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Relative openness of quotient maps on the closed unit ball U of a normed linear
space X is studied quantitatively. Particularly, it follows from the results that the
quotient maps on X associated with the closed linear subspaces of X are equally
relatively open on U if and only if X is locally uniformly convex. Also, X is locally
uniformly convex if and only if for any family of linear maps defined on X, equal
relative openness on X implies equal relative openness on U. Similarly, uniformly
convex spaces can be characterized in terms of equal uniform relative openness of
quotient maps on U. � 2000 Academic Press

1. INTRODUCTION

Let X be a real normed linear space and U the closed unit ball of X. The
space X is said to be locally uniformly convex if for each x # U and each
=>0 there is a $>0 such that for each y # U with &x& y&>= we have
&(x+ y)�2&<1&$. If, for each =>0, such a $>0 can be chosen so that it
depends only on = then X is said to be uniformly convex. It should be
noted that, following [9], the term (locally) uniformly rotund space is
sometimes used for such a space.

Uniformly convex and locally uniformly convex spaces play a central
role in the structure theory and renormings of Banach spaces (see e.g. the
monographs [2, 9�11]) and some properties of these spaces apply to solv-
ing miscellaneous problems of functional analysis (e.g. [1, 3, 12, 15, 20,
24]).

We exhibit connections of (local) uniform convexity of the space X with
a certain quality of relative openness of the quotient maps on U. A map T
defined on X is said to be relatively open on U if T maps the sets which
are relatively open in U onto sets which are relatively open in T(U).

Relative openness of linear maps on convex subsets has been studied in
several papers in various contexts ([5�7, 13, 14, 17�19, 21�23, 25, 27]). It
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is somewhat surprising that a linear map on X can fail to be relatively open
on U even for a three-dimensional space X. For example, it is easy to check
that the map T : R3 � R2 defined by

T((x, y, z))=(x+z, y) for (x, y, z) # R3

is not relatively open on the unit ball

U=[(x, y, z): (x2+ y2)1�2+|z|�1]

because T does not map neighbourhoods of the point u=(0, 0, 1) in U
onto neighbourhoods of T(u) in T(U).

It follows from [22, Theorem (1)] that if X is a finite-dimensional space
then every linear map defined on X is relatively open on U if and only if
U has property (P) defined by Wegmann [26]. For instance, U has
property (P) whenever U is a finite-dimensional polyhedron, or, whenever
X is a strictly convex space. Eifler [13] conjectured that if X is a strictly
convex Banach space then any continuous linear open map defined on X
is relatively open on U. So, by the above characterization, the conjecture
is true if X is finite-dimensional. However, we note that it is false in general;
Brown [4] has constructed a strictly convex reflexive space X and a closed
linear subspace M of X such that the metric projection of X onto M is dis-
continuous, thus, by [23, Corollary (4)], the associated quotient map from
X onto X�M fails to be relatively open on U.

It follows from the results of the present paper (see Lemma 4.4) that if
X is locally uniformly convex, any linear open map defined on X is
relatively open on U. Moreover, local uniform convexity of X is equivalent
to equal relative openness of the quotient maps on U (by a quotient map
we mean the canonical quotient map from X onto X�M associated with a
closed linear subspace M of X). Furthermore, X is locally uniformly convex
if and only if for any family of linear maps defined on X, equal relative
openness on X implies equal relative openness on U. Uniformly convex
spaces are characterized in a similar manner (Theorem 3.5).

2. BASIC NOTIONS

Throughout the paper, X stands for a real normed linear space and U for
the closed unit ball of X, dim X denotes dimension of X and R the set of
real numbers.

Let =>0. The modulus of local convexity $(x, =), where x # U, and the
modulus of convexity $(=) are defined by

$(x, =)=inf[1&&(x+ y)�2& : y # U, &x& y&�=]
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and

$(=)=inf[1&&(x+ y)�2& : x, y # U, &x& y&�=].

It is easily seen that

$(=)=inf[$(x, =): x # U]. (2.1)

It is also known (see e.g. [8]) that if dim X�2 then

$(=)=inf[1&&(x+ y)�2& : x, y # X, &x&=&y&=1, &x& y&==],

and, for any x # X of norm one,

$(x, =)=inf[1&&(x+ y)�2& : y # X, &y&=1, &x& y&==].

