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Abstract A weak nonlinear oscillatory mode of thermal instability is investigated while deriving a

non autonomous complex Ginzburg–Landau equation. Darcy porous medium is considered in the

presence of vertical throughflow and time periodic thermal boundaries. Only infinitesimal distur-

bances are considered. The disturbances in velocity, temperature and solutal fields are treated by

a perturbation expansion in powers of amplitude of applied temperature field. The effect of

throughflow has either to stabilize or to destabilize the system for stress free and isothermal bound-

ary conditions. Nusselt and Sherwood numbers are obtained numerically and presented the results

on heat and mass transfer. It is found that, throughflow and thermal modulation can be used

alternatively to control the heat and mass transfer. Further, it is also found that oscillatory flow

enhances the heat and mass transfer than stationary flow. Effect of modulation frequency and phase

angle on mean Nusselt number is also discussed.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The problem of thermal instability in a porous medium is well
documented by Vafai [1–6]. The study of thermal instability in
porous media is an important concept in thermal and engineer-

ing sciences, geothermal energy utilization, oil reservoir model-
ing, building of thermal insulations, and nuclear waste
disposals to mention a few. There is a growing interest in exter-

nally modulated hydrodynamic systems, both theoretically and
experimentally. These systems show a novel behavior in
response to parametric forcing near a point of instability.

Depending on the relative strength and rate of forcing, predic-
tions exist for a variety of responses to the modulation. Davis
[7] pointed that, the dynamic of stabilization and destabiliza-
tion may lead to dramatic changes of behavior depending on

the proper tuning of the amplitude and frequency of the mod-
ulation. If an imposed modulation can destabilize an otherwise
stable state, then there is a major enhancement of heat/mass/

momentum transport. If an imposed modulation can stabilize
or otherwise in unstable state, then higher efficiencies can be
attained in various processing techniques. The convective
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phenomenon can be controlled by applying a time periodic
modulation to the driving force provided by some mechanical
source, rotation, magnetic field, buoyancy, temperature-

gradient. One of the effective mechanisms that considered in
this paper is a time periodic heating of wall temperature at
the boundaries, where in many practical applications the

steady state temperature field is a function of both space and
time. This nonuniform temperature gradient can be used as a
mechanism to stabilize or destabilize the convective flow.

The related problems are investigated by [8–18] for various
physical models and boundary conditions.

Convection concerns the process of combined heat and
mass transfer which are driven by buoyancy forces are usually

referred as double diffusive convection. In this case the mass
friction gradient and the temperature gradient are indepen-
dent. In some practical problems, such as seawater flow, man-

tle flow in the earth’s crust, in devicing an effective method [19]
of disposing waste material and extraction of energy and engi-
neering applications the double diffusive convection plays an

important role. The linear and nonlinear stability of double
diffusive convection in porous media has been studied exten-
sively in the presence of uniform temperature and concentra-

tion gradients [6], and [20]. Siddheshwar et al. [21]
investigated temperature and gravity modulation effects on
double diffusive convection in porous medium. They found
that, both modulations can be used simultaneously to enhance

or diminish heat and mass transfer in the system while consid-
ering a weakly non-linear theory for stationary mode.
Bhadauria [22] also analyzed the additional effects of internal

heating and anisotropy. He found that, internal heat and ani-
sotropy also can be used to enhance or diminish heat and mass
transfer in the system. Malashetty et al. [23] studied the effect

of rotation on double diffusive convection while considering
linear theory for onset of convection and nonlinear theory
for finite amplitude convection. Kiran and Bhadauria [24]

investigated double diffusive magnetoconvection under the
effects of gravity modulation and chaotic, oscillatory mode
of convection. They found that, gravity modulation can be
used to control thermal instability and dynamic of the problem

with suitable ranges of modulation parameters.
Throughflow effect on double-diffusive convection in a

porous medium is important concept due to its applications

in engineering, geophysics and seabed hydrodynamics.
Throughflow plays an important role in the directional solidi-
fication of concentrated alloys, in which mushy zone exists and

it is regarded as a porous layer with double diffusive origin.
The basic state temperature profile of throughflow changes
from linear to nonlinear with layer height, which in turn affects
the stability of the system significantly. The effect of through-

flow on the onset of convection in a horizontal porous medium
has also been given in [25–28]. Nield [29] and Shivakumara [30]
have shown that a small amount of throughflow can have a

