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1. Introduction

The theory of Lindermayer systems, brsystems started with the work by Aristide
Lindenmayef2], whose goal was the development of graphical algorithms to explain the
growth of living organisms, specially of plants [5]. The mathematical formalization of the
theory of L Systems in terms of Formal Language Theory and Z-rational functions [4,6],
has produced a fruitful line of research [7-9,1].

This work proves in a different way several well-known problems relaté4D6. and
PDOL systems. The tripl&/* = (V*, -, ¢) represents the free monoid generated by the
concatenation operation- y = xy over the alphabeV = {ay,...,a,;} composed of
m > 0 symbols, with neutral elemesytcalled the empty word. The set of non-empty words
is V* = V* — {¢}. The length of a word is denoted byx|.

A DOL homomorphism inV* is any functionF : V* — V* such thatF(¢) = ¢ and
F(xy) = F(x)F(y). A DOL sequence is a successiof®) = FO(x) = x, s(k + 1) =
F**1(x) = F(F¥(x)) obtained by iterating the homomorphigfrfrom a starting worck.

A DOL homomorphism is propagating®bOL if for all symbolsa; € V, F(a;) # ¢istrue.
A filtering homomorphismf : V* — V’* together with aDOL sequence (k) = F*(x)
defines artHDOL sequence’(k) = f(s(k)) = f(FF(x)).

If the filtering homomorphism ig : V* — {a}* in such a way thag(x) = 4™/, or
equivalently,g : V* — N andg(x) = |x|, thens'(k) = g(s(k)) = g(F¥(x)) is a growth
sequence.

In this paper, we prove the problem of “momentary stagnation” of the growth function
of PDOL sequences, which deals with the decidability of the existence of a kakieh
thatg(F*(x)) = g(F**(x)).

We first present &heorem of decidability of filtered mononotous systeroscerning
filtered iterated sequences of monotonous functions in finitely founded well behaved quasi-
orders. The theorem ensures the decidability of

Vk 3zeZ, z<'f(F'x) =5'k),

whereZ is a finite setA is a recursive setf’ : A — A, f : A — A’ are monotonous
functions in recursive finitely founded well behaved quasi-ordérs<) and(4’, <’). We
also prove the existence of an algorithm to decide the infinitudgé(6f) if F andf are
strictly monotonous.

As corollaries of this theorem, the decidability of the following problems is proved:
(1) The nilpotency oHDOL homomorphismsjk, s'(k) = f(F*(x)) = e.
(2) The infinitude of propagating ®DOL languages.
(3) The Parikh momentary stagnation of the growth functioRDOL systems.
(4) The infinitude oHDOL languages.
Section® and 3 describe the basic notions and the notation used in the paper. Basic concepts
of algebra are taken from the book [10], while the background on Computability is taken
from [3]. Section 4 introduces a few examples of order struct(is, <) and Parikh's
quasi-ordelV*, <), which are used in the development of this work, proving that they are
well behaved quasi-orders.
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Original results are presented in Sectl®nwhich proves some propositions on recur-
sive well behaved quasi-orders, and in Section 6, which proves the decidability theorem
mentioned above.

Section 7 refers the problem to domaitf [1], introducing homomorphisms and their
relation to matrix theory.

The corollaries of the theorem of decidability of filtered iterated monotonous functions
are presented respectively in Sections 8-10. Finally, Section 11 describes an algorithm for
the latter problem.

2. Sets, predicates, functions and computability

In the following, we assume that any #ets contained in a universd, a set which is
in correspondence to natural numbers through a computable and bijective suceession
N — A. #A denotes the cardinality of s&tand? the empty set. We defineA =4 — A
as the set of all the elements.dfwhich are not imA. Therefore,

-A=40.

Consider the cartesian produtt’ = A x -+ x A = {(x1,...,xy) : x; € A, 1<i<m}.
To every subseB of A™ we associate a predicafeof arity m, denoted byQ (x), which is
true forx € A™ if x € B. The complementary predicate is denoted-9 (x), which is
true if x ¢ B. Binary predicate® (x1, x2), with m = 2, can be writternx; Qx,. When the
arity is 0, the predicat® is either a true or a false proposition for =ll

Afunction F : A — A’is a predicatd® C A x A’ such that, for alk € A, the image
setofxby F, Im(F,x) ={y € A’ : (x, y) € F}, has at most one elemenim# F, x) <1.
Using the notation of functions, we writé(x) = y <> F(x, y) <> Im(F, x) = {y}.