Clearly, X is locally uniformly convex if and only if $(x, =)>0 for each
x # U and =>0, and, X is uniformly convex if and only if $(=)>0 for each
=>0.

The exact values, or their estimates, of the moduli $(x, =) and $(=) are
known for some classical spaces.

For example, let X be a Hilbert space, dim X�2, and let x # U and =>0.
Using the parallelogram identity in the case of |=&1|�&x& and the tri-
angle inequality &x+ y&�&x&+1 for y # U in the case of =<1&&x&, one
gets readily that

(1&&x&)�2 for 0<=<1&&x&,

$(x, =)={1&2&1 (2+2 &x&2&=2)1�2 for 1&&x&�=�1+&x&,

� for =>1+&x&,

and

$(=)={1&(1&=2�4)1�2

�
for 0<=�2,
for =>2.

The exact value of $(=) for the space Lp (+) can be found in [16]. It
depends only on p (but not on the measure +) and we quote here only its
asymptotic estimate for = � 0:

$(=)={( p&1) =2�8+o(=2)
p&1 (=�2) p+o(= p)

for 1<p�2,
for 2<p<�.

The moduli of convexity have been studied for some other spaces, see e.g.
[11, p. 84 and p. 89] for references.
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Definition 2.1. Let T be a family of maps defined on X and let A be
a subset of X. We shall say that the maps from T are equally relatively
open on A if for each x # A and =>0 there is a \>0 such that every T # T

maps the =-neighbourhood of x in A onto a set containing the
\-neighbourhood of T(x) in T(A). If such a \ can be chosen so that it
depends only on = (and not on x), we shall say that the maps from T are
equally uniformly relatively open on A.

We now establish concepts which evaluate equal (uniform) relative open-
ness of quotient maps on U.

Definition 2.2. For any closed linear subspace M of X, let QM be the
quotient map associated with M, QM : X � X�M. Let =>0. For any x # U
we define \(x, =)=sup[r : r�0 and for each closed linear subspace M of X
and each y # QM (U) with &y&QM (x)&<r there is a u # U such that
&u&x&<= and QM (u)= y], i.e., \(x, =) # [0, �] is such that every
quotient map QM maps the =-neighbourhood of x in U onto a set contain-
ing the r-neighbourhood of QM (x) in QM (U) with r=\(x, =), and no
greater r has this property.

We define further \(=)=inf[\(x, =) : x # U].

Remark 2.1. Let X, Y be normed linear spaces and T : X � Y an open
linear map such that the kernel of T is closed in X. Let x0 # U. If
\(x0 , =)>0 for each =>0 then certain relative openness of T on U at x0 is
guaranteed.

More precisely, let c>0 be such that for each y # Y of norm &y&<c
there is x # X of norm &x&<1 such that T(x)= y. Then, for any =>0, T
maps the =-neighbourhood of x0 in U onto a set containing the c\(x0 , =)-
neighbourhood of T(x0) in T(U).

To see this, let M denote the kernel of T, M=[x # X : T(x)=0], and let
Q: X � X�M be the quotient map associated with M. Consider the map S
from X�M onto Y defined by the formula

S(Q(x))=T(x) for x # X.

Then, clearly, S is well-defined, linear and one-to-one. Furthermore,

&S&1&�c&1,

which yields that S maps the \(x0 , =)-neighbourhood of Q(x0) in Q(U)
onto a set containing the c\(x0 , =)-neighbourhood of S(Q(x0))=T(x0) in
S(Q(U))=T(U).

Since, by the definition, Q maps the =-neighbourhood of x0 in U onto a
set containing the \(x0 , =)-neighbourhood of Q(x0) in Q(U) and T is the
composition of Q and S, our claim follows immediately.
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3. RESULTS

We recall that U is the closed unit ball of a real normed linear space X,
$(x, =) the modulus of local convexity of X, $(=) the modulus of convexity
of X (for definitions see Section 2) and the moduli \(x, =) and \(=) were
established in Definition 2.2.

Theorem 3.1. Let =>0 and x # U. Then

\(x, =)�min{2
3

$(x, =),
=
2= (3.1)

and, if &x&=1,

\(x, =)� 2
3$(x, =). (3.2)

Theorem 3.2. For any =>0,

\(=)� 2
3$(=).

Moreover, there exists a function g(=) defined on (0, 2] such that g(=) � 2
for positive = � 0 and

\(=)�g(=) $(=) for = # (0, 2].

