JOURNAL OF COMPUTER AND SYSTEM SCIENCES 50, 87-97 (1995)

On the Computational Complexity of Finite Cellular Automata

KLAUS SUTNER

Stevens Institute of Technology, Hoboken, New Jersey 07030

Received September 28, 1988; revised April 18, 1994

We study the computational complexity of several problems with the
evolution of configurations on finite cellular automata. In many cases,
the problems turn out to be complete in their respective classes. For
example, the problem of deciding whether a configuration has a prede-
cessor is shown to be NLOG-complete for one-dimensional cellular
automata. The probiem is NP-complete for all dimensions higher than
one. Similarly, the question whether a target configuration occurs in the
orbit of a source configuration may be P-complete, NP-complete or
PSPACE-complete, depending on the type of cellular automaton.
€' 1995 Academic Press, inc.

1. INTRODUCTION

The evolution of configurations on classical infinite, as
well as finite, cellular automata has been studied exten-
sively; see, for example, [24, 14, 7, 25]. In this paper we will
focus on variations of the following two problems:

Configuration reachability problem. Given a cellular
automaton, a source configuration X and a target con-
figuration Y, does Y occur in the orbit of X?

Predecessor existence problem. Given a cellular
automaton and a target configuration Y, does Y have a
predecessor?

The first problem is well known to be undecidable for
infinite one-dimensional cellular automata. The proof
hinges on the fact that one-dimensional cellular automata
are capable of simulating Turing machines: instantaneous
descriptions of a Turing machine are readily expressed as
configurations of a one-dimensional cellular automaton and
the transition rule of the cellular automaton can simulate
the transition function of the Turing machine. Since the
halting problem for Turing machines is undecidable, it is
also undecidable whether a certain target configuration
occurs in the orbit of a source configuration. More precisely,
this problem is Z9-complete if we require both configura-
tions to be O-finite, ie., to have finite support. Indeed, one
can construct a totalistic, one-way, computationally univer-
sal automaton with an alphabet of size 14 (von Neumann’s
original two-dimensional cellular automaton had 29 states;

see [1, 3]). A notorious example for a two-dimensional
cellular automaton, using a two-state alphabet and a decep-
tively simple transition rule, that nonetheless allows one to
emulate Turing machines, is Conway’s game of Life.

With regard to the existence of predecessor configu-
rations, a remarkable distinction between one- and
higher-dimensional cellular automata occurs. In the one-
dimensional case, it is decidable whether a given O-finite
configuration has a predecessor. This follows from the fact
that the class of all configurations that have a predecessor
on a one-dimensional cellular automaton can be construc-
ted as a regular language of biinfinite words; see [15, 22,
20]. On the other hand, Yaku shows in [25] that the
problem is in general undecidable for two-dimensional
cellular automata. In fact, Yaku establishes the following
two results:

THEOREM A. For any Turing machine M there is a two-
dimensional rule p,, and a finite O-finite configuration Y such
that Y has a predecessor under p , iff Turing machine M does
not halt on the empty tape.

THEOREM B. For any Turing machine M there is a two-
dimensional rule p ,, and a 0-finite configuration Y such that
Y has a 0-finite predecessor under p,, iff Turing machine M
halts on the empty tape.

The rule p,, as well as the target configuration Y can be
constructed effectively from M. Predecessor existence
restricted to O-finite configurations is clearly 9 and thus, by
theorem B, X{-complete. Since the space of all configura-
tions with the usual product topology is compact, the
general problem where the predecessor configuration is
allowed to have infinite support is /79 and, by Theorem A,
IIY-complete for infinite two-dimensional cellular automata.

The orbits of configurations have also been used to
classify cellular automata. In a recent paper by Culik and
Yu (see [11]) the authors propose a formalization of
Wolfram’s heuristic classification of cellular automata given
in [24]. The classification uses four types based on the kind
of orbits that occur in the cellular automaton. Cuilik and Yu

0022-0000/95 $6.00

Copyright) 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

88

prove that it is undecidable to which class a given cellular
automaton belongs. For example, they show that one can-
not algorithmically determine whether all configurations on
a one-dimensional cellular automaton ultimately evolve to
a fixed point. Their results are extended in [18] to show
that the Culik-Yu classes are /13-complete (Classes One
and Two) and Z%-complete (Class Three).

In this paper we will mostly be concerned with finite
cellular automata. Needless to say, any question about the
evolution of configurations trivially becomes decidable for
any finite cellular automaton of fixed size. However, we are
interested in the family of automata obtained by using a
fixed local map and finite grids of cells of varying size. For
finite cellular automata in this sense, the classification leads
essentially to the same computational problems as for the
infinite machines, see [19]. In particular, it is undecidable if
all configurations on a finite cellular automaton evolve to
a fixed point. See also [4] for a similar undecidability
phenomenon in a slightly different setting.

We will show that the complexity of the predecessor
problem depends on the dimension of the cullular
automaton. The problem lends itself naturally to a non-
deterministic solution: guess the predecessor configuration
and verify that 1t indeed leads to the desired target con-
figuration in one application of the global map. We will
show that the problem is complete in nondeterministic
logarithmic space for finite one-dimensional cellular
automata and NP-complete for all dimensions higher than
one. Note that the related problem of testing whether the
global map of a cellular automaton is surjective is decidable
for infinite one-dimensional automata but undecidable for
all higher dimensions; see [2, 20, 13].

The reachability problem as stated above is easily to seen
to be PSPACE-complete even in dimension one. It is con-
siderably more difficult to describe the complexity of certain
variations of reachability problem. For example, one may
require the rule to be predictable in the sense that one can
compute p'(X) in polynomial time. Since the time ¢ con-
tributes only log ¢ to the size of the instance, this rules out
any brute force enumeration approach. As we will see,
the existence of a cellular automaton that fails to be pre-
dictable is equivalent to P # PSPACE. Predictable cellular
automata lead to reachability problems in NP and we will
show that for one-dimensional predictable rules reachability
of partially specified configurations is already NP-complete.
If we consider only a part of the orbit of polynomial length
the problem turns out to be P-complete.

