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Abstract

The Stiefel manifolds <
����� �

are shown to be non-neutral for m*5, 2���#2)k"2l(
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1. Introduction

Let <
���
denote the Stiefel manifold of orthogonal k-frames in R�. Thus <

���
"

�(y
�
,2, y�

) � y
�
3R�, ��y

�
��"1, y

�
�y

�
for iOj� where �� �� is the usual Euclidean norm on R�. Each

(y
�
,2, y

�
) can be viewed as an n�k matrix. Note that <

���
"S��� and <

���
"O(n).

The orthogonal group O(k) acts on <
���
via the matrix multiplication

(y
�
,2, y

�
) ) g, g3O(k).

Thus each g3O(k) de"nes a self-map g( :<
���

P<
���
. Consider the homotopy class [g( ] in the

semi-group of homotopy classes of self-maps of <
���
. If g3SO(k), the rotation group, then [g( ]"1

since SO(k) contains the identity matrix and is path connected. The set �[g( ] � g3O(k)!SO(k)� also
consists of only one homotopy class sinceO(k)!SO(k) is the other path component ofO(k). Denote
this class by �. � contains the self-maps which change the sign of any column. It is clear that ��"1.
Following James [4], we say <

���
is neutral if �"1.

The neutrality problem on <
���
is

to determine, for what n and k,<
���
is neutral. (*)
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So far, the following are known.

(1) If n is even and k is odd then <
���
is neutral.

(2) If n!k is even then <
���
is non-neutral.

(3) <
�����

is neutral for all n*2.
(4) If n is odd and k is even then <

���
is non-neutral for n#1O2� and for (n, k)O(n, n!1).

(1) and (2) are not di$cult and are proved in [4]. A summary of these proofs is given in [7]. (3) is
also fairly easy and a proof of it is given in [7]. (4) is non-trivial. James proves it in [4] for the case
n)2k!1 and the cases n*2k#1 with k"2,4 or 8. The remaining cases for n*2k#1 are
proved in [7].
It remains to consider the problem (*) for <����� �

with k"2l(2�!2. For k"2, the problem
is connected to a problem in the homotopy theory of spheres. James proves in [4] that <

������
is

neutral if and only if the Whitehead product [n
����
,n
����
]3�

������
(S����) can be halved. In fact,

he proves this for all<
���
with n odd. Whether [n

����
,n
����
] can be halved is an important problem

in the homotopy theory of spheres. This problem is known as the strong Kervaire invariant
conjecture [2]. The conjecture is known true for m)6. The cases m"1,2, and 3 are trivial since
the corresponding [n

����
,n
����
] are zero. The case m"4 is due to Toda [11], the case m"5 is due

to Mahowald and Tangora [8] and the case m"6 is due to Mahowald (see [6]). These imply
<
������

is neutral for m)6. The conjecture for m*7 is presently unknown. Equivalently, the
neutrality problem on <

������
for m*7 is still open.

The problem (*) for <������
is a di$cult one as just described. It is conceivable that the problem

for <
����� ���l

is also di$cult for small k. The purpose of this paper is to show that one can give
a de"nite answer to the problem when k is large enough. The result is the following.

Theorem 1.1. For m*5, <
����� �

is non-neutral for 2���#2)k"2l(2�!2.

This solves approximately `a half a of the problem (*) on the remaining <����� �
for m*5. For

m"2,<
���
is neutral as remarked above. For m"3,<

���
(k"2,4,6) is known to be neutral since it

is an equivariant retract of <
�����

, see [4]. We conjecture Theorem 1.1 is also true for m"4. The
method to prove Theorem 1.1 for m*5 in this paper probably can be re"ned to cover the case
m"4 also.
The proof of Theorem 1.1 will be a contradiction proof. For 1)l(n let P�l denote the stunted
real projective space P�/Pl��. Assuming <

������
is neutral, for m, k as in Theorem 1.1, we will show

that there are space maps �P����
������

(
P <

�������
��
and �P����

����
��

P C
(
"<

�������
��

�
(
C�P����

������
with �H"0, gH

�
"0 in mod2 cohomology HI H( ) such that Sq����(x

������
)"��x

����
in HI H(C

��
)

where x
������

is a nonzero class in HI ������(<
�������

��
)LHI ������(C

��
) and ��x

����
is the gener-

ator of HI ����(��P����
����
)"Z/2LHI ����(C

��
). This is a contradiction to the fact that in HI H(X) of

any space X, Sq�x"0 if �x�(n. This contradiction proves <
������

is non-neutral.
In Section 2 we recall some basic facts about <

���
. In Section 3 we recall, from [7], some other

facts on <
���
and prove some more results that we will need. In Section 4 we show P�l�M S�"

P�l�S�/S�, for 2)l)n/2 and n)3l!3, is the co"ber of a space map P�
�l��

�
P P�l��P�l��l .

The construction of the space C
��
above will depend on this recognition of P�l�M S� as the co"ber

C
�
. The proof of Theorem 1.1 will be given in Section 5.
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All cohomology and homology of spaces in this paper have mod 2 coe$cients except in
Section 4 where integral cohomology will also be considered.

2. Some basic facts about the Stiefel manifolds <
���

In this section we recall from [4,10] some basic facts about <
���
. We need only consider k(n,

and from now on we assume this.
Let P� denote the n-dimensional real projective space. For each pair (n, k) of positive integers

with k(n there is a standard inclusion P
���

"P���/P����� �6 <
���
such that the pair (<

���
,P

���
) is

(2n!2k)-connected. These inclusions have the following compatibility properties:

(2.1)

where n'k'k�, � is the collapsing map P���/P�����PP���/P���	��, p is the map obtained by
taking the last k� vectors in each k-frame, 	 is the inclusion P���/P�����6P�/P����� and q is the
inclusion de"ned by q(y

�
,2, y�

)"(y
�
,2, y

�
, e

���
) where e

���
"(0,2,0, �

���
)3R���. The se-

quence

<
�� �

	
P <

���� ���



P <
�����

"S�

is a "bration. The reduced cohomologyHI H(P
���
) has �x

���
,2, x���

� as a Z/2-base where xl is the
nonzero class of HI l(P

���
)"Z/2. The mod2 Steenrod algebra A acts on HI H(P

���
) by

Sq�xl"�
l

j �xl��
. (2.2)

We refer to [10, Chapter IV] for the following.

Theorem 2.1. For each pair (n, k) of positive integers with k(n there is a canonical choice
of an A-submodule HM H(P

���
) of HI H(<

���
) which is A-isomorphic to HI H(P

���
). The generator of

HM l(P
���
)"Z/2 for n!k)l)n!1 is also denoted by xl . These classes are called cohomology

normal classes (of length one) inHI H(<
���
). They have the following properties, where i, q and p are as in

(2.1).

(1) HI H(<
���
) �

H

PHI H(P
���
) has iH(xl)"xl for n!k)l)n!1.

(2) HI H(<
�������

) 	
H

P HI H(<
���
) has qH(xl )"xl for n!k)l)n!1 and qH(x

�
)"0.

(3) HI H(<
���	
) 


H

P HI H(<
���
) has pH(xl )"xl for n!k�)l)n!1.
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(4) The cohomology algebraHH(<
���
) is generated multiplicatively by �xl � n!k)l)n!1� subject

to the relations

x�l"�
x
�l
, 2l)n!1,

0, 2l'n!1.

So �x
��
x
��

2x
��

� r*1, n!k)i
�
(i

�
(2(i

�
)n!1� is a Z/2-base for HI H(<

���
). The A-

module HH(<
���
) is determined by (2.2) and the Cartan formula.

We recall from [4] the following.

Theorem 2.2. P
���

is a stable retract of <
���
, that is, there is a stable map <

���
�

P P
���

such that the
composite of stable maps

P
���

�
P<

���
�

P P
���

is homotopic to the identity map on P
���
. Furthermore, r can be chosen so that HI H(P

���
) �

H

PHI H(<
���
)

maps HI H(P
���
) onto HM H(P

���
) isomorphically.

Let �3[<
���
,<

���
] be as de"ned in Section 1. It has the following properties.

� contains the self-maps which change the sign of any vector in

each k-frame. It also contains the self-map (y
�
,2, y�

,2, y�
,2, y�

)P

(y
�
,2, y

�
,2, y

�
,2, y

�
) for any i, j with 1)i(j)k (k*2).

(*)

The following fact is proved in [7].

�H:HH(<
���
)PHH(<

���
) is the identity map. (2.3)

A special case of the facts above is the following. For i with 1)i)k let p
�
:<

���
P<

���
"S��� be

the map p
�
(y

�
,2, y

�
,2, y

�
)"y

�
; so p

�
"p where p is as in (2.1).

For k*2, HI ���(<
���

"S���)"Z/2 

H
�

P HI ���(<
���
) maps the nonzero

class x
���

3HI ���(S���) to the class x
���

3HM ���(P
���
)LHI ���(<

���
)

for each i with 1)i)k.

(2.4)

This follows from Theorem 2.1(3), (*) and Eq. (2.3).

3. Some other facts on <
���

Let Z
�
"�1, g� act on <

���
(resp. S�) by letting g :<

���
P<

���
(resp. g : S�PS�) be the map which

changes the sign of the last vector in each k-frame (resp. the antipodal map e��P!e��). Consider
the resulting space <

���
�Z

�
S�. In this section we recall, from [7], the construction of a space map
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<
���

�Z
�
S� �

P <
�������

for n odd, k even and the behavior of the induced map �H in mod 2
cohomology. In addition, we will also show here that if <

���
is neutral then there is a space map

f :<
���

�S�P<
���

�Z
�
S� that induces a speci"c isomorphism f H:HH(<

���
�Z

�
S�)PHH(<

���
�S�).

The main conclusion of the section, which is based on these facts, is Lemma 3.6 of which we want to
make use to prove Theorem 1.1.
In this paragraph a topological space is meant a compact Hausdor! space. Let X be such
a space. We suppose X is a Z

�
-space. Thus if g is the generator of Z

�
then g :XPX is an

involution. The mapping torus of g :XPX is de"ned to be the quotient space

¹(g)"X�I/(x,0)&(g(x),1)

where I denotes the closed interval [0,1]. ¹(g) can be identi"ed with X�Z
�
S� as follows. Elements

of ¹(g) are denoted by 
x, t� and elements of X�Z
�
S� are denoted by [x, e��]. Then the map


x, t�P[x, e���] is a homeomorphism from ¹(g) onto X�Z
�
S� which is easy to see. Let > be

another Z
�
-space and f :XP> be an equivariant Z

�
-map. Then f induces a map fM :X�Z

�
S�P

>�Z
�
S� given by

fM ([x, e��])"[ f (x), e��].

