
Theoretical Computer Science 341 (2005) 247–262
www.elsevier.com/locate/tcs

Towards a proof of the decidability of the
momentary stagnation of the growth function of

D0L systems

Blanca Casesa,1, Manuel Alfonsecab,∗,2
aDepartamento de Lenguajes y Sistemas Informáticos, Universidad del País Vasco/Euskal Herriko

Unibertsitatea, 20080 Guipúzcoa, Spain
bEscuela Politécnica Superior, Department of Computer Engineering, Universidad Autónoma de Madrid,

Madrid 28049, Spain

Received 8 June 2004; received in revised form 5 January 2005; accepted 19 May 2005

Communicated by M. Ito

Abstract

This paper proves the decidability of several problems in the theory ofHD0L, D0L andPD0L
systems, some of which that have been proved before but are now proved in a different way. First,
the paper tackles the decidability of the nilpotency ofHD0L systems and the infinitude ofPD0L
languages. Then, we prove the decidability of the problem of momentary stagnation of the growth
function ofPD0L systems. Finally, we suggest a way to solve the decidability of the momentary
stagnation of the growth function ofD0L systems, proving the decidability of the infinitude ofHD0L
as a trivial consequence.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Formal language theory;D0L systems;HD0L systems

∗ Corresponding author. Tel.: +34 91 497 2278; fax: +34 91 497 2235.
E-mail address:Manuel.Alfonseca@ii.uam.es(M. Alfonseca).

1 This paper has been partially sponsored by the UPV/EHU project number 9/upv 00003.230-13707/2001.
2 This paper has been partially sponsored by the Spanish Ministry of Science and Technology (MCYT) project

number TIC2002-01948.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.05.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82055022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:Manuel.Alfonseca@ii.uam.es

248 B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262

1. Introduction

The theory of Lindermayer systems, orL systems started with the work by Aristide
Lindenmayer[2], whose goal was the development of graphical algorithms to explain the
growth of living organisms, specially of plants [5]. The mathematical formalization of the
theory of L Systems in terms of Formal Language Theory and Z-rational functions [4,6],
has produced a fruitful line of research [7–9,1].

This work proves in a different way several well-known problems related toHD0L and
PD0L systems. The tripleV∗ = (V ∗, ·, �) represents the free monoid generated by the
concatenation operationx · y = xy over the alphabetV = {a1, . . . , am} composed of
m > 0 symbols, with neutral element�, called the empty word. The set of non-empty words
is V + = V ∗ − {�}. The length of a wordx is denoted by|x|.

A D0L homomorphism inV ∗ is any functionF : V ∗ → V ∗ such thatF(�) = � and
F(xy) = F(x)F (y). A D0L sequence is a successions(0) = F 0(x) = x, s(k + 1) =
Fk+1(x) = F(F k(x)) obtained by iterating the homomorphismF from a starting wordx.
A D0L homomorphism is propagating orPD0L if for all symbolsai ∈ V ,F(ai) �= � is true.
A filtering homomorphismf : V ∗ → V ′∗ together with aD0L sequences(k) = Fk(x)

defines anHD0L sequences′(k) = f (s(k)) = f (F k(x)).
If the filtering homomorphism isg : V ∗ → {a}∗ in such a way thatg(x) = a|x|, or

equivalently,g : V ∗ → N andg(x) = |x|, thens′(k) = g(s(k)) = g(F k(x)) is a growth
sequence.

In this paper, we prove the problem of “momentary stagnation” of the growth function
of PD0L sequences, which deals with the decidability of the existence of a valuek, such
thatg(F k(x)) = g(F k+1(x)).

We first present aTheorem of decidability of filtered mononotous systems, concerning
filtered iterated sequences of monotonous functions in finitely founded well behaved quasi-
orders. The theorem ensures the decidability of

∀k ∃z ∈ Z, z�′f (F k(x)) = s′(k),

whereZ is a finite set,A is a recursive set,F : A → A, f : A → A′ are monotonous
functions in recursive finitely founded well behaved quasi-orders(A, �) and(A′, �′). We
also prove the existence of an algorithm to decide the infinitude ofs′(N) if F and f are
strictly monotonous.

As corollaries of this theorem, the decidability of the following problems is proved:
(1) The nilpotency ofHD0L homomorphisms,∃k, s′(k) = f (F k(x)) = �.
(2) The infinitude of propagating orPD0L languages.
(3) The Parikh momentary stagnation of the growth function ofPD0L systems.
(4) The infinitude ofHD0L languages.
Sections2 and 3 describe the basic notions and the notation used in the paper. Basic concepts
of algebra are taken from the book [10], while the background on Computability is taken
from [3]. Section 4 introduces a few examples of order structures(Nm, �) and Parikh’s
quasi-order(V ∗, �), which are used in the development of this work, proving that they are
well behaved quasi-orders.

B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262 249

Original results are presented in Section5, which proves some propositions on recur-
sive well behaved quasi-orders, and in Section 6, which proves the decidability theorem
mentioned above.

Section 7 refers the problem to domainV ∗ [1], introducing homomorphisms and their
relation to matrix theory.

The corollaries of the theorem of decidability of filtered iterated monotonous functions
are presented respectively in Sections 8–10. Finally, Section 11 describes an algorithm for
the latter problem.