If dim X�2 then the function g(=)=2=(=+4$(=))&1 has these properties.

Theorem 3.3. Let x # U, =>0 and * # (1, 3] be arbitrary. Then

\(x, =)�4(*&1)&1 $(x, *=) (3.3)

and

\(=)�4(*&1)&1 $(*=). (3.4)

Theorem 3.4. The following statements are equivalent:

(i) X is locally uniformly convex;

(ii) the quotient maps QM : X � X�M associated with the closed linear
subspaces M of X are equally relatively open on U;

(iii) for any family of linear maps defined on X, equal relative openness
on X implies equal relative openness on U.
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Theorem 3.5. The following statements are equivalent:

(i) X is uniformly convex;

(ii) the quotient maps QM : X � X�M associated with the closed linear
subspaces M of X are equally uniformly relatively open on U;

(iii) for any family of linear maps defined on X, equal relative openness
on X implies equal uniform relative openness on U.

4. PROOFS OF THE RESULTS

Since the assertions in Section 3 are obviously true for the trivial space
X=[0], we assume further that dim X�1. We start with simple observa-
tions.

Remark 4.1. Let 0<=�2. Then

$(x, =)�=�2 whenever x # X, &x&=1; (4.1)

$(=)�=�2; (4.2)

\(x, =)�= whenever x # U, =�1+&x&; (4.3)

\(=)�=. (4.4)

To show (4.1), choose y=(1&=) x; then $(x, =)�1&&(x+ y)�2&==�2.
To see (4.3), consider the identity map on X (which is the quotient map

associated with the trivial subspace M=[0]) and use the fact that U is not
contained in the =-neighbourhood of x.

Since X is not trivial, there is some x # X of norm one, hence (4.2)
follows from (4.1), and, (4.4) follows from (4.3).

Notation. In Lemma 4.1, Lemma 4.2 and in the proof of Theorem 3.1,
let x # U, = > 0, $ = $(x, =), M be a closed linear subspace of X,
Q: X � X�M the quotient map associated with M, y=Q(x) and \Q=
sup[r : r�0 and for each v # Q(U) with &v& y&<r there is u # U such that
&u&x&<= and Q(u)=v].

Lemma 4.1. Let x1 # U be such that Q(x1)= y. Then \Q�r, where
r=min[1&&x1&, =&&x1&x&].

Proof. Let v # X�M be such that &v& y&<r. Since Q maps the open
unit ball in X onto the open unit ball in X�M, there is h # X such that
&h&<r and Q(h)=v& y. Define u=x1+h. Then Q(u)=v,

&u&�&x1&+&h&<&x1&+r�1
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and

&u&x&=&x1&x+h&<&x1&x&+r�=.

Therefore, Q maps the =-neighbourhood of x in U onto a set containing the
r-neighbourhood of y in X�M. K

Lemma 4.2. Let x2 # U be such that Q(x2)= y and &x2&x&�=. Then
\Q�min[$, =�2].

Proof. Since Q(u)= y for any u from the segment [x, x2], we can
assume that &x2&x&==. Denote x1=(x2+x)�2. By the definition of
$=$(x, =), we have 1&&x1&�$. Clearly, &x1&x&==�2. The proof now
follows by applying Lemma 4.1. K

Proof of Theorem 3.1. If $=� then &u&x&<= for each u # U so that
\(x, =)=�. Thus assume $<�. Denote p=2$�3.

Case 1. Let &y&�1& p. Then for any u # U such that &Q(u)& y&<p
we have

&(u+x)�2&�&Q((u+x)�2&

=&y&( y&Q(u))�2&

�&y&&&y&Q(u)&�2

>1& p& p�2=1&$.

Thus, by the definition of the modulus of local convexity $, &u&x&<=.
Hence we have shown that \Q�p.