destabilizing effect if the boundaries are of different types
and a physical explanation for the same has been given.
They also found that, the effect of throughflow is not invari-

ably stabilizing and depends on the nature of the boundaries.
Khalili and Shivakumara [31] have investigated the effect of
throughflow and internal heat generation on the onset of con-

vection in a porous medium. They have shown that through-
flow destabilizes the system, even if the boundaries are of the
same type, a result which is not true in the absence of an
internal heat source. The non-Darcian effects on convective
instability in a porous medium with throughflow have been
investigated in order to account for inertia and boundary

effects by Shivakumara [32]. The effect of throughflow on
the stability of double diffusive convection in a porous layer
is investigated by Shivakumara and Khalili [33] for different

types of hydrodynamic boundary conditions. They found that
throughflow is destabilizing even if the lower and upper
boundaries are of the same type and stabilizing as well as

destabilizing, irrespective of its direction, when the boundaries
are of different types. Khalili and Shivakumara [34] investi-
gated throughflow in the porous layer is governed by Darcy–
Forchheimer equation and the Beavers–Joseph condition is

applied at the interface of fluid and the porous layer. They
found that destabilization arises due to throughflow, and the
ratio of fluid layer thickness to porous layer thickness, plays

an important role in deciding the stability of the system
depending on the Prandtl number. Hill [35] investigated linear
and nonlinear thermal instability of vertical throughflow in a

fluid-saturated porous layer, while Hill et al. [36] have
extended the problem for penetrative convection by consider-
ing density is quadratic in temperature. Brevdo and

Ruderman [37,38] have analyzed convective instability in a
porous medium with inclined temperature gradient and verti-
cal throughflow. Later on many researchers have investigated
throughflow effects considering different physical models,

some of them are given in [39–46].
From the literature no study has been found which consid-

ers modulation along with vertical throughflow for nonlinear

mode of thermal instability. Throughflow has been investi-
gated for various boundary conditions with linear stability
analysis. It is to be noted that, for understanding heat and

mass transfer in the system one must study the interaction of
streamline flow with temperature, and solutal concentrations
through nonlinear analysis. The objective of the present article

was, therefore, to investigate weakly nonlinear stability charac-
teristics of a porous layer with simultaneous temperature and
solute concentration gradients for constant vertical through-
flow. Analytic expressions for both Nusselt and Sherwood

numbers were derived from the complex non-autonomous
Ginzburg–Landau equation [15,16,47–49] to calculate finite
amplitude.

2. Mathematical formulation

An infinitely extended horizontal binary fluid saturated porous

medium of depth d has been considered. The porous layer is
homogeneous and isotropic and it is heated and salted from
below. The physical configuration of the problem is given in

Fig. 1. Using the modified Darcy’s law and employing the
Boussinesq approximation for density variations, the govern-
ing equations of the present problem are given by Bhadauria
[22] for isotropic porous medium:

@u

@x
þ @w
@z
¼ 0; ð1Þ

q0

e
@~q

@t
¼ �rpþ q~g� l

K
~q; ð2Þ

c
@T

@t
þ ð~q � rÞT ¼ jTr2T; ð3Þ



Throughflow and temperature modulation effects on Darcy convection 455
@S

@t
þ ð~q � rÞS ¼ jSr2S; ð4Þ

q ¼ q0½1� aTðT� T0Þ þ bSðS� S0Þ�; ð5Þ

where ~q is the fluid velocity, ~g is acceleration due to gravity, q
is density, e porosity of the porous medium, K is the permeabil-

ity of porous material, jT and jS are the effective thermal,
solutal diffusivity in vertical direction, aT is the coefficient of
thermal expansion, bS is the coefficient of solute expansion

and c is the heat capacity ration taken to be 1 for simplicity.
The externally imposed thermal and solutal boundary condi-
tions are given by Venezian [8]

T ¼ T0 þ
DT
2
½1þ v2d cosðXtÞ� at z ¼ 0

¼ T0 �
DT
2
½1� v2d cosðXtþ /Þ� at z ¼ d ð6Þ

S ¼ S0 þ DS at z ¼ 0

¼ S0 at z ¼ d; ð7Þ

where DT and DS are the temperature and solute difference
across the porous medium, v is the smallness of amplitude of
modulation, / is the phase angle, d; and X are amplitude

and frequency of temperature modulation.

