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SUMMARY

Toward the end of mitosis, neighboring chromo-
somes gather closely to form a compact cluster.
This is important for reassembling the nuclear enve-
lope around the entire chromosome mass but not in-
dividual chromosomes. By analyzing mice and cul-
tured cells lacking the expression of chromokinesin
Kid/kinesin-10, we show that Kid localizes to the
boundaries of anaphase and telophase chromo-
somes and contributes to the shortening of the ana-
phase chromosome mass along the spindle axis.
Loss of Kid-mediated anaphase chromosome com-
paction often causes the formation of multinucleated
cells, specifically at oocyte meiosis II and the first
couple of mitoses leading to embryonic death. In con-
trast, neither male meiosis nor somatic mitosis after
the morula-stage is affected by Kid deficiency. These
data suggest that Kid-mediated anaphase/telophase
chromosome compaction prevents formation of mul-
tinucleated cells. This protection is especially impor-
tant during the very early stages of development,
when the embryonic cells are rich in ooplasm.

INTRODUCTION

To transmit genetic information faithfully, replicated chromo-

somes must be properly condensed, aligned, and segregated

to daughter cells during mitosis. In higher eukaryotic cells that

undergo open mitosis, the structural elements of the nuclear en-

velope (NE), including the nuclear lamina, nuclear pore com-

plexes (NPCs), and nuclear membranes are disassembled at

the end of prophase and reassembled around the segregated

chromosomes at late anaphase and telophase (Burke and Ellen-

berg, 2002). NE reassembly is a complex multistep process that

starts with the direct association and accumulation of membrane

vesicles or ER-like membrane cisternae, and certain compo-
nents of NPCs at the chromosomal surface, followed by mem-

brane fusion, NPC reassembly, and nuclear lamina formation

(Burke and Ellenberg, 2002; Hetzer et al., 2005). All anaphase

chromosomes are segregated by poleward movement in a syn-

chronized manner, or else lagging chromosomes will assemble

their own NEs, resulting in micronuclei. Therefore, it is important

to clarify the exact mechanism by which all the chromosomes

are incorporated into a single daughter nucleus at the end of mi-

tosis. A recent study demonstrated that the chromatin-occupied

volume decreased to the lowest level at late anaphase in mam-

malian cells, which appears to be important for the formation

of a single daughter nucleus with a smooth surface (Mora-Ber-

mudez et al., 2007). However, the underlying mechanism and

the physiological consequences of such anaphase/telophase

chromosome compaction on cell division in vivo remain obscure.

In vertebrates, unfertilized eggs are arrested at metaphase of

the second meiosis (meta II) and fertilization triggers completion

of the second meiotic division and emission of the second polar

body. Then NEs are assembled separately around maternal

and paternal chromosomes, forming separate haploid male and

female pronuclei that eventually fuse to produce diploid zygotes

during the first mitosis. The zygote undergoes several rounds of

specialized mitosis called cleavage division under the influence

of ooplasm, namely depending exclusively on maternal proteins

and mRNAs (Ciemerych and Sicinski, 2005; O’Farrell et al.,

2004). In contrast to the Xenopus cleavage cycles that rapidly os-

cillate between S and M phase 12 times without checkpoint con-

trols and zygotic gene expression (Clute and Masui, 1997; New-

port and Dasso, 1989; Newport and Kirschner, 1982), the mouse

cleavage cycle includes G1 and G2 phases (Ciemerych and Si-

cinski, 2005) and the spindle assemble checkpoint is activated

even in 1-cell embryos (Siracusa et al., 1980). In addition, major

zygotic gene expression takes place as early as the 2-cell stage

in mice (Flach et al., 1982). Thus, it appears that the early cleav-

age cycle of mammalian embryos and the somatic cell cycle

progress according to the same scheme. Indeed, there is little

difference between the two (Ciemerych and Sicinski, 2005).

The chromokinesin Kid/kinesin-10, a plus-end directed microtu-

bule-based motor with both microtubule- and DNA-binding
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Figure 1. Kid Is Critical for Early Embryonic Development but Is

Dispensable for Later Embryonic Growth and Meiosis in Mice

(A) Schematic representations of the structures of Kid protein, wild-type allele,

targeting vector, and homologous recombinant (targeted) and Cre-loxP

recombinant (knockout) alleles with relevant restriction sites. The probes for

Southern blotting and positions of PCR primers are indicated. Red triangles in-

dicate the positions of loxP sites. cDNA, Kid cDNA covering from Nco I site (N)

within exon 4 to stop codon; Neo, neomycin-resistance gene; E, Eco RI site; M,

Msc I site; V, Eco RV site.

(B) PCR and Southern blot analysis of targeted ES clones. Genomic DNAs from

wild-type (+/+), homologous recombinant (+/m), or random integrated (+/+*)
772 Cell 132, 771–782, March 7, 2008 ª2008 Elsevier Inc.
domains, is one of the mitotic motors (Tokai et al., 1996). Kid is con-

served among vertebrates and has been implicated in chromo-

some movement along microtubules during prometaphase and

metaphase (Antonio et al., 2000; Funabiki and Murray, 2000; Lev-

esque and Compton, 2001; Tokai-Nishizumi et al., 2005). Upon

the onset of anaphase, Xkid in Xenopus egg extracts is almost

completely degraded (Antonio et al., 2000; Funabiki and Murray,

2000). In contrast, a significant amount of Kid exists on anaphase

chromosomes in mammalian cells (Ohsugi et al., 2003; Tokai

et al., 1996). Although depletion of Kid causes pre-anaphase delay,

it does not affect the kinetochore-microtubule attachment and the

majority of cells eventually enter anaphase (Tokai-Nishizumi et al.,

2005; Zhu et al., 2005). During anaphase and telophase, Kid-deple-

tion causes lagging chromosomes and the formation of malformed

nuclei at somewhat high frequency, suggesting a role of Kid in ana-

phase chromosome dynamics, although the details have not been

clarified (Tokai-Nishizumi et al., 2005; Zhu et al., 2005).