Background material on complexity issues can be found
in [5, 16]. The necessary definitions for cellular automata
are presented briefly in the next section. Finite cellular
automata are also discussed in [14, 17]. Section 3 is
devoted to the study of one-dimensional cellular automata.
In Section 4 we briefly comment on higher-dimensional
automata.

KLAUS SUTNER

2. DEFINITIONS

For our purposes, a cellular automaton, or CA for short,
can be represented as a quintuple A ={d, k. w, p>. Here d
denotes the dimension of the automaton, t.e., the dimension
of the underlying grid of cells. Every cell can assume a finite
number of states; the collection X of possible states is called
the alphabet of the automaton. As is customary, we use
alphabets of the form Z=2,={0.1,.,k—1}, which
accounts for the second component of a cellular automaton.
In order to exclude degenerate cases, we will always assume
that k > 2. The positive integer w is the width of A and
p: 2N — X is the local map or local rule of the automaton.
For the sake of simplicity we assume that N, the basic
neighborhiood of the rule, is of the form N:=[—r, r]¥< 2¢
and w=2r+ 1, where r > 1 1s the radius of the rule.

A map X: C— X from the set C of all cells to the alphabet
1s a configuration of the cellular automaton and ¥ denotes
the space of all configurations. We will distinguish between
two types of cellular automata:

« infinite CAs, where C = Z.¢

« and infinite CAs, where the grid of cells is of the form
C=[n]x[ny]x - x[nyg]

Here [m] denotes the set {1, 2, ..., m}. In the finite case, we
will referton:=n, - n,as the size of the CA. Similarly,
we will refer to configurations as being finite or infinite.
Note that in the literature infinite configurations with finite
support are occasionally referred to as “finite.” To avoid any
possible confusion, we refer to these configurations as
O-finite: there are only finitely many cells ¢ such that
X(c)#0.

We need to extend the local map p to a global map (also
denoted by p) p: ¢ — %. To this end, given a configuration
X and a cell ce C, define the local configuration at c,
X N->Z by X (2):=X(c+:) We can then define the
global map by p(X)(¢) ;= p(X,).

Note that there is a minor technical difficulty with finite
cellular automata: the local rule cannot be applied to cells
close to the boundary of the automaton. One possible solu-
tion to this problem is to use cyclic boundary conditions and
glue together opposite in the grid. A two-dimensional
automaton is thus defined on a torus rather than a plain
grid. Another standard solution to this problem is to adopt
fixed boundary conditions and assume that the missing cells
are in a special, fixed state. Unless noted otherwise, this
state will always be 0e 2. Less informally, modify the
definition of a local configuration at cell ¢ as follows:

X.(z) = Xlc+z), f c+zeC
<70, otherwise.

In this paper, we have chosen to use fixed boundary condi-

COMPLEXITY OF FINITE CELLULAR AUTOMATA 89

tions throughout. It is quite straightforward, albeit tedious,
to modify the arguments given here so that they apply to the
cyclic boundary situation. Finite cellular automata with
cyclic boundary conditions are closely related to infinite
automata restricted to periodic configurations. On the other
hand, fixed boundary conditions do not simply correspond
to O-finite configurations on infinite machines since there
the size of the configuration can grow indefinitely.

A pattern is a partial configuration, i1e, a map
X,y: Cy— 2, where Cy, <= C. We say that a configuration X
matches pattern X, if X(c) = X,(c¢) for all c e C, in symbols
Xo=X. The orbit of a configuration X is the set
{p"(X)|t=0}. We will study the following decision
problems:

Problem. Predecessor existence problem (PEP).

Instance: A cellular automaton A and a target configura-
tion Y.

Question: s there a predecessor configuration X such that
pX)=Y?

Problem. Pattern reachability problem (PREP).
Instance: A cellular automaton A, a source configuration
X, and a target pattern Y.

Question: Is there some configuration in the orbit of X
that matches Y?

Since we are dealing with low complexity classes like
NLOG and P, let us briefly comment on issues concerning
the coding of instances. A cellular automaton A=
{d, k, w, p> can be coded as follows. The integers d, k, and
w are given in binary. The local map is represented by a
word r,r,---r, over X, of length p =k so that p(X)=r,
Here (X,), is the canonical enumeration of all local con-
figurations [—r,r]?— Z,. Since the symbols of X, are
coded as binary words of length [log k7, we can code the
whole automaton in @(k*"log k) bits. Similarly, a finite
configuration X can be expressed as a word of length n=
n,- --- -n, together with a list of the grid sizes n,, ..., n,.
Thus, X can be coded in &(n log k + log n) bits.

Both problems are stated in their uniform version, where
both the cellular automaton and the configurations are part
of the input. We can also consider a parametrized version
where the cellular automaton is fixed and only the con-
figurations vary. In this case, the size of the input is @(n),
where n is the number of cells in the automaton. All the
upper bounds that we are going to establish hold for the
uniform version, the lower bounds—in the form of hardness
results—are usually for the parametrized version.

The reachability problem admits a number of modifica-
tions. First, one can restrict the target patterns to be con-
figurations, i.e., total maps from C to X In this case we have
to determine whether a certain target configuration occurs
in the orbit of a source configuration.

Second, we can impose a bound on the time ¢, say, some
polynomial function of the number of cells of the
automaton; see Section 3 below. Variations of these
problems were also considered in [7, 8, 257.

Cellular automata are a model of parallel computation; in
order to generate the next configuration, the local rule is
applied to all the cells simultaneously. However, the com-
putational cost of simulating a finite cellular automaton on
a Turing machine is small; one has to memorize one local
configuration and a position in the grid C. This requires
only a logarithmic amount of space, as we note in the next
proposition.

PROPOSITION 2.1. Given a finite cellular automaton A
and a configuration X one can compute the successor con-
Siguration p(X) in deterministic logarithmic space.