The range or image df is the seim(F) = F(A) = [J,c4 IM(F, x), while the domain
of Fis the setDom(F) = {x € A : #lm(F, x) = 1}. FunctionF is total if Dom(F) = A,
surjective iflm(F) = A’, and injective if for all pairgw, x) of different elements oA,
F(w) # F(x).F is a bijection when it is total, surjective and injective.

A succession in a sétis any total functiory : N — A.

A predicateQ is recursive or decidable when there are algorithms that determine whether
Q(x) or—=Q(x) is true in a finite number of computation steps, forxat A™. If the arity
of Qis 0, the algorithm determines which is tri@or — Q. If an algorithm exists, which
always stops ifQ(x) is true, but does not stop #hQ(x) is true, the predicate is recur-
sively enumerable or semi-decidable. Predi€ats recursive iffQ and—Q are recursively
enumerable.

Afunction F : A — A’ is computable if predicate € A x A’ is decidable. Intuitively,
a function is computable if there are algorithms that, for eaehA, computeF (x) € A’
in a finite number of computation steps.

A setAis recursively enumerable (recursive) iff predicé@tér) <> x € A is recursively
enumerable (recursive). Formally, we will apply the following definition of recursive and
recursively enumerable sets:
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Definition 1. Any setA C A is recursively enumerable if it is the empty sét= ¢, or if
there exists a computable successioN — A such that (N) = A.
We say tha# is recursive ifA and—A = A — A are recursively enumerable.

It should be noticed that the univergeis recursive, since it is recursively enumerable,
and its complementary sgt = ¢ is recursively enumerable. We also use the following well
known results in computability theory:

o If AandB are recursively enumerable (recursive) sets then their ufiionB and inter-
sectionA N B are recursively enumerable (recursive) sets.

e Alisrecursive iff=A is recursive. A sef is co-finite if —A is finite. Finite and co-finite
sets are recursive.

o If Aisrecursive, them x A is recursive.

3. A background on order relations
3.1. Quasi-orders

A binary predicatex € A x A is a quasi-order (or pre-order) if it is reflexive and
transitive. The paifA, <) is a quasi-order structure. Notatipn= x is equivalent tor < y.
The non-reflexive or proper part of the quasi-order is denoted hile y > x is equivalent
tox < y.

Let (A, <) and (A’, <) be partial quasi-orders. A total functioh : A — A’ is
monotonous if forall, y € A, x <y — F(x)<'F(y). F is strictly monotonous ift <
y— F(x) < F(y). (A, X) isisomorphic ta/A’, <) if a bijective and monotonous func-
tion exists,F : A — A’, suchthak 5y <+ F(x) <'F(y). Thisis denoted byA, <) =p
A, ).

Let (A, <) be a quasi-order. A succession N — A is increasing ifsis monotonous
in the order(N, <) of natural numbers, which means that, forialls(0) <s(1) < --- <
s(k) < ---. The succession is strictly increasing{®) < s(1) < --- < s(k) < ---.The
succession is decreasing if, for &ll s(0) = s(1) = --- =s(k) = -- -, and strictly decreas-
ing if the same holds for predicate

(A, %) is a well founded quasi-order structureAfdoes not contain infinite strictly
decreasing chains. This happens iff a strictly decreasing succassibh— A does not
exist.

(A, x) is a well behaved quasi-order structure if, for every successiolN — A
there are indicesandj such that < j ands(i) < s(j). In this case, we can say that the
successions are good in this structure. The condition of being well behaved is stronger than
that of being well founded. Every well behaved quasi-order is a well founded quasi-order.

3.2. Finitely founded well behaved quasi-orders

Definition 2. Let (A, <) be a well behaved quasi-order structure. We say thatx) is
finitely founded ifVx € A, #{y € A : y <x} € N (is finite).
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Finitely founded well behaved quasi-orders are a restriction of well behaved quasi-orders
that avoids the situations where an elemeat A is greater or equal than an infinite number
of different elements € A.

Example 3. Let (N, <) be the order of natural numbers. Take an elemiert N. Then
(NU{T},E),whereC= < U {(x, T) : x € NU{T}}, is trivially a well behaved quasi-
order structure which is not finitely founded{y#c N U {T} : y C T} = #N means that
elementT is greater or equal than an infinite number of elements.