2. Sets, predicates, functions and computability

In the following, we assume that any setA is contained in a universeA, a set which is
in correspondence to natural numbers through a computable and bijective successions :
N → A. #A denotes the cardinality of setA and∅ the empty set. We define¬A = A− A

as the set of all the elements ofA which are not inA. Therefore,

¬A = ∅.

Consider the cartesian productAm = A× · · · × A = {(x1, . . . , xm) : xi ∈ A, 1� i�m}.
To every subsetB of Am we associate a predicateQ of arity m, denoted byQ(x), which is
true forx ∈ Am if x ∈ B. The complementary predicate is denoted by¬Q(x), which is
true if x �∈ B. Binary predicatesQ(x1, x2), with m = 2, can be writtenx1Qx2. When the
arity is 0, the predicateQ is either a true or a false proposition for allx.

A functionF : A→ A′ is a predicateF ⊆ A × A′ such that, for allx ∈ A, the image
set ofx by F, Im(F, x) = {y ∈ A′ : (x, y) ∈ F }, has at most one element: #Im(F, x)�1.
Using the notation of functions, we writeF(x) = y ↔ F(x, y)↔ Im(F, x) = {y}.

The range or image ofF is the setIm(F) = F(A) = ⋃
x∈A Im(F, x), while the domain

of F is the setDom(F) = {x ∈ A : #Im(F, x) = 1}. FunctionF is total ifDom(F) = A,
surjective if Im(F) = A′, and injective if for all pairs(w, x) of different elements ofA,
F(w) �= F(x). F is a bijection when it is total, surjective and injective.

A succession in a setA is any total functions : N → A.
A predicateQ is recursive or decidable when there are algorithms that determine whether

Q(x) or¬Q(x) is true in a finite number of computation steps, for allx ∈ Am. If the arity
of Q is 0, the algorithm determines which is true:Q or ¬Q. If an algorithm exists, which
always stops ifQ(x) is true, but does not stop if¬Q(x) is true, the predicate is recur-
sively enumerable or semi-decidable. PredicateQ is recursive iffQand¬Q are recursively
enumerable.

A functionF : A→ A′ is computable if predicateF ⊆ A×A′ is decidable. Intuitively,
a function is computable if there are algorithms that, for eachx ∈ A, computeF(x) ∈ A′
in a finite number of computation steps.

A setA is recursively enumerable (recursive) iff predicateQ(x)↔ x ∈ A is recursively
enumerable (recursive). Formally, we will apply the following definition of recursive and
recursively enumerable sets:

250 B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262

Definition 1. Any setA ⊆ A is recursively enumerable if it is the empty set,A = ∅, or if
there exists a computable successions : N → A such thats(N) = A.

We say thatA is recursive ifA and¬A = A− A are recursively enumerable.

It should be noticed that the universeA is recursive, since it is recursively enumerable,
and its complementary setA = ∅ is recursively enumerable. We also use the following well
known results in computability theory:
• If A andB are recursively enumerable (recursive) sets then their unionA ∪ B and inter-

sectionA ∩ B are recursively enumerable (recursive) sets.
• A is recursive iff¬A is recursive. A setA is co-finite if¬A is finite. Finite and co-finite

sets are recursive.
• If A is recursive, thenA× A is recursive.

3. A background on order relations

3.1. Quasi-orders

A binary predicate� ⊆ A × A is a quasi-order (or pre-order) if it is reflexive and
transitive. The pair(A, �) is a quasi-order structure. Notationy¡ x is equivalent tox� y.
The non-reflexive or proper part of the quasi-order is denoted by≺, whiley � x is equivalent
to x ≺ y.

Let (A, �) and (A′, �′) be partial quasi-orders. A total functionF : A → A′ is
monotonous if for allx, y ∈ A, x� y → F(x)�′F(y). F is strictly monotonous ifx ≺
y → F(x) ≺ F(y). (A, �) is isomorphic to(A′, �′) if a bijective and monotonous func-
tion exists,F : A→ A′, such thatx� y ↔ F(x)� ′F(y). This is denoted by(A, �) =F
(A′, �′).

Let (A, �) be a quasi-order. A successions : N → A is increasing ifs is monotonous
in the order(N, �) of natural numbers, which means that, for allk, s(0)� s(1)� · · · �
s(k)� · · · . The succession is strictly increasing ifs(0) ≺ s(1) ≺ · · · ≺ s(k) ≺ · · · . The
succession is decreasing if, for allk, s(0)¡ s(1)¡ · · · ¡ s(k)¡ · · · , and strictly decreas-
ing if the same holds for predicate�.
(A, �) is a well founded quasi-order structure ifA does not contain infinite strictly

decreasing chains. This happens iff a strictly decreasing successions : N → A does not
exist.
(A, �) is a well behaved quasi-order structure if, for every successions : N → A

there are indicesi and j such thati < j ands(i)� s(j). In this case, we can say that the
successions are good in this structure. The condition of being well behaved is stronger than
that of being well founded. Every well behaved quasi-order is a well founded quasi-order.

3.2. Finitely founded well behaved quasi-orders

Definition 2. Let (A, �) be a well behaved quasi-order structure. We say that(A, �) is
finitely founded if∀ x ∈ A, #{y ∈ A : y� x} ∈ N (is finite).

