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Abstract

We investigate existence and nonexistence of solutions for NP-hard equations involving absolute values
of variables: Ax − |x| = b, where A is an arbitrary n × n real matrix. By utilizing an equivalence relation to
the linear complementarity problem (LCP) we give existence results for this class of absolute value equations
(AVEs) as well as a method of solution for special cases. We also give nonexistence results for our AVE
using theorems of the alternative and other arguments.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We consider absolute value equations of the type

Ax − |x| = b, (1)

where A ∈ Rn×n, b ∈ Rn and | · | denotes absolute value. As will be shown, the general linear
complementarity problem (LCP) [2,3] which subsumes many mathematical programming prob-
lems can be formulated as an absolute value equation (AVE) such as (1). This implies that (1)
is NP-hard in its general form. By utilizing this connection with LCPs we are able to give some
simple existence results for (1) such as that all singular values of A exceeding 1 implies existence
of a unique solution for any right-hand side b. By using theorems of the alternative [4, Chapter 2],
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we are able to give nonexistence results for (1). We shall also give a method of solution based on
successive linear programming.

This work is motivated in part by [7] where a more general AVE,

Ax + B|x| = b (2)

is considered with A ∈ Rm×n, B ∈ Rm×n and b ∈ Rm. By specializing (2) to the important case
of (1) we obtain new results in this work.

The significance of the AVE (1) arises from the fact that linear programs, quadratic programs,
bimatrix games and other problems can all be reduced to an LCP [2,3] which in turn is equivalent
to the AVE (1). Thus our AVE formulation, which is simpler to state than an LCP, subsumes major
fundamental problems of mathematical programming.

We now describe our notation. All vectors will be column vectors unless transposed to a row
vector by a prime ′. The scalar (inner) product of two vectors x and y in the n-dimensional real
space Rn will be denoted by x′y. Orthogonality x′y = 0 will be denoted by x ⊥ y. For x ∈ Rn

the 1-norm will be denoted by ‖x‖1 and the 2-norm by ‖x‖, while |x| will denote the vector with
absolute values of each component of x. The notation A ∈ Rm×n will signify a real m × n matrix.
For such a matrix A′ will denote the transpose of A, Ai will denote the ith row of A, and Aij

will denote the ij th element of A. A vector of ones in a real space of arbitrary dimension will be
denoted by e. A vector of zeros in a real space of arbitrary dimension will be denoted by 0. The
identity matrix of arbitrary dimension will be denoted by I . For simplicity, the dimensionality
of some vectors and matrices will not be explicitly given. For a square matrix A ∈ Rn×n, eig(A)

will denote the set of n eigenvalues of A. We shall write D = diag(±1) for a diagonal matrix D

each diagonal element of which is ±1.

2. Absolute value problems and linear complementarity problems

We will start by showing that the AVE (1) is in fact equivalent to a bilinear program (an
optimization problem with an objective function that is the product of two affine functions) and
to a generalized linear complementarity problem. We will then show equivalence to the ordinary
LCP.

Proposition 1 (AVE ⇐⇒ Bilinear program ⇐⇒ Generalized LCP).
The AVE (1) is equivalent to the bilinear program

0 = min
x∈Rn

{((A + I )x − b)′((A − I )x − b)|(A + I )x − b � 0, (A − I )x − b � 0}, (3)

and the generalized LCP

0 � (A + I )x − b ⊥ (A − I )x − b � 0. (4)

Proof. It is obvious that (3) and (4) are equivalent. We will show now that (3) is equivalent to the
AVE (1). Note that the following equivalence holds:

|x| � Ax − b ⇐⇒ −Ax + b � x � Ax − b, (5)

where the right side of the equivalence constitutes the constraints of (3). Hence,

|x| = Ax − b ⇐⇒ ((A + I )x − b)′((A − I )x − b) = 0 and |x| � Ax − b. (6)

Consequently (3) holds if and only if (1) holds. �
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We establish now, under mild conditions, equivalence of the AVE (1) to the standard LCP

0 � z ⊥ Mz + q � 0, (7)

where M ∈ Rn×n and q ∈ Rn.