In this study, we addressed the role of Kid by analyzing mice and

HeLa cells lacking its expression. Kid deficiency causes loss of the

tight gathering of anaphase chromosomes, which often leads to the

formationofmicro-ormultinucleatedcells, specifically inveryearly-

stage embryos, leading to death, while neither mitotic proliferation

during post-morula development nor gamete formation is affected.

We further show that Kid localizes together with microtubules in the

interstices between adjacent anaphase chromosomesand helps to

hold individual chromosomes together during segregation to form

a compact chromosome mass at telophase. We propose that

mammalian early-stage embryos, which are under significant influ-

ence of the ooplasm with high NE-assembly activity, specifically

require Kid-mediated compaction of the anaphase chromosome

mass to prevent the formation of multinucleated cells.

RESULTS

Kid Is Critical for Early Embryonic Development
but Is Dispensable for Later Embryonic Growth
and Meiosis in Mice
To elucidate the effects of Kid deficiency on cell division during

mammalian development, we generated Kid-deficient mice by

gene targeting. We first generated conditional knockout mice in

which exons 3–12 of Kid were replaced by a loxP-flanked DNA

segment containing intact exon 3, partial exon 4 fused in frame

to Kid cDNA and a neomycin-resistance cassette (Figure 1A).

ES cell clones were used as template for PCR using primer set B (left panel),

or were digested with Eco RI and hybridized with Probe A (right panel).

(C) Southern blot analysis of genomic DNA prepared from Kid+/m or Kid+/�

mice with Probe B.

(D) Genotyping PCR analysis of Kid+/+, Kid+/� or Kid�/�mice using primer sets

A and C.

(E) Whole-cell lysates of MEFs derived from Kid+/+, Kid+/� or Kid�/� E14.5

embryo were subjected to immunoblotting with the indicated antibodies.

(F) Proliferation of Kid+/+(wt), Kid+/� (het) or Kid�/� (ko) MEFs using a 3T3

protocol. wt#1 and ko#1, and wt#2, het#2, and ko#2 were derived from litter-

mates, respectively.

(G) Immunostainingofmeta II-arrestedoocyte collected fromtheoviductofKid+/+

orKid�/� femalemice for Kid, b-tubulinandDNA.The scale bars represent40mm.

(H) Comparison of the numbers of ovulated oocytes per mouse after superovula-

tion treatment.



Table 1. Genotype Analysis

Genotype and Genetic Background of Parents Number (Percent of Total) with Genotype

Female 3 Male Stage +/+ +/� �/� Total

+/� 3 +/� < 129/B6 mix > 3 weeks 91 (25.6%) 223 (62.8%) 41 (11.6%) 355

E14.5 19 (25.7%) 45 (60.8%) 10 (13.5%) 74

E9.5 28 (26.7%) 63 (60.0%) 14 (13.3%) 105

+/� 3 �/� < 129/B6 mix > 3 weeks � 132 (64.1%) 74 (35.9%) 206

Blastocyst � 40 (69.0%) 18 (31.0%) 58

2–8 cells � 48 (44.4%) 60 (55.6%) 108

�/� 3 +/� < 129/B6 mix > 3 weeks � 94 (75.2%) 31 (24.8%) 125

2–8 cells � 8 (36.4%) 14 (63.6%) 22

+/� 3 +/� < B6 (N8) > 3 weeks 52 (31.1%) 101 (60.5%) 14 (8.4%) 167

+/� 3 �/� < B6 (N8) > 3 weeks � 77 (80.2%) 19 (19.8%) 96
Then, the conditional knockout male mice were bred with

CAG-cre transgenic female mice that retained Cre recombinase

activity in oocytes (Sakai and Miyazaki, 1997), thereby producing

Kid+/� offspring (Figure 1A). The success of these procedures

was confirmed by Southern blotting and PCR analyses (Figures

1B–1D and data not shown). We used F1-F3 hybrid offspring

from these Kid+/� intercrosses (C57BL/6 3 129/Sv mixed

background) for the analyses, unless otherwise noted.

Genotypeanalysisofmore than300 live-born mice revealed that

Kid+/� intercrosses yielded Kid+/+: +/�: �/� offspring at ratio of ap-

proximately 1:2:0.5, suggesting thatabout 50% of Kid�/�embryos

died (Table 1). By analyzing the embryos from Kid+/� intercrosses,

we found that about half of the Kid�/� embryos died prior to E9.5

(Table 1). We also showed that Kid�/� x Kid+/� crosses yielded

Kid�/� offspring, although the number was less than 50% of that

expected (Table 1). Moreover, even kid�/� intercrosses yielded

healthy offspring for at least four generations. After backcrossing

to a C57BL/6 genetic background for eight generations, the

Kid�/� mice showed a more severe phenotype than those in the

mixed background (Table 1). Nevertheless, the surviving Kid�/�

embryos developed into healthy, fertile adult mice (Table 1).

We confirmed the lack of Kid expression in E14.5 Kid�/�

mouse embryonic fibroblasts (MEFs) (Figure 1E). The absence

of Kid did not affect the growth rate of MEFs (Figure 1F). Immu-

nofluorescent analysis revealed that a subpopulation of Kid�/�

MEFs showed similar mitotic phenotypes as Kid-depleted

HeLa cells (data not shown). It may be worthy to mention that

comparable numbers of meta II-arrested oocytes with similar

morphology were ovulated from Kid�/� and Kid+/+ females

following superovulation treatment (Figures 1G and 1H). No

histological abnormality was found in the Kid�/� testis either,

and the motility of the sperms of Kid�/� male mice was normal,

as assessed by light microscopy (data not shown).

All these results indicate that Kid is specifically critical for early

embryogenesis in mice, but not essential for somatic cell mitosis

or meiosis.