Suppose 1



Kg :XPX and let H :X�IPX be such a homotopy. Then H induces a map
HM :X�Z

�
S�PX given by

HM ([x, e���])"H(x, t) for 0)t)1. (3.1)

Finally we note that the map j :XPX�Z
�
S� given by

j(x)"[x, e���] (3.2)

is an embedding. Also, if H : 1



Kg then the composite X �
PX�Z

�
S� �M

PX is the identity map.
For n'k'0 there is a commutative diagram

(3.3)

where p, q are as in (2.1), p
�
(y

�
,2, y�

, y
���
)"y

�
and q

�
is induced by R�6R��R�"R���. Let

Z
�
"�1, g� act on <

���
(resp. <

���� ���
) by letting g be the self-map which changes the sign of the

last vector in each k-frame (resp. the second last vector in each (k#1)-frame) and act on S��� and
S� by letting g be the antipodal map. Then (3.3) is commutative diagram of Z

�
-maps. This results in

a commutative diagram of induced maps:

(3.4)
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Now assume n is odd and k is even; so n#1 is even and k#1 is odd. Then <
���� ���

and
S�"<

���� �
are neutral (by (1) in Section 1). So there are homotopies H

�
: 1K

g :<
���� ���

�IP<
���� ���

and H : 1Kg : S��IPS�. It is shown in [7] that H
�
and H can be

chosen so that they are compatible with respect to the map p
�
in (3.3), that is, there is a com-

mutative diagram

This results in a commutative diagram

(3.5)

where HM
�
,HM are de"ned from H

�
,H as in (3.1). Composing (3.5) with (3.4) we get a commutative

diagram

(3.6)

where �"HM
�
q� ,�

�
"HM q�

�
. Note that q"�j, q

�
"�

�
j
�
where j :<

���
P<

���
�Z

�
S�,

j
�
:S���PS����Z

�
S� are as given by (3.2).

We stress that we get � and �
�
only under the assumption that n#1 is even and k#1 is odd.

The map p� is de"ned for all n'k'0.
For arbitrary n and k with n'k'0 there is a "bration

<
���

�
P <

���
�Z

�
S� �

P S�

where �([y, e��])"e���. Also, we have a map of "ber spaces

(3.7)
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The following is proved in [7].

Lemma 3.1. (1) For any (n,k) with n'k'0, jH :HH(<
���

�Z
�
S�)PHH(<

���
) is onto, and there is

a splitting map 
 :HH(<
���
)PHH(<

���
�Z

�
S�), which is an algebra homomorphism over Z/2, that is,

jH
"1
�

H
���� �
.

(2) For any such 
, the map � :HH(<
���
)�HH(S�)PHH(<

���
�Z

�
S�) given by

�(x�y)"
(x) ) �H(y)

is an algebra isomorphism.
(3) If we denote by 


�
and �

�
the maps for the case <

���
"S���, then we can choose 
 ( for k*2)

and 

�
so that p� H


�
"
pH; thus �(pH�1)"p� H�

�
.

We "x a 
 and a 

�
such that p� H


�
"
pH as in Lemma 3.1(3). Simply denote the class


(x) ) �H(y)3HH(<
���

�Z
�
S�) by 
(x)y. Since the Z/2-module HH(S�) is generated by �1,�� where

���"1, basis elements inHH(<
���

�Z
�
S�) are either 
(x)"
(x) ) 1 or 
(x)� where x is a basis element

in HH(<
���
) as in Theorem 2.1(4). Here, and also in later sections, if y3Hl(>) then �y� denotes the

number l.
For n odd and k even, consider the map � :<

���
�Z

�
S�P<

���� ���
in (3.6).

Proposition 3.2. �H :H�(<
���� ���

)PH�(<
���

�Z
�
S�) maps x

�
to 
(x

���
)� where x

�
3H�(<

���� ���
)

(resp. x
���

3H���(<
���
)) is the normal class x

�
3HM �(P

���� ���
)LHI �(<

���� ���
) (resp. the normal

class x
���

3HM ���(P
���
)LH���(<

���
)) as in Theorem 2.1.

To prove Proposition 3.2 we need the following fact proved in [7].

Lemma 3.3. Let q�
�
: S����Z

�
S�PS��Z

�
S� be as in (3.4). Then,

q� H
�
O0 :H�(S��Z

�
S�)"Z/2PH�(S����Z

�
S�)"Z/2.

Proof of Proposition 3.2. Consider the commutative diagram

as in (3.6). Recall, from Theorem 2.1, that the generator of H�(S�"P
�����

"<
�����

)"Z/2 (resp.
H���(S���"P

���
"<

���
)"Z/2) is also denoted by x

�
(resp. x

���
). By (2.4), pH

�
(x

�
)"x

�
and

pH(x
���
)"x

���
where p is as in (3.3). Also recall that 
 and 


�
are chosen to satisfy p� H


�
"
pH.

�
�
above is the composite S����Z

�
S� 	� �

P S��Z
�
S� �M

P S� where HM is as in (3.5). The composite

S� �
P S��Z

�
S� �M

P S� is the identity map on S�. So jHHM H(x
�
)"x

�
and this implies HM H(x

�
) is the

generator of H�(S��Z
�
S�)"Z/2 which by Lemma 3.3, is mapped by q� H

�
to the generator of
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H�(S����Z
�
S�)"Z/2 which, by Lemma 3.1, is the class 


�
(x

���
)�. So �H

�
(x

�
)"q� H

�
HM H(x

�
)"



�
(x

���
)�. Then

�H(x
�
)"�HpH

�
(x

�
)"p� H�H

�
(x

�
)"p� H(


�
(x

���
)�)

"(p� H

�
(x

���
))�

"
pH(x
���
)�

"
(x
���
)�.

This proves Proposition 3.2.
We remark that Proposition 3.2 here, if imposed with the additional condition n*2k#1, is
Proposition 3.13 of [7]. What we have shown above for Proposition 3.2 is that Proposition 3.13
of [7] actually is also true without the condition n*2k#1 if x

�
3H�(<

���� ���
) and

x
���

3H���(<
���
) are chosen to be the normal classes as in Proposition 3.2.

Note that the splitting map 
 :HH(<
���
)PHH(<

���
�Z

�
S�) in Proposition 3.2 is chosen to satisfy

p� H

�
"
pH for some splitting map 


�
:HH(S���)PHH(S����Z

�
S�) and Proposition 3.2 is stated

and proved for such splitting maps. We will show below that Proposition 3.2 is also true for any
splittingmap 
� not necessarily satisfying p� H


�
"
�pH for some 


�
. This will be relevant in the main

conclusion Lemma 3.6 that follows.

Corollary 3.4. Still assume n is odd and k is even. Let 
� :HH(<
���
)PHH(<

���
�Z

�
S�) be any splitting

map to jH as in Lemma 3.1(1). Then �H :H�(<
���� ���

)PH�(<
���

�Z
�
S�) maps x

�
to 
�(x

���
)� where

x
�
, x

���
are as in Proposition 3.2.

Proof. Let 
 :HH(<
���
)PHH(<

���
�Z

�
S�) be a splitting map as in Proposition 3.2 so that

�H(x
�
)"
(x

���
)�. It su$ces to show 
(x

���
)�"
�(x

���
)�. Since both the composites

H���(<
���
) �	PH���(<

���
�Z

�
S�) �

H

P H���(<
���
)

H���(<
���
) �
PH���(<

���
�Z

�
S�) �

H

P H���(<
���
)

are equal to the identity map it follows that 
�(x
���
)!
(x

���
)3 ker jH. ker jH is the Z/2-sub-

module �y� � y3H���(<
���
)� by Lemma 3.1(2). So 
�(x

���
)"
(x

���
)#y� for some y. Then


�(x
���
)�"
(x

���
)�#y��"
(x

���
)� since ��"0. This proves Corollary 3.4. �

In the remainder of this section we discuss some results on <
���
under the assumption that<

���
is

neutral. We also assume n!k*2 so that <
���
is simply connected.

Since <
���
is neutral there is a homotopy H : 1Kg :<

���
�IP<

���
. Consider the induced map

HM :<
���

�Z
�
S�P<

���
as in (3.1). Since the composite <

���
�

P <
���

�Z
�
S� �M

P <
���
is 1

����
, the induced

map HM H :HH(<
���
)PHH(<

���
�Z

�
S�) is a splitting map to jH. Let 
�"HM H.

Consider the product space <
���

�S�. We have HH(<
���

�S�)"HH(<
���
)�HH(S�). Thus basis

elements inHH(<
���

�S�) are either x"x�1 or x�"x�� where x is a basis element inHH(<
���
) as

in Theorem 2.1(4). Note that, since <
���
is simply connected, H�(<

���
�S�)�Z

�
generated by
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�"1��. Let S� ��
P <

���
�S�, <

���
��

P <
���

�S� be the maps de"ned by i
�
(e��)"(*, e��),

i
�
(y)"(y, e���) where * is a base point in <���

. If <
���

�S� 	
P S� is a map such that qi

�
: S�PS� is a

degree 1 map then qH :H�(S�)PH�(<
���

�S�) maps the generator � of H�(S�)"Z/2 to �. This is
clear. Note that qi

�
K0 :<

���
PS� since <

���
is simply connected.

Lemma 3.5. With the assumptions and notations above, there is a space map f :<
���

�S�P<
���

�Z
�
S�

such that f H :HH(<
���

�Z
�
S�)PHH(<

���
�S�) has f H(
�(x))"x and f H(
�(x)�)"x�.

Proof. Let q
�
:<

���
�IP<

���
�S� and q

�
:<

���
�IP<

���
�Z

�
S� be the quotient maps de"ned by

q
�
(y, t)"(y, e����) and q

�
(y, t)"[y, e���]. De"ne a map f � :<

���
�IP<

���
�I by

f �(y, t)"�
(y, 2t), 0)t)�

�
,

(H(y, 2t!1),1), �
�
)t)1.

f � induces a map f :<
���

�S�P<
���

�Z
�
S� such that the square

is commutative. It is easy to see that the composite <
���

��
P <

���
�S� �

P <
���

�Z
�
S� �M

P <
���
is the

identity map. The composite S� ��
P <

���
�S� �

P<
���

�Z
�
S� �M

P <
���
is homotopically trivial since

<
���
is simply connected. These imply f H(HM H(x))"f H(
�(x))"x for x3HH(<

���
). Let

<
���

�Z
�
S� �

P S� be as in (3.7). By Lemma 3.1(2), �H(�)"
�(1)��"1��"1 ) �"�. The composite

S� ��
P<

���
�S� �

P <
���

�Z
�
S� �

PS� is the map

�
e���Pe����, 0)t)1,

e���Pe���, 1)t)2,

and so is a degree one map. Then f H(�)"f H(�H(�))"�. So f H(
�(x)�)"f H(
�(x)) f H(�)"x�. This
proves Lemma 3.5.
Now assume further that n is odd and k is even so that we can consider the map

� :<
���

�Z
�
S�P<

���� ���
as in (3.6). Let f :<

���
�S�P<

���
�Z

�
S� be the map in Lemma 3.5.

Consider the composite

� :P
���

�S�����
P <

���
�S� �

P <
���

�Z
�
S� �

P <
���� ���

(3.8)

where i is as in (2.1). Note thatH���(P
���

�S�)"Z/2(x
���
),Hl(P

���
�S�)"Z/2(xl )�Z/2(xl��

�) for
n!k#1)l)n!1 and H�(P

���
�S�)"Z/2(x

���
�). Here if �y

�
, y

�
,2, y

�
� is a Z/2-base for

Hl(X)"Z/2�2

�

�Z/2

W.-H. Lin / Topology 40 (2001) 1259}1293 1267



then we write Hl(X)"Z/2(y
�
)�2�Z/2(y

�
). Consider the set of normal classes

�xl � n!k)l)n� in HH(<
���� ���

). Then �H(xl)"�lxl for l"n!k, �H(xl)"�lxl#�lxl��
�

for n!k#1)l)n!1 and �H(x
�
)"�lx���

� for l"n where �l , �l are either 0 or 1.

