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Background  and purpose:  Cognitive  decline  may  occur  as a result  of hypertension,  and  is  dependent  on  the
function  of  hippocampus.  Brain-derived  neurotrophic  factor  (BDNF)  mediated  by  angiotensin  II-induced
oxidative  stress  protects  against  cell  death  in  hippocampus.  Angiotensin  II receptor  blocker  (ARB),  can-
desartan,  activates  BDNF  in the  hippocampus.  Furthermore,  peroxisome  proliferator-activated  receptor
(PPAR)-gamma  activation  in  the brain  prevents  brain  damage.  Telmisartan,  a  unique  ARB with  PPAR-
gamma  stimulating  activity,  protects  against  cognitive  decline  partly  because  of PPAR-gamma  activation.
The  aim  of  the present  study  was  to  determine  whether  telmisartan  protects  against  cognitive  decline
via up-regulation  of BDNF  and its receptor  tropomyosin-related  kinase  B (TrkB)  in  the  hippocampus  of
hypertensive  rats,  partly  because  of  PPAR-gamma  activation.
Methods  and  results:  We  divided  stroke-prone  spontaneously  hypertensive  rats  (SHRSPs),  as  hyperten-
sive  and vascular  dementia  model  rats,  into  five  groups,  telmisartan-treated  (TLM),  TLM  +  GW9662,  a
PPAR-gamma  inhibitor,  -treated  (T  +  G),  GW9662-treated  (GW),  TLM  + ANA-12,  a  TrkB  antagonist,  -treated
(T + A),  and  vehicle-treated  SHRSPs  (VEH).  After  the treatment  for 28  days,  systolic  blood  pressure  did  not
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change in  all  groups.  However,  BDNF  expression  in  the  hippocampus  was  significantly  higher  in  TLM
than in  VEH  to a greater  extent  than  in  T +  G.  Cognitive  performance  was  significantly  higher  in  TLM  than
in  VEH  to  a  greater  extent  than  in  T  +  G, and was  not  different  between  T + A,  GW,  and  VEH.
Conclusion:  Telmisartan  protects  against  cognitive  decline  via  up-regulation  of  BDNF/TrkB  in  the  hip-
pocampus  of SHRSPs,  partly  because  of  PPAR-gamma  activation  independent  of blood  pressure-lowering
effect.

© 2012  Japanese  College  of  Cardiology.  Published  by  Elsevier  Ltd.  All rights  reserved.
ntroduction

One of the important organ damages related to hypertension
s cognitive decline. In the brain, angiotensin II contributes to
he physiological regulation of many different functions, includ-
ng cerebral circulation, integrity of the blood–brain barrier, central
ympathetic activity, hormonal production and release, response

o stress, behavior, and cognition [1–5]. In the treatments for
ypertension, angiotensin II type1 receptor (AT1R) blockers (ARB)
re widely used [6].  A previous clinical study demonstrated that
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antihypertensive drugs that act via the renin–angiotensin system
have potential in preventing, delaying, or decelerating the onset
and progression of cognitive decline in hypertensive patients [7].
In the treatments for hypertension, cognition should be focused as
a target of the antihypertensive treatment. Among ARBs, telmis-
artan has a beneficial effect in rats treated with repeated cerebral
ischemia [8,9], Alzheimer model [10,11], diabetic model [12], and
coronary plaque vulnerability [13]. However, no benefit was found
in cognitive performance after administration of telmisartan after
stroke [14]. In ONTARGET and TRANSCEND, telmisartan did not
provide positive effects on cognitive function [15]. The mech-
anisms of the protection against cognitive decline in cerebral
ischemia by telmisartan should be discussed further. Telmisartan

is a unique ARB with a partial peroxisome proliferator-activated
receptor (PPAR)-gamma agonistic property in its antihypertensive
effect [16]. Anti-inflammatory and anti-oxidant effects of telmisar-
tan that were exerted in part by PPAR-gamma activation, but not its

vier Ltd. All rights reserved.
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lood pressure-lowering effect, have protective roles against cog-
itive decline in cerebral ischemia [8,9]. PPAR-gamma activation

s reported to reduce oxidative stress and inflammatory response
n the vasculature and adipose tissue [17], and PPAR-gamma acti-
ation in the brain has been reported to prevent brain damage via
nti-inflammatory effects in neurons [18].