B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262 251

Finitely founded well behaved quasi-orders are a restriction of well behaved quasi-orders
that avoids the situations where an elementx ∈ A is greater or equal than an infinite number
of different elementsy ∈ A.

Example 3. Let (N, �) be the order of natural numbers. Take an element� �∈ N. Then
(N ∪ {�},�), where�= � ∪ {(x,�) : x ∈ N ∪ {�}}, is trivially a well behaved quasi-
order structure which is not finitely founded: #{y ∈ N ∪ {�} : y � �} = #N means that
element� is greater or equal than an infinite number of elements.

3.3. Partial orders

If � is antisymmetric (i.e.x� y ∧ y� x → x = y) then � is a partial order. We
denote a partial order predicate by� , its proper subset by<, and a partial order structure
by (A, �). The setA is called aposet. The order is total if any two elementsx, y are
comparable,x�y or y�x.

Given a quasi-order(A, �), consider the equivalence relationx = y ↔ x� y ∧ y� x.
Consider also(A/=, �/=), whereA/= is the quotient set ofAwith respect to the equivalence
=, i.e.A/= = {[x] : x ∈ A} and[x] = {y ∈ A : x� y ∧ y� x}. For all [x], [y] ∈ A/=,
[x]�/=[y] ↔ x� y ↔ ∀x′ ∈ [x],∀y′ ∈ [y], x′� y′. Then(A/=, �/=) is a partial order
induced by the quasi-order(A, �).

Let B ⊆ A be a subset of a posetA. An elementx ∈ B is minimal if for all y ∈ B,
¬ x > y. The set of minimal elements inB is denoted by min(B). A partial order on a setA
is a well behaved partial order iff every non-empty subset ofB ⊆ A has minimal elements,
min(B) �= ∅, but only a finite number of them.

Proposition 4. (A, �) is a well behaved quasi-order structure iff(A/=), �/=) is a well
behaved partial order structure.

Proof. s : N → A is a succession inA iff s′ : N → A/= such that for allk, s′(k) =
[s(k)] ∈ A/= is a succession inA/=.

For all indicesi < j , s(i)� s(j) iff s′(i) = [s(i)]�/=[s(j)] = s′(j). In consequence,
any sequences is good in structure(A, �) iff s′ is good in(A/=, �/=). �

Proposition 5. (A, �) is a finitely founded well behaved quasi-order structure iff(A/=,
�/=) is a finitely founded well behaved partial order structure, where each equivalence
class[x] ∈ A/= is a finite set.

Proof. Proposition4 ensures that(A, �) is a well behaved quasi-order iff(A/=, �/=) is
a well behaved partial order.

We know that, for allx ∈ A, [x] ∈ A/=, #{[y] ∈ A/= : [y]� [x]}�#{y ∈ A :
y� x}. Therefore, the fact that(A, �) is finitely founded implies that(A/=, �/=) is finitely
founded. If(A, �) is finitely founded, then[x] = {y ∈ A : y� x ∧ x� y} ⊆ {y ∈ A :
y� x}, which is a finite set. Hence, all classes[x] are finite.

Conversely, if(A/=, �/=) is finitely founded and every class[y] ⊆ A is finite, for
all class[x], the set{y ∈ A : y� x} = ⋃

[y]� [x] [y] is a finite union of finite sets, and

252 B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262

hence finite. In consequence,∀x ∈ A, #{y ∈ A : y� x} ∈ N and (A, �) is finitely
founded. �

The following example is useful to see that finitely founded partial orders are a strict
sub-class of well behaved partial orders.

Example 6. The well behaved quasi-order(N ∪ {�},�) defined in Example3 is a well
behaved partial order which is not finitely founded.

The following example is an application of Proposition 5.

Example 7. Consider the well behaved quasi-order(N2,>), such that(x, y)>(x′, y′)↔
x�x′. In the quotient partial order, each class(N2

/=,>/=) is infinite, but(N2
/=,>/=) is

isomorphic to(N, �), sincex = [(x,0)] = {(x, y) : y ∈ N}, and hence not finitely
founded.

As a consequence of Proposition5, the structure(N2,>) is not finitely founded.

4. Examples of finitely founded well behaved quasi-ordered sets used in this work

Example 8. The extension toNm the order of naturals(N, �) is a finitely founded well
behaved partial order.

The extension to(Nm, �) of the order of naturals(N, �) in such a way that(x1, . . . , xm)

�(y1, . . . , ym) ↔ ∧m
i=1 xi�yi is a well behaved partial order whose minimum is

0̄= (0, . . . ,0).
Consider any setB ⊆ Nm of tuples. We prove that min(B), the set of minimal elements

in B is finite and non-empty.
Let �i = min{xi : x ∈ B} be theith coordinate of� ∈ Nm, i.e. the minimum of theith

coordinates of the tuples inB (� is not necessarily inB). Tuple� = �(B) is always defined
and unique.

Now, for each coordinate�i , take anym tuplesxi ∈ B whoseith coordinate reaches the
minimumxii = �i for 1� i�m. LetZ = {xi : 1� i�m} ⊆ B be the set of such tuples.Z
is non-empty iffB is non-empty. CallB1 = {x ∈ B :∨m

i=1 x
i�x}. Then min(B1) = Z.