Proof. Suppose that the input is given as d, r, k, p, X on
the input tape of a Turing machine as described above. To
compute p(X), one has to successively determine the local
configurations X, ¢ in C=[{n,]x[n,]x --- x[n,], and
then find p(X,) by a table look-up. A local configuration
has size O(w“ log k) and the arithmetic needed to keep track
of positions in C, ry, .., r, and X can be handled with
O(log n), O(r‘logk), and O(dlogn +log k) bits, respec-
tively. Hence the natural algorithm to compute p(X) is in
deterministic logarithmic space. Note that this is the
analysis for the uniform problem. If p is fixed, the algorithm
1s in deterministic space O(log n). |

The trick employed in [12] to demonstrate that log-
space reductions are transitive can also be used to show that
p'(X) can be computed in deterministic logarithmic space
for any fixed t.

PROPOSITION 2.2. The predecessor existence problem is
in nondeterministic polynomial time for all finite cellular
automata.

Proof. To see this, note that one can nondeterministi-
cally guess the predecessor configuration X of Y in
O(n log k) steps, where n is the size of the automaton and
k’s the size of the alphabet, and then verify that p(X') indeed
equals the target configuration X. The verification proce-
dure is in deterministic logarithmic space as we have just
seen; hence the whole procedure is in nondeterministic
polynomial time. |}

PROPOSITION 2.3. The pattern reachability problem in in
deterministic linear space for all finite cellular automata.

Proof. The obvious algorithm to test whether a con-
figuration Y occurs in the orbit of X is to successively
generate all configurations p°(X), p'(X),.. Let n be the
number of cells in the cellular automaton. If the target

90 KLAUS SUTNER

configuration occurs during the first k" steps we return
“yes,” and “no” otherwise. Clearly, this can be done in deter-
ministic linear space. |}

Local rules for which configurations in the orbit of a
given source configuration can be computed in polynomial
time will be called predictable. More precisely, a local map
p is predictable iff p'(X) can be computed in time polyno-
mial in the size of X and ¢. Examples for predictable rules are
additive rules. Suppose (X, @, ®.,0, 1> is a semiring and
the local map p has the property that p(X@®Y)=
pPX)®p(Y), where the operation on configurations is
defined pointwise. Then p’(X) can be computed essentially
by generating the rth power of an n by »n matrix over X,
where n is the size of X. The latter problem can trivially be
solved in O(n’log 1) steps. Predictable rules formalize the
notion of computationally reducible rules in [24, 23].

PROPOSITION 2.4. The pattern reachability problem is
in nondeterministic polynomial time all-predictable finite
cellular automata.

Proof. Suppose there is a time ¢ such that Y p'(X)
Then the least such ¢ is less than k", where k is the number
of symbols in the alphabet and » is the number of cells.
Hence one can guess 1 and verify that the guess was correct
in polynomial time. |

Thus, the complexity of PREP for predictable rules is a
priori lower than for arbitrary rules. Of course, it might
be the case that indeed NP = PSPACE and that the dis-
tinction becomes immaterial. Likewise, it is possible that
P = PSPACE and that PREP is indeed solvable in polyno-
mial time for each finite cellular automaton. We will show
in Section 4 that for some predictable two-dimensional rule,
the parametrized version of PREP is already NP-complete.

3. ONE-DIMENSIONAL CELLULAR AUTOMATA

Configuration of a one-dimensional cellular automaton
{finite or infinite) can be construed as a word over the
alphabet Z. Therefore, one may use language-theoretic
methods to answer questions about the evolution of con-
figurations. Concepts from automata theory are also useful
to show decidability of the reversibility problem and the
surjectivity problem; see [10, 2]. Reference [9] contains an
analysis of the languages of biinfinite words obtained from
infinite one-dimensional cellular automata. There is no
obvious way to generalize the language-theoretic approach
to dimensions higher than one. Indeed, as we will see, finite
one-dimension cellular automata significantly from all
higher dimensions with respect to PEP.

So assume p is a one-dimensional local map over some
alphabet Z. Let £, < 2 * be the collection or all finite words

that occur as subwords of any configuration p(X), con-
structed as a word. It is not hard to see that %, is a regular
language. As was pointed out in [15, 22], a semiautomaton
that accepts %, can be described in terms of directed,
Z-labeled de Bruijn graphs. To be more explicit, define the
de Bruin graph B(s, 2') as follows: B(s, 2') has vertex set X**
and edges (ax, xb) for all a, be X, xe Z*~'. Now suppose
that p is a rule of radius r > 1. Set s :=2r and label edge
(ax, xb) by p(axb)e Z. It is easy to see that the resulting
semiautomaton B, accepts Z(p) if we think of p either
as an infinite cellular automaton or as a finite cellular
automaton with cyclic boundary conditions. In [20] these
de Bruijn automata are used to construct quadratic time
algorithms that test whether an infinite one-dimensional
cellular automaton is injective, open, surjective, or neither.
For a study of the size of the corresponding minimal
automata see [21].

To obtain the language associated with periodic bound-
ary conditions we have to declare all vertices of the form 0'x
to be initial and all vertices of the form x0" to be final, x e X"
(recall our convention that state 0 is the default value for
“missing” cells). In either case, the resulting finite state
machine B, accepts Ye 2 * iff Y€ %, iff Y as a configuration
has a predecessor under rule p.

We note in passing that the de Bruijn graph can also be
used to determine whether a given O-finite configuration
“0Y0 € ¥ has a 0-finite predecessor “0X0” e % In fact, one
only has to change the initial and final states in B, as
follows: x is initial iff there is an coinfinite path ending at x
labeled only by 0. Similarly x is final iff there is an infinite
path starting at x labeled only by 0. These points are readily
identified by computing the strongly connected components
of the subgraph of B(s, 2') whose edges are labeled 0. Hence,
given p and Y, one can test in polynomial time whether
“0¥0% has a O-finite predecessor.

Returning to finite cellular automata, we have the
following proposition.

PrOPOSITION 3.1. For any fixed rule p in dimension one,
the existence of a prececessor configuration can be deter-
mined in deterministic linear time and constant space.