Kid Deficiency Results in Fragmentation of the Female
Pronuclei and Nuclei in Early Blastomeres
To examine how Kid is involved in early embryogenesis, we ob-

tained 1-cell-stage embryos from the oviducts, cultured them in

vitro, and analyzed them for Kid expression. Immunofluorescent
staining showed that Kid was clearly detected in both male and

female pronuclei in Kid+/+1-cell-stage embryos (Figure 2A). How-

ever, after nuclear envelope breakdown (NEBD), Kid did not

Figure 2. Expression and Localization of Kid in Early-Stage Embryos

Immunostaining of early-stage embryos for Kid, b-tubulin and DNA.

(A) 1-cell/pronuclear stage (PN), metaphase (Meta) and anaphase (Ana) of the

first mitosis of Kid+/+ embryo.

(B and C) Metaphase and anaphase of wild-type oocyte meiosis I (B) and II (C).

Only half of the Ana I spindle was shown.

(D) Kid+/+ embryo undergoing the third mitosis.

(E) Pronuclear stage (PN) and 2-cell-stage Kid+/� embryos derived from Kid�/�

female x Kid+/+ male.

Scale bars represent 15 mm.
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accumulate effectively on the chromosomes and appeared to

present diffusely throughout the cytoplasm during prometa-

phase and metaphase, while at anaphase Kid was strongly

detected on the chromosomes (Figure 2A). The same was true

for the second mitosis (the mitosis from the 2-cell to 4-cell stage,

data not shown) and the first and second meiosis of oocytes (Fig-

ures 2B and 2C). In contrast, at the third (the mitosis from the

4-cell to 8-cell stage) and later mitosis, chromosomal accumula-

tion of Kid was clearly detected at prometaphase and meta-

phase (Figure 2D), just as that were during somatic cell mitosis

(Tokai et al., 1996, see also Figure 5A). Time-lapse observations

of exogenously introduced EGFP-Kid also showed less efficient

localization to metaphase chromosomes in the first mitosis than

in somatic mitosis (Figure S1 available online). These results sug-

gest that, although it is not clear whether Kid functions on the

prometaphase/metaphase chromosomes and spindles or not,

Kid may play a role in the oocyte and early-stage embryos by

localizing on the anaphase/telophase chromosomes.

While the Kid signal was absent in the pronuclei of Kid+/�

1-cell-stage embryos derived from Kid�/� female x Kid+/+

male, those embryos expressed a detectable level of Kid at the

2-cell stage (Figure 2E), indicating that zygotic expression of

Kid began as early as the 2-cell stage. Taking advantage of

this, we next performed genotype analysis by immunofluores-

cent staining with anti-Kid antibody of 2- to 8-cell-stage embryos

Figure 3. Kid Deficiency Causes Formation

of Multinuclei in Early-Stage Embryos

(A) Immunostaining of 2-cell- or 8-cell-stage em-

bryos derived from Kid+/+ or Kid�/� intercrosses

for Kid, b-tubulin and DNA.

(B) Hoechst staining of pronuclear-stage Kid�/�

embryo. Line and dashed line outline the cell

surface and polar body, respectively.

(C) Percentage of the embryos containing multinu-

cleated pronuclei or blastomeres. Genotypes

of the parents and embryos are indicated: W,

Kid+/+; H, Kid+/�; K, Kid�/�. Pronuclear-stage em-

bryo derived from Kid+/� female was not evaluated

(asterisk).

(D) Ratio of the number of Kid+/� to Kid�/� at indi-

cated stages derived from Kid+/� female 3 Kid�/�

male. The exact numbers for (C) and (D) are shown

in Table 1 and Table S1.

(E) Immunostaining of Kid+/� or Kid�/� blastocyst-

stage (E3.5) embryo collected from the oviduct

of a Kid+/� female that had been mated with

a Kid�/� male.

Scale bars represent 40 mm.

produced from Kid+/� x Kid�/� crosses.

The data revealed that Kid�/� embryos

were produced at the expected Mende-

lian frequency (Table 1), indicating that

Kid deficiency did not affect the fertiliza-

tion. However, Hoechst staining of these

embryos revealed that Kid deficiency

caused micro- or multinucleated blasto-

meres at high frequency (Figures 3A and

3C and Table S1). More surprisingly,

about 30% of 1-cell-stage embryos derived from Kid�/� female

mice contained more than three (in most cases more than four)

pronuclei with variable size (Figures 3B and 3C; see also

Figure 4A). Multipronucleated Kid�/� 1-cell-stage embryos had

both first and second polar bodies (data not shown). In addition,

a multipronucleated phenotype was rarely observed in the

zygotes derived from Kid+/+ females mated with Kid�/� males

(Figure 3C). These results indicate that multipronuclei did not re-

sult from polyspermy or failure of polar body extrusion, but from

the malformation of the female pronuclei.

We next examined the blastocyst-stage embryos collected at

E3.5 from the oviducts of Kid+/� female mice that had been

crossed to Kid�/� males. The number of Kid�/� blastocysts

was only about 50% of the expected number (Table 1 and

Figure 3D). However, the surviving Kid�/� blastocysts were nor-

mal in size, appearance, and nuclear morphology (Figure 3E).

These data suggested that 4- to 8-cell-stage embryos with mal-

formed nuclear blastomeres stopped dividing or died before the

blastocyst stage.

Lack of Anaphase Chromosome Compaction
in the Absence of Kid Is Relevant to the Formation
of Multinucleated Cells
How are micro- and multinuclei formed in Kid-deficient

embryos? And why are such abnormalities found in part but
774 Cell 132, 771–782, March 7, 2008 ª2008 Elsevier Inc.



not all of the Kid-deficient early embryos? To address these

questions, we performed time-lapse confocal microscopic im-

aging of chromosomes during the first or second mitosis. Chro-

mosomes were visualized by injection of capped-mRNA encod-

ing the EGFP-tagged methyl-CpG binding domain of MBD1

fused with a nuclear localization signal (EGFP-MBD-NLS) in

pronuclear-stage zygotes (Yamagata et al., 2005). Both Kid+/+

and Kid�/� 1-cell-stage embryos underwent NEBD between

28–30 hr after human chorionic gonadotrophin (hCG) injection,

indicating that neither Kid deficiency nor expression of EGFP-

MDB-NLS caused an obvious delay prior to the onset of the first

mitosis (Nagy et al., 2003).