Consider the tupleM = (M1, . . . ,Mm) (not necessarily inB) where Mi =
max{x1

i , . . . , x
m
i } is the maximum ofith coordinates of the tuples inZ. ThenB2 = {x ∈ B :

��x�M} is a finite set andZ ⊆ B2 is non-empty.
SinceB = B1 ∪ B2, it follows that min(B) = min(min(B1) ∪ B2) = min(Z ∪ B2) =

min(B2) is a finite and non-empty set, and(Nm, �) is a well behaved partial order, as
defined in Section3.3.

ConsiderB = {(x, y) : x, y are odd numbers andx�3 or y�5} a subset ofN2 with
� = (1,1) /∈ B. TakeZ = {(1,9), (7,1)} ⊆ B, whereM = (7,9).

The setB2 = {(x, y) : x, y ∈ B, � = (1,1)�(x, y)�(7,9) = M} is finite and
non-empty. Thus min(B) = {(3,1), (1,5)} = min(B2) is finite and non-empty.

To see that(Nm, �) is finitely founded, consider any tuplex = (x1, . . . , xm). If z =
xi = max{x1, . . . , xm} is the maximum component of tuplex, then{y ∈ Nm : y�x} ⊆

B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262 253

{0, . . . , z}m, which is a finite set. As a consequence, #{y ∈ Nm : y�x} ∈ N, and(Nm, �)

is finitely founded.

Example 9. Parikh’s well behaved quasi-order inV ∗. Consider the set of wordsV ∗ over
the alphabetV.

Let |x|ai count the number of occurrences of symbolai ∈ V in the wordx ∈ V ∗, and
take� : V ∗ −→ Nm such that�(x) = (|x|a1, . . . , |x|am). Function� is called the Parikh’s
function.

We define(V ∗, ��) thus: x��y ↔ �(x)��(y) in the well behaved partial order
(Nm, �) defined in Example8.

Let us illustrate this for the alphabetV = {a, b}: aab�� baaab, as�(aab) = (2,1) <
(3,2) = �(baaab). On the other hand,baaab��bbaaa andbbaaa�� baaab, although
they are different words. Therefore,�� is not antisymmetric.

Consider the equivalencex =� y ↔ x��y ∧ y��x ↔ �(x) = �(y). By
Proposition 4, the quotient structure(V ∗/=�

, ��/=�
) is a well behaved partial order structure

isomorphic to(Nm, �) through the bijection� : V ∗/=�
→ Nm, such that�([x]) =

[�(x)].
In Example 8, we proved that(Nm, �) is finitely founded. By isomorphism,(V ∗/=�

,

��/=�
) is finitely founded. Proposition 5 ensures that(V ∗, �) is finitely founded, since for

all x ∈ V ∗, #[x] ∈ N.

5. Recursive quasi-orders

Definition 10. A quasi-order(A, �) is recursive if� ⊆ A× A is a recursive predicate.

Proposition 11. Let (A, �) be a recursive well behaved quasi-order andA ⊆ A any
recursive subset. Then(A, �A), where�A = � ∩ A × A, is a recursive well behaved
quasi-order structure.

Proof. The restriction of quasi-order� to �A is trivially a quasi-order. Since any succes-
sions : N → A (computable or not) in the setA is a succession inA, all successions inA
are good. Thus,(A, �) is a well behaved quasi-order structure.

Since �A = � ∩ A × A is the intersection of recursive predicates, the well behaved
quasi-order�A is recursive. �

Without loss of generality, we can write(A, �A) = (A, �), with the conditions of
Proposition11.

Notice that, being a finitely founded or well-behaved quasi-order, does not imply being
recursive, as shown in the following example.

Example 12. Consider the order(N, �), a finitely founded and well-behaved total
order. LetK̄ ⊆ N be any non-recursively enumerable subset. Following the proof of

254 B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262

Proposition11, it is easy to see that(K̄, �) is a finitely founded well behaved quasi-order
which is non-recursive.

6. Decidability results in filtered iterated monotonous functions

Given a functionF : A → A, we callFk(x) the kth iteration ofF, k ∈ N, where
F 0(x) = x andFk+1(x) = F(F k(x)).

Theorem 13. Let s(k) = Fk(x) be a succession, whereF : A → A, f : A → A′ are
total, computable and monotonous functions in recursive finitely founded well behaved
quasi-orders(A, �) and(A′, �′). This gives rise to the succession3 s′(k) = f (s(k)) =
f (F k(x)).
(1) Predicate∀k ∃z ∈ Z, z�′f (F k(x)) = s′(k) is decidable, where Z is a finite subset

of A′.
(2) If F and f are strictly monotonous, then there exists an algorithm to decide ifs′(N) is

finite or infinite.

Proof. Successionss and s′ are trivially computable. Since(A, �) is a recursive well
behaved quasi-order, all successions inA are good. Then, successions(k) = Fk(x) is
computable and good.

