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Abstract-sufficient conditions for the null controllability of a nonlinear infinite delay system 
with time varying multiple delays in the control are developed. Namely, if the uncontrolled system is 
uniformly asymptotically stable, and if the linear system is controllable, then the nonlinear infinite 
delay system is null controllable. 
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1. INTRODUCTION 

The study of integrodifferential equations with infinite delay has emerged in recent years as an 
independent branch of modern research because of its connection to many fields such as continuum 
mechanics, population dynamics, ecology, systems theory, viscoelasticity, biology, epidemics and 
chemical oscillations [l-4]. For example, in most biological populations the accumulation of 
metabolic products may seriously inconvenience a population, and one of the consequences can 
be a fall in the birth rate and an increase in the mortality rate. If it is assumed that the total 
toxic action on birth and death rates is expressed by an integral term in the logistic equation, 
then an appropriate model is an integrodifferential equation with infinite delay [5]. The aim of 
this paper is to study the null controllability of such systems by introducing multiple delays in 
controls. For motivation of time varying multiple delays in control variables refer to the book by 
Klamka [6]. 

Chukwu [7] showed that if the linear delay system 

k(t) = qt, Q) (1) 

is uniformly asymptotically stable and 

k(t) = qt, zt) + q+(t) 

is proper, then 

W) = qt, G) + B(t)u(t) + j(t, Q, u(t)) 

(2) 

(3) 
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is Euclidean null controllable provided f satisfies certain growth and continuity conditions. He 
also showed in [8] that if (1) is uniformly asymptotically stable, and (2) is function space con- 
trollable, then (3) is function space null controllable with constraints. Underwood and Young [9] 
proved that if the linear approximation (2) to the system 

k(t) = f(G Q, u(t)) (4) 

is function space controllable, then (4) is function space locally null controllable under certain 
conditions on f. Chukwu [lo] extended this result by assuming that if, in addition, the system 

k(t) = f(& G, 0) (5) 

is globally uniformly asymptotically stable, then the system (4) is globally null controllable with 
constraints. 

Sinha [ll] developed sufficient conditions for the null controllability of the infinite delay system 

i(t) = Jqt, zt) + B@)u(t) + s ’ A(s)z(t+s)ds+f(t,2(.),~(.)), 

44 = 4(t) for -oo<tcI 

where L(t, 4) is continuous in t, linear in 4 and given by 

N 

L’(t, 4) = c A/c(W(-hk). 
k=O 

(6) 

(7) 

Balachandran and Dauer [12] studied this problem for system (6) with distributed delays in the 
control. In this paper, nonlinear infinite delay systems of the following form are considered: 

53(t) = Jqt, 2t) + 5 B&)u(h&)) + J” A(sb(t + s> ds + f(t, 4.1, UC,), 
i=o -co (8) 

z(t) = W), t E (--00, to]. 

2. PRELIMINARIES 

In equation (8), each Ak (see (7)) is a continuous n x n matrix function for 0 5 hk 5 h, and 
A(s) is an n x n matrix whose elements are square integrable on (-oo,O]. The matrix functions 
B&),i=O,l,..., N are n x p, &ntinuous in t, and h = to - mini hi(to) where hi(t) are defined 
below. Here z x En and u E EP. Let y 2 h 2 0 be given real numbers (y may be +co), and 
En be an n-dimensional linear vector space with norm 1 . I. The function 77 : [-y, 0] --+ (0, co) 
is Lebesque integrable on [-7, 01, positive and nondecreasing. Let B( [-y, 01, En) be the Banach 
space of functions [13] which are continuous and bounded on [-y, 0] and such that 

I4 = ,,sy~,] I4(s>l + J” 77(T) Id(T)1 fh- < co. --Y 

For any t E R, and any z : [t - 7, t] -+ En, let zt : [-y, 0] + En be defined by 

Q(S) = z(t + s), s E I--7701. 