3.3. Partial orders

If < is antisymmetric (.,ex<y A y<x — x = y) then < is a partial order. We
denote a partial order predicate ky, its proper subset by, and a partial order structure
by (A, <). The setA is called aposet The order is total if any two elements y are
comparabley <y or y<x.

Given a quasi-ordefA, <), consider the equivalence relation=y <> x <y A y < x.
ConsideralsoA /-, <,=),whereA ,_ isthe quotient set g with respect to the equivalence
=ieA_=({x]l:xeAlandx]={ye A:x<syAy=<ux}. Forall[x], [yl € A/,
X]/=ly]l © x sy < Vx' e [x].Vy € [yl, X' Y. Then(A,-, <,-) is a partial order
induced by the quasi-ordés, <).

Let B € A be a subset of a posét An elementx € B is minimal if for all y € B,
—x > y. The set of minimal elements Biis denoted by micB). A partial order on a sei
is a well behaved partial order iff every non-empty subse® af A has minimal elements,
min(B) # @, but only a finite number of them.

Proposition 4. (A, <) is a well behaved quasi-order structure iffA =), <,=) is a well
behaved partial order structure

Proof. s : N — A'is a succession iAiff s’ : N — A, such that for alk, s"(k) =
[s(k)] € A/= is a succession iA /.

For all indicesi < j, s(i) <s(j) iff s'(i) = [s()]<,=[s(j)] = 5'(j). In consequence,
any sequenceis good in structur¢A, <) iff s”is goodin(A,—, <,=). O

Proposition 5. (A, =) is a finitely founded well behaved quasi-order structure(if—,
<,=) is a finitely founded well behaved partial order structure, where each equivalence
class[x] € A, is a finite set

Proof. Proposition4 ensures thatd, <) is a well behaved quasi-order iffA -, </,=) is
a well behaved partial order.

We know that, for allx € A, [x] € A/, #H[y] € A)= : YISIX}<Hy € A
y < x}. Therefore, the facttha#i, <) isfinitely foundedimpliesthatd,—, <,-) isfinitely
founded. If(A, <) is finitely founded, therix] = {y € A : y<xAx=<y} C{y e A:

y < x}, which is a finite set. Hence, all clasge$ are finite.

Conversely, if(A,=, <,-) is finitely founded and every clags] € A is finite, for

all class[x], the set{ly € A : y<x} = UUH[X] [v] is a finite union of finite sets, and
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hence finite. In consequenceéy € A, #{y € A : y<x} € N and (A, =x) is finitely
founded. O

The following example is useful to see that finitely founded partial orders are a strict
sub-class of well behaved partial orders.

Example 6. The well behaved quasi-ordéN U {T}, C) defined in Exampl& is a well
behaved partial order which is not finitely founded.

The following example is an application of Proposition 5.

Example 7. Consider the well behaved quasi-ordi’, <), suchthatx, y) <(x’, y') <
x<x'. In the quotient partial order, each clase?_, <) is infinite, but(NZ_, <, )is
isomorphic to(N, <), sincex = [(x,0)] = {(x,y) : y € N}, and hence not finitely
founded.

As a consequence of Propositibnthe structuréN?, <) is not finitely founded.

4. Examples of finitely founded well behaved quasi-ordered sets used in this work

Example 8. The extension t&\" the order of naturalgN, <) is a finitely founded well
behaved partial order.

The extension toN™, <) of the order of naturalg\N, <) insuchaway thatxs, ..., x;)
SO Ym) < N/Lixi<y; is a well behaved partial order whose minimum is
0=(0,...,0.

Consider any seB € N™ of tuples. We prove that m{B), the set of minimal elements
in B is finite and non-empty.

Let ; = min{x; : x € B} be theith coordinate oft € N™, i.e. the minimum of theth
coordinates of the tuples Bi(u is not necessarily iB). Tuplex = u(B) is always defined
and unique.

Now, for each coordinatg;, take anymtuplesx’ € B whoseith coordinate reaches the
minimumx{ = u; for1<i<m. LetZ = {x' : 1<i<m} C B be the set of such tuplez.
is non-empty iffB is non-empty. CalB;, = {x € B : \//_; x <x}. Then min(B1) = Z.

Consider the tupleM = (M1,...,M,) (not necessarily inB) where M; =
max{xl.l, ..., x/"} is the maximum ofth coordinates of the tuplesh ThenB, = {x € B :
u<x <M} is afinite setan& C B> is non-empty.

SinceB = B1 U By, it follows that min(B) = min(min(B1) U B2) = min(Z U By) =
min(By) is a finite and non-empty set, anfl™, <) is a well behaved partial order, as
defined in Sectios.3.