Previous studies have suggested that the underlying mecha-
isms of the beneficial effect of ARBs in stroke may not only
e the consequence of improved hemodynamics and vascular
unction, but may  also involve a blood pressure-independent
lement of neuroprotection [19–22].  In the brain, brain-derived
eurotrophic factor (BDNF) and its receptor tropomyosin-related
inase B (TrkB) are known to be involved in the protective mech-
nisms against stress and cell death as an antioxidant [23–26].
ngiotensin II induces superoxide-dependent down-regulation of
DNF via phosphorylation of cAMP response element binding pro-
ein [27]. Candesartan at sub-hypotensive and renin–angiotensin
ystem blocking dose affords neuroprotection after focal ischemia,
ssociated with increased activity of BDNF [28]. Telmisartan
mproves memory impairment and reduces neural apoptosis in
ippocampus via a PPAR-gamma-dependent anti-apoptotic mech-
nism in rats with repeated cerebral ischemia [8].  However, it
as not been determined whether telmisartan has protective
ffects on cognitive decline via up-regulation of BDNF/TrkB in the
ippocampus.

Combined with these previous studies, we had the hypoth-
sis that the beneficial effects of telmisartan on cognition are
ot only because of its established effect of antihypertensive
nd systemic blockade of AT1R but also because of the ben-
fits on BDNF in the hippocampus via PPAR-gamma agonistic
ffect in hypertension. The aim of the present study was  to
etermine whether telmisartan protects against cognitive decline
ia up-regulation of BDNF/TrkB in the hippocampus of stroke-
rone spontaneously hypertensive rats (SHRSPs) as hypertensive
nd vascular dementia model rats [29], partly because of PPAR-
amma  activation. Previous studies have demonstrated that ARBs
ave benefits on brain damage and vascular inflammation in
HRSPs [30–32],  as well as organ damage in spontaneously hyper-
ensive rats [33]. Telmisartan also has anti-oxidant effects in
asculature [34] and brain [35] of SHRSPs. We  divided SHRSPs
nto five groups, telmisartan-treated (TLM), TLM + GW9662, a
PAR-gamma antagonist, -treated (T + G), GW9662-treated (GW),
LM + N-[2-[[(hexahydro-2-oxo-1H-azepin-3-yl) amino] carbonyl]
henyl]-benzothiophene-2-carboxamide (ANA-12), a TrkB antag-
nist, -treated (T + A), and vehicle-treated SHRSPs (VEH). Cognitive
unction was assessed by the Morris water maze test, which
as been widely used as a test of spatial memory and
ognition [36].

ethods

nimals

This study was reviewed and approved by the committee
n ethics of Animal Experiments, Kyushu University Graduate
chool of Medical Sciences, and conducted according to the Guide-
ines for Animal Experiments of Kyushu University. Male SHRSPs
12–14 weeks), weighing 350–425 g and fed standard feed were

sed (SLC Japan, Hamamatsu, Japan). They were housed individu-
lly in a temperature-controlled room (22–23 ◦C) with a 12-h/12-h
ight-dark cycle (lights on at 7:00 AM). We  divided SHRSPs into 5
roups: TLM, T + G, T + A, GW,  and VEH (n = 5 for each). Systolic blood
ressure and heart rate were measured daily using the tail-cuff
ethod (BP-98 A; Softron, Tokyo, Japan).
logy 60 (2012) 489–494

Oral administration of drugs

SHRSPs were treated for 4 weeks. TLM group was admin-
istered telmisartan (1 mg/kg/day, Sigma Aldrich, St. Louis, MO,
USA). GW group was  administered GW9662 (1 mg/kg/day, Sigma
Aldrich). T + G group was administered telmisartan (1 mg/kg/day)
plus GW9662 (1 mg/kg/day). T + A group was administered telmis-
artan (1 mg/kg/day) plus ANA-12 (0.5 mg/kg/day, Sigma Aldrich).
VEH group was  administered 0.5% methylcellulose. All drugs were
dissolved in 0.5% methylcellulose and administered by gastric gav-
age every day. The dose of telmisartan was  selected as a low
dose and non-depressor dose [37,38].  The dose of GW9662 was
according to the previous studies examining the partial effect of
telmisartan on PPAR-gamma activation [9,37].  The dose of ANA-12
was determined to blockade BDNF according to a previous study
[39].