As we will see shortly, the uniform version of PEP is
much harder. Note that the size of B, is exponential in k and
w. However, one single state in B, has size only Q(w log k).
This is used in the following lemma.

LEMMA 3.1. The predecessor existence problem for finite
one-dimensional cellular automata is in nondeterministic
logarithmic space.

Proof. First note that the size of an instance A=
{d,k,w,p> and Y 1s @((k" + n)logk), where n is the
length of Y, ie., the number of cells of the automaton.

COMPLEXITY OF FINITE CELLULAR AUTOMATA 91

To test whether the de Bruijn automaton B, from above
accepts X, one nondeterministically guesses a path in B,
from an initial to a final state and verifies that the edge
lables correspond to X. This can be done by keeping
pointers to positions on the input tape and two registers
that contain the current and the next node in B,. The space
requirement for all these objects together is O(w log k +
log n) and thus logarithmic in the size of the input. |

For our hardness results below we will have construct
certain local maps. For the sake of legibility, we will use
suitable alphabets rather than 2. Also, it is usually incon-
venient to specify the local rule as the explicit list described
in Section 2. Suppose that we have fixed an alphabet 2 and
wish to specify a d-dimensional rule of radius r. Rather
than listing the values of p on all local configurations
We X"’ we will usually describe a subcollection of
local configurations, called admissible local configurations.
For all admissible configurations, p is defined explicitly. On
inadmissible configurations, p has some fixed default value.
Admissible local configurations can frequently be described
as the set of all subconfigurations of a given configuration.

TuroreM 3.1. The uniform predecessor existence
problem for finite one-dimensional cellular automata is
NLOG-complete with respect to log-space reductions.

Proof. Membership in NLOG was shown in the last
lemma. To see hardness, we will embed the graph
accessibility problem (GAP). An instance of GAP is a
directed finite graph G=<(V, E) and two vertices a (the
source) and b (the target). The problem is to determine
whether there exists a path in G from a to 5. We may safely
assume that V=[m], a =1, and b = m. We will define a rule
p over the alphabet X =[m]u {0, #} that allows one to
translate GAP into a predecessor existence problem. The
width of the rule is 3. Define the target configuration X by

2m+ 1

#0#0# - #0# €)
The admissible local configurations for rule p are

#u#, u#v, 0#1, m#0,

where 1 <u, v <m. Thus an admissible local configuration
contains symbols in [m] alternating with #’s. All
inadmissible local configurations are mapped to 0. On
admissible local configurations p is defined by

#, if u=vor(u v)isanedgeinG,
0, otherwise,

p(u#v):={

571/50/1- 7

and

p(#u#) . =u.

For the remaining inadmissible local configurations W let
p(W) :=0. It is not hard to see that any predecessor Y of X
must be of the form

#LH# v, # - #v, _Fm#,

where 1 <v,<m. Also, for i=1, .., m—1, we must have
v;=v;,0r (v, v;,,) is an edge in G. Hence Y codes a path
fromltominG.

The symbols in X can be specified by [log(m + 1)7 bits.
Hence, rule p, as well as target pattern X, can be constructed
from G in logarithmic space. This shows that GAP <,
PEP; hence PEP is NLOG-complete with respect to log-
space reductions. |

One should note that the last construction can easily be
modified to produce a one-way rule p. Thus PEP is no
easier for one-way rules on finite one-dimensional cellular
automata than for ordinary rules. By coding vertices in
binary, the construction can also be modified to yield rules
over the fixed alphabet {0, 1, #} but with radius [log m.
These results should be compared to Section 4, where it will
be shown that the parametrized version of PEP is NP-
complete for a fixed two-dimensional rule.

We now turn to problems concerning the orbit of a given
source configuration. As we have seen in Section 2, testing
for the occurrence of a certain configuration in the orbit can
be done in linear space. On the other hand, one-dimensional
cellular automata can simulate Turing machines. In par-
ticular, a linear bounded automaton—i.e., Turing machine
whose worktape has the same size as the input—can be
simulated by a finite one-dimensional cellular automaton
using a rule of width 3. The acceptance problem for
arbitrary linear bounded automata (LBA) is PSPACE-
complete; moreover, the problem remains PSPACE-com-
plete for a certain fixed linear bounded automaton. Hence
we have the following proposition.

PROPOSITION 3.2. There is a one-dimensional rule p such
that the pattern reachability problem is PSPACE-complete
Jor finite cellular automata using p, even when the target
pattern is required to be total.

It is quite straightforward to code the computation of an
LBA by a cellular automaton in such a way that acceptance
translates into the occurrence of a fixed point configuration
T". Then the LBA accepts some input x iff ¢¥"(Xx)=T",
where X is the the configuration coding x, & is the size of the
alphabet, and n is the size of X. Thus, if P £ PSPACE, the

92 KLAUS SUTNER

rule 7 will not be predictable. Conversely, since p'(X) is
always computable in linear space, the existence of a non-
predictable rule would imply that P =PSPACE. Thus, all
rules are predictable iff P = PSPACE.

As we have seen in Proposition 2.4, PREP drops down to
NP for predictable rules. In any finite cellular automaton
the orbit of a configuration must necessarily consist of a
transient part followed by a periodic part:

VO<Si<j<t+plp(X)#p (X)),
pm+,”(X):plo(X)'

The proof of the next theorem hinges on the fact that for the
local map constructed there, the transient part of the orbit
of any configuration has length 7, = O(n) and the configura-
tions in the periodic part can be easily determined, essen-
tially by modular arithmetic. As a consequence, the rule is
predictable.

THEOREM 3.2. There is a predictable one-dimensional
rule p such that the pattern reachability problem is NP-com-
plete for finite cellular automata using p. Moreover, the
reachability problem for p is solvable in polynomial time if the
target pattern is total.

Proof. We present the construction of the cellular
automaton in two stages. In the first stage, we build a one-
dimensional rule that nearly has the required properties: the
rule is predictable and it is NP-hard to determine whether
one of a simple collection of target patterns is matched by a
configuration in the orbit of the source configuration. In
stage two we then show how to modify the construction to
obtain a single target pattern.