Lemma 3.6. (i) �H(x
���
)"x

���
, �H(xl)"xl#�lxl��

� for n!k#1)l)n!1 and �H(x
�
)"x

���
�,

that is, �l"1 for n!k)l)n!1 and �
�
"1.

(ii) If n and k satisfy n!k*3 and 2k!1'n then �H(xl )"xl , that is, �l"0 for
n!k#1)l)n!1.

To prove Lemma 3.6 we recall a notion due to James [4]. For a space X, a pair of cohomology
classes x, y3HI H(X) are said to be evenly connected if Sq�x"y for some even t*0. This nonsym-
metric relation generates an equivalent relation onHI H(X); we describe x, y are evenly related if they
are equivalent in this sense. James observes the following in [4]. Recall that n is odd and k is even.

All the normal classes x
�
with s odd and n!k(s(n are evenly

related in HI H(<
���� ���

).
(3.9)

This follows from the following relations (by (2.2)) when de"ned:

Sq�x
����

"x
����
, Sq�x

����
"x

���

,

Sq�x
���


"x
����
, Sq�x

����
"x

����
. (3.10)

We also need the following which is easy to see from (2.2).

(i) For t even and s odd with n!k(s(n, Sq�x
�
O0 in HI H(<

���� ���
)

if and only if Sq�x
���

O0 in HI H(P
���
).

(ii) Sq�xl"0 for l even and Sq�xl��
"xl for n!k#1)l"2q(n in

HI H(<
���� ���

) and also in HI H(P
���
).

(3.11)

Proof of Lemma 3.6. First we prove (i). Consider the diagram
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where i
�
(y)"(y, e���) as in Lemma 3.5 and i

�
"i

�
�P

���
. It is clear that iH

�
(xl)"xl and

iH
�
(xl��

�)"0. From the construction of f in the proof of Lemma 3.5 we see fi
�
is the embedding

j :<
���

P<
���

�Z
�
S� as in (3.2), and recall that the composite <

���
�

P <
���

�Z
�
S� �

P <
���� ���

is the

map<
���

	
P <

���� ���
in (2.1). So for n!k)l)n!1, iHiH

�
f H�H(xl)"iHjH�H(xl)"iHqH(xl)"xl .

Then

xl"iHiH
�
f H�H(xl)"iH

�
(i�id)Hf H�H(xl)"iH

�
�H(xl)

"iH
�
(�lxl#�lxl��

�)

"�lxl

for n!k)l)n!1 where �
���
is set to be zero. Thus �l"1 for n!k)l)n!1. This proves

the "rst two conclusions of Lemma 3.6(i).

By Theorem 2.1(1), iH(x
���
)"x

���
. By Lemma 3.5, f H(
�(x

���
)�)"x

���
�. By Corollary 3.4,

�H(x
�
)"
�(x

���
)�. Then

�H(x
�
)"(i�id)HfH�H(x

�
)"(i�id )Hf H(
�(x

���
)�)"(i�id )H(x

���
�)

"iH(x
���
)�"x

���
�.

This proves Lemma 3.6(i).
Next we prove Lemma 3.6(ii). First we show

x
���
is evenly related to some x

�	
with s� odd and n!k(s�(n. (*)

If n!k"8i#3 or 8i#7 then Sq�x
���

"x
�����

by (3.10), and n!k#2 is odd with
n!k#2(n (since 2k!1'n*k#3 implies k'3). If n!k"8i#5 then Sq�x

���
"x

�����
again by (3.10), and n!k#4 is odd with n!k#4(k!1#4"k#3)n (as 2k!1'n). If
n!k"8i#1 then i*1 since n!k*3, and if we let n!k"2
��q#2
#1 then q*0, p*3.
Note that k'2
 since 2k!1'n. We have Sq�
x

���
"x

�����
 (by (2.2)). n!k#2
 is also odd
and has n!k#2
(n since k'2
. This proves (*).
For odd s and s

�
with n!k(s(s

�
(n suppose Sq�x

�
"x

��
in HI H(<

���� ���
) for some even t.

Then Sq�x
�
"x

��
and Sq�x

���
"x

����
in HI H(P

���
) by (3.11)(i). From Lemma 3.6(i) we have

x
��

#�
��
x
����

�"�H(x
��
)"�H(Sq�x

�
)"Sq��H(x

�
)

"Sq�(x
�
#�

�
x
���

�)

"Sq�x
�
#�

�
Sq�(x

���
)�

"x
��

#�
�
x
����

�. (**)

So �
�
"�

��
. It follows, then, from the `evenly relateda equivalence relation and from (3.9), that all

�
�
with s odd and n!k(s(n are equal. By (*), x���

is evenly related to some x
�	
with s� odd and

n!k(s�(n, say Sq�	x
���

"x
�	
. By making a similar calculation as (**) we see �

�	
"0 since

�H(x
���
)"x

���
by Lemma 3.6(i). Thus �

�
"0 for all odd s with n!k(s(n. This proves Lemma

3.6(ii) for xl with l odd and n!k(l(n.
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If l is even and n!k#1)l)n!1 then l!1 is odd and n!k)l!1(n. We have just
shown above that �H(xl��

)"xl��
. By (3.11)(ii), Sq�xl��

"xl in HI H(<���� ���
) and also in

HI H(P
���
). Then �H(xl )"�H(Sq�xl��

)"Sq��H(xl��
)"Sq�xl��

"xl . This proves Lemma 3.6(ii).
This completes the proof of Lemma 3.6.
From the proof of Lemma 3.6 above we see the map � :P

���
�S�P<

������
in (3.8) has the

following property.

The composite P
���

��
P P

���
�S� �

P <
���� ���

is the composite P
���

�
P

P
���� ���

�
P <

���� ���
where i

�
(y)"(y, e���) and 	 is the inclusion map

P
���

"P���
���

6P�
���

"P
���� ���

.

(3.12)

Note that the map i
�
here is the map i

�
in the proof of Lemma 3.6 above.

4. P�l�M S� as a co5ber

For a space X with base point * we use i�
, i
�
, p

�
to denote the inclusions X ��

P X�S�,

S� ��
PX�S� and the projection X�S� 
�

P X de"ned by i
�
(x)"(x, e���), i

�
(e��)"(*, e��) and

p
�
(x, e��)"x. So p

�
i
�
"*.X and S� are considered as subspaces ofX�S� via these inclusions. The

quotient space X�S�/S� is denoted by X�M S�. Elements in X�M S� are denoted by [x, e��]. Let
X�S� 	

PX�M S� be the quotient map. So q(x, e��)"[x, e��]. The compositeX ��
PX�S� 	

PX�M S�
is denoted by iM

�
. De"ne p�

�
:X�M S�PX by p�

�
[x, e��]"x. Since p

�
i
�
"*, p� � is well de"ned. Let

q�
�
:X�M S�PX�S�"�X be the quotient map de"ned by q�

�
([x, e��])"x�e��. Then

(i) X �M �
P X�M S� 
� �

P X is the identity map 1


,

(ii) X �M
P X�M S� 	� �

P �X is a cofibration.
(4.1)

These are clear. We have HH(X�S�)"HH(X)�HH(S�). Thus basis elements of HH(X�S�) are
either x"x�1 or x�"x�� where x is a basis element in HH(X) and � is the generator of
H�(S�)"Z/2. HH(X�M S�) 	

H

PHH(X�S�) is monomorphic. Elements in HH(X�M S�) will be identi-
"ed with the corresponding elements in HH(X�S�) via qH. Thus basis elements of HH(X�M S�) are
either of the form x"x�1 for x3HH(X) or of the form x� for x3HI H(X). The induced maps
HH(X�M S�) �

M H
�

P HH(X) and HH(X) 

� H
�

PHH(X�M S�) satisfy iM H
�
(x)"x, iM H

�
(x�)"0, p� H

�
(x)"x. The in-

duced map HI H(�X) 	
� H
�

PHI H(X�M S�) has q� H
�
(�x)"x� where �x3HI H(�X) is the image of x3HI H(X)

under the suspension isomorphism HI H(X)
�

PHI H(�X). These are also clear.
We specialize to X"P�l"P

���� ����l , the stunted projective space P�/Pl��. In this section we
use the notation P�l for P���� ����l . We will only consider P�l for n*l*2.
It is well known that �(P�l�S�)KS���P�l���P�l . Clearly this implies �(P�l�M S�)K

�P�l���P�l .
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Lemma 4.1. For n)2l!2, P�l�M S� is already the wedge of P�l and �P�l , that is, there is a homotopy
equivalence P�l�M S� �

P P�l��P�l . And we can choose an h such that P�l ��P P�l�M S� �
P P�l��P�l is the

obvious inclusion map, the composite P�l�M S� �
P P�l��P�l

	�
P �P�l is homotopic to P�l�M S� 	� �

P �P�l and

the composite P�l�M S� �
P P�l��P�l

	�
P P�l is homotopic to P�l�M S� 
� �P P�l where q� � , p� � are as in (4.1)

and q
�
, i"1,2, are projection maps.

This follows from the fact �(P�l�M S�)K�P�l���P�l and the fact that a (k!1)-connected "nite
C=-complex >">�, with k*2,2k!2*m, can be homotopically desuspended uniquely.
Note that if n*2l then P�l�M S� is not the wedge of P�l and �P�l as xl ) xl�"x

�l
�O0 in

HH(P�l�M S�).
Consider the co"bration P�l

�M �
P P�l�M S� 	� �

P �P�l as in (ii) of (4.1) for X"P�l . If n)2l!2 then

P�l�M S� is the co"ber of any homotopically trivial map P�l �
P P�l as shown by Lemma 4.1 so that

there is a co"ber sequence

P�l �
P P�l

�M �
P P�l�M S� 	� �

P �P�l .

If n*2l then it is unlikely that P�l�M S� is the co"ber of any self-map of P�l . This is a part of what we
will discuss next. Indeed, there are two main themes in this section. The "rst one is to show that, for
2)l)n/2 and n)3l!3,P�l�M S� is the co"ber of a map P�

�l��
�

P P�l��P�l��l so that there is a
co"ber sequence

P�
�l��

�
P P�l��P�l��l

�
P P�l�M S� �

P �P�
�l��

where j, when restricted to P�l , is P�l
�M �

P P�l�M S� and � is the composite

P�l�M S� 	� �
P �P�l



P �P�

�l��

with p the collapsing map. Precise description of the result will be given in Proposition 4.7. The

second one is to assume a map P�l�M S� ��
P <

��������l having certain properties with respect to the

co"ber sequence above from which we want to construct a space map �P�
�l��

�
P C

(
"

<
��������l�(

C�P�l��l , where �"�
�
(j��P�l��l ), such that HI H(C

(
)"HI H(<

��������l)�HI H
(��P�l��l ) �

H

PHI H(�P�
�l��
) maps all of HI H(<

��������l) to zero for *)n#1 except the normal
class x

���
on which gH(x

���
)"�x

�
. Details are given in Assumption 4.8 and Proposition 4.10.

These will be relevant to our proof of Theorem 1.1 in Section 5.
Before discussing these two main themes we give some preliminaries on maps from co"brations
that we need.
All spaces to be considered are pointed spaces with base points denoted by * and have the
homotopy types of C=-complexes. All maps between two such spaces will be base-point-
preserving maps. If f, g :XP> are two maps such that �!