The functions hi : [to, tl] + R, i = 0, 1, . . . , N, are twice continuously differentiable and strictly 
increasing in [to, tl]. Further 

hi(t) I t fortE [to,tl], i=O,l,..., IV. 
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Let us introduce, as in [14], the following time lead functions ri with 

such that ri(hi(t)) = t for i = O,l,.. . , N, t E [to, TV]. Without loss of generality, it can be 
assumed that ho(t) = t and the following inequalities hold for t = tl: 

hfq(tl) I hlv-l(tl) I ... I hTl+1(t1) I to = hm(tl) 

< h,_l(Q = ... = hi(t) = ho(h). 
(9) 

Consider the linear homogeneous systems 

k(t) = W,G) + 5 Bi(t)u(hi(t)), (10) 
i=o 

I 
0 

k(t) = qt, zt) + A(s)z(t + s) ds. 01) 
-00 

Dafermos [15] reduced the problem of asymptotic stability for viscoelastic materials to the 
investigation of stability properties for the equation of the form (11). Also, it represents a 
model of neural networks with infinite delay [16]. Chukwu [17] studied the null controllability 
of systems of the form (10) with constant and distributed delays in control with respect to the 
control of global economic growth. Further, Chukwu introduced the solidarity functions in (10) 
and obtained certain universal principles for the control of economic growth of interconnected 
systems. Here, the more general case of time varying delays is considered. 

In particular, the controllability of (8) is studied when it is assumed that the admissible controls 
have values in a compact convex subset U of E P. Hale [13] obtained exponential estimates on 
the solutions of the linear equation (11). 

Let X satisfy the equation 

v = L@,Xt(., s)), t 2 s, 

0, 
X(t,s) = I, 

s-h<tLs, 

t = s, 

where X,(., s)(0) = X(t + 0, s), -h 5 8 5 0. Then the solution of (8) is given by 

+ 
J 

t W, s)f(s, 4.),4.)) ds for to 5 t 5 tl, 

z(t) = f#; for t E [-co, to] 

with initial state z(to) = (z(to); r#+ r)) w h ere U(S) = r](s) for s E [to - h, to] and z(t; to, c$) is the 
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solution of k(t) = L(t, Q). Using the time lead function and the inequalities (9) we have 

+1> = 4t1;to,4) + g J:e,, x(t,ri(s))Bi(ri(s))~i(s)7)(s)ds 
. 

+ 1=g+l L;I;) 
x(tl,~i(s))Bi(~i(s))~i(s)rl(s) ds 

+ 2 1”’ X(tl,ri(s))Bi(ri(s))~i(s)u(s) ds 
i=lj to 

+~~xct,..,(/:A(e)r(s+8)de)ds) 

+ 
I 

t1 X(tl, s)f(s, 4.),49) ds. 
t0 

For brevity, introduce the following notations: 

Wt7 77) = E J:B, x(t,ri(s))&(ri(s))+i(s)~(s) ds 
t 

= + i=$+l Jh:;t:: 
x(t,~i(s))Bi(ri(s))~i(s)77(s)ds, 

t1 q(t1, rl) = +; to, 4) + Wt1977) + 
J 

X(tl, s)f(s, 4.L 49) ds 

=+~~X(t,,s)(~TA,~):,s+~)d~)ds, 

Gi(t,s) = gX(t,ri(s))Bj(rj(s))l;jo. 
j=O 

Define the controllability matrix of (10) at time t as 

(13) 

I 
t 

Wto,t) = Gn(t, s)G;l;@, s> ds (14) 
to 

where T denotes matrix transpose. 

DEFINITION. The system (8) is said to be null controllable if for each q5 E B( [-y, 01, E”) , there is 
at1 2 t0,U E b([to,td,U), u a compact convexsubset of EP, such that the solution z(t; to, 4, U) 
of (8) satisfies q,(tl; 4, u) = c$ and z(tl; to, 4, U) = 0. 

3. MAIN RESULTS 
THEOREM. Suppose that the constraint set U is an arbitrary compact subset of EP and that the 
following hold: 

(i) System (11) is uniformly asymptotically stable, so that the solution zt(to, 4) satisfies 

Il~t(t0,9)11 5 ~e-a(t-tO)l1411 for some CY > 0, M > 0. 

(ii) The linear control system (10) is controllable. 
(iii) The continuous function f satisfies 

If (6 4*>,4*>) I 5 exp(--Pt)n(4.),4-)) 
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for all (t, 5(.), u(.)) E [t 0,m) x B([--f,Ol,En) x L2@0,h],U) where 

J 

CO 

r(z(.),u(.)) ds I K < 00 and p-Cr20. 
to 

Then (8) is Euclidean null controllable. 