Proposition 2 (AVE ⇐⇒ LCP).
(i) Under the assumption that 1 is not an eigenvalue of A, the AVE (1) can be reduced to the

following LCP:
0 � z ⊥ (A + I )(A − I )−1z + q � 0, (8)

where

q =((A + I )(A − I )−1 − I )b,

z=(A − I )x − b. (9)

(ii) Conversely, if 1 is not an eigenvalue of M, then the LCP (7) can reduced to the AVE

(M − I )−1(M + I )x − |x| = (M − I )−1q, (10)

where

x = 1

2
((M − I )z + q). (11)

Remark 1. We note that the AVE (10) above, that is equivalent to the LCP (7), is simpler than
that given in [7, Eq. (4)].

Proof. (i) To prove the first part, start with the generalized LCP (4), which is equivalent to the
AVE (1), to obtain (8) as follows. Use z = (A − I )x − b from (9) in the right inequality of (4) to
get z � 0, which is the left inequality of (8). Then from (9) set x = (A − I )−1(z + b) in the left
inequality of (4) to get

0 � (A + I )(A − I )−1(z + b) − b

= (A + I )(A − I )−1z + ((A + I )(A − I )−1 − I )b, (12)

which gives the right inequality of (8) with q as defined in (9). The orthogonality in (8) follows
from that of (4).

(ii) To establish the converse, we again use the generalized LCP (4), which is equivalent to
the AVE (1) as follows. Start with the LCP (7) and set the left and right side terms of (4) equal to
right and left side terms respectively of (7) as follows:

(A + I )x − b=Mz + q,

(A − I )x − b=z. (13)

This results in

x = (A − I )−1(z + b),

Mz + q = M(A − I )x − Mb + q = (A + I )x − b. (14)
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To satisfy the last equality of (14) for all x ∈ Rn, set

b=(M − I )−1q,

A=(M − I )−1(M + I ). (15)

Substituting from (15) in (14) gives

x=(A − I )−1(z + b)

=((M − I )−1(M + I ) − I )−1(z + (M − I )−1q)

=((M + I ) − (M − I ))−1((M − I )z + q)

= 1

2
((M − I )z + q). (16)

Hence AVE (1) holds with A, b as given in (10) and x as defined in (11). �

We note that the AVE (1) is NP-hard. This was shown in [7, Proposition 2] by reducing the
LCP corresponding to the NP-hard knapsack feasibility problem to an AVE.

We also note that the bilinear formulation (3) can serve as a method of solution for the AVE as
was bilinear programming exploited in [1,6] for other problems. However in general, the bilinear
program (3) is a nonconvex problem and a solution is not always guaranteed. We will show in
Corollary 1 that under certain assumptions on A, the bilinear program (3) is convex and a solution
exists.

We turn now to existence results for the AVE (1).

3. Existence of solution for AVEs

Our existence results are based on the reduction of the AVE (1) in Proposition 2 to the LCP
(8). Existence results are well known for LCPs with various classes of matrices [3]. We first prove
a simple lemma.

Lemma 1. Let S ∈ Rn×n denote the diagonal matrix constituting the nonnegative singular values
of A. Then

min eig(A′A) > (�)1 ⇐⇒ S > (�)I, (17)

where min eig denotes the least eigenvalue.

Proof. Let USV ′ be the singular value decomposition of A, where U and V are orthogonal
matrices and S is a nonnegative diagonal matrix of singular values. Then,

A = USV ′, A′ = V SU ′, A′A = V SU ′USV ′ = V S2V ′. (18)

Hence, the diagonal elements of S2 constitute the set of eigenvalues of A′A and the columns
of V the eigenvectors of A′A. Hence S > (�)I , which is is equivalent to S2 > (�)I , is in turn
equivalent to eig(A′A) > (�)1. �

We turn now to our existence result.
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Proposition 3. (Existence of AVE solution)

(i) The AVE (1) is uniquely solvable for any b ∈ Rn if the singular values of A exceed 1.