ConsiderB = {(x, y) : x, y are odd numbers and>3 or y >5} a subset of\? with
uw=(1,1) ¢ B.TakeZ = {(1,9), (7,1)} < B, whereM = (7,9).

The setBy = {(x,y) : x,y € B, u = (L, 1)<(x,y)<(7,9 = M} is finite and
non-empty. Thus mifB) = {(3, 1), (1, 5)} = min(By) is finite and non-empty.

To see thatN™, <) is finitely founded, consider any tupke= (x1,...,xm). If z =
x;i = max{xy, ..., x,} is the maximum component of tuplethen{y € N : y<x} C
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{0, ..., z}, whichis a finite set. As a consequencg; # N : y<x} € N, and(N", <)
is finitely founded.

Example 9. Parikh’s well behaved quasi-order ii*. Consider the set of wordg* over

the alphabeV.

Let |x|, count the number of occurrences of symbple V in the wordx € V*, and
takey : V* — N™ such thaty(x) = (|x]4, - ... [xls,). Functiony is called the Parikh’s
function.

We define(V*, <) thusix <y < Y(x)<¢(y) in the well behaved partial order
(N <) defined in Exampl®.

Let us illustrate this for the alphab®t= {a, b}: aab <y, baaab, asy(aab) = (2,1) <
(3, 2) = Y(baaab). On the other hanthaaab <y bbaaa andbbaaa <y, baaab, although
they are different words. Therefores,, is not antisymmetric.

Consider the equivalence =, y < x=yy A y<yx < Yx) = ¥(). By
Proposition 4, the quotient structt(rﬁ/*:w, #‘”/:./,) is a well behaved partial order structure

isomorphic to(N"”, <) through the bijection?¥ : V/*:w — N, such that?([x]) =
[ (x)].

In Example 8, we proved thafN™, <) is finitely founded. By isomorphisn"(,v/*:w,
<l/,/:w) is finitely founded. Proposition 5 ensures thet, <) is finitely founded, since for
allx e V*, #{x] e N.

5. Recursive quasi-orders
Definition 10. A quasi-order(A, <) is recursive if € A x A is a recursive predicate.

Proposition 11. Let (A, <) be a recursive well behaved quasi-order aad< A any
recursive subsefThen(A, <4), where <4, = < N A x A, is a recursive well behaved
quasi-order structure

Proof. The restriction of quasi-ordex to <4 is trivially a quasi-order. Since any succes-
sions : N — A (computable or not) in the sétis a succession if, all successions iA
are good. Thus(A, <) is a well behaved quasi-order structure.

Since 54 = < N A x A is the intersection of recursive predicates, the well behaved
quasi-order< 4 is recursive. [J

Without loss of generality, we can writed, <4) = (A, <), with the conditions of
Propositionl1.

Notice that, being a finitely founded or well-behaved quasi-order, does not imply being
recursive, as shown in the following example.

Example 12. Consider the orde(N, <), a finitely founded and well-behaved total
order. LetK C N be any non-recursively enumerable subset. Following the proof of
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Propositionl1, it is easy to see thak , <) is a finitely founded well behaved quasi-order
which is non-recursive.

6. Decidability results in filtered iterated monotonous functions

Given a functionF : A — A, we call F¥(x) the kth iteration ofF, k € N, where
FO(x) = x and FFt1(x) = F(Fk(x)).

Theorem 13. Let s(k) = F*(x) be a successigwhereF : A — A, f : A — A’ are
total, computable and monotonous functions in recursive finitely founded well behaved
quasi-orders(A, <) and(A’, <’). This gives rise to the successin’(k) = f(s(k)) =
FF Q).
(1) Predicatevk 3z € Z, z<'f(FF(x)) = s'(k) is decidablewhere Z is a finite subset
of A’
(2) If F and f are strictly monotonouyshen there exists an algorithm to decidesifN) is
finite or infinite

Proof. Successions ands’ are trivially computable. SincéA, <) is a recursive well
behaved quasi-order, all successiond\iare good. Then, successiotk) = F¥(x) is
computable and good.

Consequently, the iteratian(0), s(1), ..., s(), ..., s(j) to find termsi, j withi < j
ands(i) < s(j) always halts. Calp = j —i.