3. Conduction state temperature and solutal fields

The basic state is assumed to be quiescent and the quantities in
this state are given by

qb ¼ ð0; 0;w0Þ; q ¼ qbðz; tÞ; p ¼ pbðz; tÞ;
T ¼ Tbðz; tÞ and S ¼ Sbðz; tÞ: ð8Þ

Substituting Eq. (8) into Eqs. (1)–(5), we can obtain the follow-
ing relation which helps us to define hydrostatic pressure, tem-

perature and solutal fields:

@pb
@z
¼ l

K
w0 � qbg; ð9Þ

w0

@Tb

@z
¼ jT

@2Tb

@z2
; ð10Þ

w0

@Sb

@z
¼ jS

@2Sb

@z2
; ð11Þ

qb ¼ q0 1� aT Tb � T0ð Þ þ bS Sb � S0ð Þ½ �: ð12Þ

The solution of Eqs. (10) and (11) subject to the boundary con-
ditions Eqs. (6) and (7), is given by

Tbðz; tÞ ¼ fðzÞ þ �2dRe½f1ðz; tÞ�; ð13Þ

Sb ¼ S0 þ DS
eðPeC

�1Þz � eðPeC
�1Þ

1� eðPeC
�1Þ

: ð14Þ

Here fðzÞ is the steady part, while f1ðz; tÞ is the oscillatory part

of the basic temperature field which will be defined in the next

section, where Pe ¼ w0d
2

jT
is the Péclet number.

4. Dimensionless governing equations

The finite amplitude perturbations on the basic state are super-
posed in the form,
~q ¼ ~qb þ~q0; q ¼ qb þ q0; p ¼ pb þ p0; T ¼ Tb þ T0 S

¼ Sb þ S0: ð15Þ

Now let us introduce the Eqs. (13)–(15) into the system of Eqs.

(1)–(5), and then using the stream function w as

u0 ¼ @w
@z
; w0 ¼ � @w

@x
, for two dimensional flow, the equations

are then non-dimensionalized using the physical variables:

ðx; y; zÞ ¼ dðx�; y�; z�Þ; t ¼ d2

jT
t�; w ¼ jTw

�; T0 ¼ DT T�; S0

¼ DS S� and X ¼ jT
d2

X�. The resulting non-dimensionalized

system of equations can be expressed as (dropping the asterisk)

1

PrD

@w
@t
þr2w ¼ Rs

@S

@x
� Ra

@T

@x
; ð16Þ

� @Tb

@z

@w
@x
� r2 � Pe

@

@z

� �
T ¼ � @T

@t
þ @ðw;TÞ
@ðx; zÞ : ð17Þ

� dSb

dz

@w
@x
� Cr2 � PeC�1

@

@z

� �
S ¼ � @S

@t
þ @ðw;SÞ
@ðx; zÞ ; ð18Þ

The non-dimensionalizing parameters in the above equations

are as follows: PrD ¼ emd2

KjT
is the Prandtl Darcy number,

Ra ¼ bTgDTdK
mjT

is thermal Rayleigh number, Rs ¼ bSgDSdK
mjS

is the

solutal Rayleigh number, C ¼ jS
jT

is diffusivity ratio and

m ¼ l
q0

is kinematic viscosity. It is clear from Eqs. (17) and

(18) that, throughflow and basic state profile of temperature,

and solutal fields affect the stability problem. The above sys-
tem will be solved by considering stress free and isothermal
boundary conditions as given below (Bhadauria and Kiran
[13,16,21]):

w ¼ T ¼ S ¼ 0 at z ¼ 0 z ¼ 1: ð19Þ
5. Derivation of complex Ginzburg–Landau equation

Introduce a small perturbation parameter v that shows devia-
tion from the critical state of onset of convection, and the vari-
ables for a weak nonlinear state may be expanded as power
series of v as [8,50]

Ra ¼ R0 þ v2R2 þ v4R4 þ . . . ;

w ¼ vw1 þ v2w2 þ v3w3 þ . . . ;

T ¼ vT1 þ v2T2 þ v3T3 þ . . . ;

S ¼ vS1 þ v2S2 þ v3S3 þ . . . ;

ð20Þ

where R0 is the critical value of the Darcy–Rayleigh number at

which the onset of convection takes place in the absence of
temperature modulation. According to the studies of
[15,16,47–49] and Kim et al. [51] the fast time scale of time s
and the slow time scale of time s as @

@t
¼ @

@sþ v2 @
@s

were

introduced.