After NEBD, even when 1-cell-stage Kid�/� embryos con-

tained multiple pronuclei, all the chromosomes congressed to

a single metaphase plate (Figure 4A and Movie S1). Kid�/� zy-

gotes showed no prometaphase/metaphase delay (Figure 4B)

and formed a metaphase spindle with aligned chromosomes,

which was indistinguishable from that in Kid+/+ zygotes

(Figure 4C). These results, together with our observation that ob-

vious accumulation of Kid was not detected on the prometa-

phase/metaphase mitotic apparatus of the oocyte meiosis or

the first two mitoses (Figure 2), strongly suggested that Kid

deficiency did not cause an abnormality in spindle formation or

metaphase chromosome alignment in oocyte meiosis or early

embryonic division.

Upon anaphase onset, in Kid+/+ zygotes, the length of the

chromosome mass along the pole-to-pole axis was slightly in-

creased during the poleward migration of the chromosomes

mass. Then, just after the poleward migration of the pole-proxi-

mal edge of the chromosome mass ceased (around 25 min post

anaphase onset; red bar in Figure 4E) and just before nuclear ex-

pansion began, the length of the chromosome mass decreased

to a minimum (Figures 4D and 4E and Figure S2). In contrast, in

Kid�/� zygote, although the pole-proximal edge of the anaphase

chromosome mass moved with equivalent kinetics to those in

Kid+/+ zygotes, the length of the chromosome mass was contin-

uously increased even after poleward movement ceased. Then,

NE reassembly began without obvious compaction of the

chromosome mass (Figures 4D and 4E and Figure S1). These

observations were also confirmed by analyzing the chromo-

some-occupied area in the z-stacked images from the onset of

anaphase untill the completion of nuclear expansion during G1

phase. In Kid+/+ zygotes, the chromosome-occupied area

showed a transient decrease to the lowest level just before the

nuclear expansion (Figure 4F). Such a decrease was not de-

tected in Kid�/� zygotes (Figure 4F). In Kid�/� embryos, a single

or several chromosomes were often apart from the main chro-

mosome mass at late anaphase and formed small independent

nuclei, resulting in micro- or multinucleated blastomeres (12/28

of the first mitoses) (Figures 4G and 4H and Movies S2 and

S3). These results strongly suggest that the less tightly com-

pacted anaphase/telophase chromosome mass caused the for-

mation of micro- or multinucleated cells in Kid�/� embryos. In

time-lapse imaging experiments, we observed lagging chromo-

somes in even Kid+/+ embryos at certain frequency (observed in

5 out of 18 embryos) at early anaphase of the first mitosis. Be-

cause we rarely observed micronuclei in wild-type 2-cell-stage

embryos that had been cultured in vitro without live-imaging
(Figure 3C and Table S1), this was likely resulted from the live-

imaging system.

Time-lapse imaging of chromosomes in Kid�/� zygotes also

demonstrated that the multinucleated phenotype at the 1-cell

stage was restored in the metaphase of the first mitosis, but in-

duced again in the subsequent anaphase/telophase with a par-

ticular frequency if Kid was still absent (Figures 4A and Movie

S1). Indeed, among Kid�/� embryos derived from Kid�/� inter-

crosses, the percentage of multinucleated embryos was about

40% and was not significantly changed from the 1- to 8-cell

stage (Figure 3C and Table S1). In contrast, although 25%–

30% of 1- or 2-cell-stage Kid+/� embryos derived from Kid�/� fe-

male x Kid+/+ male crosses exhibited the multinucleated pheno-

type, all 4- to 8-cell-stage embryos from the same cross showed

normal nuclear morphology (Figure 3C and Table S1). It is likely

that in these Kid+/� embryos, zygotic expression of Kid in

2-cell-stage embryos restore the multinucleated phenotype

during the second mitosis.

Furthermore, we observed that only about 10% of Kid�/�

2-cell-stage embryos derived from Kid+/� female x Kid�/� male

crosses exhibited a micro- or multinucleated phenotype; how-

ever, the percentage of Kid�/� embryos with micro- or multinu-

cleated blastomeres was increased to more than 50% at the

4- to 8-cell stage (Figure 3C and Table S1). The Kid signal was

decreased to an undetectable level by the late 2-cell stage in

these embryos (data not shown), suggesting that the maternal

Kid was exhausted before the onset of the second mitosis, caus-

ing the formation of multinucleated blastomeres during the sec-

ond and/or third mitosis. From these results, we concluded that

the process of female pronuclear formation and each of the first

two to three mitoses requires Kid for proper pronuclear or

daughter nuclear formation. Kid deficiency did not cause a se-

vere abnormality in mitosis during post-morula-stage develop-

ment, and therefore Kid�/� embryos that happened to pass the

4- to 8-cell-stage without multinucleated blastomeres were

able to grow into neonates and then adults (Figure 4I).

Kid Localizes in the Interstices between Anaphase
Chromosomes
Next, to address the role of Kid during anaphase and telophase,

we first analyzed detailed localization of Kid after anaphase

onset by using cultured cells. Kid localized along the entire

length of the metaphase chromosomes and spindle microtu-

bules (Figure 5A). Upon metaphase/anaphase transition, Kid sig-

nals on the chromosome arms and spindle microtubules became

weak and instead, Kid was enriched in the spindle pole-proximal

side of the chromosomes, showing a striated signal pattern (Fig-

ure 5A). Immunofluorescent confocal microscopic observation

revealed that strong Kid signals, along with microtubules, were

detected in the interstices between neighboring chromosomes

(Figure 5B). Notably, almost no Kid signals were detected along

chromosome surfaces that were not in close contact with neigh-

boring chromosomes (Figure 5B).