Stage One. We begin with the construction of a local
map p that allows one to define configurations that act as a
collection of mod-counters, i.e., counters that are incre-
mented by 1 at each step and are reset to 0 whenever a
threshold value is reached. Rule p uses alphabet X =
{#.0, L, R} and has width 5. On configurations of the
form #0'L0’#, the rule causes cyclic behavior with period
2(i+j+ 1): L behaves like a particle that moves to the left,
rebounds at the first #, and changes into a new particle R.

TABLE I

ab#cd #
OROab R
ab0L0 L
00R#a L
a# L00 R

TABLE II

pX)
R0O000 # ORO0
OR000 # 00RO
#00R00 # 000 R #
#000R0 # 000L #
#0000R # 00L0 #
00001 # 0L00
#000L0 # LO0O #
#00L00 # RO0O #
#0L000 # OR00 #
L0000 # 00RO
RO00O # 000 R

SN 00 N R L — O

—

R then moves to the right, rebounds at the other #, turns
back into an L, and so forth. A local configuration Ze X°
is admissible for this construction iff Z contains at most one
separator symbol #, and, on either side of the #, at most
one L and R. p maps all inadmissible configurations to #.
So suppose that Z is admissible. Then p(Z) is defined by
Table 1, where a, b,c,de2. The configuration X=
RO* # RO*# simulates a pair of counters, the first conting
modulo 10, initialized to 0, and the second counting modulo
8 and initialized 1. The first 10 steps in the evolution of X are
shown in Table II. The full orbit of X has length
lem(10, 8) =40.

Let W(i, j,0):= #0'R0’and W(i,j, 1):= #0'L0/. Then
the configuration

W(ilsjlv dl) W(’i2~j2a d?_) W(imsjmsdm) # (*)

consists entirely of admissible configurations and has period
2-Iem(i, +j,+1|ve{m]).

The NP-hardness of PREP can now be established by
embedding the combinatorial problem of simultaneous
incongruences, see [5]. An instance of simultaneous
incongruences is a list of natural numbers a,, b4, ..., a,,, b,,,
where 0 < a, < b, and one has to determine whether there
exists a natural number x > 0 such that x #a, mod b, for all
v=1, .., m. Equivalently, we may consider a variation of the
problem where one has to determine the existence of a
number x such that x+a,#mod b, for ie., it remains
NP-complete even if all numbers are specified in unary.
Furthermore, it is safe to assume that all the 4, are even and
that b, = 8.

To represent an instance of simultaneous incongruences,
we use a source configuration X as defined in (*), where
i,+j,+1=5b,2 and i,=a,, d,=0, in case 0<a,<b,/2,
and i,=b,—a,—1, d,=1, in case b,/2<a,<b,. Now
consdider the set of cells immediately following a separator
symbol #: Cp:={2+3,..(b,2+1)|v=1,.,m}
Define a family of target patterns Y by Y(c)=0 or

COMPLEXITY OF FINITE CELLULAR AUTOMATA 93

Y(c)=L, for all cin C,. It is easy to see that configuration
p'(X) matches one of these patterns Y iff 7 # a, mod b, for
allv=1, .., m.

To see that rule p is indeed predictable, first note that any
cell in state # will remain in this state forever. Thus it
suffices to consider patterns of the form #Z#, where
Ze {0, L, R} *. First assume that Z has length at least 4. If
Z contains neither L nor R then # Z# is a fixed point. If Z
contains either exactly one L or one R then p'(# Z#) can
easily be computed in polynomial time. If, on the other
hand, Z has length less than 4 or contains several L’s and/or
R’s, then after O(|Z|) steps at least one other cell in Z per-
manently enters state #. The pattern #Z# is thus parti-
tioned into at least two blocks, p(# Z#)= #Z, #Z, #,
and the same argument can be used again. It follows that
after O(n) steps any configuration X has either evolved to a
fixed point under p or has the form indicated in (), possibly
interspersed with blocks of the form #00---0#. From then
on, the evolution of Z will be periodic and it is easy to
compute p'(Z) for all ¢ sufficiently large.

Lastly, suppose we have a total target pattern, ie., a
configuration Y. We can test explicitly whether Y occurs
during the first O(n) steps in the evolution of X. After that,
the orbit is cyclic and testing whether it contains Y comes
down to an application of the Chinese remainder theorem.
This concludes the argument.

Stage Two. To reduce the collection of target patterns
to a single pattern we augment the local map p in the
following way. Each cell is divided into two parts so that a
configuration of length » can be thought of as a 2 by n
matrix. Each row in this matrix will be referred to as a track.
The top track uses the same alphabet X as in Stage One and
the evolution of the top track is the same as in the last con-
struction. However, instead of moving all the particles in
parallel at each step of the cellular automaton, a particle
now only moves when a special “signal” in the bottom track
passes by. The bottom track uses alphabet 2’ :={ #, 0, R,
R, R", L, L'}, where # is a separator, 0 stands for a blank,
and the other symbols are signals that move along the
bottom track. The full alphabet is 2 x 2’. We will call the
new local map 7.

The new source configuration X’ is obtained from the
initial configuration X from above as follows. Retain X as
the top track of X' and place # R0"~3# into the bottom
track. Thus, signal R is originally postioned in cell number
2. Then R moves to the right, and every time it reaches a
particle in the top track, this particle will move ahead by
one step, as described above. When R reaches the right #,
it turns into a signal L and returns back to cell 2. The top
track remains unchanged during this second sweep. In the
third sweep, a test signal R’ is sent down the track. If it
encounters only patterns #0 or #L in the top track, it
arrives at the right boundary marker #, where it is

reflected, turning into L'. L’ then travels to the left and when
it reaches the left boundary marker, it turns into signal R
and the cycle continues. If the test signal R’ encounters a
pattern # R on the top track, it turns into signal R” and
continuous to move to the right. When it reaches the right
boundary, it behaves exactly as signal R’ would. Hence, one
step with respect to rule p now is simulated by 4n steps of
the new rule 7.