Consequently, the iterations(0), s(1), . . . , s(i), . . . , s(j) to find termsi, j with i < j

ands(i)� s(j) always halts. Callp = j − i.
FunctionF is monotonous ands(i)� s(j)→ ∀ n, s(i + n) = Fn(s(i))�Fn(s(j)) =

s(i + p + n). Sincen = (ndivp)p + (nmodp) = kp + r bijectively, we have that for all
k and for allr < p = j − i:

s(i + r)� · · · � s(i + kp + r)� s(i + (k + 1)p + r). (1)

(1) The fact that functionf in Eq. (1) is monotonous, implies that for allkand for allr < p:

f (s(i + r))�′ · · · �′f (s(i + kp + r))�′f (s(i + (k + 1)p + r))↔ (2)

s′(i + r)�′ · · · �′s′(i + kp + r)�′s′(i + (k + 1)p + r). (3)

There are two possibilities:
• Observing thej − 1 first terms in the successions′, we can deduce that∀k < j ∃z ∈
Z, z� s′(k) = f (F k(x)) is decidable, becauseZ is a finite set and the number of
terms to be compared is finite. The proposition∀k ∃z ∈ Z, z�′f (F k(x)) = s′(k) is
false if it fails in the firstj − 1 elements.

• Otherwise the proposition is true. Assume that it is true for the firstj − 1 elements.
Then, for termss′(i) . . . s′(i+r) . . . s′(i+(p−1)) = s′(j−1), where 0�r < j−i = p,

3Actually, the succession depends on the starting valuex, and should be writtens(k, x), but to simplify the
notation we write justs(k).

B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262 255

there arez0, . . . , zr , . . . , zp−1 ∈ Z such that:

z0 �′s′(i + 0), . . . , zr �′s′(i + r), . . . , zp−1 �′s′(i + (p − 1)). (4)

From Eqs. (2) and (4), for allk and for allr < j − i = p, zr ∈ Z exists, such that:

zr �′s′(i + r)�′ · · · �′s′(i + kp + r)�′s′(i + (k + 1)p + r). (5)

In consequence,∀k ∃z ∈ Z z�′f (F k(x)) = s′(k) is true.
(2) If F andf are strictly monotonous, there are two possibilities with Eq. (1):

• For all r < p, and for allk ∈ N, sr (k) = s(i + kp + r)¡ s(i + (k + 1)p + r) =
sr (k + 1) is a (non-strictly) decreasing sub-succession. SinceA is finitely founded,
there arek andk′, such thatsr (k) = sr (k

′). Therefore, the ranges(N) is a finite set
ands′(N) = f (s(N)) is finite.

• If r < p exists, such thats(i + r) ≺ s(i + p + r), then necessarilys′(i + r) =
f (s(i+ r)) ≺ f (s(i+p+ r)) = s′(i+p+ r). For allk, f (s(i+ r)) ≺′ f (s(i+p+
r)) ≺′ f (s(i + kp + r)). Consequently,s′ contains an infinitely strictly increasing
sub-succession ands′(N) is infinite. �

Example 14. Consider the recursive well behaved partial order(N3, �) introduced in
Example8. LetF(x̄) = x̄LF be the product of vector̄x ∈ N3 by a square matrix of natural
numbersLF , with dimension 3× 3. It is easy to see thatF is monotonous. Let us look at
the special case where

x̄ = (1,0,0), LF =

 0 2 0

1 0 0
0 0 1


 .

We havei = 0 < j = 2 such thats(i) = F i(x̄)�s(j) = Fj (x̄), wherep = j − i = 2
and for allk:

s(0) = s(i + 0p + 0) = (1,0,0)� s(2) = s(i + p + 0) = (2,0,0),

s(1) = s(i + 0p + 1) = (0,2,0)� s(3) = s(i + p + 1) = (0,4,0).

In consequence, for allk and for allr < p

s(i + kp + r)� s(i + (k + 1)p + r).

Consider the trivially monotonous functionf : Nm → N such that:

f (x̄) = x̄


 1

1
0


 .

Let the finite set beZ = {0} ⊆ N. Now, s′(0) = f (s(i + 0p + 0)) = 1 > z0 = 0 ∈ Z

ands′(1) = f (s(i + 0p + 1)) = 2 > z1 = 0 ∈ Z. Consequently, for allk ∈ N we have
z = 0 ∈ Z such thats′(k) = f (s(k)) > z.

256 B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262

7. Characterizing monotonous and strictly monotonous homomorphisms in the
Parikh’s well behaved quasi-order

In this section, we apply the results developed above to solve a few decidability problems
related to homomorphisms in(V ∗, �, ·), introduced in Examples8 and 9. Consider(V ′∗, �, ·)
over alphabetV ′, where #V = m and #V ′ = n.

A homomorphismf : V ∗ → V ′∗ is a total and computable function, such thatf (�) =
� andf (xy) = f (x)f (y). Consider the partial quasi-orders(V ∗, ��) and (V ′∗, ��).
Remember that, for allx ∈ V ∗, �(x) = x̄ ∈ Nm is the Parikh’s vector of the wordx.

�(f (x)) = x̄Lf ∈ Nn, whereLf is am× n matrix of natural numbers with the form

Lf =

 �(f (a1))

. . .

�(f (am))


 ,

where�(f (ai)) ∈ Nn is theith row ofLf .