Western blotting analysis

To obtain the hippocampus tissues, the rats were deeply
anesthetized with sodium pentobarbital (100 mg/kg IP) and per-
fused transcardially with PBS (150 mol/L NaCl, 3 mmol/L KCl, and
5 nmol/L phosphate; pH 7.4, 4 ◦C). The brains were removed
quickly, and the hippocampus tissues obtained according to a rat
brain atlas were homogenized and sonicated in a lysing buffer
containing 40 mmol/L HEPES, 1% Triton X-100, 10% glycerol, and
1 mmol/L phenylmethanesulfonyl fluoride. The tissue lysate was
centrifuged at 6000 rpm for 5 min  at 4 ◦C with a microcentrifuge.
The lysate was collected, and protein concentration was  deter-
mined with a BCA protein assay kit (Pierce, Rockford, IL, USA). An
aliquot of 20 �g of protein from each sample was separated on 12%
SDS-polyacrylamide gel. Proteins were subsequently transferred
onto polyvinylidene difluoride membranes (Immobilon-P mem-
brane; Millipore, Billarica, MA,  USA). Membranes were incubated
for 2 h with a rabbit polyclonal antiserum against BDNF (1:1000;
Abcam, Cambridge, UK) or �-tubulin (1:1000; Cell Signaling, Dan-
vers, MA,  USA). Membranes were then washed and incubated
with a horseradish peroxidase–conjugated horse anti-mouse IgG
antibody (1:10,000) for 40 min. Immunoreactivity was detected
by enhanced chemiluminescence autoradiography (plus Western
blotting detection kit; GE Healthcare Bio-Sciences AB, Uppsala,
Sweden), and was expressed as the ratio to �-tubulin protein.

Analysis of cognitive function

Spatial learning and memory function of the rats were investi-
gated with the Morris water maze test in a circular pool filled with
water at a temperature of 25.0 ± 1 ◦C [36]. In the hidden platform
test, a transparent platform was submerged 1 cm below the water
level. Swimming paths were tracked with a camera fixed on the
ceiling of the room and stored in a computer. All the procedures of
the Morris water maze were performed for 7 days. A pre-training
session was  carried out at day 0, in which animals were given 60 s
free swimming without the platform. In the hidden-platform test
for 4 days, the rats were given 2 trials (1 session) on day 1 and 4 trials
(2 sessions) per day on days 2, 3, and 4. The initial trial interval was
about 30 min  and the inter-session interval was 2 h. During each
trial, the rats were released from four pseudo-randomly assigned
starting points and allowed to swim for 60 s. After mounting the
platform, the rats were allowed to remain there for 15 s, and were
then placed in the home cage until the start of the next trial. If a rat
was unable to find the platform within 60 s, it was  guided to the

platform and allowed to rest on the platform for 15 s. Probe trials
were performed at day 5. In the probe trial, the hidden platform
was removed and the rats was released from the right quadrant
and allowed to swim freely for 60 s. The time spent in the target
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Table  1
Physiological data.

VEH TLM T + G T + A GW

SBP (mmHg) 240 ± 28 228 ± 17 229 ± 16 231 ± 19 243 ± 21
HR  (bpm) 338 ± 30 331 ± 26 340 ± 29 343 ± 30 329 ± 37
BW  (g) 282 ± 15 280 ± 14 288 ± 17 276 ± 19 291 ± 22
Calorie  intake (Kcal/day) 77 ± 5 74 ± 8 72 ± 4 78 ± 6 74 ± 9
Water  intake (ml/day) 32 ± 4 29 ± 4 30 ± 5 30 ± 3 28 ± 5