�
� then the homotopyH is understood to

be a base-point- preserving homotopy.
For a space X the cone CX on X will be the reduced cone de"ned to be the quotient space

CX"X�I/(X�1�*�I) where I is the closed interval [0, 1]. The reduced suspension �X is the
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quotient space CX/X�0. Elements in CX or in �X are denoted by [x, t]. For a map X �
P>, its

co"ber C
�
">�

�
CX is the quotient space >�CX/f (x)&[x,0] where `�a is the disjoint union.

The image of [x, t]3CX in C
�
under the quotient map CXPC

�
is also denoted by [x, t]. We take

[*, t] to be the base point for CX or �X or >�
�
CX. Let >�

�
CX 	

P �X be the quotient map
de"ned by q(>)"*, q([x, t])"[x, t] for x3X. Call q the natural pinching map. Then

X �
P> �

P >�
�
CX 	

P �XKC
�

is a co"bration sequence where i is the inclusion map.
Let >�

�
CX be as above. Given two maps >�

�
CX �	

P Z and �X �
P Z. De"ne a map

g�#h :>�
�
CXPZ by

(g�#h)(y)"g�(y) for y3>L>�
�
CX,

(g�#h)([x, t])"�
g�([x, 2t]) 0)t)�

�
h([x, 2t!1]) �

�
)t)1

for x3X. (*)

De5nition 4.2. Given two maps g
�
, g

�
:>�

�
CXPZ. If there is a map �X �

P Z such that
g
�
Kg

�
#g :>�

�
CXPZ then call g a homotopy di!erence of g

�
and g

�
and we denote this

relation by gKg
�
!g

�
.

Lemma 4.3 below is straightforward. (1) and (2) in Lemma 4.4 are well-known elementary facts.

Lemma 4.3. (1) Let >�
�
CX �	

P Z, �X �
P Z be as in (*) and let Z

	
P= be a map from Z to another

space =. Then
(i) (g�#h) �>"g� �>, (ii) �(g�#h)"�g�#�h.
(2) Let

be a map of coxber sequences. If g
�
, g

�
:>��

�	
CXPZ and g :�XPZ have the relation g

�
Kg

�
#g

then g
�
�M Kg

�
�M #g.

Lemma 4.4. (1) (g�#h)H"(g�)H#qHhH :HI H(Z,R)PHI H(>�
�
CX,R) for any coezcient ring R.

(2) Given two maps >�
�
CX �� ���&� Z. Let g�

�
"g

�
�>, i"0,1. If g�

�
Kg�

�
:>PZ then there is a map

�X �
P Z such that gKg

�
!g

�
.
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Let H :>�IPZ be a homotopy from g�
�
to g�

�
. We recall the construction of a homotopy

di!erence gKg
�
!g

�
for Lemma 4.4(2) with respect to H as follows.

g([x, t])"�
g
�
([x,!3t#1]) 0)t)�

�
,

H( f (x),3t!1) �
�
)t)�

�
, x3X.

g
�
([x,3t!2]) �

�
)t)1

(2)�

Next we will consider a special situation which is somewhat complicated. Again, given a map
X �

P>. We suppose>">
�
�>

�
. Let>

�
�>

�

�

P >
�
, for i"1,2, be the projection maps. Assume

there is a map >�
�
CX"(>

�
�>

�
)�

�
CX �

P >
�
such that the square

is commutative. Note that r is a retraction and r�>
�
"*. We further suppose given two maps

="(>
�
�>

�
)�

�
CX ��

P Z and >
�

(�
P Z such that �

�
�>

�
K�

�
:>

�
PZ. Let = ��

P Z be the
composite

="(>
�
�>

�
)�

�
CX �

P>
�

(�
P Z.

Clearly, �
�
�>

�
K�

�
�>

�
"�

�
:>

�
PZ. Let �"�

�
"�

�
�>

�
:>

�
PZ and considerC

(
"Z�

(
C>

�
.

Let= �M �
P C

(
, for i"1,2, be the maps de"ned as follows. �M

�
is the composite

="(>
�
�>

�
)�

�
CX ��

P Z ��
P C

(
"Z�

(
C>

�

where j
�
is the inclusion map. �M

�
is the composite

="(>
�
�>

�
)�

�
CX �

P>
�

(�
P Z ��

P C
(
.

It is clear that �M
�
�>

�
K�M

�
�>

�
, �M

�
�>

�
K0 and �M

�
�>

�
"*. So �M

�
�>K�M

�
�> : >PC

(
. Let

>
�
�I �

P Z be a homotopy from �
�

�>
�
to �

�
. Then a homotopy (>">

�
�>

�
)�I �M

P C
(
"

Z�
(
C>

�
from �M

�
�> to �M

�
�> can be given by

(a) HM (y, t)"�
H(y, t) y3>

�
[y, t] y3>

�

0)t)1.

By Lemma 4.4(2) there is a homotopy di!erence gK�M
�
!�M

�
:�XPC

(
.
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Lemma 4.5. Under the above assumptions, if we choose the homotopy diwerence gK�M
�
!�M

�
to be

the map, as constructed in (2)�, with respect to the homotopy HM in (a), then the composite

�X �
P C

(
"Z�

(
C>

�
	

P �>
�

is homotopic to the composite

�X
��
P �>"�>

�
��>

�

�
�
P �>

�
.

Proof. It is easy to check that the homotopy di!erence g in (2)� of Lemma 4.4 for g
�
"�M

�
, g

�
"�M

�
with respect to the homotopy HM in (a) is given by

g([x, t])"�
�

�
([x,!3t#1]), 0)t)�

�
,

H( f (x),3t!1) for f (x)3>
�

[ f (x),3t!1] for f (x)3>
�
�, �

�
)t)�

�
, x3X.

�
�
(r([x,3t!2])), �

�
)t)1.

So qg :�X �
P C

(
"Z�

(
C>

�
	

P �>
�
is given by

qg([x, t])"�*
for 0)t)�

�
and �

�
)t)1

[p
�
f (x),3t!1] for �

�
)t)�

�
.

Let G :�X�IP�>
�
be the homotopy de"ned by

G([x, t], s)"�*
for 0)t)s/3 and (3!s)/3)t)1

[p
�
f (x),����

����
] for s/3)t)(3!s)/3.

Then �(p
�
f )"�p

�
�fK

�
qg. This proves Lemma 4.5.

We proceed to discuss the two main themes. In these discussions we assume

(b) n and l satisfy 2)l)n/2 and n)3l!3.

By Lemma 4.1, P�l��l �M S�KP�l��l ��P�l��l . We will identify P�l��l �M S� with P�l��l ��P�l��l

via a homotopy equivalence h having the properties in Lemma 4.1. Thus P�l��l
�M �

P P�l��l �M S�"

P�l��l ��P�l��l is the obvious inclusion map.
P�l��l �M S� is a subcomplex of P�l�M S� via the embedding P�l��l �M S���

M ��
P P�l�M S� where 	 is the

standard inclusion map as in (2.1). Consider the subcomplex

(c) P�l�M *�P�l��l �M S� �6 P�l�M S�

where P�l�M *"P�l is the subcomplex of P�l�M S� via the embedding P�l
�M �

P P�l�M S�.

Lemma 4.6. P�l�M *�P�l��l �M S�KP�l��P�l��l .
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Proof. Let >"P�l�M *�P�l��l �M S�. Let P�l
��

P>,P�l��l �M S� ��
P >,�P�l��l

�

P P�l��l �M S�"

P�l��l ��P�l��l be the obvious inclusion maps. Then the composite

P�l��P�l��l
����� �
&&� >�> �

P>"P�l�M *�P�l��l �M S�

is easily seen to be a homotopy equivalence where F is the folding map. This proves Lemma
4.6. �

Indentify P�l�M *�P�l��l �M S� with P�l��P�l��l via the homotopy equivalence in the proof of
Lemma 4.6 above. Then the inclusion map j in (c) can be considered as an inclusion map

P�l��P�l��l
�

P P�l�M S�. It has the following properties.

(d) Let p�
�
:P�l�M S�PP�l be as in (i) of (4.1). Then

(i) p�
�
j ��P�l��l "*,

(ii) ( j �P�l)"iM
�
:P�lPP�l�M S�, and so the composite P�l

���
�
l

P P�l�M S� 
� �
P P�l is the identity map.

Furthermore, if we let P�l�M S� �
P �P�

�l��
be the composite

P�l�M S� 	� �
P �P�l

�

P �P�

�l��

with q�
�
as in (ii) of (4.1) and � as in (2.1), then

P�l��P�l��l
�

P P�l�M S� �
P �P�

�l��

is a co"bration. This is clear. The following (e) and (f) are also clear (for (f) with R"Z note that
2l!1 is an odd integer).
(e) The diagram

is homotopy commutative where p
�
is the projection map and 	 is the inclusion map.

(f ) There is a short exact sequence of cohomology groups

0PHI H(�P�
�l��
,R) �

H

PHI H(P�l�M S�,R) �
H

P HI H(P�l��P�l��l ,R)P0

where R is either Z or Z/2.
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Proposition 4.7. There is a map P�
�l��

�
P P�l��P�l��l such that

(i) the sequence P�
�l��

�
P P�l��P�l��l

�
P P�l�M S� �

P �P�
�l��

is a coxber sequence,

and

(ii) the coxber of the composite P�
�l��

�
P P�l��P�l��l


�
P �P�l��l has the homotopy type of �P�l

where p
�
is as in (e).

Proof. Let F be the homotopy theoretical "ber of � so that we have a "ber sequence

��P�
�l��

�M
P F ��

P P�l�M S� �
P �P�

�l��
. (*)

Since �jK0, there is a map P�l��P�l��l
��

P F such that j
�
j
�
Kj. We may assume j"j

�
j
�
. We may

also assume that F is a C=-complex and that j
�
is cellular. From the integral Serre spectral

sequence of the "bration F ��
P P�l�M S� �

P �P�
�l��
, the short exact sequence (f) for R"Z and the

condition n)3l!3 (in (b)), it is not di$cult to see that P�l��P�l��l can be considered as
a subcomplex of F via j

�
and that (F,P�l��P�l��l ) is (3l!2)-connected, that is, the C=-complex

F is of the form

F"(P�l��P�l��l )�e�l���2.

Recall, by James construction [5,12], that ��P�
�l��

has the homotopy type of a C=-complex
JP�

�l��
. We will identify ��P�

�l��
with JP�

�l��
via a suitable homotopy equivalence. Then

P�
�l��

is a subcomplex of ��P�
�l��

via the canonical embedding P�
�l��

�
P ��P�

�l��
and

��P�
�l��

"P�
�l��

�e�l���2. We may assume that the map fM in (*) is cellular. Since n)3l!3,
the restriction map

P�
�l��

�M � �
�
�l��

&&� F"(P�l��P�l��l )�e�l���2

can be consider as the composite P�
�l��

�
P P�l��P�l��l

��
P F for some f. It is clear that

HI H(P�l��P�l��l ,Z) �
H

PHI H(P�
�l��
,Z) is zero.