(ii) If 1 is not an eigenvalue of A and the singular values of A are merely greater or equal to
1, then the AVE (1) is solvable if the bilinear program (3) is feasible, that is

{x|(A + I )x − b � 0, (A − I )x − b � 0} /= ∅. (19)

Proof. (i) We first show that (A − I )−1 exists. For, if not, then for some x /= 0 we have that
(A − I )x = 0, which gives the contradiction

x′x < x′A′Ax = x′A′x = x′Ax = x′x,

where the first inequality follows from eig(A′A) > 1 as a consequence of Lemma 1. Hence
(A − I )−1 exists. It follows by Proposition 2 that the AVE (1) can be reduced to the LCP (8). We
show now that the LCP (8) is uniquely solvable by showing that (A + I )(A − I )−1 is positive
definite [3, Chapter 3]. Since eig(A′A) > 1 it follows that z′(A′A − I )z > 0 for z /= 0, which
is equivalent to z′(A′ − I )(A + I )z > 0 for z /= 0. Letting z = (A − I )−1y gives that y′(A +
I )(A − I )−1y > 0 for y /= 0. Hence (A + I )(A − I )−1 is positive definite and the LCP (8) is
uniquely solvable for any q ∈ Rn and so is the AVE (1) for any b.

(ii) We note that the feasibility condition (19) is a necessary condition for the solvability of
the AVE (1) because it is equivalent to the condition

{x|Ax − b � |x|} /= ∅. (20)
By a similar argument as that of part (i) above we have that the matrix (A + I )(A − I )−1 of the
corresponding LCP (8) is positive semidefinite and hence (8) is solvable if it is feasible. That it
is feasible, follows from the assumption (19). �

Corollary 1 (Bilinear program convexity). Under the assumptions of Proposition 3(ii) the bilinear
program (3) is convex.

Proof. The Hessian of the objective function of (3) is 2(A′A − I ), which is positive semidefinite
by (17). �

Remark 2. The bilinear program (3), which is equivalent to AVE (1), can be solved by a finite
number of successive linear programs obtained by linearizing its objective function around the
current iterate under the assumptions of Proposition 3(ii) [1].

Another interesting existence result is the following.

Proposition 4 (Unique solvability of AVE). The AVE (1) is uniquely solvable for any b if ‖A−1‖ <

1.

Proof. Let USV ′ be the singular value decomposition of A. Then

‖A‖2 = max‖x‖=1
‖Ax‖2 = max‖x‖=1

x′A′Ax,

= max‖x‖=1
x′V SU ′USV ′x = max‖x‖=1

x′V S2V ′x

= max‖y‖=1
yS2y = ‖S‖2, where x = Vy.
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Hence, the assumption that ‖A−1‖ < 1 is equivalent to S > I applies; accordingly by Proposition
3(i) the AVE (1) is uniquely solvable for any b. �

Remark 3. We note that much more general existence results can be given by invoking classes of
matrices for which the LCP (8) is solvable [3,5]. In fact there is a large class of matrices, the class Q

for which the LCP is always solvable for any value of q. Thus whenever (A + I )(A − I )−1 ∈ Q

the AVE (1) is solvable for any b ∈ Rn. The class Q includes, for example, strictly copositive
matrices M , that is z′Mz > 0 for all z > 0, which in turn includes positive definite matrices.
Another useful class is the class Q0 for which the LCP (8) is solvable whenever it is feasible,
that is whenever the inequalities of (8) are satisfied. This includes the class of copositive-plus
matrices, that is z′Mz � 0 whenever z � 0 and in addition (M + M ′)z = 0 whenever z′Mz = 0.
This includes the class of positive semidefinite matrices.

Alternatively, the existence part of Proposition 4 may be established by re-writing AVE in the
equivalent form x = A−1|x| + A−1b and establishing the convergence of the iteration xk+1 =
A−1|xk| + A−1b. Uniqueness of the solution then follows easily from this representation by
considering the difference of two solutions and obtaining a contradiction using ‖A−1‖ < 1.

Another simple existence result based on the iteration xk+1 = Axk − b is the following.