FunctionF is monotonous aneli) < s(j) — Vn, s@i +n) = F"(s()) < F"(s(j)) =
s(i + p +n). Sincen = (ndiv p)p + (nmodp) = kp + r bijectively, we have that for all
kandforallr < p=j—i:

s+ s +kp+r<s@+k+Dp+r). (1)
(1) The fact that functiofiin Eq. (1) is monotonous, implies that for &land for allr < p:

fei+m<s' S fGeli+kp+rfGlE+E+Dp+r) < 2)
s+ <SS+ kp+ ) SIS G+ k+Dp+r). 3)

There are two possibilities:

e Observing thej — 1 first terms in the successioh we can deduce thatk < j 3z €
Z, z=<s'(k) = f(FF(x)) is decidable, becausgis a finite set and the number of
terms to be compared is finite. The proposititkz € Z, z <’ f(F¥(x)) = s/(k) is
false if it fails in the firstj — 1 elements.

e Otherwise the proposition is true. Assume that it is true for the firstl elements.
Then, forterms’(i)...s'(i+r)...s'(i+(p—21)) = s'(j—1),whereXr < j—i = p,

3Actually, the succession depends on the starting vala@nd should be writtem(k, x), but to simplify the
notation we write jusk (k).



B. Cases, M. Alfonseca / Theoretical Computer Science 341 (2005) 247 —-262 255

there areo, ..., zr, ..., zp—1 € Z such that:
20=s'G+0), ..., <G +7r), ..., 2p-1<'s'(+ (p — D). 4)
From Egs. 2) and (4), for alk and for allr < j —i = p, z, € Z exists, such that:
=<5+ <G +hkp+r) <SG+ K+Dp+r). (5)

In consequencerk 3z € Z z <’ f (F*(x)) = s/(k) is true.

(2) If F andf are strictly monotonous, there are two possibilities with Bg. (

e Forallr < p,andforallk e N, s, (k) =s(i +kp+r)=sG+*k+LDp+r) =
sy (k + 1) is a (non-strictly) decreasing sub-succession. Skefinitely founded,
there arek andk’, such that, (k) = s, (k). Therefore, the ranggN) is a finite set
ands’(N) = f(s(N)) is finite.

o If r < p exists, such thai(i +r) < s(i + p + r), then necessarily'(i + r) =
fGs@E+r) < fs@i+p+r)=s'(i+p+r).Forallk, f(sG+r)) < f(s@i+p+
r)) <" f(s(i + kp + r)). Consequentlys’ contains an infinitely strictly increasing
sub-succession and(N) is infinite. [

Example 14. Consider the recursive well behaved partial ord‘@?, <) introduced in
Example8. Let F(¥) = XL be the product of vector € N by a square matrix of natural
numbersL ¢, with dimension 3x 3. It is easy to see th&tis monotonous. Let us look at
the special case where

020
§=(1.00, Lr=[100].
001
We havei = 0 < j = 2 such thak(i) = F/(x)<s(j) = F/(x), wherep = j —i = 2
and for allk:

s(0)=s+0p+0=(,00<s2=s@i@+p+0=(20,0),
s()=sG+0p+1)=(0,20<s@ =s@+p+1)=(040.

In consequence, for atland for allr < p
s@G+kp+r)s@G+k+Dp+r).

Consider the trivially monotonous functigh: N — N such that:

1
Fo=x[1].
0

Let the finite set b&Z = {0} € N. Now, s’ (0) = f(s(i +0p+0) =1>z0=0€ Z
ands’(1)) = f(s(i +0p + 1)) = 2 > z3 = 0 € Z. Consequently, for alt € N we have
z=0¢€ Z such that’(k) = f(s(k)) > z.
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7. Characterizing monotonous and strictly monotonous homomorphisms in the
Parikh’s well behaved quasi-order

In this section, we apply the results developed above to solve a few decidability problems
related to homomorphisms{iv*, ¢, -), introduced in Example®and 9. ConsideiV ', ¢, -)
over alphabeV’, where # = m and #' = n.

A homomorphismf : V* — V’* is a total and computable function, such tiat) =
¢ and f(xy) = f(x)f(y). Consider the partial quasi-ordef®*, <) and (V'*, <y)-
Remember that, for alt € V*, /(x) = x € N™ is the Parikh’s vector of the worxl

Y (f(x)) =xLy e N", whereL s is am x n matrix of natural numbers with the form

W (f(ar))
L= :
W(f(am))
wherey(f(a;)) € N" is theith row of L ;.
Consider the vectoiis= {(a¢;) = (0,...,0, 1 ,0...,0) € N, whosdth component
is one, while all other components are zero. Each vecterN™ is a linear combination
x =x11+ --- + x,m, where the coefficients, .. ., x,, € N are unique.