Let > and � denote the spaces P�l��P�l��l and ��P�
�l��

respectively. Since the co"ber C
�
of

> �
P P�l�M S� is �P�

�l��
, the co"ber C

��
of F">�e�l���2

��
P P�l�M S� has the homotopy type of

a C=-complex of the form �P�
�l��

�e�l�2 (noting again that n)3l!3). Since j
�
fMK0, there is

a map C
�M

�
P P�l�M S� such that the square in the diagram
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is commutative where i
�
is the inclusion map. This commutative square de"nes a map of

co"brations

where j
�
, j
�
are inclusion maps. The map hM is a homotopy equivalence through dimension

3l!1*n#2 (see [9, pp. 153]). Consider the diagram of maps of co"ber sequences

where i
�
, j
�
are inclusion maps. Let h

�
"hjM

�
:C

�
PP�l�M S� and hM �"hM �i :�P�

�l��
PC

��
. Then we

have a map of co"brations

Since HI H(>,Z)�
H��&� HI H(P�

�l��
,Z), there is a short exact sequence of integral cohomology groups

0QHI H(>,Z) �
H
�

Q HI H(C
�
,Z) �

H
�

Q HI H(�P�
�l��
,Z)Q0.

Note that j
�
j
�
"j: >PP�l�M S� and that, by (f), HI H(P�l�M S�,Z) �

H��
H
� �

H
�

&&�HI H(>,Z) is onto with ker
jH�HI H(�P�l��

,Z). Also note that hM
�
is a homotopy equivalence through dimension 3l!1*n#2

too, and this implies

HI H(C
��

K�P�
�l��

�e�l�2,Z) �
M H
�

P HI H(�P�
�l��
,Z)
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is iso for *)3l!1. From these we deduce that HI H(P�l�M S�,Z) �
H
�

PHI H(C
�
,Z) is iso for all *. So

C
�

��
P P�l�M S� is a homotopy equivalence. This proves the "rst conclusion (i) of Proposition 4.7.
To prove (ii), consider the diagram

described as follows. The map from the "rst row to the second row is a map of co"ber
sequences de"ned by the commutative square (1). We recall from (e) that the square in
the diagram

is homotopy commutative. Since jfK0 it follows that �	 f
�
"�	p

�
fKq�

�
jfK0. So there is a map

C
��

��
P �P�l that makes square (4) homotopy commutative. Thus 	

�
j
�
K�	. We claim

there is a choice of 	
�
with 	

�
j
�
K�	 such that

	
�
p�
�
Kq�

�
: P�l�M S�P�P�l .

(**)

To see this, take any 	
�
with 	

�
j
�
K�	. From squares (2), (4) and (5) we see

	
�
p�
�
�>"	

�
p�
�
jK�	p

�
Kq�

�
j"q�

�
�>.

Since P�l�M S�KC
�
">�

�
CP�

�l��
, by (2) of Lemma 4.4, this implies that there is a map

�P�
�l��

�
P �P�l such that gKq�

�
!	

�
p�
�
, that is, q�

�
K	

�
p�
�
#g. Let 	�

�
"	

�
#g: C

��
P�P�l . By

Lemma 4.3(2), 	�
�
p�
�
K	

�
p�
�
#gKq�

�
. By (i) of Lemma 4.3(1)

	�
�
j
�
"	�

�
��P�l��l "( 	

�
#g)��P�l��l "	

�
��P�l��l "	

�
j
�
K�	.
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This proves (**). Let C��

��
P �P�l be a map with the properties in (**). Consider the following

diagram of the induced maps in integral cohomology of squares (2)}(4):

The "rst row is short exact by (f) and so is the second row since HI H(�P�l��l ,Z) �
H
���

H



H
���&&&&�

HI H(P�
�l��
,Z). We want to show 	H

�
is iso. By (**), p� H�	H

�
"q� H

�
: HI H(�P�l ,Z)PHI H(P�l�M S�,Z). Since

q� H
�
is monomorphic (recall �(P�l�M S�)K�P�l���P�l with ��P�l coming from �q�

�
: ��P�lP

�(P�l�M S�)) it follows that 	H
�
is monomorphic. Recall P�l�M S� �

P �P�
�l��

is the composite

P�l�M S� 	� �
P �P�l

�

P �P�

�l��
. So im�HLimq� H

�
. Note that �	H is onto (since 2l!2 is even) and p� H

�
is

monomorphic (since pH
�
is monomorphic). By chasing diagram it is easy to see from these that 	H

�
is

onto. Thus 	H
�
is an isomorphism. So C

��

��
P �P�l is a homotopy equivalence. This proves

Proposition 4.7(ii). This completes the proof of Proposition 4.7.
Next we discuss the second theme of this section which is Proposition 4.10 that follows. We will
consider the Stiefel manifold <

��������l where l and n satisfy the conditions in (b). Let
P���l "P

��������l
�

P <
��������l and P�l

�
P P���l be the inclusion maps as in (2.1). To discuss

Proposition 4.10 we make the following assumption. We recall that HI H(X) means HI H(X,Z/2).

Assumption 4.8. There is a space map P�l�M S� ��
P<

��������l having the following two properties.

(i) HI H(<
��������l) �

H
�

PHI H(P�l�M S�) has �H
�
(x

���
)"x

�
� and �H

�
(x

�
)"x

�
for l)j)n.

(ii) The composite P�l
�M �

P P�l�M S� ��
P <

��������l is homotopic to the composite P�l
�

P

P�l
�

P P���l
�

P <
��������l for some map h with hH"the identity map on HI H(P�l).

Note. The map �
�
in Assumption 4.8 will be connected to the map � in (3.8) later in Section 5 in

the following content. Assume <
������

is neutral for 2���#2)k"2j(2�!2 (m*5). Then by
(3.8) there is a space map P

������
�S�"P����

������
�S� �

P <
������

having the properties in Lemma

3.6. We will derive from this that there is a space map P����
������

�M S� ��
P <

�������
��
having the

properties in Assumption 4.8 (Proposition 5.1). Thus n in Assumption 4.8 is n#1 in (3.8) in this
content.
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Let P�l��P�l��l
�

P P�l�M S� be as in Proposition 4.7. Let �P�l��l
(

P <
��������l be the composite

�P�l��l
�M �����

�l��
l

&&&� P�l�M S� ��
P <

��������l . By Lemma 4.6 and (f) for R"Z/2 the induced map

HI H(P�l�M S�) �
M H

PHI H(�P�l��l ) has jMH(x
�
)"0 for l)j)n and jMH(x

�
�)"0 (since 2l)n). So

HI H(<
��������l)(

H��&�HI H(�P�l��l ). Thus

HI H(C
(
"<

��������l�(
C�P�l��l )�HI H(<

��������l)�HI H(��P�l��l )

as a Z/2-module. We describe such a Z/2-module decomposition more precisely as follows.

Convention 4.9. SupposeX �
P> is a map such that f H"0 inmod2 cohomology. Consider the coxber

sequence X �
P> �

P C
�
">�

�
CX 	

P �X. Then we have a short exact sequence of A-modules

0QHI H(>) �
H

QHI H(C
�
) 	

H

Q HI H(�X)Q0.

Indentify HI H(�X) with imqHLHI H(C
�
). Let < be a Z/2-submodule of HI H(C

�
) which is mapped

isomorphically onto HI H(>) under iH. Then HI (C
�
)�<�HI H(X) as a Z/2-module. We will identify

< with HI H(>) so that there is a Z/2-module decomposition HI H(C
�
)�HI H(>)�HI H(�X). The names of

classes in HI H(>) will be the names of the corresponding classes in <LHI H(C
�
).

Proposition 4.10. Under Assumption 4.8 there is a space map �P�
�l��

�
P C

(
"<

��������l�(
C�P�l��l having the following properties.

(i) The coxber of the composite

�P�
�l��

�
P C

(
"<

��������l�(
C�P�l��l

	
P ��P�l��l

has the homotopy type of ��P�l where q is the natural pinching map.
(ii) HI H(C

(
)�HI H(<

��������l)�HI H(��P�l��l ) �
H

PHI H(�P�
�l��
) has gH(x

���
)"�x

�
, gH(x

�
)"0 for

l)j)n on the normal classes x
�
3HI H(<

��������l) and gH(HI H(��P�l��l ))"0.

Proof. We shall use Lemma 4.5 and Proposition 4.7 to prove the proposition. For this purpose we
describe relevant data as those assumed in Lemma 4.5 as follows.
By Proposition 4.7(i) there is a co"ber sequence

X"P�
�l��

�
P>"P�l��P�l��l

�
P P�l�M S�K>�

�
CX �

P �X"�P�
�l��

(*)

where � is equivalent to the natural pinchingmap>�
�
CXP�X. The map j has the two properties

in (d) and these are equivalent to (d)� below.
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(d)� The square

is commutative with j�P�l"iM
�
where p

�
is the projection, iM

�
and p�

�
are as in (i) of (4.1).

Let P�l�M S� ��
P <

��������l"Z be as assumed in Assumption 4.8. By Assumption 4.8(ii) the

composite P�l
�M �

P P�l�M S� ��
P<

��������l is homotopic to the composite P�l
�

P P�l
�

P P���l
�

P

<
��������l with hH" the identity map on HI H(P�l). Let �

�
"i	h: P�lP<��������l"Z. So

�
�
�P�l"�

�
iM
�
K�

�
: P�lPZ. Let P�l�M S� �M �

P C
(
be the composite

P�l�M S� ��
P <

��������l
��

P C
(
"<

��������l�(
C�P�l��l

where j
�
is the inclusion map, and let P�l�M S� �M �

P C
(
be the composite

P�l�M S���
� �&� P�l
(�����&&� <

��������l
��

P C
(
.

With these data, from Lemma 4.5, we conclude that there is a homotopy di!erence
gK�M

�
!�M

�
: �P�

�l��
PC

(
such that the composite

�P�
�l��

�
P C

(
"<

��������l�(
C�P�l��l

	
P ��P�l��l

is homotopic to the composite

�P�
�l��

��
P �P�l���P�l��l "�(>"P�l��P�l��l )

�
�
P ��P�l��l .

By Proposition 4.7(ii), the co"ber of the latter map has the homotopy type of ��P�l . So C	�
K��P�l .

This proves Proposition 4.10(i).
To see Proposition 4.10(ii) we recall that gK�M

�
!�M

�
means �M

�
K�M

�
#g. By Lemma 4.4(1)

�M H
�
"(�M

�
#g)H"�M H

�
#�HgH from HI H(C

(
)�HI H(<

��������l)�HI H(��P�l��l ) to HI H(P�l�M S�) where
� is as in (*). From the constructions of �M

�
and �M

�
we see �M H

�
(x

�
)"�H

�
(x

�
), i"1,2, for the

normal classes x
�
3HI H(<

��������l) with l)j)n#1 where �
�
is the composite

P�l�M S���
� �&� P�l
(�����&&� <

��������l . By Assumption 4.8(i), �M H�(x���
)"�H

�
(x

���
)"x

�
� and �M H

�
(x

�
)"

�H
�
(x

�
)"x

�
for l)j)n. Since hH(x

�
)"x

�
for l)j)n we see

�M H
�
(x

�
)"�H

�
(x

�
)"p� H

�
hH	HiH(x

�
)"x

�
for l)j)n

and

�M H
�
(x

���
)"�H

�
(x

���
)"p� H

�
hH	HiH(x

���
)"p� H

�
hH	H(x

���
)"0
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as 	H(x
���
)"0. gH(x

�
) are evaluated as follows. For j"n#1 we have

�HgH(x
���
)"�M H

�
(x

���
)!�M H

�
(x

���
)"0!x

�
�"x

�
�O0

and this implies gH(x
���
)O0 and therefore must be �x

�
. For l)j)n we have

�HgH(x
�
)"�M H

�
(x

�
)!�M H

�
(x

�
)"x

�
!x

�
"0

and this implies gH(x
�
)"0 since �H is monomorphic by (f) for R"Z/2. The conclusion

gH(HI H(��P�l��l ))"0 follows from Proposition 4.10(i). This proves Proposition 4.10(ii). This com-
pletes the proof of Proposition 4.10.