Proposition 5 (Existence of nonnegative solution). Let A � 0, ‖A‖ < 1 and b � 0, then a non-
negative solution to the AVE (1) exists.

Proof. As a consequence of the iteration xk+1 = Axk − b with x0 = −b, the iterates {xk} are
nonnegative and, since ‖A‖ < 1, converge to a solution x∗ � 0 that satisfies x∗ = Ax∗ − b and
hence Ax∗ − |x∗| = b. �

Another existence result can also be given based on the iteration xk+1 = Axk − b (with x0 =
−b) for the case when ‖A‖∞ (as opposed to ‖A−1‖) is small. This case corresponds to dominance
of the |x| term in AVE (whereas Proposition 4 corresponds to dominance of the linear terms in
AVE), and leads to 2n distinct solutions under suitable assumptions as follows.

Proposition 6 (Existence of 2n solutions). If b < 0 and ‖A‖∞ < γ/2 where γ = mini |bi |/maxi

|bi |, then AVE has exactly 2n distinct solutions, each of which has no zero components and a
different sign pattern.

Proof. Consider the iteration xk+1 = Axk − b, with starting point x0 = −b > 0. We will demon-
strate that this iteration converges to a solution x∗ > 0, so that |x∗| = x∗ and the AVE is satisfied.
It is easily verified by induction that xk+1 − xk = −Ak+1b, and thus standard arguments using
‖A‖∞ < 1 establish the convergence of the iteration and also yield

‖x∗ − x0‖∞ �‖(x1 − x0) + (x2 − x1) + · · · ‖∞
<(γ/2 + (γ /2)2 + · · ·)‖b‖∞
�γ ‖b‖∞ � min

i
|bi |.

It follows that,

‖x∗ + b‖∞ < min
i

−bi,
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and

−x∗
i − bi � |x∗

i + bi | < − max
i

bi , i = 1, . . . n.

Consequently

0 � (max
i

bi) − bi < x∗
i , i = 1, . . . n.

Hence x∗ > 0.
Note that ‖A‖∞ < 1 implies that x∗ is the unique solution of the system Ax − x = b and

hence x∗ is the unique positive solution of AVE. For solutions with other sign patterns, note
that for a D with |D| = I , Ax − |x| = b has a solution with sign pattern D (i.e., Dx � 0) iff
the system ADy − y = b, resulting from the substitution x = Dy, has a nonnegative solution y.
Since ‖AD‖∞ = ‖A‖∞, we may apply the argument of the preceding paragraph to the matrix
AD to demonstrate convergence of this modified linear system with coefficient matrix AD to
a solution y∗ > 0, which is equivalent to the existence of a solution Dy∗ with sign pattern D

to AVE. As before, the system ADy − y = b has a unique solution, so the solution Dy∗ is the
unique AVE solution with sign pattern D. �

We turn now to nonexistence results for AVEs.

4. Nonexistence of solutions for AVEs

We shall utilize theorems of the alternative [4, Chapter 2] as well as a simple representation
(24) of |x| to establish mainly nonexistence results for AVEs here. We note that the significance of
these somewhat negative results is that it may otherwise require the solution of 2n systems of linear
equations to determine whether an AVE has no solution. In contrast, the proposed nonexistence
results can be checked by solving a single linear program in polynomial time, as in the case of
verifying (21), or merely by observation, as in Propositions 9 and 10.

We begin with a simple nonexistence result based on the infeasibility of the feasible region of
the bilinear program (3) which is equivalent to the AVE (1).

Proposition 7 (Nonexistence of solution). The AVE (1) has no solution for any A, b such that

r � A′r � −r, b′r > 0 has solution r ∈ Rn. (21)

Proof. By the Farkas theorem of the alternative [4, Chapter 2] we have that (21) is equivalent to

(A + I )u + (−A + I )v = −b, (u, v) � 0 has no solution (u, v) ∈ R2n.

Making the transformations, x = −u + v, s = u + v, or equivalently, u = (s − x)/2, v = (s +
x)/2, results in

−Ax + s = −b, s + x � 0, s − x � 0 has no solution (s, x) ∈ R2n.