Case 2. Let &y&<1& p. Then there is x1 # X such that &x1&<1& p
and Q(x1)= y. Denote d=&x1&x&. If d=0 then, by Lemma 4.1,
\Q�min[ p, =]. If d�=& p, Lemma 4.1 yields \Q�p. If d�=, Lemma 4.2
implies \Q�min[$, =�2]. Therefore, it remains to consider the case of
=& p<d<=, d>0. Define x2=x+t(x1&x) with t==�d. We have t>1,
&x2&x&=td== and Q(x2)= y. Further,

&x2&=&x1+(t&1)(x1&x)&

�&x1&+(t&1) &x1&x&

<1& p+(t&1) d

=1& p+=&d<1,

hence, by Lemma 4.2, \Q�min[$, =�2].
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As Q was an arbitrary quotient map, we have proved the inequality
(3.1). Since we assume $<�, we have =�2, whence (3.2) follows from
(3.1) and (4.1). K

For the proof of Theorem 3.2 we need the following

Lemma 4.3. Let M be a closed linear subspace of X, Q: X � X�M the
quotient map associated with M, x0 # U, x # X, let =, r, q be positive numbers,
K�0 such that &x&�1&q, &x&x0&�K, &Q(x)&Q(x0)&<r and

r(q+K&=)<=q. (4.5)

Then there is x� # U such that &x� &x0&<= and Q(x� )=Q(x).

Proof. Since Q maps the open unit ball of X onto the open unit ball of
X�M, there is h # X such that &h&<r and Q(h)=Q(x)&Q(x0). Thus for
the element x1=x0+h of X we have &x1&x0&<r and Q(x1)=Q(x).
Define x� =tx1+(1&t) x, where t=q�(r+q). Then Q(x� )=Q(x) and we
have

&x� &�t &x1&+(1&t) &x&

<t(1+r)+(1&t)(1&q)

=1&q+t(r+q)=1

and

&x� &x0&=&t(x1&x0)+(1&t)(x&x0)&

<tr+(1&t) K

=r(q+K)(r+q)&1.

However, it follows easily from (4.5) that the last expression is less
than =. K

Proof of Theorem 3.2. We set $=$(=) and \=\(=). Since the assertion
is trivial for $=0, we may assume that $>0 and, since \=� for =>2, let
=�2. If dim X=1 then \== and $==�2, so our claim is true. Thus
suppose dim X�2.

Define g(=)=2=(=+4$)&1 and, for a fixed =, let r= g(=) $. We prove that
\�r. Let M be a closed linear subspace of X, Q: X � X�M the quotient
map associated with M and let x0 # U be arbitrary. Denote y0=Q(x0) and
let y # Q(U) be such that &y& y0&<r. We show that y has an inverse
image in the =-neighbourhood of x0 in U. We consider three cases.
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Case 1. Suppose that &y&=1. Since y # Q(U), there is x # U such that
Q(x)= y. We have

&( y+ y0)�2&=&y+( y0& y)�2&

�&y&&&( y0& y)�2&

>1&r�2>1&$.

Since Q((x+x0)�2)=( y+ y0)�2 and &Q&�1, we get &(x+x0)�2&>1&$
and, by the definition of the modulus $=$(=), it follows &x&x0&<=.

Case 2. Let y=0. To show that y has an inverse image in the
=-neighbourhood of x0 in U, we apply Lemma 4.3 with x=0, q=1 and
K=1. Thus we need verify (4.5), i.e., the inequality r(2&=)<=. However,
this can be checked readily because

r= g(=) $=2=(=+4$)&1 $<=�2.

Case 3. We now assume that 0<&y&<1. Let :>1 be such that

1&$<: &y&<1. (4.6)

Denote y1=:y. Since &y1&<1, there is x1 # U such that Q(x1)= y1 . We
define L=r+(:&1) &y&, s=2(: &y&&1+$) L&1, t=min[1, s] and x2=
x1+t(x0&x1). We have t�1 and, by (4.6), t>0, whence x2 # U. For
y2=Q(x2) we have y2= y1+t( y0& y1), thus

&y2& y1&=t &y0& y1&

�t(&y0& y&+&y& y1&)<tL.

Using this, we get

&( y2+ y1)�2&=&y1+( y2& y1)�2&

�&y1&&&( y2& y1)�2&

>: &y&&tL�2

�: &y&&sL�2=1&$.

By the same arguments as in Case 1 (replace y0 , y by y1 , y2), it follows
&x2&x1&<=, thus &x0&x1&<=t&1.