5.1. Lowest order system

At lowest order, the nonlinear terms in governing equations
vanish therefore, the lowest order problem reduces to the

linear stability case for oscillatory mode of convection then
arriving at
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0
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The solution of the lowest order system subject to the bound-
ary conditions given in Eq. (19), is considered to be

w1 ¼ AðsÞeixs þAðsÞe�ixs
� �

sin ax sinpz; ð22Þ
T1 ¼ BðsÞeixs þ BðsÞe�ixs

� �
cos ax sin pz: ð23Þ

S1 ¼ CðsÞeixs þ CðsÞe�ixs
� �

cos ax sin pz: ð24Þ

The undetermined amplitudes are functions of slow time scale,
and are related by the following relation:

BðsÞ ¼ � 4p2a

ð4p2 þ Pe2Þðcþ ixÞ
AðsÞ; ð25Þ

CðsÞ ¼ � 4p2a

ð4p2 þ ðPeC�1Þ2ÞðCcþ ixÞ
AðsÞ; ð26Þ

where c ¼ a2 þ p2. The critical Rayleigh number for oscillatory

mode of convection is given by

R0 ¼
ð4p2 þ Pe2Þðc� x2PrDÞ

4a2p2
þ Rsð4p2 þ Pe2ÞðCc2 þ x2Þ
ð4p2 þ ðPeC�1Þ2ÞðC2c2 þ x2Þ

:

ð27Þ

The corresponding critical wave number will be calculated
while minimizing the critical Rayleigh number with respect

to the wave number. The growth rate x2 can be defined as

x2 ¼ 4p2a2Rsð1� CÞ
ð4p2 þ Pe2Þð1þ cPr�1D Þ

� c2C2: ð28Þ

It is to be noted that for existing an oscillatory mode of con-
vection (x > 0) the values of Pe; PrD, diffusivity ratio C must

be considered to satisfy Eq. (28).

5.2. Second order system

In this case one can observe that, from the energy and solutal
equations the Jacobian terms give second order profile on the
basis of first order solutions, then the following relations can
be obtained:

w2 ¼ 0; ð29Þ

ð @
@s
�r2ÞT2 ¼

@ðw1;T1Þ
@ðx; zÞ ; ð30Þ

ð @
@s
� Cr2ÞS2 ¼

@ðw1;S1Þ
@ðx; zÞ : ð31Þ

From the above relations, according to the studies of
[15,16,47,48] and Kim et al. [51], one can deduce that, the
velocity, temperature and solutal fields have the terms having

frequency 2x and independent of fast time scale. Thus, at this
order the temperature and solutal expressions may be consid-
ered as [15]:

T2 ¼ fT20 þ T22e
2ixs þ T22e

�2ixsg sin 2pz; ð32Þ
S2 ¼ fS20 þ S22e

2ixs þ S22e
�2ixsg sin 2pz; ð33Þ
where ðT20;T22Þ and ðS20;S22Þ are temperature and solutal

fields having the terms having the frequency 2x and indepen-
dent of fast time scale, respectively. The second order solutions
can be defined using T2; andS2 in Eqs. (30) and (31). The hor-

izontally averaged Nusselt and Sherwood numbers, for the
oscillatory mode of convection are given by

Nu ¼ 1þ
ac
2p

R 2p
ac

0
@T2

@z

� �
dx

h i
z¼0

ac
2p

R 2p
ac

0
@Tb

@z

� �
dx

h i
z¼0

ð34Þ

Sh ¼ 1þ
ac
2p

R 2p
ac

0
@S2
@z

� �
dx

h i
z¼0

ac
2p

R 2p
ac

0
@Sb
@z

� �
dx

h i
z¼0

: ð35Þ
5.3. Third order system

For third order system the following system is obtained:

r2 R0
@
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�Rs @
@x

� dTb

dz
@
@x

@
@s�r

2 þ Pe @
@z

� �
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� dSb
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� �
2
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3
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w3