5. Proof of Theorem 1.1

We want to show for Theorem 1.1 that <
������

is non-neutral for m*5 and 2���#2)k"
2l(2�!2. We will prove this by contradiction. From now on we assume <

������
is neutral with

m*5 and 2���#2)k"2l(2�!2. All the results that we are going to state and prove
hereafter are consequences of this assumption.We will show that this would lead to a contradiction
as that described in Section 1.
As in Theorem 2.1, for general n and k, the notations xl will denote both the normal classes in

HH(<
���
) and the generators in HH(P

���
) for n!k)l)n!1. We will freely interchangeably use

the notation P���
���
and the notation P

���
to denote the same space which is the stunted projective

space P���/P�����. The maps P
���

"P���
���

�
P P

���� ���
"P�

���
,P

���
"P���

���



P P
���	

"P���
���	

for

n'k'k� and P
���� ���

�
P<

���� ���
will be as in (2.1) and the maps P

���
��

P P
���

�S�,

P
���

�M �
P P

���
�M S� will be as in Section 4. In this section the inclusion map P

���
"P���

���
P

P
�������

"P���
���
for n(m will also be denoted by 	 unless speci"ed otherwise.

Since<
������

is neutral, 2�!1 is odd and k is even, from (3.8), Lemma 3.6 and (3.12), we have the
following.

There is a space map P
������

�S� �
P <

������
having the following properties.

(i) The induced map HI H(<
������

) �
H

P HI H(P
������

�S�) has �H(xl)"xl

for 2�!1!k)l)2�!2 and �H(x
����
)"x

����
�.

(ii) The composite P
������

��
P P

������
�S� �

P<
������

is the composite

P
������

�
P P

������
�

P <
������

.

(5.1)

Here we note the that the conditions n!k*3 and 2k!1'n in Lemma 3.6(ii) are satis"ed for
(n, k)"(2�!1, k) since 2���#2)k"2l)2�!4.
From (5.1) we will construct a map

P����
������

�M S�"P
���������

��
�M S� ��

P <
�������

��

having the properties in Assumption 4.8. The result is precisely stated as follows.

1282 W.-H. Lin / Topology 40 (2001) 1259}1293



Proposition 5.1. There is a space map P
���������

��
�M S� ��

P <
�������

��
having the following properties.

(i) The induced map HI H(<
�������

��
) �

H
�

PHI H(P
���������

��
�M S�) has �H

�
(x

����
)"x

����
� and �H

�
(xl )"

xl for 2���!3)l)2�!2.
(ii) The composite P

���������
��

�M �
P P

���������
��

�M S� ��
P <

�������
��

is homotopic to the composite

P
���������

��
�

P P
���������

��
�

P P
�������

��
�

P <
�������

��

for some map h with hH"identity map on HI H(P
���������

��
).

The construction of the map �
�
in Proposition 5.1 from the map � in (5.1) will be discussed

separately for the case k"2���#2 and the case k*2���#4, and is given in the next several
paragraphs.

If k"2���#2 then P
���������

��
�S�"P

������
�S� �

P <
������

"<
�������

��
clearly factorizes

through the quotient map P
���������

��
�S� 	

P P
���������

��
�M S� yielding a map

P
���������

��
�M S� ��

P<
�������

��
having the property in (i) of Proposition 5.1 by (i) of (5.1) and also

the property in (ii) of Proposition 5.1 with h"identity map by (ii) of (5.1).
Next consider the case 2���#4)k"2l(2�!2. Note that k)2�!4. Then

k#1*2���#5'2���#3 and 2)k�"k!2���!2)2���!6. Consider the composite

�I :P
��������	

�S�����&� P
������

�S� �
P<

������



P <
�������

��

where p is the map obtained by taking the last 2���#3 vectors in each (k#1)-frame.

Lemma 5.2. �I K0:P
��������	

�S�P<
�������

��
.

Proof. P
��������	

�S� is a "nite complex with

P
��������	

�S�"(P
��������	

�S�)������"(P
��������	

�S�)�������e������

as P
��������	

"P������
������

. Recall that (<
�������

��
,P

�������
��
) is (2�!6)-connected with P

�������
��
the

subspace via the embedding P
�������

��
�P <

�������
��
. Let P

��������	
�S� 	

P S������ be the pinching

map. Let P������
������

�
P P����

������
"P

�������
��
be the inclusion map. Since 2���!3(2�!6 (as

m*5) and P����
������

is (2���!4)-connected it follows that the composite

�I :P
��������	

�S�����&� P
������

�S� �
P <

������



P <
�������

��

is homotopic to the composite

P
��������	

�S� 	
P S������ �I

P P������
������

�
P P����

������
�

P<
�������

��

for some iI . To prove �I K0 is to prove ijiIqK0. It su$ces to prove iIK0.
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Note that P������
������

is the Moore space M"S�������
�n
e������. It is well known that

iIK0 :S������PM if and only if the induced map HI ������(M)"Z/2 �I
H

PHI ������(S������)"Z/2 is
zero. The generator of HI ������(M"P������

������
)"Z/2 is x

������
. Let n be the generator of

HI ������(S������)"Z/2. Let iIH(x
������

)"�n where �"0 or 1. To prove iIK0 is to prove �"0. It is
clear that qH(n)"x

������
�O0. We have jHiH(x

������
)"x

������
, pH(x

������
)"x

������
(by The-

orem 2.1). By (i) of (5.1), �H(x
������

)"x
������

. By dimensional reasons, 	H(x
������

)"0 (since
P
��������	

"P������
������

); so (	�id)H(x
������

)"0. Then

qHiIHjHiH(x
������

)"qHiIH(x
������

)"qH(�n)"�qH(n)"�x
������

�

which is equal to

(	�id)H�HpH(x
������

)"(	�id)H(x
������

)"0.

So �"0. This proves iIK0 and therefore �I K0. This completes the proof of Lemma 5.2.
Let q

�
be the composite P

������
�S� 
���&� P

���������
��

�S� 	
P P

���������
��

�M S� where q is the
quotient map. It is easy to see that

P
��������	

�S�����&� P
������

�S� 	�
P P

���������
��

�M S�

is a co"bration. From Lemma 5.2 we see the composite

P
������

�S� �
P <

������



P <
�������

��

factorizes through q
�
yielding a map P

���������
��

�M S� ��
P<

�������
��
such that

is homotopy commutative.
It is clear that

(b) HI H(P
���������

��
�M S�) 	

H
�

P HI H(P
������

�S�) has qH
�
(xl)"xl , qH�

(xl�)"xl� for 2���!3)
l)2�!2; thus qH

�
is monomorphic.

Since pH(xl)"xl for 2���!3)l)2�!1, from (a), (b) and (i) of (5.1) for �H, we see �
�
has the

property in (i) of Proposition 5.1.
Next we show �

�
also has the property in (ii) of Proposition 5.1. Consider the co"ber sequence

(c) P
��������	

�
P P

������



P P
���������

��
�

P �P
��������	

.
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Note that �H"0 in mod2 cohomology. Consider the diagrams

(we recall that we use the same notations 	,�, i for the maps among various P
���
and <

���
). Squares

(3) and (4) are commutative by (2.1). Square (2) is homotopy commutative by (a). Square (1) is also
commutative since it is the commutative diagram

noting that q
�
"q(��id). Thus the diagrams in (d) are homotopy commutative. By (ii) of (5.1), the

composites �i
�
and i	 in the "rst columns of the two diagrams in (d) are equal. Thus the two maps

from P
������

to<
�������

��
in diagrams (d) are homotopic and both factorize through �, one via �

�
iM
�

and the other via i	. From the co"ber sequence (c) and from (2) of Lemma 4.4 we see there is
a homotopy di!erence gK�

�
iM
�
!i	: �P

��������	
P<

�������
��
which, by dimensional reasons is

homotopic to the composite

�P������
��������

"�P
��������	

��
P P

���������
��

"P����
������

�
P P

�������
��

�
P <

�������
��

for some g� . Let 1 be the identity map on P
���������

��
and let

h"1#g� :P
���������

��
PP

���������
��
. Recall gK�

�
iM
�
!i	 means �

�
iM
�
Ki	#g. Then

�
�
iM
�
Ki	#gKi	#i	g� "i	1#i	g� "i	(1#g� ) (by (ii) of Lemma 4.3(1))

"i	h.

By (1) of Lemma 4.4, hH"(1#g� )H"1H#�Hg� H:HI H(P
���������

��
)PHI H(P

���������
��
). Since �H"0

it follows that hH"1H. Thus �
�
also has property (ii) of Proposition 5.1. This completes the proof

of Proposition 5.1.
We recall again that the properties in Proposition 5.1 are those in Assumption 4.8 for

P�l�M S�"P����
������

�M S� ��
P <

��������l"<
�������

��
. The conditions 2)l)n/2 and n)3l!3

assumed in Section 4 for the results of Propositions 4.7 and 4.10 are satis"ed for l"2���!3 and
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n"2�!2 sincem*5. Thus from Propositions 5.1 and 4.10 we infer the following in which we use
g
�
for g in Proposition 4.10.

There exist space maps �P����
������

(
P <

�������
��
with �H"0 in mod2 cohomology,

and �P����
����

��
P C

(
having the following properties.

(5.2)

(i) The co"ber of the composite

�P����
����

��
P C

(
"<

�������
��

�
(
C�P����

������
	

P ��P����
������

has the homotopy type of ��P����
������

where q is the pinching map.

(ii) HI H(C
(
)�HI H(<

�������
��
)�HI H(��P����

������
) �

H
�

PHI H(�P����
����
) has gH

�
(x

����
)"�x

����
, gH

�
(x

�
)"0

for 2���!3)j)2�!2 on the normal classes x
�
3HI H(<

�������
��
) and gH

�
(HI H(��P����

������
))

"0.

Here we use Convention 4.9 for the Z/2-module decomposition in (ii) of (5.2). This convention
will also be used for all similar Z/2-module decompositions hereafter.

Notation. Still assume m*5. In what follows the numbers 2�!i for i"0,1,2,3,4,7,8 and 2���!i
for i"0,1,3 will be considered. To simplify notations we use n to denote 2�!1 and l to denote
2���!3. So these numbers are n!i for i"!1,0,1,2,3,6,7 and l#i for i"0,2,3 respectively. In
some instances we will use the original notations for some of these numbers, especially
2���,2���!1 and 2�!3 in Proposition 5.3 and its equivalent statements given in Propositions
5.3�, 5.3�, and 5.3��.
Let g

�
"g

�
��P���

���
"�P����

����
. (5.2) implies the following.

(i) The cofiber of the composite

�P���
���

��
P C

(
"<

���� ����l�(
C�P���l

	
P ��P���l

has the homotopy type of ��P���l .