D
S lmisartan; T + G, telmisartan + GW9662; T + A, telmisartan + ANA-12; GW,  GW9662; n = 5
f

q
a
v
w
p

S

a
t
t
s

R

P

T
w
e

F
e
v
B
t
y
G

T+G TL

VEH GW

(sec)

1 32

LM

T+AW

* +

*

4 (day)

40

20

30

0

10

Fig. 2. Escape latency in the hidden platform test of Morris water maze. *p < 0.05
versus VEH, +p < 0.05 in T + G versus TLM, n = 5 for each. VEH, vehicle; TLM,
ata are expressed as the mean ± SEM.
BP, systolic blood pressure; HR, heart rate; BW,  body weight; VEH, vehicle; TLM, te
or  each.

uadrant, where the platform had been located during training,
nd the time spent in the other quadrants were measured. In the
isible-platform test which was performed at day 6, the platform
as elevated above the water surface and placed in a different
osition.

tatistical analysis

All values are expressed as mean ± SEM. Comparisons between
ny two mean values were performed using Bonferroni’s correc-
ion for multiple comparisons. ANOVA was used to compare all
he parameters in all groups. Differences were considered to be
tatistically significant at a p-value of <0.05.

esults

hysiological data

Systolic blood pressure and heart rate were not changed in
LM, T + G, GW,  T + A, and VEH after the treatments (Table 1). Body

eight, dairy calorie intake, and water intake were also not differ-

nt in all groups (Table 1).

ig. 1. Expression of BDNF in the hippocampus in each group. BDNF/�-tubulin
xpression was  expressed relative to that in VEH which was assigned a
alue of 1. *p < 0.05 versus VEH, +p < 0.05 in T + G versus TLM, n = 5 for each.
DNF, brain-derived neurotrophic factor; VEH, vehicle; TLM, telmisartan; T + G,
elmisartan + GW9662; T + A, telmisartan + N-[2-[[(hexahydro-2-oxo-1H-azepin-3-
l) amino] carbonyl] phenyl]-benzothiophene-2-carboxamide (ANA-12); GW,
W9662.
telmisartan; T + G, telmisartan + GW9662; T + A, telmisartan + N-[2-[[(hexahydro-
2-oxo-1H-azepin-3-yl) amino] carbonyl] phenyl]-benzothiophene-2-carboxamide
(ANA-12); GW,  GW9662.

Expression of BDNF in the hippocampus

The expression of BDNF in the hippocampus was significantly
higher in TLM than in VEH (Fig. 1). The up-regulation of BDNF in
the hippocampus in TLM was attenuated in T + G, but not in T + A
(Fig. 1). However, the expression of BDNF in the hippocampus was
not different between GW and VEH (Fig. 1).

Morris water maze test

In the hidden platform test, escape latency was significantly
lower in TLM than in VEH to a greater extent than in T + G (Fig. 2),
and was not different between in VEH, GW,  and T + A (Fig. 2). In
the probe test, TLM resulted in significantly more time in the tar-
get quadrant as compared with VEH, GW,  and T + A to a greater
extent than in T + G (Fig. 3). In the visible platform test, there were
no significant differences in escape latency among all of the groups.

Discussion

In the present study, we  have demonstrated two major findings.
First, telmisartan has a protective effect on the cognitive decline via
up-regulation of BDNF/TrkB in the hippocampus of SHRSPs with-
out depressor effect. Second, co-administration of a PPAR-gamma
antagonist with telmisartan partially attenuated the telmisartan-
mediated protective effect on the cognitive decline. These results
suggest that telmisartan has a possibility of protective effect against
cognitive decline via activation of BDNF/TrkB through blockade of

AT1R and part activation of PPAR-gamma in the hippocampus of
SHRSPs independent of blood pressure-lowering effect.