Now define C, to be cell number n — 1, i.e., the cell before
the right boundary marker. Consider the pattern
Y(n—1)=R’. Y matches a configuration in the ¢ orbit of X
if and only if at some point one of the test signals R’ reached
the right boundary. It is easy to check that this can only
happen if X codes a yes-instance of simulations incongruen-
ces. Furthermore, rule t is still predictable if we adopt
certain conventions about how the signals travel in the
bottom track. For example, the markers # will again be
immovable. Colliding signals will annihilate each other and
turn into #’s. We omit the details. |

Note that it is also possible to modify the rule p from the
last proof to provide a hardness result for a single target
pattern (represent a particle L that approaches a # by
modifying the cell containing # and leave the next cell in
state 0). However, the slightly more complicated construc-
tion with rule 7 shows that PREP is NP-hard even if the
target pattern is defined only on one cell.

Another way to reduce the complexity of PREP is to
introduce a time bound, in particular a polynomial time
bound. e, given p, X, Y, one has to determine whether
1< p(n) (Y p' (X)), where n is the number of cells in the
automaton and p(n) is some polynomial. Clearly, this poly-
nomially bounded version of PREP is solvable in polyno-
mial time by brute force. We will show in the next theorem
that it is in fact P-complete with respect to log-space reduc-
tions. The proof hinges on the fact that boolean circuits can
be represented by configurations on a one-dimensional
cellular automaton. If, in particular, the circuits are in some
normal form, then the transformation from circuit to
configuration can be accomplished in logarithmic space.
A similar approach will be used again in Theorem 4.1.

THEOREM 3.3. There is a one-dimensional rule p such
that the polynomially bounded pattern reachability problem is
P-complete (with respect to log-space reductions) for finite
cellular automata using p.

Proof. We will express the evaluation of a boolean
circuit as a configuration reachability problem. More
precisely, we use boolean circuits consisting only of AND
and OR gates and without feedback. Given such a circuit
and values for the input variables the problem to determine
whether a certain output variable assumes the value true is
referred to as the circuit value problem (CVP). CVP is well
known to be P-complete; see [6, 16]. An instance of CVP

94 KLAUS SUTNER

may be represented conveniently by a sequence of boolean
assignments of the form

X,:=0
X, =1 (1)
X, =X, C;Xp., i=2,..m,

where the operator <; is either AND or OR. Also,
1 < L,< R,<iand every variable X, occurs exactly once on
the left-hand side of an assignment. We have to determine
the value of X,,. Note that the size of an instance is
O(mlog m).

For the sake of this construction it is convenient to think
each cell as being subdivided into six cells, so that a con-
figuration of length n resembles a rectangular matrix of size
6 by n. Again, we will refer to the rows of this matrix as
tracks. The top track holds an instance of CVP, properly
coded as a word over 2, ={0,1, v, A, b, #}. Tracks
three and five are communication channels used to send
boolean values. Tracks two, four, and six play an auxiliary
role. The alphabet used in track iis 2, where 2, = {5, 0, 1},
2 =2y={bT F},and 2 ,=2,={b, r,a, w}. The alphabet
for the whole automaton s 2=5,xZ,x .- xX,u
{T, L}. Symbol b will be referred to as blank.

Let £ :=[log m| and define x to be the r-digit binary
expansion of x, 0<x<?2" For any word W let rev(W)
denote its reversal. Instance (I) is coded by a configuration
Z(1) of length n=3(m— 1)(k + 1). The first track of Z(I)
has the form

bbb bL,#

QZZ#_L_%#& O?é# #&Om

Im

2

The other tracks contain only blanks except for some cells
on the left in tracks 3 and 5 and some markers w placed in
tracks 4 and 6 in cells containing a #; see below.

We now give an informal description of the rule p. Rule
p has width 3. In track 1, all symbols are left unchanged by
p. In tracks 3 and 5 all nonblank symbols are moved one cell
to the right at each step and traverse that part of the
configuration that lies to the right of the point of origin of
the signal. Specifically, signal rev(i)e {0, 1}* in track 3
indicates that variable X, evaluates to true. Similarly, if the
signal occurs in track 5 variable X, evaluates to false. The
symbolds in the auxiliary tracks 2, 4, and 6 should be
thought of as markers that can be placed in a cell and then
moved (or removed) according to certain local conditions.
There are three procedures that are implemented by p:
evaluation, sending, and receiving.

Evaluation. Consider the block #L,# R, O;i# that
represents equation X, = X, <, X, . Suppose that the value
of variable X, has already been obtained and stored in

track 2 in the cell to the left of <, that (by means of a marker
T or Fplaced there; T stands for true and F for false). When
the value for variable X is received in track 3 or 5, X, can
be determined. Correspondingly, a marker 7 or F will be
placed in track 2 under <,. This marker then causes a signal
of the form rev(i)e {0, 1}* to be transmitted in track 3 (if
the marker is T) or in track 5 (if the marker is F).

Sending. Suppose the value of a variable X, has just
been obtained as described above. Suppose for the sake of
simplicity that X; is true and therefore the cell containing <,
holds a marker T in track 2. All the following comments
apply similarly to a marker F. This marker then moves to
the right and causes symbol o€ {0, 1} from track 1 to be
copied into track 3. Marker T never moves into a cell that
already contains a non-blank symbol in track 3 and stops at
the first # in track 1.

The following figure shows how a signal 110 is generated.
Only the first three tracks are shown and the blanks are
omitted. The logical operator here is A .

NORRE Alof1]#] T]
T T [
1]/0
t=0 t=4
AlO|1]1]# Alof1|1]#
T T
0 1|1{0
t=1 t=5
AlO 1# AjOf1]1[#
T T
0 1{1]0
t=2 t=6
Alolt|1]#
T
ifo
t=3

Receiving. Suppose a signal We{0,1}* is moving
down, say, track 3. The block representing equation number
i has to test whether W matches up with the binary expan-
sions of L, or R, as stored in track 1. To this end a marker
w (for wait) is positioned in track 4 under the # preceding
the binary number. If and when the signal arrives the
marker starts moving to the right. Whenever a match occurs
between tracks 1 and 3 the marker moves one cell to the
right and changes to a. In the next step, a returns to w
{without movement). This is necessary to synchronize the
marker with the advancing signal. If a mismatch occurs w
turns into the reset marker r. The reset marker then moves
to the left and stops when it reaches the first #. There it
turns into w and remains stationary until the next signal
arrives.