We next evaluated the relationship between the localization

pattern of Kid and the ratio of cell length to width, which roughly

reflects the progression of anaphase. In most early anaphase

cells (phase I), the Kid signal was found diffusely on the chromo-

somes (Figure 5A). At mid-anaphase when the ratio of cell length
Cell 132, 771–782, March 7, 2008 ª2008 Elsevier Inc. 775



Figure 4. Kid-Mediated Anaphase Chromosome Compaction Prevents Formation of Multinuclei in Early-Stage Embryos

(A) Time-lapse imaging of first mitosis of four (a–d) Kid�/�embryos. Chromosomes were visualized using EGFP-MBD-NLS. The first (left; 1-cell stage) and last

(right; 2-cell stage) frames of Movie S1, and metaphase of each embryo (middle) are shown. Line and dashed line outline the cell surface and polar body, respec-

tively. Embryos c and d contain multipronuclei at 1-cell stage and embryos b and c contain micronuclei at 2-cell stage.

(B) The average time from NEBD to the onset of anaphase during the first mitoses of Kid+/+ and Kid�/� embryos. Ten embryos were examined for each genotype.

Error bars represent SEM.

(C) Confocal fluorescence imaging of metaphase spindle (red; b-tubulin) and chromosomes (blue; PI) of the first mitosis of Kid+/+ and Kid�/�. Scale bars represent

15 mm.

(D) Time-lapse imaging of first mitosis of Kid+/+ and Kid�/�embryos. Chromosomes were visualized with EGFP-MBD-NLS and fluorescent images were acquired

at 5 min intervals. The last frame of metaphase is labeled as 0 min (time in hr:min).
776 Cell 132, 771–782, March 7, 2008 ª2008 Elsevier Inc.



to width became greater than 1.3 (phase II), more than 80% of

the cells showed the characteristic striated pattern of Kid sig-

nals (Figure 5D). In all the late anaphase to early telophase cells

with an ingressing cleavage furrow (phase III), Kid signals

exhibited the striated pattern (Figures 5C and 5D). Part of the

phase III cells exhibited no obvious lamin A/C signals around

chromosomes, indicating that accumulation of Kid between

chromosomes was established before NE reassembly began

and Kid remained there throughout the NE reassembly process

(Figure 5C). When chromosomes were decondensed, Kid was

uniformly distributed in the daughter nuclei (Figure 5C). Immu-

noelectron microscopic observations of phase III HeLa cell

further revealed that even when adjacent chromosomes tightly

adhered to each other without an interstice, Kid signals were

retained at the boundary of adjacent chromosomes (Figure 5E).

Consistent with the findings of immunofluorescent microscopy

(Figure 5B), no Kid signals were found on the chromosome

surfaces that were not faced to neighboring chromosomes

(Figure 5E). Accumulation of Kid in between telophase chromo-

somes was also confirmed by immunofluorescent deconvolu-

tion images (Figure 5F and Movie S4).

To identify the domain responsible for the unique localization

of Kid during anaphase and early telophase, we constructed

GFP-tagged Kid mutants lacking the DNA binding domain

(GFP-Kid-delDB) or motor domain (Kid-delMot) and expressed

them at a relatively low level in NIH 3T3 cells by retrovirus infec-

tion. Under these conditions, exogenous GFP-Kid shows the

same localization pattern as endogenous Kid throughout mitosis

(Ohsugi et al., 2003). GFP-Kid-delDB was strictly localized to the

microtubules connecting centrosomes and chromosomes, while

deletion of the motor domain resulted in the mislocalization of

Kid to the entire anaphase chromosomes (Figure 5G). Namely,

little enrichment of Kid in between chromosomes was observed.

These results indicate that Kid is localized in the interstices

between adjacent anaphase chromosomes in a chromosome-

and microtubule- binding dependent manner.

Kid Also Contributes to Shortening Chromosomal Mass
along the Spindle Axis in HeLa Cells
We next investigated the effects of Kid-depletion on anaphase/

telophase chromosome dynamics and daughter nuclear forma-

tion. In control anaphase cells, the kinetochores stained with

anti-centromere antiserum (ACA) were localized in a linear array

at the pole-proximal edge of the migrating chromosome mass

(Figure 6A). In contrast, ACA signals were widely scattered along
the spindle axis and the chromosome mass appeared less com-

pacted in Kid-depleted anaphase cells (Figure 6A). To analyze

the change of the spatial distribution of kinetochores and the

chromosome mass during anaphase and early telophase, we

collected a z-series of serial optical sections of cells in phases

I-III and stacked them to produce an image depicting all the

chromosomes present. Then we measured the length of the

ACA-positive area along the pole-to-pole axis (a in Figure 6B)

as well as the length and width of the chromosome mass (b

and c in Figure 6B). At early anaphase (phase I), kinetochores

were distributed within a relatively large area in both control

and Kid-depleted cells. Thereafter, in control cells kinetochores

became aligned within a narrow area by mid-anaphase (phase

II), whereas in Kid-depleted cells kinetochores remained scat-

tered throughout anaphase (Figure 6Ca). Consistent with this,

in control cells the length of the chromosome mass along the

pole-to-pole drastically decreased at phase II, whereas that in

Kid-depleted cells remained long (Figure 6Cb). In both control

and Kid-depleted cells, the width of the chromosome mass grad-

ually decreased as anaphase progressed (Figure 6Cc). These

results suggest that the rapid alignment of the kinetochores of

the segregating chromosomes during anaphase is impaired in

Kid-depleted cells. Therefore, Kid likely plays a role in holding

individual chromosomes together during the segregation.

Immunofluorescent staining showed that in most Kid-depleted

telophase cells, the chromosomes remained distinguishable. In

these cells, Lamin A/C was reassembled on the chromosome

surface facing the inter-chromosomal gaps, as if decorating

the individual chromosomes, resulting in markedly uneven mor-

phology of daughter cell nuclei with many corrugations

(Figure 6D). In Kid-depleted cells that had passed through mito-

sis, 86.0 ± 1.7% of nuclei showed wrinkled or rugose nuclear

lamina, while only 12.8 ± 0.6% of control cells had such a wrin-

kled lamina (average of three independent experiments ± SEM

n > 300 in each experiment) (Figure 6E). All these data suggest

that in HeLa cells Kid also contributes to anaphase/telophase

chromosome compaction by shortening anaphase chromo-

some mass along the pole-to-pole axis, and thereby ensuring

the reassembly of the smooth NE around the entire chromosome

mass (Figure 6F).