(ii) HI H(C
(
)�HI H(<

���� ����l )�HI H(��P���l ) �
H
���&�HI H(�P���

���
).

(5.2)�

(i) of (5.2)� is clear. (ii) of (5.2)� follows from (ii) of (5.2) since gH
�
(x

�
)"0 for all the normal classes

x
�
3HI H(<

���� ����l) and these classes are the generators for the cohomology algebra
HH(<

���� ����l).
Consider the space C

��
"C

(
�

��
C�P���

���
. (ii) of (5.2)� shows that

HI H(C
��
)�HI H(C

(
)�HI H(��P���

���
)�HI H(<

���� ����l )�HI H(��P���l )�HI H(��P���
���
)

as a Z/2-module

Proposition 5.3. In HI H(C
��
),Sq����(x

������
)"��x

����
where x

������
is the normal class in

HI ������(<
���� ����l) and ��x

����
is the generator of HI ����(��P���

���
)"Z/2.
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This conclusion derived from the assumption that <
������

is neutral for 2���#2)
k"2i(2�!2 with m*5 is contradictory to the fact that, in the mod 2 cohomology of any space
X, Sq�x"0 if �x�(j. Thus the proof of Theorem 1.1 will be completed if we can show Proposi-
tion 5.3.

Remark. Sq����(x
������

)"��x
����

in Proposition 5.3 is well de"ned. This will be explained from
the following general situation. Let X �

P > with f H"0 be as in Convention 4.9 so that there is
a short exact sequence of A-modules

0QHI H(>) �
H

QHI H(C
�
) 	

H

Q HI H(�X)Q0.

Given y3HI �(>) with Sq�y"0 inHI ���(>). By our convention any element in iH��(y) is also denoted
by y. Thus y3HI �(C

�
) is de"ned with indeterminancyHI �(�X). IfHI �(X)"0 or HI ���(�X)"0 which

implies HI �(�X) �	
�

PHI ���(�X) is zero then Sq�y is a well-de"ned element in HI ���(C
�
). In the case

Proposition 5.3 we have to apply this twice. First note Sq����(x
������

)3HI ����(C
(
) is well-de"ned

and is zero. For g
�
, the indeterminancyHI ������(��P���

���
) is zero. So Sq����(x

������
)3HI ����(C

��
) is

well de"ned. This Remark also applies to Propositions 5.3�, 5.3� and 5.3�� later.

We shall prove a stable version equivalent to Proposition 5.3.
For the remainder of this section all spaces and maps between them will be in the stable category

S. In particular, the maps �, g
�
, g

�
, q in (5.2) and (5.2)�, will be considered as maps in S when

stabilized. In the following we introduce notions and notations for certain maps that we will need.

De5nition 5.4. Given three stable maps Z �
P>,X �

P Z and = �
P C

�
"Z�

�
CX. The canonical

induced map C
�
"Z�

�
CX �	

P C
��

">�
��
CX is de"ned by

�
f �(z)"f (z), z3Z,

f �([x, t])"[x, t], x3X.

The iterated canonical induced map

C
�
"C

�
�

�
C=
�	�	

P C
�	�

"C
��

�
�	�
C=

will be denoted by f �

By Theorem 2.2 there is a stable retraction map <
���� ����l

�
P P

���� ����l"P�l . Let

�P���l
(�
P P�l be the composite �P���l

(
P <

���� ����l
�

P P�l where � is as in (5.2). Then �H
�
"0 in

mod 2 cohomology as well. Consider the canonical induced map

C
(
"<

���� ����l�(
C�P���l

�	
P C

(�
"P�l�(�

C����l .
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Let �P���
���

�� �
P C

(�
be the composite �P���

���
��

P C
(

�	
P C

(�
. From (5.2) we see the co"ber of the

composite �P���
���

�� �
P C

(�
"P�l�(�

C�P���l
	�

P ��P���l has the homotopy type of ��P���l where
q
�
is the pinching map. We will identify C

	��� �
with ��P���l via a suitable homotopy equivalence.

For i"1,2 let g�
�
"g�

�
��P�����

���
. By the identi"cation C

���� �
"��P���l and from (5.2) we have the

following.

(i) For i"0,1,2 the cofiber of the composite

�P�����
���

�� �
P C

(�
"P�l�(�

C�P���l
	�

P ��P���l

is ��P�����l .

(ii) HI H(C
(�
)�HI H(P�l)�HI H(��P���l ) �

� H
�

P HI H(�P���
���
) has g� H

�
(x

�
)"�x

���
,

g� H
�
(x

�
)"0 for l)j)n!1 on HI H(P�l ) and g� H� (HI H(��P���l ))"0.

(iii) HI H(C
(�
)�

� H
� ��
P HI H(�P�����

���
) for i"1,2.

(5.2)�

Consider C
�� �

"C
(�

�
�� �
C�P���

���
. (iii) of (5.2)� for i"1 shows that

HI H(C
�� �
)�HI H(C

(�
)�HI H(��P���

���
)�HI H(P�l )�HI H(��P���l )�HI H(��P���

���
)

as a Z/2-module. It is clear that Proposition 5.3 is equivalent to:

Proposition 5.3�. In HI H(C
�� �
),Sq����(x

������
)"��x

����
where x

������
is the generator of

HI ������(P�l)"Z/2 and ��x
����

is the generator of HI ����(��P���
���
)"Z/2.

We will give two variants of Proposition 5.3�.

Let P���
���

�
P P���

���
and P���

���



P P���
���

"S����
�n
e��� be the inclusion map and the collapsing

map respectively as usual. We will use 	
�
,	

�
,	

�
,	

�
, j and �

�
to denote the inclusion maps

P���l PP�l ,P���
���

PP���
���
,P���

���
PP���

���
,P���l PP���l ,S���PS����

�n
e� and the collapsing map

P���
���

PS��� respectively. So g�
�
"g�

�
�	

�
and g�

�
"g�

�
�	

�
where g�

�
, i"0,1,2, are as in (5.2)�.

Consider the diagram

where the map from the second row to the third row is a map of co"brations de"ned by the
commutative square (2). Square (1) also commutative by de"nition. Let S��� ��

P C
�� �
be the
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composite f j. From (iii) of (5.2)� for i"2 and the isomorphism HI �(S����
�n
e�)"

Z/2
�
H
P

"
HI �(�P���

���
)"Z/2 we have the following.

(i) HI H(C
�� �
)�HI H(C

(�
)�HI H(��P���

���
)�HI H(P�l)�HI H(��P���l )�

HI H(��P���
���
) �

H

PHI H(S����
�n
e�) has f H(x

�
)O0.

(ii) HI H(C
�� �
)�

H
���&�HI H(S���).

(5.3)

(ii) of (5.3) showsHI H(C
��

"C
�� �

�
��
e�)�HI H(C

�� �
)�HI H(S�) as aZ/2-module. Let n be the generator of

HI �(S�)"Z/2. Since g�
�
"g�

�
�	

�
and HI ���(S���)"Z/2

�
H�
P

"
HI ���(�P���

���
)"Z/2, from the com-

posite of squares (1) and (3) above we see Proposition 5.3� is equivalent to:

Proposition 5.3�. In HI (C
��
),Sq����(x

������
)"n3HI ����(S����)"HI ����(S�)"Z/2LHI ����(C

��
)

where x
������

is the generator of HI ������(P�l )"Z/2LHI ������(C
��
).

We will formulate Proposition 5.3� in terms of the (n!1)-skeleton of C
�� �
.

Recall the map �P���l
(�
P P�l in (5.2)�. By dimensional reasons, �

�
is the composite

�P���l
(�
P P���l

��
P P�l for some �

�
. Clearly �H

�
"0 in mod 2 cohomology too. Consider the

canonical induced map

C
(�

"P���l �
(�
C�P���l

�	�
P C

(�
"P�l�(�

C�P���l .

ThenC
(�
is the (n!1)-skeleton ofC

(�
via the embedding 	�

�
andC

(�
"C

(�
�e�where the cell e� is

the top cell of P�l . By dimensional reasons again, the map �P���
���

�� �
P C

(�
is the composite

�P���
���

��
�
�

P C
(�

�	�
P C

(�
for some g� �

�
. Consider the iterated canonical induced map

C
��
�
�
"C

(�
�

��
�
�
C�P���

���
��
�

P C
�� �

"C
(�

�
�� �
C�P���

���
.

Then C
��
�
�
is the (n!1)-skeleton of C

�� �
via the embedding 	�

�
and C

�� �
"C

��
�
�
�e� where the cell e� is

the top cell of P�l which is also the top cell ofC(�
. Let S��� �

P P���l be the attaching map for the top
cell of P�l . Then the composite



�
:S��� �

P P���l 6C
(�

6C
��
�
�

is the attaching map for the top cell of C
�� �
so that there is a co"bration sequence

S��� ��
P C

��
�
�

��
�

P C
�� �

�
P S�

where � is the pinching map. Note that HI �(C
�� �
)�Z/2 �H

P

"
HI �(S�)"Z/2. In fact, HI H(C

�� �
)�

HI H(C
��
�
�
)�HI H(S�) as an A-module since HI H(P�l )�HI H(P���l )�HI H(S�) as an A-module as n"2�!1.

By dimensional reasons, S��� ��
P C

�� �
in Proposition 5.3� is the composite S��� ��

P C
��
�
�

��
�

P C
�� �
for
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some f
�
. f
�
also has f H

�
"0 in mod 2 cohomology. So

HI H(C
��

"C
��
�
�
�

��
e�)�HI H(C

��
�
�
)�HI H(S�)

�HI H(C
(�
)�HI H(��P���

���
)�HI H(S�)

�HI H(P���l )�HI H(��P���l )�HI H(��P���
���
)�HI H(S�)

as a Z/2-module. It is clear that Proposition 5.3� is equivalent to:

Proposition 5.3��. In HI H(C
��
),Sq����(x

������
)"n3HI ����(S�)"Z/2LHI ����(C

��
) where x

������
is

the generator of HI ������(P���l )"Z/2LHI ������(C
��
).

The map f
�
in Proposition 5.3��� has the following property.

Lemma 5.5. The composite S��� �n
P S��� ��

P C
��
�
�
is an odd multiple of the attaching map 


�
for the top

cell of C
�� �

"C
��
�
�
�e�.

Proof. Consider the diagram

described as follows. The portion consisting of squares (1), (2) and (3) is a map of co"ber sequences
de"ned by the commutative square (1) (recall f

�
"f j) where �

�
is the pinching map. ���(3) is the

desuspension of (3). Since f H,�H
�
and �H are isomorphisms in dimension n (for f H, this follows from (i)

of (5.3)) it follows that deg h is odd. So deg(���h) is odd. This proves Lemma 5.5.
We shall prove Proposition 5.3��� by looking at the mod 2 Adams spectral sequence for ��

H
(C

��
�
�
)

and ��
H
(C

�� �
) using Lemma 5.5 and also Lemma 5.6 below. To describe Lemma 5.6 consider the

commutative diagram

where q
�
, q

�
are pinching maps. By (i) of (5.2)��, C

	��� �
"��P���l . So C

	���
�
�
"��P���l . Consider the

canonical induced map C
��
�
�

	
�
�

P C
	���

�
�
"��P���l . Let P���l

��
P C

��
�
�
be the inclusion map.