The following figure shows how signal 110 in track 3

COMPLEXITY OF FINITE CELLULAR AUTOMATA 95

(corresponding to the instruction: set variable number 6
true) is received in a group cell representing the left variable
in an equation. Only tracks 1, 3, and 4 are shown and the
blanks are omitted.

#l1[{1]o[# #l1[1]o]#
ol1]1 0l1{1
w w
#i1]1]0]|# #l1{1]0]#
ol1[1 o111
a a
#(1{1]0l# #l1[1|0]#
011 011
w T
#(1{1]0]|# #l11|o|#
0f1]1 01
a T

At time 6, a marker T is placed in track 2 under the
second #. The marker then moves to the right and stops in
the last cell before the next operator symbol <, in track 1.
When the value for the second variable is received this
allows us to evaluate the /th equation as described above.

All local configurations other than the ones described
will be mapped to (b, .., b) by p. To initialize the process
of receiving—evaluation-sending, a signal 0% and 10%~!
(corresponding to the reverse binary expansions of 0 and 1)
1s sent in tracks 3 and 5, respectively. These signals start in
the leftmost cells containing only blanks in track 1.

In O(m log m) steps the evolution of configuration Z(7)
under rule p will simulate the execution of the assignments
in I: starting at i =2 the value of X is computed and com-
municated via tracks 3 and 5 to all equations with numbers
larger than i, allowing these equations to be evaluated, to
send out their results in turn, and so forth. Evaluation takes
constant time once both input values have been obtained.
Sending and receiving in any block takes O(log m) steps,
where the constants are independent of the instance. Thus
after O(m log m) a pattern occurs in which the last variable
has evaluated to true iff variable X, in instance (I) evaluates
to true. It is not hard to see that, due to the uniformity of the
given construction, the configuration Z(I) can be computed
from the equations in (I) in logarithmic space. Hence
linearly bounded RPEP is P-complete (with respect to log-
space reductions) for the rule p is just described. ||

571/50/1-8

It is straightforward to modify the construction to apply
total target patterns. For example, in the last block that
represents equation number m, the cell will switch to a
special state ¢ if the last variable evaluates to true. The
special state the propagates in linear time throught the
whole configuration.

4. HIGHER-DIMENSIONAL CELLULAR AUTOMATA

As we have shown in the last section it is NLOG-com-
plete to determine the existence of predecessor configura-
tions on finite one-dimensional cellular automata. The
problem becomes signigicantly more difficult (assuming
that NLOG # NP) for two-dimensional cellular automata:
PEP is NP-complete in this case. Our results trivially extend
to all higher dimensions.

THEOREM 4.1. There is a two-dimensional rule p such
that the predecessor existence problem is NP-complete for
finite cellular automata using p.

Proof. Membership in NP was discussed in Section 2.
We will show NP-hardness by embedding a variation of
3-Satisfiability called monotone 3-SAT; see [5]. An instance
of monotone 3-SAT is a boolean formula @ in 3-conjunctive
normal form, where each clause contains either only
negated variables or only unnegated variables. Let
{x, .., x,} be the boolean variables used in ®. Thus ® =
¢y A A, whered,=x, , vx,,vx forl<v<m,
and ¢,=x, , vX,,vx formy<v<m.

The key idea is to construct a rule p that tests satisfiability
in one step: @ can be translated into a configuration Y,
such that Y, has a predecessor X, iff @ is satisfiable.
The predecessor configuration X, will code a satisfying
truth-assignment and a proof that the assignment really
satisfies @.

Our alphabet is 2= {0, 1, #,$, 8, T, F} and the size of
configuration Y is 2n+ 1 by 6m. It is easier to describe first
a typical configuration X,. Rows 1, 3, .., 2n— 1 in X con-
tain either only 0’s or only 1’s plus possibly a number of £s.
These rows correspond to the boolean variables in & and
will be referred to as truth-setting rows. The truth-setting
rows are separated by rows containing #’s everywhere,
except at certain columns called signal columns. Signal
columns are used to transmit the value of a truth-setting
row to the bottom row of X,. The cell where a signal
column connects to a truth-setting row contains the special
symbol £ and is called the base point of the signal column.
These are m groups of three immediately adjacent signal
columns. The vth group specifies the values of the variables
in clause ¢, . Lastly, the bottom row contains m, T’s in posi-
tions 3, 9, .., 34+6(my—1) and m—m, F’s in positions
3+ 6my, ..., 3+ 6(m—1). All other cells in the last row con-
tain a #. A typical segment of configuration X, is shown in
the figure below. The segment contains three signal columns

96 KLAUS SUTNER

and two base points. Cells containing # are left blank for
the sake of clarity.

We now describe the local map p used in the automaton.
Rule p has width 5 and a local configuration is admissible if
it can occur as a subconfiguration of any of the configura-
tions X, just described. It is straightforward—although
quite tedious—to give an explicit description of admissible
local configurations. The default symbol for missing cells is
#; all inadmissible configurations are mapped to $. Every
admissible local configuration W:[—2,21°— X with
W(0,0)=0c¢e {fB, #}is mapped to o. Thus, the truth-values
chosen in X, are destroyed by p by the layout of X,
including base points and separators, remains visible. The
actual truth-testing occurs on configurations K with
W(0,0)e{T, F} that are centered at positions (2n+ 1,
3+ 6i} in the last row of X . For W(0, 0) = T we set

T, if W(-1,j)=1forsomeje{—1,0,1},
$, otherwise.

p(W):={

Similarly for W(0, 0) = F, let

T, if W(—1,j)=0forsomeje{—1,0,1},
p(W):={ -~ Jet }
$. otherwise.