In the hippocampus, BDNF protects against ischemic cell dam-
age [32]. Angiotensin II blocks long-term potentiation in the
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Fig. 3. Time in the target quadrant of the probe test of Morris water maze.
*p  < 0.05 versus VEH, +p < 0.05 in T + G versus TLM, n = 5 for each. VEH, vehicle; TLM,
t
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elmisartan; T + G, telmisartan + GW9662; T + A, telmisartan + N-[2-[[(hexahydro-
-oxo-1H-azepin-3-yl) amino] carbonyl] phenyl]-benzothiophene-2-carboxamide
ANA-12); GW,  GW9662.

ippocampus [40–44],  and induces superoxide-dependent down
egulation of BDNF [27]. In the present study, low-dose telmisar-
an caused the protective effect against cognitive decline with the
ncrease in BDNF expression in hippocampus of SHRSPs, and the
ffects were attenuated by TrkB antagonist. These results suggest
hat telmisartan has a protective effect on the cognitive decline via
p-regulation of BDNF/TrkB in the hippocampus of SHRSPs without

 depressor effect. Among ARBs, candesartan at sub-hypotensive
nd renin–angiotensin system blocking dose affords neuroprotec-
ion after focal ischemia, associated with increased activity of the
DNF [28]. Interestingly, ramipril at sub-hypotensive, hypoten-
ive, and renin–angiotensin system blocking doses showed no
ignificant neuroprotective effects [28]. Oxidative stress and/or
ntioxidant deficiency cause cognitive decline [45], and oxidative
tress in hippocampus impairs cognitive function [46]. Combining
he previous studies with our results in the present study, we con-
ider that the telmisartan-induced up-regulation of BDNF/TrkB is
aused by the blockade of AT1R-induced superoxide in the hip-
ocampus, and that ARBs have a potential to be preferable agents
or the treatment of hypertension with the protection against cog-
itive decline via up-regulation of BDNF/TrkB in the hippocampus.

We  also demonstrated that, in the present study, telmisartan-
nduced protection against cognitive decline via up-regulation of
DNF/TrkB in the hippocampus was partially attenuated by co-
dministration of PPAR-gamma antagonist with telmisartan. In a
revious study, low-dose telmisartan without depressor effect pro-
ected against focal brain ischemia partly through activation of
PAR-gamma as well as AT1R blockade [12]. Telmisartan improves
emory impairment and reduces neural apoptosis in hippocam-

us via a PPAR-gamma-dependent anti-apoptotic mechanism in
ats with repeated cerebral ischemia [8].  In other studies, co-
dministration of PPAR-gamma antagonist had no effect on the
osartan-mediated reduction in ischemic area [8,12].  Our results are
omparable with those previous studies, and suggest that telmis-
rtan could exert protective effects against cognitive decline via
p-regulation of BDNF/TrkB in the hippocampus through AT1R
lockade and partly PPAR-gamma stimulation. Interestingly, in the
resent study, PPAR-gamma antagonist alone did not change cogni-
ive performance and the expression of BDNF in the hippocampus.
here is a possibility that AT1R blockade has a synergistic effect of

PAR-gamma activation. If so, ARB with partial PPAR-gamma ago-
ist, telmisartan, has a potential to be a preferable agent for the
reatment of hypertension with the protection against cognitive
ecline via up-regulation of BDNF/TrkB in the hippocampus.
logy 60 (2012) 489–494

The protective effect against cognitive decline is not specific
in telmisartan among ARBs. Candesartan has a positive effect on
cognitive decline in hypertensive patients [47] or diabetic model
[48], and also significantly reduced the incidence and progression
of dementia [49]. In SHRSPs, candesartan improves hippocampal
CA1 neuron cell reduction, and superoxide production in the hip-
pocampus [50]. In the brain, AT1R-induced superoxide decreases
BDNF [27]. Both telmisartan and candesartan are reported to
reduce oxidative stress via blockade of AT1R in the brain [51–53].
Although candesartan was not examined in the present study, we
consider that the protective effect against cognitive decline via
up-regulation of BDNF/TrkB in the hippocampus is also caused
by candesartan, not only telmisartan among ARBs, through the
blockade of AT1R in the hippocampus. However, the change in per-
meability of the blood–brain barrier by ARBs has not been well
assessed to date. Ischemic brain damage enhances blood–brain
barrier permeability and penetration of ARBs into the brain, and
blood–brain barrier is disrupted in SHRSPs [54,55]. Telmisartan
is expected to readily shift to organs compared with other ARBs,
due to its high lipid solubility [56,57]. Moreover, telmisartan is a
unique ARB with a partial PPAR-gamma agonistic property [16].
From the results obtained in the present study, AT1R blockade with
PPAR-gamma agonist is considered to be preferable to the protec-
tion against cognitive decline via up-regulation of BDNF/TrkB in the
hippocampus.