(1) Every homomorphisny : V* — V' from the Parikh’'s well behaved quasi-order
(V*, <) to the partial well behaved quasi-ordéf™, <) is monotonous:
Forallx,y € V*, X<yy < XY Thus,y(f(x)) = xLy<yLy = Y(f(y)), as
Y(f() =Y (fx) =G —x)Lyand(y —x)>0. B
(2) A homomorphismf : V* — V' is strictly monotonous ik L ; > 0 is true for all
x > 0. A homomorphisny : V* — V" is strictly monotonous ifi_ ; does not have a
Zero row:
If Ly has a zero row, assume (without loss of generality) that it has the form

Ay
L= .
f (o...o)

Consequently, forany = (0, ..., 0, x,) > 0,L; = Oistrue, and. ; is not strictly
monotonous. )
Conversely, if all rows irL  were non-zero, for every vectoe= y(a;) = (O, ..., 0,

1

— - — — —
1.,0....,0¢ N™,iLs>0Qis true. Consequently, for all = x11+ - - -+ x,m > 0,
XLyp=x11Ly+---+xpmLy > Qistrue.

8. Decidability of the nilpotency of DOL, PDOL and HDOL systems
A DOL system is a homomorphisifi : V* — V*, iterated from an initial condition

x € V*, which can be represented by a successi@n = F¥(x). We callF a DOL
homomorphism.
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A DOL homomorphism is propagating BDOL if for all symbolsa; € V, F(a;) # ¢is
true.

A filtering or HDOL system is aDOL system, together with a filter homomorphism
f: V* — V’* that defines a successigfitk) = f(F¥(x)).

Notice thatPDOL ¢ DOL < HDOL as given in[1]. Since f = I, the identity func-
tion, is a homomorphism, all the definitions and results enunciated BfZ. systems are
correspondingly valid for class€30L andPDOL.

Example 15. If V = {a, b} andF (a) = aa, F (b) = a, the corresponding homomorphism
in N? is F = y/(F) (we shall use the same name, as a shortcut):

F(xq1, x2) = (x1, x2) (i 8) = (x1,x2)LF.

This function defines the iteratiofik) = F¥(x) = xL’;, starting at (0) = x = (x1, x2) €
N2 in the well behaved partial ordeéN?, <). Notice thatF is aPDOL system.

Consider now the alphab&t = {a} and the homomorphism : V* — V'’* g(a) =
a, g(b) = a. Working with Parikh's images, let us call= y(g), g : N> — N, such that:

1
g(x1, x2) = (x1, x2) ( 1) = (x1,x2)Lg = x1 + x2.

Definition 16. The filtering homomorphisrg : V* — {a}*, such tha (x) = a*! where
|x| is the length of word, is called the growth function.
Another way to express it is:

lg(X)| =XLg = (x1,....xm) | * | =x1 4+ xm.
1

An HDOL system is nilpotent if & exists, such that (k) = f(FF(x)) = «.

Corollary 17. Consider an HDL systemmade of aDOL system¥ : V* — V* iterated
fromx € V*, and of a filtering homomorphisni : V* — V’*. The nilpotency problem
3k, s'(k) = f(F*(x)) = ¢is decidable

Proof. (V*, <y) and(V’*, <y) are well behaved partial orders with absolute minimym
as was proved in Exampl&sand 9. Trivially, ordergV*, <) and(V"™*, <) are recursive
and finitely founded.

Let Z = {y € V™* : |y| = 1} be the words inV* of length 1: by Theorem 13,
Vk3z € Z, z<' f(F¥(x)) = s’ (k) is decidable. ConsequentBk, s'(k) = f(FF(x)) =¢
is decidable. O

The previous corollary was well-known [1], and here has been proved by a different
method.
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The nilpotency problem foD0L and PDOL systems is equally decidable: jf = I :
V* — V* is the identity homomorphisniik, ¢ = s(k) = F¥(x) is a sub-case dfiDOL
systems.

9. A proof of the decidability of the infinite growth of PDOL systems

From the definition given in Sectid it is easy to see that the matilix-, associated to
aPDOL homomorphisn¥, only has non-zero rows.

Using the growth functiowy introduced in Definition 16, any vectar> 0 iff XLg > 0.
The condition forF being propagating is simila. L, > L,, meaning that every row in
matrix Lz contains at least a non-zero entry.