Consider the vectors̄i = �(ai) = (0, . . . ,0,

i︷︸︸︷
1 ,0 . . . ,0) ∈ Nm, whoseith component

is one, while all other components are zero. Each vectorx̄ ∈ Nm is a linear combination
x̄ = x11̄+ · · · + xnm̄, where the coefficientsx1, . . . , xm ∈ N are unique.
(1) Every homomorphismf : V ∗ → V ′∗ from the Parikh’s well behaved quasi-order

(V ∗, ��) to the partial well behaved quasi-order(V ′∗, ��) is monotonous:
For all x, y ∈ V ∗, x��y ↔ x̄� ȳ. Thus,�(f (x)) = x̄Lf � ȳLf = �(f (y)), as

�(f (y))− �(f (x)) = (ȳ − x̄)Lf and(ȳ − x̄)� 0̄.
(2) A homomorphismf : V ∗ → V ′∗ is strictly monotonous if̄xLf > 0̄ is true for all

x̄ > 0. A homomorphismf : V ∗ → V ′∗ is strictly monotonous iffLf does not have a
zero row:

If Lf has a zero row, assume (without loss of generality) that it has the form

Lf =
(

Af

0 · · ·0

)
.

Consequently, for anȳx = (0, . . . ,0, xm) > 0̄, x̄Lf = 0̄ is true, andLf is not strictly
monotonous.

Conversely, if all rows inLf were non-zero, for every vectorī = �(ai) = (0, . . . ,0,
i︷︸︸︷
1 ,0 . . . ,0) ∈ Nm, īLf > 0̄ is true. Consequently, for allx̄ = x11̄+ · · · + xnm̄ > 0̄,

x̄Lf = x11̄Lf + · · · + xmm̄Lf > 0̄ is true.

8. Decidability of the nilpotency ofD0L, PD0L and HD0L systems

A D0L system is a homomorphismF : V ∗ → V ∗, iterated from an initial condition
x ∈ V ∗, which can be represented by a successions(k) = Fk(x). We call F a D0L
homomorphism.

B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262 257

A D0L homomorphism is propagating orPD0L if for all symbolsai ∈ V , F(ai) �= � is
true.

A filtering or HD0L system is aD0L system, together with a filter homomorphism
f : V ∗ → V ′∗, that defines a successions′(k) = f (F k(x)).

Notice thatPD0L ⊂ D0L ⊂ HD0L as given in[1]. Sincef = I , the identity func-
tion, is a homomorphism, all the definitions and results enunciated forHD0L systems are
correspondingly valid for classesD0L andPD0L.

Example 15. If V = {a, b} andF(a) = aa,F(b) = a, the corresponding homomorphism
in N2 is F = �(F) (we shall use the same name, as a shortcut):

F(x1, x2) = (x1, x2)

(
2 0
1 0

)
= (x1, x2)LF .

This function defines the iterations(k) = Fk(x) = xLkF , starting ats(0) = x = (x1, x2) ∈
N2 in the well behaved partial order(N2, �). Notice thatF is aPD0L system.

Consider now the alphabetV ′ = {a} and the homomorphismg : V ∗ → V ′∗, g(a) =
a, g(b) = a. Working with Parikh’s images, let us callg = �(g), g : N2 → N, such that:

g(x1, x2) = (x1, x2)

(
1
1

)
= (x1, x2)Lg = x1+ x2.

Definition 16. The filtering homomorphismg : V ∗ → {a}∗, such thatg(x) = a|x| where
|x| is the length of wordx, is called the growth function.

Another way to express it is:

|g(x)| = x̄Lg = (x1, . . . , xm)




1
...

1


 = x1+ · · · + xm.

An HD0L system is nilpotent if ak exists, such thats′(k) = f (F k(x)) = �.

Corollary 17. Consider an HD0L system, made of aD0L systemF : V ∗ → V ∗, iterated
from x ∈ V ∗, and of a filtering homomorphismf : V ∗ → V ′∗. The nilpotency problem
∃k, s′(k) = f (F k(x)) = � is decidable.

Proof. (V ∗, ��) and(V ′∗, ��) are well behaved partial orders with absolute minimum�,
as was proved in Examples8 and 9. Trivially, orders(V ∗, ��) and(V ′∗, ��) are recursive
and finitely founded.

Let Z = {y ∈ V ′∗ : |y| = 1} be the words inV ′∗ of length 1: by Theorem 13,
∀k ∃z ∈ Z, z�′f (F k(x)) = s′(k) is decidable. Consequently,∃k, s′(k) = f (F k(x)) = �
is decidable. �

The previous corollary was well-known [1], and here has been proved by a different
method.

258 B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262

The nilpotency problem forD0L andPD0L systems is equally decidable: iff = I :
V ∗ → V ∗ is the identity homomorphism,∃k, � = s(k) = Fk(x) is a sub-case ofHD0L
systems.

9. A proof of the decidability of the infinite growth of PD0L systems

From the definition given in Section8, it is easy to see that the matrixLF , associated to
aPD0L homomorphismF, only has non-zero rows.

Using the growth functiong introduced in Definition 16, any vectorx̄ > 0̄ iff x̄Lg > 0.
The condition forF being propagating is similar:LFLg�Lg, meaning that every row in
matrixLF contains at least a non-zero entry.

Example 18.

LFLg =
(

2 0
1 0

)(
1
1

)
=
(

2
1

)
�
(

1
1

)
= Lg.

From the characterization given in Section7, everyPD0L homomorphism is strictly
monotonous in the Parikh’s quasi-order, asLF does not have a zero row.

Corollary 19. Let F : V ∗ → V ∗, iterated from x, be a PD0L system, s(k) = Fk(x).
Let the language derived by the system bes(N). Then, “s(N) is an infinite language” is a
decidable problem.