PROOF. Since (10) is controllable, W-‘(to,ti) exists for each ti > to. Suppose the pair of 
functions 2, u form a solution pair to the following equations: 

u(t) = -C;(tr, W-‘(to, tr)q(tr, rl) 

for some suitably chosen tl 2 t 2 to, u(t) = q(t), t x [to - h,to] and 

t 
z(t) = “(C to, 4) + fqt, 77) + 

I 
Gn(t, S)‘IL(S) ds 

to 

(15) 

t 0 + JJ A(B) z(t + 0) d0 ds + J tX(t, sLf(s, 49+(9)ds, to -y to 
x(t) = 4(t), t E [to - h, to]. 

Then u is square integrable on [to - h, tl] and z is a solution of (8) corresponding to u with 
initial state z(to) = (z(to),$,q). Al so, x(tl) = 0. Now it is shown that u : [to,tJ + U is in a 
compact constraint subset of Ep; that is, IuI 5 a for some constant a > 0. Since (11) is uniformly 
asymptotically stable and Bi are continuous in t, it follows that 

IG;(tl,t)W1l I Cl for some Cr > 0, 

Izt(t0, $)I I C2 exp [ - 4 - to)] for some C2 > 0, 

IH( I C3 exp [ - 4h - to>] for some C3 > 0. 

Hence, 

l4t)l 5 G C2 exp [ - 4tl -to)] + C3 

and therefore 

+ J t1 ~4 ew [ - c.u(h - s)] exp (-_Ps)r(z(.), u(.)) da , to 1 
lu(t)l 5 Cl[C2 + Gl exp [ - a(tl - to)] + KM exp (-%)] , 07) 

since p - o 2 0 and s 2 to 2 0. From (17), tl can be chosen so large that lu(t)l < a, t E [to, tl] 
which proves that u is an admissible control for this choice of tl. 

It remains to prove the existence of a solution pair of the integral equations (15) and (16). Let 
B be the Banach space of all functions 

(z,u):[to-h,tl]x[tO-h,t+-+E*xEP 

where z E B((to - h, tl], En) and u E Lz([to - h, tl], EP) with the norm defined by 

Ilb, u)ll 5 ll4l2 + lbll2 where 

11412 = [ l;yh MI2 ds] l/2, 

ll4l2 = [ l;lh WI2 ds] 1’2. 
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Define the operator T : B -+ I3 by T(z, u) = (y, v) where 

u(t) = -C~(tl,t)W-‘(to,tl)q(tl,77) for t E J E [to,tl] 

and 
u(t) = rl(t) fort E [to -r,t01, t 
y(t) = z(r; to, 4) + W, 17) + J C,(t, s)Y(s) ds 

to t 0 + JJ X(t, s)A(f?)z(t + 6’) d6ds 
to -7 

(18) 

(19) 

+ J t x(t, s>f(s, d.),49) ds for t E J 
to 

and y(t) = 4(t) for t E [to - 7, to]. From equation (17) it is clear that Iv(t)1 5 a, t E J and also 
v : [to - h, to] + U, so Iv(t)1 5 a. Hence 

Next 

llvll2 5 a(tl + h - to) w = PO. 

[y(t)1 I C2 + C3 exp [ - a(t - to>] + C4 J tot Iv(s)1 ds + KM exp (-atI> 

where C4 = sup IG,(t, s)l. S ince (Y > 0, t 2 to 2 0 it follows that 

/y(t)1 I C, + C3 + C4 a(tl - to) + KM = /3, t E J, 

Iv(t>l I sup M@)l = 4 t E [to - h, to]. 

Hence, if X = msx{P, 6}, then 

llyllz I X(tl + h - to)1’2 = PI. 

Let r = max{/3s,P~}. Then letting 

Q(T) = { (z,u) E B : 11412 5 T, 11412 5 r} 

it follows that T : Q(T) + Q(T). S ince Q(T) is closed, bounded and convex, by Resz’s theorem [18] 
it is relatively compact under T. The Schauder theorem implies that T has a fixed point (IC, U) E 
Q(T). This fixed point (2,~) of T is a solution pair of the set of integral equations (18), (19). 
Hence the system (8) is Euclidean null controllable. I 
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