Example 18.

= (30) (1) =(3) = (3) =

From the characterization given in Secti@h every PDOL homomorphism is strictly
monotonous in the Parikh’s quasi-order,/as does not have a zero row.

Corollary 19. Let F : V* — V* iterated from x be a PDOL systems(k) = F*(x).
Let the language derived by the systeny@d). Then “s(N) is an infinite languagkis a
decidable problem

Proof. SinceF, iterated fromx, is aPDOL system, andj is its growth functionf andg
are strictly monotonous. By Theoreb3, “s’(N) = g(s(N)) has an infinite cardinality” is
decidable. [

The previous corollary was well-known [1], and here has been proved by a different
method.

10. Proving the decidability of the problem of Parikh momentary stagnation of the
growth functions of PDOL systems

Corollary 20. Consider an HDL systemmade of a PDL systen¥ : V* — V* iterated
fromx e V*, and of the growth functiog : V* — {a}*. Then 3k, s'(k) = g(F¥(x)) =
g(F*1(x)) = s'(k + 1) is decidable

Proof. We prove that the problem in Eg)is decidable:

I GLE L, =5LK L. (6)
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For aPDOL system,L ¢ is strictly monotonous and does not have any zero rows. Thus, Eq.
(6) is true if3k ()EL’;(LF — I)L,) = 0, wherel is the identity matrix of dimensiom.
The homomorphism

f
(LF—=DLg =Ly = :
o
is also monotonous: if. ; has a negative componeﬁ} < 0, then rowj in matrix Lz is

zero, andL ¢ is not strictly monotonous, as proved in Sectibn
By Corollary 17, the problem in Eg. (6) is decidabld.]

11. An algorithm to compute the problem of momentary stagnation of°PDOL
systems

Since matrixL r is propagating, by Corollary 17 we have an algorithm that tésts
OUTPUT.

OUTPUT= {% € N" : Vk(xLX Y (LF — D)Ly > 0)).

For this purpose, we compute the sequen@® = x,, s(1) = x,Lp,...,s(h) =

)EyL};, ..., s(h+ p) of the firsth + p mutually incomparable elements, wheté + p + 1)

is the first element comparable 4@z):

o If s(h)>=s(h+ p+1),thens(N) is finite and the succession trivially converges to a value
s(h+k) =s(h + k), inat mostt’ <k<x1+...+ x, steps, wher& = (x1, - - -, xp).
Thus,x € OUTPUT <« Vk <k’ (s'(k) = s(k)L s # s'(k + 1)).

o If s(h) < s(h + p + 1), sinceLy is propagatings(N) is infinite. Therefore(x €
OUTPUT <« x(Lr —I)Ly > 0).

In this way, the algorithm computes:

OUTPUT= {¥ € N" : Wk(x L. L s # s L5 L ).

12. Towards a proof of the problem of momentary stagnation oHDOL

12.1. Reducing the problem of momentary stagnatioP@f to the momentary
stagnation of HDL

Consider atdDOL system, made of BOL systemF : V* — V*, iterated fromx € V*,
and the growth functiog : V* — V’*. Then, the problem of momentary stagnation of
DOL systems can be expressed thiis: s'(k) = g(FF(x)) = g(FF1(x)) = s'(k + 1) is
decidable.
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If L is monotonous, but not strictly monotonous, it has at least a zero row. By ordering
conveniently the rows and columnsy andL, may be given the form

1

1
Lp= Misi | Bixom-i) [P I Ly,
O(n—iyxi ‘O(m—i)x(m—i) § 1 Lo, |’

8

1
where(M|B);x, only has non-zero rows.

Inthe following, the sub-indices indicating the dimensions of the matrices will be omitted,
as they are the same given above. Hence, mafj;T%Lg has the form

k+1 k
Ly _(M+ MB>L _(Mk<ML1g+BLz,,,)> @
F 8§ 0 0 8§ = 0 :

For allx € N™, we represent = (uy, v,), whereu, € N andv, € N"~, sinceN™
is isomorphic toN’ x N~ Therefore

k
g - (0 12 o

and the following equation proves that the momentary stagnatio6fasystem is reduced
to the momentary stagnation of an equivalditOL system with less or equal dimensions
(this problem is trivially decidable for dimensian = 1).