Taken together, we concluded that loss of Kid causes less

efficient compaction of the anaphase/telophase chromosome

mass both in somatic and emryonic cell divison, and leads to

multinuclear formation specifically at very early embyonic

stages.
(E) Average length of chromosome mass along the pole-to-pole axis at the indicated time points after anaphase onset of the first mitosis of Kid+/+ and Kid�/�. Red

bar represents the timing at which poleward migration of the chromosome mass ceased. Error bars represent SEM. n, number of chromosome segments

analyzed. Independent data from each chromosome segment are shown in Figure S1.

(F) Average chromosome-occupied area at the indicated time points after anaphase onset of the first mitosis of Kid+/+ and Kid�/�. Error bars represent SEM.

n, number of chromosome segments analyzed. The inset shows an enlargement of time range up to 55 min.

(G and H) Time-lapse imaging of the chromosome from anaphase to telophase of the first (G) or second (H) mitosis of Kid�/� embryo. Time after anaphase onset is

indicated (hr:min). Light microscopic images of embryos at 0:10 and 0:50 are also shown in (H) with the white rectangle representing the region of fluorescent

images.

(I) Schematic representation of the proposed phenotype and fates of the Kid�/� embryos. The anaphase of meiosis II of the Kid�/� zygote results in multifemale

pronuclear formation at high frequency, which is once restored by the metaphase of the first mitosis. In Kid�/� embryos, anaphase chromosomes are less com-

pacted, leading to the formation of multinucleated cells at high frequency again. A similar situation occurs at the second, but not at the third or later mitosis. Mul-

tinucleated phenotype at 4-cell stage is no longer restored by the next mitosis, and leads to growth arrest or death. Orange and blue bars schematically represent

the amount of maternal and zygotic transcripts, respectively.
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Figure 5. Kid Localizes in the Interstices between Anaphase Chromosomes

(A) Immunostaining of metaphase and anaphase HeLa cells for Kid, DNA and a-tubulin. Dashed lines outline the cell surface. Phases I and II are defined by cells

having a ratio of cell length (pole-to-pole axis; a) to width (b) less and greater than 1.3, respectively.

(B) A confocal microscopic section of a phase II anaphase HeLa cell stained for Kid, DNA and a-tubulin. The graph shows the intensity of each signal along the

white line starting from the asterisk in the merged image. The arrows indicate the positions of chromosome boundaries.

(C) Immunostaining of late anaphase and telophase HeLa cells for Kid, DNA and lamin A/C. Phase III is defined by cells having an ingressing cleavage furrow and

a ratio of cell width at the widest (b) relative to that at the narrowest (c) region of less than 2.0.

(D) Proportion of cells with striated patterns of Kid signal in phase I-III cells. n, number of cells examined. (E) Immunoelectron microscopic observation of Kid in

phase III HeLa cell. The arrowheads indicate the Kid signals along the chromosome boundaries. Scale bar represents 2 mm.

(F) A deconvolution image of phase III HeLa cells stained for Kid, DNA and a-tubulin. Magnified images from the area within the white rectangle in the left panel are

shown for chromosomes alone and chromosomes plus Kid. See also Movie S4.
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DISCUSSION

For faithful daughter nuclear formation, all the chromosomes

need to be close together, forming a compact cluster, before

NE reassembly begins. Emerging evidence has revealed the im-

portance of the maintenance of anaphase chromosome conden-

sation and axial compaction of the anaphase chromosome arms

to achieve this (Mora-Bermudez et al., 2007; Vagnarelli et al.,

2006). The present study demonstrates that the chromokinesin

Kid contributes to this event by shortening anaphase chromo-

some mass in both HeLa cells and mouse zygotes. Previous

studies demonstrated that depletion of Kid from HeLa cells, in

which Kid localizes to the prometaphase/metaphase chromo-

some arms and spindles, results in prometaphase delay accom-

panied with defects in chromosome arm alignment and meta-

phase spindle size (Tokai-Nishizumi et al., 2005; Zhu et al.,

2005). Therefore, these pre-anaphase defects might be in part

relevant to the anaphase phenotype observed in Kid-depleted

HeLa cells. Nonetheless, our data show that in mouse embryos,

pre-anaphase processes appear unaffected in Kid�/� embryos.

These data strongly suggest that the formation of multinucleated

cells during the early embryonic stage is due to the loss of Kid

function during anaphase and telophase, but not prometaphase

and metaphase.

The mechanism by which Kid promotes compaction of the

anaphase/telophase chromosome mass along the spindle axis

is not known; however, the characteristic localization of Kid

during anaphase and telophase must be an important clue. We

show that, during anaphase, Kid is colocalized with microtubules

in between adjacent chromosomes and that both the motor do-

main and DNA-binding domain are critical for Kid localization

(Figure 5G). These data suggest that a subset of anaphase

microtubules located between anaphase chromosomes plays

a role in proper chromosome segregation by recruiting Kid (Fig-

ure 6F). At prometaphase and metaphase, Cdc2/cyclin B-medi-

ated Kid phosphorylation of Thr463 downregulates Kid’s affinity

for microtubules, allowing Kid to localize on chromosomes (Oh-

sugi et al., 2003; Shiroguchi et al., 2003). At anaphase/telophase,

Thr463 of Kid is no longer phosphorylated, and therefore Kid

shows high affinity for microtubules. This suggests that in-

creased microtubule-binding activity of Kid, together with its

DNA-binding activity, contributes to its localization at anaphase.