Although the present study could demonstrate a beneficial
effect of low-dose telmisartan on cognitive function, depressor
dose of telmisartan could not provide positive effect on cognition in
previous clinical studies [14,15].  This discrepancy could not be due
to the difference in the dose of telmisartan, because the beneficial
effects in the present study were obtained with the low and not
depressor dose of telmisartan. We  could not fully clarify the rea-
sons of the discrepancy in the present study. We  used the Morris
water maze test in SHRSPs to evaluate cognitive function instead of
the shuttle avoidance test. A spatial working memory task, such as
Morris water maze test, depends on hippocampus function [58,59].
Because we  focused on cognitive performance via BDNF/TrkB in the
hippocampus of SHRSPs, we used the Morris water maze test. How-
ever, it has not been determined whether other cognitive function
tests could obtain similar beneficial effects in other models, such as
Alzheimer, diabetes, or cardiovascular disease models. We  consider
that the cognitive decline in cardiovascular diseases has various
clinical backgrounds, and that multi-targeted therapy by combina-
tion of agents is necessary to protect against cognitive decline. In
these aspects, AT1R blockade with PPAR-gamma agonist, telmisar-
tan, might be considered to be preferable among ARBs.

Limitations

There are several limitations in the present study. First, we
could not determine the dose dependency of telmisartan and not
demonstrate the direct data indicating that telmisartan penetrates
blood–brain barrier and reaches the hippocampus. Telmisartan
used in the present study was  at a low and not depressor dose,
and we  consider that the higher and depressor dose of telmisartan
would provide more beneficial effects. It is necessary in a further
study to determine whether the telmisartan-induced depressor
effect is synergistic to the present results or not, and to mea-
sure the concentration of telmisartan in the hippocampus. Second,
we did not quantify superoxide in the hippocampus, and did not
determine whether telmisartan reduced superoxide in the hip-

pocampus. Furthermore, we examined only cognitive function and
BDNF expression in the hippocampus in the present study, and we
did not examine the brain damage in the other areas and vascular
inflammation. Previously many studies have already demonstrated
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hat ARBs could prevent brain damage [5,8,10–12] and vascular
nflammation [30–32]. Telmisartan also has benefits in SHRSP [34],
nd anti-oxidant effects in the brain [35,51]. Because of these
revious studies, we consider that the benefits of ARBs on brain
amage and vascular inflammation are established, and focused
n only cognitive function and BDNF expression in the hippocam-
us in the present study. Third, we did not perform histochemical
xperiments to determine the expression of PPAR-gamma and
hanges in CA1 neuron in the hippocampus, and performed only
harmacological inhibition of PPAR-gamma or BDNF/TrkB in the
ippocampus. Although previous studies suggested the expression
f PPAR-gamma in the hippocampus of cerebral-ischemia models
8,60] and GW9662 or ANA-12 have been used as reasonable agents
o inhibit PPAR-gamma or TrkB [8,9,37,39,61],  It would strengthen
he results of the present study to determine the expression of
PAR-gamma and changes in CA1 neuron in the hippocampus and
o do the specific PPAR-gamma or BDNF/TrkB-targeting methods
such as gene transfer methods) locally in the hippocampus.

onclusion

Telmisartan has a possibility of protective effect against cogni-
ive decline via activation of BDNF/TrkB through blockade of AT1R
nd part activation of PPAR-gamma in the hippocampus of SHRSPs
ndependent of blood pressure-lowering effect, which might not
e a class effect of ARBs. These results could provide a new aspect
hat telmisartan may  be more effective to prevent cognitive decline
ompared with other ARBs, and might contribute to improve qual-
ty of life in hypertensive patients.
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