Now denote x=:&1x1 and q:=1&:&1. Clearly, Q(x)= y, q:>0 and
&x&�:&1=1&q: . By Lemma 4.3, it suffices to show that there is an :>1
satisfying (4.6) such that for the corresponding point x the inequality
r(q:+&x&x0&&=)<=q: holds. We shall show that this is true for : close
to &y&&1.
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Consider the limit case; let : converge to &y&&1 from the left. Define
q=1&&y&, t0=min[1, 2$(r+q)&1] and K=q+=t&1

0 . Clearly, q: con-
verges to q. Further,

&x&x0&�&x&x1&+&x1&x0&

and the right side is less than 1&:&1+=t&1, which converges to K. There-
fore, it suffices to check that for q and K defined above the inequality (4.5)
holds. If t0=1 then

r(q+K&=)&=q=q(2r&=),

which is negative because q>0 and, by the definition, r<=�2.
Consider now the case t0<1. Then

r(q+K&=)&=q=r[2q+=(2$)&1 (r+q)&=]&=q

=q[2r+r=(2$)&1&=]+r2=(2$)&1&r=

=r2=(2$)&1&r=

=r=(2$)&1 (r&2$)<0,

thus (4.5) is satisfied.
In all three cases we have found an inverse image of y in U within the

distance = from x0 , hence Q maps the =-neighbourhood of x0 in U onto a
set containing the r-neighbourhood of Q(x0) in Q(U). Since Q was an
arbitrary quotient map on X and x0 # U an arbitrary point, we have
proved that \�r= g(=) $.

Observe now that (4.2) yields g(=)�2�3 for each = # (0, 2]. Furthermore,
as we assume in this part of the proof that dim X�2, it follows from the
Day�Nordlander theorem (see e.g. [11, p. 60]), that $ is less or equal to
the modulus of the two-dimensional Hilbert space, i.e., $�1&
(1&=2�4)1�2�=2�4 for = # (0, 2], thus 2(1+=)&1�g(=)�2 for all such =. K

Proof of Theorem 3.3. We denote

d=2(*+1)&1 and r=*=. (4.7)

Also, we set $=$(x, r). We may assume that $<�. For an arbitrary
: # (0, 1), we prove that

\(x, =)<4(*&1)&1 ($+2:)+2:. (4.8)

We consider two cases.
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Case 1. Suppose that d[r&2($+:)]�=. Using (4.7), we get from this

=�4(*&1)&1 ($+:). (4.9)

Since we assume $<�, there is a v # U with &v&x&�=, hence =�1+&x&.
So, the inequality (4.3) can be applied and in combination with (4.9) it
implies (4.8).

Case 2. Suppose that

d[r&2($+:)]>=. (4.10)

It follows from the definition of $=$(x, r) that there exists x1 # U such that
&x1&x&�r and

&(x+x1)�2&>1&$&:.

For any t # (0, 1), denote xt=x+t(x1&x). Since d<1 and d(1&d )&1=
2(*&1)&1, we can choose t # [d, 1) such that xt {0 and that

2t(1&t)&1 ($+:)<4(*&1)&1 ($+2:). (4.11)

Since t�d�1�2, we have

&xt &=&t(x+x1)&(2t&1) x&

�2t &(x+x1)�2&&|2t&1|

>2t(1&$&:)&(2t&1)

=1&2t($+:). (4.12)

Denote u=xt �&xt &. Then &xt&u&=1&&xt&, which combines with (4.12)
to yield

&xt&u&<2t($+:). (4.13)

Using (4.13) and the triangle inequality

&u&x&�&xt&x&&&xt&u&,

where &xt&x&=t &x1&x&�tr, we obtain

&u&x&�tr&2t($+:)

and, in combination with (4.10) and with the inequality t�d, it implies

&u&x&>=. (4.14)
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Choose a functional f # X* such that & f &= f (u)=1. Then f (xt)=&xt & and
(1&t) f (x)+t�(1&t) f (x)+tf (x1)= f (xt)=&xt &, thus f (x)�(1&t)&1

(&xt &&t). Using this, (4.12) and (4.11), we get

f (x)>1&4(*&1)&1 ($+2:). (4.15)

By (4.14), there is a functional h # X* such that &h&=1 and h(u&x)>=,
hence h(u)>h(x)+=. Denote g= f+:h. Then &g&�1+: and &g&�
& f &&: &h&=1&:. Particularly, since :<1, we have g{0. Define g1=
g�&g&. Then &g1& g&=|1&&g& |�:, thus &g1& f &�&g1& g&+&g& f &
�2:. From this and from (4.15) we get

g1 (x)>1&4(*&1)&1 ($+2:)&2:. (4.16)