That is,

(A + I )x − b � 0, (A − I )x − b � 0 has no solution x ∈ Rn.

This is equivalent to the feasible region of the bilinear program (3) being empty and hence the
AVE (1) has no solution. �

We give a simple example of this proposition.
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Example 1. Consider the AVE[−1 2
1 −1

] [
x1
x2

]
−

∣∣∣∣x1
x2

∣∣∣∣ =
[−1

1

]
. (22)

This AVE has no solution because it can be easily checked that r =
[

4
6

]
satisfies the nonexistence

condition (21).

We note however that condition (21) is sufficient but not necessary in general for nonexistence
as the following example shows.

Example 2. The AVE[
5 −2
2 −1

] [
x1
x2

]
−

∣∣∣∣x1
x2

∣∣∣∣ =
[

3
2

]
(23)

has no solution. However, (21) has no solution as well for this case.

For the next set of results we shall make use of the simple fact that for x ∈ Rn

|x| = Dx, ∀D = diag(±1) such that Dx � 0. (24)

Using this fact we shall first give a couple of existence results and then our final nonexistence
result.

Proposition 8 (Existence for a class of AVEs). Let C ∈ Rn×n and b ∈ Rn. Then

(C − I )z = b, z � 0 has a solution z ∈ Rn, (25)

implies that

Ax − |x| = b has a solution ∀A = CD, D = diag(±1). (26)

Remark 4. We note that the assumption (25) can be easily checked by solving a single linear
program.

Proof. By setting z = Dx, we note that condition (25) is equivalent to the following:

∀D = diag(±1), CDx − Dx = b, Dx � 0 has a solution x ∈ Rn. (27)

Setting A = CD and making use of (24) gives (26). �

We have the following corollary.

Corollary 2. Under the assumption (25), there exist 2n solvable AVEs (1) where A = CD, D =
diag(±1) and x = Dz.

We now give two final nonexistence results that are related to Propositions 5 and 6.

Proposition 9 (Nonexistence of solution). Let 0 /= b � 0 and ‖A‖ < 1. Then the AVE (1) has no
solution.

Proof. We will show that if the AVE (1) has a nonzero solution then b must contain at least one
negative element. Rewriting AVE (1) as |x| − Ax = −b, note that the LHS |x| − Ax has at least
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one positive element when x /= 0. Otherwise, |x| − Ax � 0, and consequently |x| � Ax leads
to the contradiction ‖x‖ � ‖Ax‖ � ‖A‖‖x‖ < ‖x‖. Thus b must contain at least one negative
element. �

Proposition 10 (Nonexistence of solution). If b has at least one positive element and ‖A‖∞ < γ̄ /2
where γ̄ = maxbi>0bi/maxi |bi |, then AVE has no solution.

Proof. Suppose the conditions hold and AVE has a solution, so that, for some diagonal matrix D

with |D| = I , Ax − Dx = b has a solution with Dx = |x|. Thus for D with |D| = I such that
Db = −|b| we have that DAx − DDx = −|b| also has a solution x∗ with Dx∗ = |x∗|. Since
multiplication by D and D have no effect on ‖A‖∞, this implies that DADDy − y = −|b| has
a unique solution y∗ with DDx∗ = y∗. Now consider y∗

j , where j corresponds to the largest
positive element of b. By the approach of the proof of Proposition 6, it is easily shown that
y∗
j > 0. However, since 0 < y∗

j = d̄j dj x
∗
j , where d̄j and dj are the j th diagonal elements of D

and D, there is a contradiction since djx
∗
j > 0 and d̄j < 0. �

5. Conclusion and outlook

The AVE (1) constitutes one of the most simply stated NP-hard problems. As such it is a
fascinating problem to investigate theoretically and computationally. In this work we have estab-
lished existence and nonexistence results for classes of AVEs and indicated a method of solution
when a solution exists for a class of these equations. Further relations with wider classes of linear
complementarity and other problems may shed additional light and generate new methods of
solution and insights into this deceptively simple looking class of NP-hard problems.
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