Indeed, FRAP (fluorescence recovery after photobleaching) as-

say revealed that while at prometaphase/metaphase the fluores-

cence of exogenously expressed EGFP-Kid on chromosomes

recovers within seconds, recovery of fluorescence at anaphase

is almost undetectable within one minute, (our unpublished re-

sults), suggesting that Kid binds to microtubules and/or chromo-

somes very tightly during anaphase. Taken together, Kid would

mediate the axial shortening of chromosome arms (Mora-

Bermudez et al., 2007) by acting as a DNA-bound microtubule

motor protein. Further experimental verification will help

establish the precise molecular mechanism of Kid-mediated

anaphase chromosome compaction.
Why does Kid deficiency result in micro- or the formation of

multinucleated cells only in very early-stage embryos? In mice,

a burst of zygotic gene expression begins at the 2-cell stage

(Flach et al., 1982), which is accompanied by the degradation

of maternal factors (Bachvarova and De Leon, 1980). Therefore,

it appears that the embryonic stages severely affected by Kid de-

ficiency are those during which NE reassembly occurs under the

significant influence of the ooplasm. It is theoretically possible

that other molecules or mechanism might function after the

4- to 8-cell stage to complement Kid or even render its function

in anaphase chromosome function redundant. However, it is

important to note that Kid itself behaves differently in these early

cell divisions with respect to its chromosomal localization at

prometaphase and metaphase (Figure 2). Therefore, it is likely

that the mitotic process is regulated in a specialized manner

during these ‘‘maternally controlled’’ meioses and mitoses. We

speculate that in mouse zygotes and early embryonic blasto-

meres, the cytoplasm and/or anaphase chromosomes possess

strong ability to assemble the NE compared to those in somatic

cells, and therefore, in the absence of Kid, micro- or multinuclei

are readily formed. Indeed, the small GTP protein Ran, which

promotes NE reassembly (Bamba et al., 2002; Zhang and Clarke,

2000, 2001), is predominantly associated with chromosomes in

mouse oocytes, but to a lesser degree in HeLa cells (Hinkle

et al., 2002). It is interesting to note that in Xenopus egg extracts,

Xkid is not associated with anaphase chromosomes (Funabiki

and Murray, 2000) and during Xenopus cleavage divisions, ana-

phase chromosomes do not have to be tightly gathered as NEs

are reassembled around individual chromosomes to form micro-

nuclei-like structures called karyomeres (Lemaitre et al., 1998;

Montag et al., 1988). In contrast, when cells begin to undergo

zygotic expression-dependent somatic mitosis after midblastula

transition (Lemaitre et al., 1998), karyomere formation ceases

and Xkid is apparently localized on anaphase/telophase

chromosomes during somatic mitosis (Antonio et al., 2000).

Although Kid is critically important for ‘‘maternally controlled’’

divisions, the formation of multinucleated cells caused by Kid

deficiency does not lead to cell cycle arrest at the 1- to 4-cell

stage, but results in embryonic death during the morula stage

(Figure 3D). Because NE and nuclear architecture are important

for gene regulation (Akhtar and Gasser, 2007), we speculate that

the formation of multinucleated cells may disturb the proper

zygotic gene expression, leading to embryonic death.

The presence of multinucleated blastomeres in human early-

stage embryos is a crucial parameter for judging the suitability

of embryos for intrauterine transfer in assisted reproductive

technologies. Multinucleated blastomeres are often observed

in human embryos produced by in vitro fertilization or intracyto-

plasmic sperm injection, and the molecular mechanisms or fac-

tors influencing nuclear formation in early embryos remain poorly

understood (Munne and Cohen, 1998). Our studies shed light on

the importance of anaphase chromosome compaction to pre-

vent mammalian early embryos from forming multinucleated

blastomeres.
(G) Confocal fluorescence imaging of GFP-Kid-wt, GFP-Kid-delDB, and GFP-Kid-delMot expressed at low level in NIH 3T3 cells. Cells were stained for GFP,

DNA, and a-tubulin.

Scale bars in panels except for (E) represent 5 mm.
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Figure 6. Kid Contributes to the Axial Short-

ening of Anaphase Chromosome Mass and

the Formation of Daughter Nuclei with

Smooth Surfaces

(A and B) Control or Kid-RNAi anaphase HeLa cells

were stained for Kid, DNA, and kinetochores

(ACA). g-tubulin was also stained in (B). The arrow-

heads in (B) indicate the centrosomes. The arrows

a-c in (B) indicate the lengths measured in (C).

(C) Length of ACA-positive area (a), length of chro-

mosome mass (b), and width of chromosome

mass (c) of control (black) or Kid-RNAi (red) HeLa

cells at phase I-III represented as whisker plots.

The bottom and top of the box show lower and

upper quartile values, respectively. The median

is indicated with ‘‘+’’ and whiskers denote the

range. *p = 0.027 and **p < 0.001 (The Mann-Whit-

ney U-test). Thirteen-22 cells were examined in

each category.

(D and E) Immunostaining of control or Kid-RNAi

telophase (D) or interphase (E) HeLa cells for Kid,

DNA and lamin A/C. Cells were fixed at 10 hr (D)

or 24 hr (E) after the release from thymidine block.

(F) Schematic representation showing the locali-

zation and role of anaphase/telophase Kid. Kid lo-

calizes in the interstices between anaphase chro-

mosomes along the microtubules located there

(shown as dark orange lines). In the absence of

Kid, lateral adherence of anaphase chromosomes

is impaired, resulting in malalignment of anaphase

chromosomes, NE reassembly in the boundaries

between chromosomes, and rugose nuclear lam-

ina formation.

Scale bars represent 5 mm.
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EXPERIMENTAL PROCEDURES

Generation of Kid-Deficient Mice

See Supplemental Data for description of the generation of Kid-deficient mice.

Experiments with animals were carried out in accordance with the guidelines

for animal use issued by the Committee of Animal Experiments, Institute of

Medical Science, University of Tokyo.