Let v # U be such that &v&x&<=; then

g(v)= f (v)+:h(v)

�1+:(h(x)+&v&x&)

<1+:(h(x)+=)

< f (u)+:h(u)= g(u),

thus

g1 (v)<g1 (u) whenever v # U, &v&x&<=. (4.17)

Applying (4.17) to v=x, we obtain

g1 (x)<g1 (u). (4.18)

Denote ;= g1 (u)& g1 (x). By (4.17), g1 maps the =-neighbourhood of x in
U onto a set which does not contain the point g1 (u) of g1 (U) and, by
(4.18), the distance of this point from g1 (x) is ;. Thus, by Remark 2.1
(applied to T= g1 , x0=x and c=1), we have \(x, =)�;. Finally, observ-
ing that ;�1& g1 (x) and applying (4.16), we get (4.8). Since : can be
arbitrarily small, we obtain (3.3) and, by taking the infimum over x # U,
(3.4) follows. K

The following lemma is used in the proofs of Theorem 3.4 and Theorem
3.5. We note that for a map T the kernel of which is closed the assertion
of the lemma follows immediately from Theorem 3.1 and Remark 2.1.

Lemma 4.4. Let T be a linear map defined on X and c>0 be such that
for each y # T(X) of norm &y&<c there is x # X of norm &x&<1 such that
T(x)= y. Then, for each x # U and = # (0, 1), T maps the =-neighbourhood of
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x in U onto a set containing the r-neighbourhood of T(x) in T(U) with
r=c= $(x, =)�5.

Proof. Denote K=T(U) and, for a fixed x # U and = # (0, 1), let
y=T(x) and $=$(x, =). We have $�1. Consider two cases.

Case 1. Suppose that (1+$) y � K. Let u be an arbitrary element of U
such that

&T(u)& y&<c. (4.19)

We show that &u&x&<=. Suppose that this is false. Then, by the definition
of $=$(x, =), we have &(u+x)�2&�1&$. Denote x1=2&1 (1+$)(u+x)
and y1=T(x1)=2&1 (1+$)(T(u)+ y). We have x1 # U, so y1 # K. Since K
contains the c-neighbourhood of 0 in T(X), (4.19) implies that the point
y2=2&1 (1+$)( y&T(u)) is in K. By the convexity of K, (1+$) y=
( y1+ y2)�2 is in K, which contradicts the assumption at the beginning of
Case 1.

Thus T maps the =-neighbourhood of x in U onto a set containing the
c-neighbourhood of T(x) in T(U).

Case 2. Suppose that (1+$) y # K. Then there is a u # U such that
T(u)=(1+$) y, hence for x1=(1+$)&1 u we have &x1&�1&$�2 and
T(x1)= y. Denote :==$�5, and, let t=2=�5 and xt=tx1+(1&t) x. Then

&xt&x&=t &x1&x&

�2t=4=�5�=&:

and

&xt &�t &x1&+(1&t) &x&

�t(1&$�2)+1&t

=1&t$�2=1&:.

Let V be the :-neighbourhood of xt in X. For any v # V, we have

&v&x&�&v&xt&+&xt&x&<:+(=&:)==

and

&v&�&v&xt &+&xt&<:+(1&:)=1,

thus the =-neighbourhood of x in U contains V. Since T(xt)= y, the
assumptions on T yield that T(V) contains the r-neighbourhood of y in
T(X) with r=c:=c=$�5, which completes the proof. K
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Proof of Theorem 3.4 and Theorem 3.5. Since the quotient maps in the
statements (ii) are equally relatively open on X, (iii) imply (ii) immediately.

That (ii) imply (i) is an easy consequence of Theorem 3.3. Indeed, the
condition (ii) of Theorem 3.4 yields \(x, =)>0 for each x # U and =>0,
hence, by (3.3), $(x, =)>0 for each x # U and =>0, thus X is locally
uniformly convex. Similarly for Theorem 3.5: (ii) implies \(=)>0 for each
=>0, therefore, by (3.4), $(=)>0 for each =>0, hence X is uniformly
convex.

Finally, (i) imply (iii) by Lemma 4.4; equal relative openness of quotient
maps on X yields that the constant c>0 used in Lemma 4.4 can be chosen
so that it is independent on the map. To conclude this implication for
Theorem 3.5, use (2.1) and the fact that in a uniformly convex space X we
have $(=)>0 for each =>0. K
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