Proof. SinceF, iterated fromx, is aPD0L system, andg is its growth function,F andg
are strictly monotonous. By Theorem13, “s′(N) = g(s(N)) has an infinite cardinality” is
decidable. �

The previous corollary was well-known [1], and here has been proved by a different
method.

10. Proving the decidability of the problem of Parikh momentary stagnation of the
growth functions of PD0L systems

Corollary 20. Consider anHD0L system,made of a PD0L systemF : V ∗ → V ∗, iterated
from x ∈ V ∗, and of the growth functiong : V ∗ → {a}∗. Then, ∃k, s′(k) = g(F k(x)) =
g(F k+1(x)) = s′(k + 1) is decidable.

Proof. We prove that the problem in Eq. (6) is decidable:

∃k (x̄Lk+1
F Lg = x̄LkFLg). (6)

B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262 259

For aPD0L system,LF is strictly monotonous and does not have any zero rows. Thus, Eq.
(6) is true if∃k (x̄LkF (LF − I)Lg) = 0, whereI is the identity matrix of dimensionm.

The homomorphism

(LF − I)Lg = Lf ′ =


f ′1
...

f ′m




is also monotonous: ifLf ′ has a negative componentf ′j < 0, then rowj in matrixLF is
zero, andLF is not strictly monotonous, as proved in Section7.

By Corollary 17, the problem in Eq. (6) is decidable.�

11. An algorithm to compute the problem of momentary stagnation ofPD0L
systems

Since matrixLF is propagating, by Corollary 17 we have an algorithm that testsx̄ ∈
OUTPUT:

OUTPUT= {x̄ ∈ Nm : ∀k(x̄Lk−1
F (LF − I)Lf > 0)}.

For this purpose, we compute the sequences(0) = x̄y, s(1) = x̄yLF , . . . , s(h) =
x̄yL

h
F , . . . , s(h+p) of the firsth+p mutually incomparable elements, wheres(h+p+1)

is the first element comparable tos(h):
• If s(h)�s(h+p+1), thens(N) is finite and the succession trivially converges to a value
s(h+ k) = s(h+ k′), in at mostk′�k�x1+ . . .+ xm steps, wherēx = (x1, · · · , xm).
Thus,x̄ ∈ OUTPUT↔ ∀k�k′ (s′(k) = s(k)Lf �= s′(k + 1)).

• If s(h) < s(h + p + 1), sinceLF is propagating,s(N) is infinite. Therefore,(x̄ ∈
OUTPUT↔ x̄(LF − I)Lf > 0).
In this way, the algorithm computes:

OUTPUT= {x̄ ∈ Nm : ∀k(x̄LkFLf �= x̄Lk+1
F Lf)}.

12. Towards a proof of the problem of momentary stagnation ofHD0L

12.1. Reducing the problem of momentary stagnation ofD0L to the momentary
stagnation of HD0L

Consider anHD0L system, made of aD0L systemF : V ∗ → V ∗, iterated fromx ∈ V ∗,
and the growth functiong : V ∗ → V ′∗. Then, the problem of momentary stagnation of
D0L systems can be expressed thus:∃k, s′(k) = g(F k(x)) = g(F k+1(x)) = s′(k + 1) is
decidable.

260 B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262

If LF is monotonous, but not strictly monotonous, it has at least a zero row. By ordering
conveniently the rows and columns,LF andLg may be given the form

LF =
(

Mi×i Bi×(m−i)
0(m−i)×i 0(m−i)×(m−i)

)
Lg =




1
...

1

1
...

1



=
(
L1g

L2g

)
,

where(M|B)i×m only has non-zero rows.
In the following, the sub-indices indicating the dimensions of the matrices will be omitted,

as they are the same given above. Hence, matrixLk+1
F Lg has the form

Lk+1
F Lg =

(
Mk+1 MkB

0 0

)
Lg =

(
Mk(ML1g + BL2g)

0

)
. (7)

For all x̄ ∈ Nm, we represent̄x = (ux, vx), whereux ∈ Ni andvx ∈ Nm−i , sinceNm

is isomorphic toNi ×Nm−i . Therefore

x̄Lk+1
F Lg =

(
ux(M

k(ML1g + BL2g))

0

)
(8)

and the following equation proves that the momentary stagnation of aD0Lsystem is reduced
to the momentary stagnation of an equivalentHD0L system with less or equal dimensions
(this problem is trivially decidable for dimensionm = 1).

∃ k (x̄Lk+1
F Lg = x̄LkFLg)↔ (9)

∃ k (uxM
k(ML1g + BL2g) = uxM

k−1(ML1g + BL2g))↔ (10)

∃ k (uxM
kLf ′ = uxM

k−1Lf ′), (11)

whereM has dimensioni�m−1 andLf ′ = ML1g+BL2g . Now the momentary stagnation
of the problem in Eq. (9) is decidable in the following cases:
• If (M−I)Lf ′ = Lf ′′�0i×1; by Corollary17, the nilpotency is decidable:∃k x̄MkLf ′′ =

0 for all x.
• If x̄(M − I)� x̄; by Corollary17, the nilpotency is decidable:∃k x̄MkLf ′′ = 0 for all

homomorphismLf ′′ .
Difficulties to prove the momentary stagnation ofHD0L arise when matricesM or B are
non-strictly monotonous.