T3

S3

2
64

3
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¼
R31

R32

R33

2
64

3
75; ð36Þ

where the expressions for R31; R32 and R33 are given in the
appendix. Now under the solvability condition for the exis-
tence of third order solution, the following complex non-
autonomous Ginzburg–Landau equation (CGLE) is obtained,

which describes the temporal variation of the amplitude AðsÞ
of the convection cell [15,16,47–49] and Vadász [52]

dAðsÞ
ds
� c�11 FðsÞAðsÞ þ c�11 k1jAðsÞj2AðsÞ ¼ 0: ð37Þ

where the coefficients c1; FðsÞ and k1 are given in the appen-
dix. AðsÞ in the phase-amplitude form can be written as

AðsÞ ¼ jAðsÞjeih: ð38Þ

Now substituting the above expression Eq. (38) in Eq. (37), we
can get the following equations for the amplitude jAðsÞj:

djAðsÞj2

ds
� 2prjAðsÞj

2 þ 2lrjAðsÞj4 ¼ 0; ð39Þ

dðphðAðsÞÞÞ
ds

¼ pi � lijAðsÞj2; ð40Þ

where c�11 FðsÞ ¼ pr þ ipi; c�11 k1 ¼ lr þ ili and phð�Þ represents
the phase shift. The mean value of Nusselt number Nu is
defined over an appropriate interval ð0; 2pÞ for temperature
modulation on heat transport,

Nu ¼ 1

2p

Z 2p

0

Nuds: ð41Þ

The amplitude AðsÞ is obtained numerically and hence Nu is

also to be numerically evaluated. The factor I1 determines
whether the modulation amplifies or diminishes the amplitude

of convection. Similarly the mean Sherwood number Sh also
defined.
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Figure 1 A sketch of the physical problem.
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6. Results and discussions

When a horizontal porous layer is heated uniformly from
below and cooled from above, a cellular regime of steady con-

vection is set up at values of the Rayleigh number exceeding a
Pe 0,3, 0.4, 0.5
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Figure 2 Effect of various parameters on hea
critical value. To determine this amplitude of convection one
has to develop a nonlinear theory to analyze the nonlinear
interactions of fluid motion with temperature and concentra-

tion. A method is presented here to determine an amplitude
of convection and analyze the heat and mass transfer. The
combined effect of temperature modulation and vertical

throughflow on Bénard–Darcy convection is studied. Using
CGLE a weakly nonlinear thermal instability has been per-
formed to investigate the effect of both temperature modula-

tion and vertical throughflow on heat and mass transports.
Since the porous medium is assumed to be closely packed,
the Darcy law was employed. It is observed that, for existing
the oscillatory mode of convection the oscillatory frequency

(x) must be positive, hence the values of Pe; PrD, and diffusiv-
ity ratio C are considered according to Eq. (28). Also, the val-
ues of d and X are considered small, for small values of these

parameters the maximum the heat and mass transfer. A small
amount of throughflow in a particular direction is either to
destabilize or to stabilize the system, hence, consider Pe values

around 0.1. The numerical results for Nu and Sh obtained
from the expressions given in Eqs. (34) and (35) by solving
the amplitude Eq. (39) have been presented in Figs. 2–5. The

effect of each parameter on heat and mass transport is shown
in Figs. 2–5 wherein the plots of Nu and Sh versus s are pre-
sented. It is found from the figures that, the values of Nu
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and Sh start with one and remain constant for quite some time,

thus showing the conduction state initially. Then the values of
Nu and Sh increase with time, thus showing the convection
state and finally become constant on further increasing s thus
achieving the steady state. In order to see the effect of temper-

ature modulation on the system the following three types of
temperature profiles are considered:

1. In-phase modulation (IPM) ð/ ¼ 0Þ.
2. Out-phase modulation (OPM) ð/ ¼ pÞ.
3. Only Lower boundary modulated (LBMO) ð/ ¼ �i1Þ,

which means that the modulation effect will not be consid-
ered in upper boundary but only in lower boundary.

