-module, for any a e Ext’;*(P§) we may
consider ah; € Exts V*(P§) and oh;hy € Exts" >*(P}).

The following result is proved in [3] with (1) through (5) implied by the calculations there. Recall
n=2""ltand /=2""1' -3 withm > 5.

Proposition 5.7.

(1) Fori=0,1, Exty?" " P! )~ Z/2, generated by e, _1h,_,.

(2) Exty¥ (P13 =0.

() Exty? 3P 3)~Z2@Z)2, generated by eyn-1_3h,,_1 and eyn_shy with e;n-1_3h,_1hg =0,
exn_shihg =0 in Ext3¥ ~2(Pr~3).

(4) Fori=0,1, Ext}y ¥ (P!~ )~Z/2, generated by ey»+_hy_ 1 hq.

(5) Exty ¥ ~Y(Pr Y xZ/2, generated by €, _3h,,_1h;.

(6) In the ASS for P}, dy(€yn—1) = eym-1_1h,_1hy #0.
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We are not going to describe here the element e,»_sh; in (3) of Propostion 5.7. It suffices to note
that dimg, of Ext}? ~3(P?~3) is 2 and that Ext}?" " 3(P}~3)h, = 0 = Ext3%" (P4~ 9).

Consider the induced homomorphlsms Ext$'(P}~ )sz Ext}'(Cy,) and Exti{(P,)]i’; Exti(C,,) of
the inclusion maps P} ! 5 C;, and P} 5 C,, respectively. For o€ Ext$(P} ') (resp. Ext${'(P})) its
image in Ext$'(C;,) (resp. Ext} (ng )) under j,,, (resp. j,,)is also denoted by o. In particular, there
are elements

ey iy hyoy € Exty® "Y(Cy,), Exty® ~1(Cy,)
eyn =iy 1 ho € Ext *(Cy, ), Exty *'(Cy,)
and
ey € Exty? 7 1(Cy,) = (Ext3? 7 1(Cy,) = 0@ Exty® ~1(S" = §2"7).
eyn_1 € Ext3? 71(C,,) is the class corresponding to the cell e" of C,, = C;, Ue™

The short exact sequence in Lemma 5.6 gives rise to a long exact sequence of Ext groups

(@) - _,Extil‘lsf(ZZPg‘3)%> Ext5(P}~ 1)—> Ext$'(Cy,)

(Lh)* Ex ti{t(z‘ZPn 3)

By (5.4) and (2) of Proposition 5.7, Ext$?" " 4X2P" 3) = Ext9?" 3P 3) =0 and Ext}?*

(X2P2 %) = Ext}?"~2(P?3) = 0. From these, (a) and (1),4) of Proposition 5.7, we have the

following.

(b) Ext% 2”(P';—) Z/2@r—1hm1ho)3 Ext3(C;) is 1-1. So &y i_ihy_1hy #0 in
Ext3%(Cz). This implies eyw1_yh,—1hg #0 in  Ext%?(C,,) = Exty ?(Cy,)®
(Ext%2"(S" =S¥ ) = 0).

(c) There is a short exact sequence

Jas

0— Exty> '(P}~ 1) = Z/2(esn - thy—1) = Exti® 1(Cy,)

(lh )s

kero, —0

where J, is Exty*  YZ2P}” 3)—> ExtZ* Y (P;™"). By (3),(5) of Proposition 5.7, dimy, of
Ext}l’zm_l( P =Exty* 3P is 2, dimg, of  Ext*NPrTY) is 1 and
Exty®  Y22P}" %y = 0. Thus dimy,(kerd,)=1 or 2. Let {y},...,y,} be a Z/2-base for
kerd, = Exty® "Y(Z*Pr73),1 <q<2; so yiho =0 in Ext3?(2*P;7%) for 1 <j<gq. Choose
y; € Extly*" ~1(Cy,) for each j such that (¢7),(y;) = »;. Then (c) shows that {ym-1_ 1 hp_1, V1,0 Yy}
is a Z/2-base for Ext*" ~(C;,). We claim

(d) {y1,---sVq} = {€1—1hpm_1,91,...,,} can be chosen such that y;h, =0 in Ext% ?'(Cy,) for
1<j<qg.



W.-H. Lin | Topology 40 (2001) 1259-1293 1293

To see this, suppose y; is an element in {y,...,y,} such that y;h, #0. Since
(q1).(yjho) = yjho =0, it follows from (a), (b) that y;h, must be epn-1_ih,_1hy. Let
yj =éey-1_1h,—1 +y;. Then y; also satisfies (q7),(y;)=0 and has y;hy =0. And
{1 1M1, V15 - »Vj»---» Y4} (With y; replaced by ¥;) is also a Z/2-base for Ext}*"~*(C;,). This
proves (d). In what follows, {&yn1— 1 hy—1, V1, ..., .} Will be a Z/2-base for Exty?"~'(C;,) with the
property in (d).

Let S" 1 I C;, be as in Proposition 5.3”. Since €,--:_; is dual to x,»-:_; and h,,_, is dual to
Sq*" " it follows that to prove Proposition 5.3” is equivalent to proving that f; is detected, in the
ASS for Cy,, by an element o€ Ext " ~*(C;,) of the form o = eyn-1_ 1 hy,, -y + Y 5—1 &;y; for some &;.

By Lemma 5.5, the composite S"~! g A Cy, is an odd multiple of the attaching map
st C;, for the top cell e” of C;, = Cj;, we". (6) of Proposition 5.7 and (b) imply that, in the ASS
for C;, = C;, ve", dy(eyn_1) = &ym1_1hy—1ho # 0. This in turn implies that $"~! 3 C;, is detec-
ted by e;»-1_ 1 hy,,—1ho # 01in the ASS for C;, as e,~_; corresponds to the cell e”. Since 21 is detected
by ho it follows that f; is detected by an element in Exty?* ~C;) of the form
ey thy—y + Y 3-1¢;y; as O f=1¢;y;)ho = 0. This proves Proposition 5.3".

This completes the proof of Proposition 5.3 and therefore Theorem 1.1.
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