Collection and Culture of Oocytes and Early-Stage Embryos

Female mice (8–12 weeks old) were superovulated by intraperitoneal injections

of pregnant mare serum gonadotropin (PMSG) and human chorionic gonado-

trophin (hCG) at 46–48 hr intervals. Sixteen to eighteen hours after hCG injec-

tion, zygotes were collected from the ampulla region of the oviducts of plug-

positive females, treated with hyaluronidase to remove cumulus cells, and

cultured in drop of M16 medium covered with mineral oil (Sigma) at 37�C under

5% CO2 for 8–10 hr for pronuclear stage, 12–18 hr for the first mitosis, 24–28 hr

for 2-cell stage, or 36–40 hr for 4- to 8-cell stage. Meta II arrested oocytes were

collected from females that had not been mated with males. For analysis of

meiosis I, oocytes with germinal vesicles were isolated by disaggregating ova-

ries from females treated with PMSG for 48 hr in M2 medium and cultured in

M16 medium for 9–10 hr before fixation. Blastocyst-stage embryos were

collected at E3.5 by flushing the oviducts.

Time-Lapse Live Microscopy

The expression plasmid for EGFP-MBD-NLS [pcDNA3.1EGFP-MBD-NLS

polyA(83)] was a gift from K. Yamagata, and in vitro mRNA transcription was

performed as described previously (Yamagata et al., 2005). For EGFP-Kid ex-

pression, cDNA encoding MBD-NLS was replaced by that of hKid. A few pico-

liters of 50 ng/ml (EGFP-MBD-NLS) or 100 ng/ml (EGFP-Kid) denatured mRNA

was microinjected into pronuclear-stage zygotes as described previously

(Adachi et al., 2007) and the zygotes were cultured in a drop of M16 medium

covered with mineral oil at 37�C under 5% CO2 until the observation was

started. Embryos were transferred to a drop of M16 medium covered with min-

eral oil in a glass-bottomed dish and observed with a laser spinning disk live-

cell confocal microscopy system utilizing a Yokogawa CSU22 controlled by

Metamorph software (Universal Imaging), equipped with a CO2 microscope

stage incubator. Z-series of 18–23 sections in 2.5 mm increments were cap-

tured every 5 min and projected onto a single image plane. Quantification of

chromosome-occupied area was performed using MetaMorph Software. In

the experiments shown in Figures 6E and 6F, embryos whose pole-to-pole

axis were parallel to the focal plane were selected for analysis. In the experi-

ments shown in Figure S1A, pcDNA3.1EGFP-Kid plasmid was transfected

into NIH 3T3 cells.

Cell Culture, Retrovirus Infection, and RNA Interference

HeLa cells and NIH 3T3 cells were cultured in DMEM with 10% fetal calf serum

or calf serum, respectively. Mouse embryonic fibroblasts (MEFs) were ob-

tained from E14.5 embryos by an established procedure (Todaro and Green,

1963) and cultured in DMEM with 10% fetal calf serum and 50 mM b-mercap-

toethanol. The growth rates of the MEFs were determined by plating triplicate

cultures of 1 x105 cells in 60-mm dishes. At 3-day intervals, the total number of

cells per culture was determined prior to dilution of the cells for repassage.

Retrovirus-mediated expression of Kid in NIH 3T3 cells was performed as de-

scribed previously (Yoshida et al., 2003). DNA fragments encoding GFP-Kid-

delDB (amino acids 1-515) and GFP-KiddelMot (amino acids 405-665) were

cloned into pMX-puro vector (Onishi et al., 1996) for retrovirus production.

RNA interference of Kid was carried out as described previously (Tokai-Nishi-

zumi et al., 2005). HeLa cells were synchronized in S phase by 2.5 mM thymi-

dine block for 20–24 hr when necessary.

Antibodies

For immunoblotting and immunofluorescent staining, antibodies against Kid

(polyclonal, Tokai et al., 1996), a-tubulin, b-tubulin, g-tubulin (monoclonal,

Sigma), or lamin A/C (monoclonal, Santacruz) were used. For kinetochore

staining, anti-centromere antiserum (ACA, gift of Y. Takasaki) was used.
Immunofluorescence Microscopy

Cells were grown on a glass coverslip, fixed and stained as described previ-

ously (Ohsugi et al., 2003). In the experiments shown in Figures 6A–6C, cells

were stained for Kid and centrosomes in addition to chromosomes and kinet-

ochores, confirming that the residual Kid was at undetectable level and that

both centrosomes were in a single focal plane. Oocytes and early-stage em-

bryos were treated with acidic Tyrode’s solution to remove the zona pellucida,

washed with 0.5% polyvinyl pyrrolidone/PBS, fixed with 4% paraformalde-

hyde containing 0.005% Triton X-100 for 30 min at R.T., and then incubated

sequentially with the first and secondary antibodies. Unless otherwise speci-

fied, image stacks were captured on a microscope controlled by Delta Vision

SoftWorx (Applied Precision). When necessary, deconvolution was performed.

Image stacks were quick-projected and saved as Photoshop files. Confocal

images for Figures 4C, 5B, and 5G were recorded and analyzed with a laser

scanning confocal microscope system as follows: Figure 4C: Yokogawa

CSU22 controlled by MetaMorph (Universal Imaging), Figure 5B; Fluoview

FV1000 controlled by FV10-ASW (Olympus), Figures 5G; Radiance2000

controlled by Lasersharp (Bio-Rad).

Immunoelectron Microscopy

Samples for immunoelectron microscopy were prepared as described (Tokai-

Nishizumi et al., 2005). In short, the cells were extracted in PHEM (60 mM

PIPES, [pH 6.9, 25] mM HEPES, 10 mM EGTA, 2 mM MgCl2) containing

0.1% Triton X-100 for 1 min at room temperature before fixation with 0.1% glu-

taraldehyde for 10 min, and incubated with anti-Kid antibody and then with Flu-

oroNanogold (Nanoprobe Inc.). Cells were post-fixed with 2% glutaraldehyde

for 15 min, silver enhanced, and processed for electron microscopy as previ-

ously described (Tokai-Nishizumi et al., 2005).

SUPPLEMENTAL DATA

Supplemental Data include one table, Supplemental Experimental Proce-

dures, two figures, and four movies and can be found with this article online

at http://www.cell.com/cgi/content/full/132/5/771/DC1/.
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