The Rayleigh number increases upon increasing Pe, and it
is independent of throughflow direction. This may be due to
the fact that, throughflow is to confine significant thermal gra-
dients to a thermal boundary layer at the boundary towards

which the throughflow is directed. The effective length scale
is thus smaller than the thickness of the porous medium.
Hence the Rayleigh number will be much less than the actual

value of Rayleigh number. Therefore, large values of
Rayleigh number are needed for the onset of convection when
the throughflow strength increases and conforms the results of

Khalili and Shivakumar [34] for free-free boundaries. The
opposite results were obtained by Nield [29] in the case of a
fluid layer for small amount of throughflow. Shivakumara
and Sureshkumar [40] defined the reason for opposite effect

may be due to the distortion of steady-state basic temperature
distribution from linear to nonlinear by the throughflow. A
measure of throughflow is given by the basic state temperature

and this can be interpreted as a rate of energy transfer into the
disturbance by interaction of the perturbation convective
motion with basic temperature gradient. The maximum tem-

perature occurs at a place where the perturbed vertical velocity
is high, and this leads to an increase in energy supply for
destabilization.

Now let us discuss the results related to out-of-phase mod-
ulation (OPM). Fix the values of parameters as PrD = 4.0,
Rs = 70, Pe = 0.2, C = 0.3, d = 0.1, and X = 3.0, to see
the individual effect of each parameter on the system. In fig-

ures only the corresponding parameter value has been given.
The basic state thermal and solutal concentration distributions
are obtained for representative values of Pe and C, and are

presented graphically. For throughflow, the basic state distri-
butions become nonlinear, and deviate from each other with
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Figure 4 Comparison (a and b) for 3 temperature profiles (c and d) for stationary and oscillatory mode of convection.
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an increase in Pe. In fact, the nonlinearity in base-state solute
concentration stratification becomes more dominant as com-

pared to temperature stratification with a decrease in C. It is
found that Nu and Sh start with one, increase with time s
and then become oscillatory showing modulation effect. The

effect of upward throughflow (Pe > 0) is to enhance and
downward (Pe < 0) throughflow and is to diminish the heat
and mass transfer in the system as in Figs. 2 and 3a. The effect

of diffusivity ratio C is to diminish heat and mass transfer
in the system as in Figs. 2 and 3b, and these results conform
the results of Bhadauria [22] and Bhadauria and Kiran [14].
The corresponding results of PrD are presented in Figs. 2

and 3c and it was observed that, Nu and Sh increase upon
increasing PrD and these results conform the results of
Bhadauria [22] and Bhadauria and Kiran [13]. The effect of

solutal Rayleigh number Rs in Figs. 2 and 3d is to increase
the heat and mass transfer. Though the stabilizing factor solu-
tal gradient increases the stability and decreases heat and mass

transfer in the system, due to the presence of the strong finite
amplitude flows Bhadauria and Kiran [14], for large values of
Rayleigh number, tend to mix the solute and redistribute it so

that the interior layers of the fluid are more neutrally stratified.
As a result the enhancing effect of the solute concentration is
greatly decreased; hence, fluid will convect more, due to this
heat and mass transfer increases when Rs is increased.

Further, in Figs. 2 and 3e the effect of amplitude of modula-
tion is to increase the magnitudes of Nu and Sh, thus increas-
ing the heat and mass transport and advancing the convection.

Also, from Figs. 2 and 3f, it is observed that, increasing the
value of X decreases the magnitude of Nu and Sh, and so
the effect of frequency of modulation on heat and mass trans-

port diminishes. At high frequency the effect of temperature
modulation on thermal instability disappears altogether. This
result agrees quite well with the linear theory results of
Venezian [8], where the correction in the critical value of
Rayleigh number due to thermal modulations becomes almost

zero at high frequencies. Fig. 4a and b shows the comparison

between stationary (x = 0) and oscillatory mode of convec-

tion, and found that, the oscillatory mode of convection

increases heat and mass transfer rather than stationary mode

of convection. These results were obtained by Bhadauria and

Kiran [16,24,47,48]. In order to avoid the repetition of the fig-

ures, the results for IPM and LBMO have not been presented

graphically. But, in Fig. 4c and d the rate of heat and mass

transfer for three types of temperature profile has been pre-

sented and found that, OPM case enhances heat and mass

transfer than LBMO. It is also found that, IPM case is similar

to unmodulated system which conforms the results of

Bhadauria and Kiran [13–16].