Ik LT, = 31K L) < (9)
Ik (uxM"(ML1, + BL2,) = uxM* (M L1, + BL3,))) < (10)
Ik (uM*Ly = u ML), (11)

whereM has dimension<<m —1andL ;» = M L1, + BL,. Now the momentary stagnation
of the problem in Eq.g) is decidable in the following cases:
o If (M—I)Ly = Ly»=>0;x1; by Corollaryl7, the nilpotency is decidablgk )EM"LfH =
0 for all x.
o If x(M — I)>x; by Corollary17, the nilpotency is decidablék )EM"LfN = 0O for all
homomorphisnL s».
Difficulties to prove the momentary stagnation®OL arise when matriced! or B are
non-strictly monotonous.

12.2. Reducing the problem of momentary stagnatioR@f systems to the momentary
stagnation of HPDL systems with a strict filter

Let us look a little more at the problem left open in the previous subsection: assume,
without loss of generality (through permutation of the coordinates), that magrikas
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the form
M Blix; Cixm—i—j)
Lr= 0xi Dijy B2y (m—i—j) : (12)
Otm—i—jyxi |Oom—i—jyxj | Om—i—j)x(m—i—j)

The dimensions of the sub-matrices are indicated by sub-indices, wheiie & null matrix.
Matrix M in Eq. (12) is strictly monotonous. Matri® is such thatD (i, j) = 0ifi > j and
D(i, j)=0ifi < j. We callD a diagonalized matrix.

Itis easy to see that, for a diagonalized maiix, ;, D},
iterations, the matrix in Eq. (12) becomes

j = 0]><] ThUS, aﬁelj +1

M/t BY C’
Lir,=| o |pitl=0/B2 =D/B2=0|L, (13)
0 0 0

A=MIUUBN (L _ 0 e ) (14)
o |o/)\I; TR T

HomomorphismL ¢ is strictly monotonous, as matrixis strictly monotonous. Take a
vectory = (uy, vy) € N' x N

k+1+j+1 k+j+1
Ik LT L =y L) (15)
Ik (LS = yLh L) < (16)
Ak ML =u MR L ). (17)

Now, it is clear that the only difficult case in the proof of the problem of momentary
stagnation of the growth functions 8f0L systems appears when homomorphiBi, in
Eqg. (14) contains zeros, that is, matixcontains zero rows.

Itis clear also that a proof of the decidability of the momentary stagnation of the growth
functions of DOL systems which includes this case, will also provide a proof of the decid-
ability of the momentary stagnation BIDOL systems.

12.3. Proving the decidability of the finitude of @D systems

To complete the results given in this paper we prove the decidability of the infinitude of
HDOL systems.

Corollary 21. LetF : V* — V*, iterated from xbe aDOL systems (k) = F¥(x). Letthe
language derived by the systemst®l). Then “s(N) is an infinite languagkis a decidable
problem

Proof. The problem of determining if &0L system is finite, is a trivial consequence of
the procedure described in this section. The nilpotencp0f. systems is decidable by
Corollary17.
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Otherwise, by Eq.X7), the DOL system is reduced to an equivalétPDOL with a
strict filtering homomorphism: by Corollary 9, the finitude of the Be,IMk : ke N}is
decidable, sincé ; is strictly monotonous, ankll is the matrix of a?DOL system. [

13. Conclusions

In this paper, we solve the problem of momentary stagnation of the growth function of
PDOL systems, by proving the decidability of the existenck afN, such thatf (F¥ (x)) =
f(F¥*1(x)), whereF is aPDOL homomorphism andlis a filtering homomorphism (the
growth function). Two other well-known, previously solved problems (the infinitude of
PDOL languages and the nilpotencyldD0L homomorphisms) have here been solved by
a different method.

Still open is the generalization of the problem of momentary stagnation of the growth
function for DOL systems, as described in [1]. We will try to tackle this as the next step
in our work. For this purpose, this paper analyzes the difficult cases of a possible proof,
following the approach given in Theorem 13. This approach is interesting, because it makes
clear that the easy cases of the problem of momentary stagnation are due to the property of
monotony of the functions, and are not related to the fact of being homomorphisms.

As a further advance towards a proof of the problem of momentary stagnatitbQit
systems, we reduce the problem of momentary stagnation of the growth functia®Zof
systems to the momentary stagnatiotH®OL systems, to show the easy cases. We refine
the difficult cases, reducing the problem of momentary stagnation of the growd0bf
systems to the momentary stagnation of the growttHBDOL systems with a strictly
monotonous homomorphism.
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