12.2. Reducing the problem of momentary stagnation ofD0L systems to the momentary
stagnation of HPD0L systems with a strict filter

Let us look a little more at the problem left open in the previous subsection: assume,
without loss of generality (through permutation of the coordinates), that matrixLF has

B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262 261

the form

LF =

 Mi×i B1i×j Ci×(m−i−j)

0j×i Dj×j B2j×(m−i−j)
0(m−i−j)×i 0(m−i−j)×j 0(m−i−j)×(m−i−j)


 . (12)

The dimensions of the sub-matrices are indicated by sub-indices, where 0i×j is a null matrix.
Matrix M in Eq. (12) is strictly monotonous. MatrixD is such thatD(i, j) = 0 if i�j and
D(i, j)�0 if i < j . We callD a diagonalized matrix.

It is easy to see that, for a diagonalized matrixDj×j , Dj
j×j = 0j×j . Thus, afterj + 1

iterations, the matrix in Eq. (12) becomes

L
j+1
F Lg =



Mj+1 B1′ C′

0 Dj+1 = 0 B2′ = DjB2= 0

0 0 0


Lg (13)

=
(
A = Mj+1 B

0 0

)(
L1g

L2g

)
= AL1g + BL2g = Lf . (14)

HomomorphismLf is strictly monotonous, as matrixA is strictly monotonous. Take a
vectory = (uy, vy) ∈ Ni ×Nm−i :

∃ k (yL
k+1+j+1
F Lg = yL

k+j+1
F Lg)↔ (15)

∃ k (yLk+1
F Lf = yLkFLf)↔ (16)

∃ k (uyM
k+1Lf = uyM

kLf). (17)

Now, it is clear that the only difficult case in the proof of the problem of momentary
stagnation of the growth functions ofD0L systems appears when homomorphismBL2g in
Eq. (14) contains zeros, that is, matrixB contains zero rows.

It is clear also that a proof of the decidability of the momentary stagnation of the growth
functions ofD0L systems which includes this case, will also provide a proof of the decid-
ability of the momentary stagnation ofHD0L systems.

12.3. Proving the decidability of the finitude of HD0L systems

To complete the results given in this paper we prove the decidability of the infinitude of
HD0L systems.

Corollary 21. LetF : V ∗ → V ∗, iterated from x,be aD0L system, s(k) = Fk(x).Let the
language derived by the system bes(N).Then, “s(N) is an infinite language” is a decidable
problem.

Proof. The problem of determining if aD0L system is finite, is a trivial consequence of
the procedure described in this section. The nilpotency ofD0L systems is decidable by
Corollary17.

262 B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247–262

Otherwise, by Eq. (17), theD0L system is reduced to an equivalentHPD0L with a
strict filtering homomorphism: by Corollary 9, the finitude of the set{uyMk : k ∈ N} is
decidable, sinceLf is strictly monotonous, andM is the matrix of aPD0L system. �

13. Conclusions

In this paper, we solve the problem of momentary stagnation of the growth function of
PD0L systems, by proving the decidability of the existence ofk ∈ N, such thatf (F k(x)) =
f (F k+1(x)), whereF is aPD0L homomorphism andf is a filtering homomorphism (the
growth function). Two other well-known, previously solved problems (the infinitude of
PD0L languages and the nilpotency ofHD0L homomorphisms) have here been solved by
a different method.

Still open is the generalization of the problem of momentary stagnation of the growth
function forD0L systems, as described in [1]. We will try to tackle this as the next step
in our work. For this purpose, this paper analyzes the difficult cases of a possible proof,
following the approach given in Theorem 13. This approach is interesting, because it makes
clear that the easy cases of the problem of momentary stagnation are due to the property of
monotony of the functions, and are not related to the fact of being homomorphisms.

As a further advance towards a proof of the problem of momentary stagnation ofHD0L
systems, we reduce the problem of momentary stagnation of the growth function ofD0L
systems to the momentary stagnation ofHD0L systems, to show the easy cases. We refine
the difficult cases, reducing the problem of momentary stagnation of the growth ofD0L
systems to the momentary stagnation of the growth ofHPD0L systems with a strictly
monotonous homomorphism.

References

[1] L. Kari, G. Rozenberg, A. Salomaa, L systems, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal
Languages, Word, Language, Grammar, Vol. 1, Springer, Berlin, 1997.

[2] A. Lindemayer, Mathematical models for cellular interaction in development—I and II, J. Theoret. Biol. (18)
(1968) 280–315.

[3] R.N. Moll, M.A. Arbib, A. Kfoury, A Programming Approach to Computability, Springer, Berlin, 1988.
[4] A. Paz, A. Salomaa, Integral sequential growth functions and growth equivalence of Lindenmayer systems,

Inform. Control (23) (1973) 313–343.
[5] P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants, Springer, Berlin, 1990.
[6] G. Rozenberg, Extension of tabled 0L systems and languages, Internat. J. Comput. Inform. Sci. (2) (1973)

311–334.
[7] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic Press, New York, 1980.
[8] G. Rozenberg, A. Salomaa, The Book of L, Springer, Berlin, 1980.
[9] G. Rozenberg, A. Salomaa, Lindenmayer Systems, Springer, Berlin, 1992.

[10] W. Wechler, Universal Algebra for Computer Scientists, Springer, Berlin, 1992.