Siddheshwar et al. [53] show the effect of temperature mod-

ulation on mean Nusselt number Eq. (41) depends on both the

phase difference / and frequency X of modulation than only

on the choice of the small amplitude (d) modulation. From

Fig. 5 it is clear that, for a given frequency of modulation there

is a certain range of / in which Nu increases with increasing /
and another range in which Nu decreases. In Fig. 5a–d, for

various values of Rs and / and for lower values of X heat

transfer effect is effective. Similarly in Fig. 5e and f, upon

increasing X the modulation effect disappears. Thus, suitable

combination of choices of X and / can be made depending

on the demands on heat transport applications. Heat transfer

can be regulated (enhanced or reduced) with the external

mechanism of temperature modulation effectively. These

results are similar to Siddheshwar et al. [53] and Bhadauria

and Kiran [15,16]. It is clear that for temperature modulation

the boundary temperatures should not be in in-phase modula-

tion (synchronized), where the effect of modulation is negligi-

ble on heat transport. The similar results can be obtained for

Sh case.
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7. Conclusions

The effect of throughflow and temperature modulation on bin-

ary fluid saturated porous medium is investigated for oscilla-
tory mode of convection, performing a weak nonlinear
stability analysis resulting in the complex Ginzburg–Landau
amplitude equation. The following conclusions are drawn

from the above study:

1. The effect of upward throughflow enhances or downward

throughflow diminishes heat and mass transfer.
2. Upon increasing the value of d is to enhance the heat and

mass transfer.

3. The frequency X of modulation decreases the heat and mass
transfer as its value increases.

4. Oscillatory mode of convection is effective than stationary

mode of convection.
5. Throughflow and temperature modulation can be used to

regulate heat and mass transfer in the system effectively.
6. OPM and LBMO cases are suitable cases for heat and mass

transfer.

7. IPM case is negligible on heat and mass transfer.
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Appendix A. The factor @Tb

@z
, which is in Eq. (17) is given by
@Tb

@z
¼ f0ðzÞ þ �2dRe½f01ðz; tÞ�; ð42Þ

where f0 ¼ PeePez

1�ePe ; f01ðz; tÞ ¼ ½Bðh2Þeh2zþ Bð�h2Þe�h2z�e�iXt;

Bðh2Þ ¼ h1þh2
2

ðe�i/�eh1�h2 Þ
eh1 ðe h2 � e�h2Þ; h1 ¼ Pe

2
; h2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Pe2þ4k23
p

2
and

k3 ¼ ð1� iÞ
ffiffiffi
X
2

q
.

The expressions given in Eqs. (34) and (35), can be simpli-
fied as

NuðsÞ ¼ 1þ ePe � 1

Peð4p2 þ Pe2Þ

� 2p2a2c

ðc2 þ x2Þ þ
2p4a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p4 þ x2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ x2
p

� �
jAðsÞj2;

ShðsÞ ¼ 1þ eðPeC
�1Þ � 1

PeC�1ð4p2 þ ðPeC�1Þ2Þ

� 2p2a2c

ðC2c2 þ x2Þ
þ 2p4a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p4C2 þ x2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2c2 þ x2
p

 !
jAðsÞj2:

The expressions given in Eq. (36) are

R31 ¼ �
1

PrD

@

@s
ðr2w1Þ � R2

@T1

@x
� R0

@T2

@x
;

R32 ¼
@w1

@x

@T2

@z
� @T1

@s
þ df1ðz; sÞ

@w1

@x
;

R33 ¼
@w1

@x

@S2

@z
� @S1

@s
:

The coefficients given in Eq. (37) are

c1 ¼
c

PrD
þ 4p2R0a

2

ð4p2 þPe2Þðcþ ixÞ2
� 4p2Rsa2

ð4p2 þ ðPeC�1Þ2ÞðCcþ ixÞ2
;

FðsÞ ¼ 4p2R2a
2

ð4p2 þ Pe2Þðcþ ixÞ
� 2R0a

2

ðcþ ixÞ dI1 where

I1 ¼
Z 1

0

f2 sin
2ðpzÞdz:

k1 ¼
a4p2cR0

ð4p2 þ Pe2Þðc2 þ x2Þðcþ ixÞ

þ a4p4R0

ð4p2 þ Pe2Þð2p2 þ ixÞðcþ ixÞ2

� a4cp2Rs

ð4p2 þ ðPeC�1Þ2ÞðC2c2 þ x2ÞðCcþ ixÞ

� a4p4Rs

ð4p2 þ ðPeC�1Þ2Þð2p2Cþ ixÞðCcþ ixÞ2
:
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