1290 W.-H. Lin / Topology 40 (2001) 1259}1293



Lemma 5.6. There is a short exact sequence of A-modules

0QHI H(P���l ) �
H
�

Q HI (C
��
�
�
)
	

�
� �H

Q HI H(��P���l )Q0.

Proof. From dimZ��
of the Z/2-module HI H(C

��
�
�
)�HI H(P���l )�HI H(��P���l )�HI H(��P���

���
) we see

jH
�
is onto and (q�

�
)H is 1!1. �

For a space or a spectrumX we write Ext���
�
(X) to denote Ext���

�
(HI H(X),Z/2) which is the E

�
-term

of the mod 2 Adams spectral sequence for the stable homotopy groups
�
��
H
(X), to be abbreviated as

`the ASS the Xa. Ext�����
�
(S�)"Ext���

�
(S�)"Ext���

�
(Z/2,Z/2) will simply be denoted by Ext���

�
. Recall

that ExtH�H
�
(X) is a right ExtH�H

�
-module for any X. Note that Ext���

�
(P�l)"Ext���

�
(P���l )�Ext���

�
(S�)

and Ext���
�
(C

�� �
)"Ext���

�
(C

��
�
�
)�Ext���

�
(S�) sinceHI H(P�l ) (resp. HI (C�� �

)) is isomorphic to HI H(P���l )�HI H
(S�) (resp. HI H(C

�P �
)�HI H(S�)) as an A-module.

To prove Proposition 5.3�� we need only the knowledge of Ext���
��
�
(P���l ), for i"0,1,3, s"0,1,2

and certain t(s). These Ext groups are calculated in [3], but not explicitly stated there. In order to
describe these groups letHI

H
(P�

�
) be the reduced mod 2 homology groups of P�

�
, 1)b(a. Let e

�
be

the generator of HI
�
(P�

�
)"Z/2 for b)k)a and set e

�
"0 if k'a or k(b. HI H(P�

�
) is a right

A-module by

e
�
Sq�" �

���
�
k!j

j �e���

which is obtained by dualizing (2.2). If e
�
is a primitive element, that is, if e

�
Sq�"0 for all j'0, then

let e�
�
denote the corresponding class in Ext��H

�
(P�

�
). The following is easy to see (recall

n"2�!1, l"2���!3).

�e�
������

,e�
������

� is a Z/2-base for Ext��H
�
(P���l ), i"1,3, and

�e�
������

,e�
������

,e�
����

� is a Z/2-base for Ext��H
�
(P�l).

(5.4)

Let h
�
3Ext����

�
be the class corresponding to the generator Sq��

3A. Recall [1] that �h
�
� j*0� is

a Z/2-base for Ext��H
�
. Since ExtH�H

�
(P�

�
) is a right ExtH�H

�
-module, for any �3Ext��H

�
(P�

�
) we may

consider �h
�
3Ext����H

�
(P�

�
) and �h

�
h
�
3Ext����H

�
(P�

�
).

The following result is proved in [3] with (1) through (5) implied by the calculations there. Recall
n"2��� and l"2���!3 with m*5.

Proposition 5.7.

(1) For i"0,1, Ext������
�

(P���l )�Z/2, generated by e�
������

h
���
.

(2) Ext������
�

(P���l )"0.
(3) Ext������

�
(P���l )�Z/2�Z/2, generated by e�

������
h
���

and e
���


h
�
with e�

������
h
���

h
�
"0,

e
���


h
�
h
�
"0 in Ext������

�
(P���l ).

(4) For i"0,1, Ext�� ��

�
(P���l )�Z/2, generated by e�

������
h
���

h
�
.

(5) Ext�� ����
�

(P���l )�Z/2, generated by e�
������

h
���

h
�
.

(6) In the ASS for P�l , d�
(e�

����
)"e�

������
h
���

h
�
O0.
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We are not going to describe here the element e
���


h
�
in (3) of Propostion 5.7. It su$ces to note

that dimZ��
of Ext������

�
(P���l ) is 2 and that Ext������

�
(P���l )h

�
"0LExt������

�
(P���l ).

Consider the induced homomorphisms Ext���
�
(P���l ) ��H

P Ext���
�
(C

�P �
) and Ext���

�
(P�l ) �

M
�H

P Ext���
�
(C

�� �
) of

the inclusion maps P���l
��

P C
�P �
and P�l

�M �
P C

�� �
respectively. For �3Ext���

�
(P���l ) (resp. Ext���

�
(P�l )) its

image in Ext���
�
(C

�O �
) (resp. Ext���

�
(C

�� �
)) under j

�H
(resp. jM

�H
) is also denoted by �. In particular, there

are elements

e�
������

h
���

3Ext������
�

(C
�P �
),Ext������

�
(C

�� �
)

e�
������

h
���

h
�
3Ext�� ��

�
(C

�P �
),Ext�� ��

�
(C

�� �
)

and

e�
����

3Ext������
�

(C
�� �
)"(Ext������

�
(C

�P �
)"0)�Ext������

�
(S�"S����).

e�
����

3Ext������
�

(C
�� �
) is the class corresponding to the cell e� of C

�� �
"C

�P �
�e�.

The short exact sequence in Lemma 5.6 gives rise to a long exact sequence of Ext groups

(a) 2PExt�����
�
(��P���l ) �H

P Ext���
�
(P���l ) ��H

P Ext���
�
(C

�P �
)


	�� �H
P Ext���

�
(��P���l ) �H

P 2.

By (5.4) and (2) of Proposition 5.7, Ext������
�

(��P���l )"Ext������
�

(P���l )"0 and Ext����

�
(��P���l )"Ext������

�
(P���l )"0. From these, (a) and (1),(4) of Proposition 5.7, we have the

following.

(b) Ext����

�
(P���l )"Z/2(e�

������
h
���

h
�
) ��H
P Ext����

�
(C

�P �
) is 1}1. So e�

������
h
���

h
�
O0 in

Ext����

�
(C

�P �
). This implies e�

������
h
���

h
�
O0 in Ext�� ��

�
(C

�� �
)"Ext�� ��

�
(C

�P �
)�

(Ext�� ��

�
(S�"S����)"0).

(c) There is a short exact sequence

0PExt������
�

(P���l )"Z/2(e�
������

h
���
) ��H
P Ext������

�
(C

�P �
)


	�� �H
P ker �

H
P0

where �
H
is Ext������

�
(��P���l ) �H

P Ext������
�

(P���l ). By (3),(5) of Proposition 5.7, dimZ��
of

Ext������
�

(��P���l )"Ext������
�

(P���l ) is 2, dimZ��
of Ext������

�
(P���l ) is 1 and

Ext������
�

(��P���l )h
�
"0. Thus dimZ��

(ker �
H
)"1 or 2. Let �y�

�
,2, y�	� be a Z/2-base for

ker �
H

LExt������
�

(��P���l ),1)q)2; so y�
�
h
�
"0 in Ext�� ��

�
(��P���l ) for 1)j)q. Choose

y
�
3Ext������

�
(C

�P �
) for each j such that (q�

�
)
H
(y

�
)"y�

�
. Then (c) shows that �e�

������
h
���
, y

�
,2, y	

�
is a Z/2-base for Ext������

�
(C

�P �
). We claim

(d) �y
�
,2, y

	
�L�e�

������
h
���
, y

�
,2, y

	
� can be chosen such that y

�
h
�
"0 in Ext�� ��

�
(C

�P �
) for

1)j)q.
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To see this, suppose y
�
is an element in �y

�
,2, y

	
� such that y

�
h
�
O0. Since

(q�
�
)
H
(y

�
h
�
)"y�

�
h
�
"0, it follows from (a), (b) that y

�
h
�
must be e�

������
h
���

h
�
. Let

y�
�
"e�

������
h
���

#y
�
. Then y�

�
also satis"es (q�

�
)
H
(y�

�
)"0 and has y�

�
h
�
"0. And

�e�
������

h
���
, y

�
,2,y� � ,2, y	� (with y� replaced by y� � ) is also a Z/2-base for Ext���

���
�

(C
�P �
). This

proves (d). In what follows, �e�
������

h
���
, y

�
,2, y	

� will be a Z/2-base for Ext������
�

(C
�P �
) with the

property in (d).

Let S��� ��
P C

�P �
be as in Proposition 5.3��. Since e�

������
is dual to x

������
and h

���
is dual to

Sq���� it follows that to prove Proposition 5.3�� is equivalent to proving that f
�
is detected, in the

ASS for C
�P �
, by an element �3Ext������

�
(C

�P �
) of the form �"e�

������
h
���

#�	
���

�
�
y
�
for some �

�
.

By Lemma 5.5, the composite S��� �n
P S��� ��

P C
�P �
is an odd multiple of the attaching map

S��� ��
P C

�P �
for the top cell e� of C

�� �
"C

�P �
�e�. (6) of Proposition 5.7 and (b) imply that, in the ASS

for C
�� �

"C
�P �

�e�, d
�
(e�

����
)"e�

������
h
���

h
�
O0. This in turn implies that S��� ��

P C
�P �
is detec-

ted by e�
������

h
���

h
�
O0 in the ASS for C

�P �
as e�

����
corresponds to the cell e�. Since 2n is detected

by h
�
it follows that f

�
is detected by an element in Ext������

�
(C

�P �
) of the form

e�
������

h
���

#�	
���

�
�
y
�
as (�	

���
�
�
y
�
)h

�
"0. This proves Proposition 5.3��.

This completes the proof of Proposition 5.3 and therefore Theorem 1.1.

Acknowledgements

The author would like to thank for the referee for pointing out some di$culties in the original
version of the paper. Drastic revisions are made in the present version to overcome these di$culties.

References

[1] J.F. Adams, On the non-existence of elements of Hopf invariant one, Ann. Math. 72 (1960) 20}104.
[2] M.G. Barratt, J.D.S. Jones, M.E. Mahowald, The Kervaire invariant problem, Contemp. Math. AMS 19 (1983)
9}22.

[3] R.L. Cohen, W.H. Lin, M.E. Mahowald, The Adams spectral sequence of the real projective spaces, Paci"c J. Math.
134 (1) (1988) 27}55.

[4] I.M. James, The topology of Stiefel manifolds, London Math. Soc. Lecture Notes Series, Vol. 24, Cambridge
Univeristy Press, Cambridge, 1976.

[5] I.M. James, Reduced product spaces, Ann. Math. (92) 62 (1955) 170}197.
[6] S.O. Kochman, Stable Homotopy groups of spheres: a computer-assisted approach, Lecture Notes inMathematics,
Vol. 1423, Springer, New York, 1990.

[7] W.H. Lin, Non-neutrality of the Stiefel manifolds <
���
, Topology 32 (1) (1993) 105}120.

[8] M.E. Mahowald, M. Tangora, Some di!erentials in the Adams spectral sequence, Topology 6 (1967) 349}369.
[9] R.E. Mosher, M.C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper, New York,

1968.
[10] N.E. Steenrod, D.B.A. Epstein, Cohomology Operations, Annals of Mathematics Study, Vol. 50, Princeton

University Press, Princeton, 1962.
[11] H. Toda, Composition Methods in the Homotopy Groups of Spheres, Annals of Mathematics Study, Vol. 59,

Princeton University Press, Princeton, 1962.
[12] G.W. Whitehead, Elements of Homotopy theory, Graduate Texts in Mathematics, Springer, Berlin, 1978.

W.-H. Lin / Topology 40 (2001) 1259}1293 1293