Hence a local configuration of the form

]

O R W
% % % © —
* % N O —
* O® %~
* % R h

is mapped to T by rule p.

Now define Y, exactly like X, except that all I's are
replaced by 0’s. Suppose that X is any predecessor con-
figuration of X . Since Y, contains no $’s, configuration X
cannot contain inadmissible local configurations. In fact, it
is not difficult to see that the only differences between X and
X, can occur in cells ¢ such that X,(c)=0: in that case
X(c)=1{0, 1}. Define a truth assignment x: {x,, ... x,,} —

TABLE III

Type of cellular automaton Complexity of PEP

finite, 1-dim NLOG-complete
finite, 2-dim NP-complete
infinite, 1-dim P

r.e-complete
co-r.e.-complete

infinite, 2-dim, finite predecessor
infinite, 2-dim, infinite predecessor

{0, 1} by a(x,) =true iff row 2i — 1 contains only 1’s (and
some f’s). It is easy to see that x satisfies @. Conversely, any
satisfying truth assignment for ¢ can be translated into a
predecessor configuration for Y,. Hence monotone 3-SAT
is polynomial time reducible to PEP for this rule p and PEP
is NP-complete for dimension 2. We note in passing that the
reduction just given is in fact in log-space rather than just
polynomial time. |

Observe that the last hardness result holds for one fixed
rule p—unlike Theorem 3.1 which establishes hardness only
for the uniform problem.

5. CONCLUSION

We have shown that wvarious decision problems
associated with the evolution of configurations on finite
cellular automata are complete in their natural complexity
classes. In particular, determining the existence of a prede-
cessor configuration is complete in the nondeterministic
classes NLOG and NP, depending on the dimension of the
automaton. Together with the results in [25], the com-
plexity of the predecessor existence problem is summarized
in the Table III. Note that no lower bound is known for
0-finite configurations on infinite, one-dimensional cellular
automata. Of course, the problem remains undecidable for
all dimensions higher than one.

The pattern reachability problem is, in general, PSPACE-
complete for one-dimensional cellular automata. For pre-
dictable rules, PREP i1s NP-complete for target patterns. We
do not know whether there are predictable rules for which
PREP remains NP-complete when the target pattern is
required to be a configuration. Nonpredictable rules exist iff
P is different from PSPACE. Thus, any attempt at a
classification of finite cellular automata along the lines of
Wolfram and Culik and Yu will not only lead to
undecidable classes but will also produce a hierarchy that
may collapse; see { 11, 22, 19].

REFERENCES

1. J. Albert and K. Culik II, A simple universal cellular automaton and
its one-way and totalistic version, Complex Systems 1, No. 1 (1987),
1-16.

COMPLEXITY OF FINITE CELLULAR AUTOMATA

. S. Amoroso and Y. N. Patt, Decision procedures for surjectivity and
injectivity of parallel maps for tesselation structures, J. Comput. System
Sci. 6 (1972), 448-464.

. A. W. Burks, “Essays on Cellular Automata,” Univ. of Illinois Press,
Urbana, 1970.

. S. R. Buss, C. H. Papadimitriou, and J. N. Tsitsiklis, On the
predictability of coupled automata: An allegory about chaos, Complex
Systems 5 (1991).

. M. R. Garey and D. S. Johnson, “Computers and Intractability,”
Freeman, San Francisco, 1979.

. L. M. Goldschlager, The monotone and planar circuit value problems
are log-space complete for p, SIGACT News 9, No. 2 (1977), 25-29.

. U. Golze, Differences between 1- and 2-dimensional cell spaces, in
“Automata, Languages and Development” (A. Lindenmayer and
G. Rozenberg, Eds.), pp. 369-384, North- Holland, Amsterdam, 1976.

. F. Green, NP-complete problems in cellular automata, Complex
Systems 1, No. 3 (1987), 453-474.

. L. P. Hunt, Formal language characterizations of cellular automata,
Complex Systems 1, No. 1 (1987), 69-80.

. K. Culik II, On invertible cellular automata, Complex Systems 1, No. 6
(1987), 1035-1044.

. K. Cullik II and S. Yu, Undecidability of CA classification schemes,
Complex Systems 2, No. 2 (1988), 177-190.

. N. D. Jones, Space-bounded reducibility among combinatorial
problems, J. Comput. System Sci. 11 (1975), 68-85.

16.

17.
18.

20.

21

22.

23.

24.

2s.

97

. J. Kari, Reversibility of 2D cellular automata is undecidable,

Physica D 45 (1990), 397-385.

. O. Martin, A. M. Odlyzko, and S. Wolfram, Algebraic properties of

cellular automata, Commun. Math. Phys. 93 (1984), 219-258.

. M. Nasu, Local maps inducing surjective global maps in one-dimen-

sional tesselation automata, Math. Systems Theory 11 (1978), 327-351.
L. J. Stockmeyer, Classifying the computational complexity of
problems, J. Symbolic Logic 52, No. 1 (1987), 1-43.

K. Sutner, On o-automata, Complex Systems 2, No. 1 (1988), 1-28.
K. Sutner, A note on Culik-Yu classes, Complex Systems 3, No. 1
(1989), 107-115.

. K. Sutner, Classifying circular cellular automata, Physica D 45,
Nos. (1-3) (1990), 386-395.

K. Sutner, De Bruijn graphs and linear cellular automata, Complex
Systems 5, No. 1 (1991}, 19-30.

K. Sutner, “Linear Cellular Automata and Their Fischer Automata,”
Report Series 93-46, RISC-Linz, August 1993,

S. Wolfram, Computation theory of cellular automata, Comm. Math.
Phys. 96, No. 1 (1984), 15-57.

S. Wolfram, Computer software in science and mathematics, Sci. Amer.
251, No. 3 (1984), 188-203.

S. Wolfram, Universally and complexity in cellular automata,
Physica D 10 (1984), 1-35.

T. Yaku, The constructibility of a configuration in a cellular
automaton, J. Comput. System Sci. 7 (1973), 481-496.

