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Abstract In this paper, the conjugate gradient method, coupled with the adjoint problem, is used in order
to solve the inverse heat conduction problem and estimation of the time-dependent heat flux, using
temperature distribution at a point in a two layer system. Also, the effect of noisy data on the final solution
is studied. The numerical solution of the governing equations is obtained by employing a finite-difference
technique. For solving this problem, the general coordinate method is used. The irregular region in the
physical domain (r, z) is transformed into a rectangle in the computational domain (ξ , η). The present
formulation is general and can be applied to the solution of boundary inverse heat conduction problems
over any region that can bemapped into a rectangle. The obtained results for few selected examples show
the good accuracy of the presented method. Also, the solutions have good stability even if the input data
includes noise. Theproblem is solved in an axisymmetric case. Applications of thismodel are in the thermal
protect systems (t.p.s.) and heat shield systems.

© 2011 Sharif University of Technology. Production and hosting by Elsevier B.V.
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1. Introduction

Direct heat conduction problems are concernedwith the de-
termination of temperature at interior points of a region, when
the initial and boundary conditions, thermophysical properties
and heat generation are specified [1]. In contrast to direct prob-
lems, Inverse Heat Conduction Problems (IHCP) are defined as
the estimation of initial/boundary conditions, properties of the
system/material, sources or sink terms, shape and governing
equations from transient temperature measurements at one
or several interior locations [2]. The solution of inverse prob-
lems is much more difficult in comparison with direct prob-
lems, due to instability in the solution, where these problems
are called mathematically ill-posed. With the improvement of
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computer capability, inverse techniques have become a popu-
larmeans of resolving heat transfer problems in the last decade.
Important applications for inverse heat conduction problem so-
lutions include, for example, controlled cooling of electronic
components, estimation of jet-flow rate of cooling inmachining
or quenching, determination of conditions at the interface be-
tween the mold and metal during metal casting or rolling pro-
cess [3], heat flux estimation on the surface of a wall subjected
to fire or the inside surface of a combustion chamber [4] and,
also, on surfaces where ablation takes place or on surfaces go-
ing through welding processes [5]. Some other applications of
the IHCP are prediction of the inner wall temperature of a re-
actor, determination of the heat transfer coefficient and outer
surface conditions in the re-entry of a space vehicle, modeling
of the temperature or heat flux at the tool-work interface of
machine cutting [6] and also in the transpiration cooling con-
trol [7], estimation of the unknown time-dependent heat flux
and temperature distributions for the system composed of a
multi-layer composite strip and semi-infinite foundation from
the knowledge of temperature measurements taken within the
strip [8], the regularization method for determining a moving
boundary from Cauchy data in a one-dimensional heat equa-
tion with a multilayer domain [9], estimation of the boundary
thermal behavior of a furnacewith two layerwalls [10], an input
estimationmethod to recursively estimate both the time varied
heat flux and the inner wall temperature in the chamber [11],
and computation of the temperature field inmulti-dimensional,
multi-layer bodies [12].
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There are many different methods for solving inverse heat
conduction problems and some of them will be listed here.
For instance, the exact solution technique, the inversion of
Duhamel’s integral, Laplace transformation techniques, the
control volume method, the use of the Helmholtz equation, the
finite difference method and approaches, the digital filtering
method, the Tikhonov regularization method, the Alifannov
iterative regularization, etc. [13–17]. Jiang et al. [18] obtained
the time-dependent boundary heat flux applied on a solid
bar by using the conjugate gradient method with an adjoint
equation and zeroth-order Tikhonov regularization to stabilize
the inverse solution. They used the finite difference method
to solve their problem. San Guay Chen et al. [19] calculated
the heat flux and temperature distribution of the quenching
surface, using the inverse method. They applied a conjugate
gradient method to improve estimation of the distribution of
the surface temperature and heat flux for a two-dimensional
cylindrical coordinate problem, and solved the governing
equations with the finite element method. Bao Liu [20] used
a hybrid method to identify simultaneously the fluid thermal
conductivity and heat capacity for a transient inverse heat
transfer problem. Their proposed method is a combination of
the modified genetic algorithm and the Levenberge Marquardt
method.

In this research, we use the conjugate gradient method,
coupledwith an adjoint equation approach, to solve the inverse
heat conduction problem and estimate the time-dependent
heat flux using temperature distribution at a point in a two
layer system. The problem is solved in an axisymmetric case
and the general coordinatemethod is used. The irregular region
in the physical domain (r, z) is transformed into a rectangle
in the computational domain (ξ , η). The present formulation
is general and can be applied to the solution of boundary
inverse heat conduction problems over any region that can be
mapped into a rectangle. The governing equations are solved by
employing the finite difference method. The obtained results
show that the applied method causes high stability, even if
the input data includes considerable noise. Applications of this
model are in thermal protection systems (t.p.s.) and heat shield
systems.

2. Problem formulation and solution

2.1. Direct problem

In this paper, we solve the problem in the axisymmetric
cylindrical coordinate system (r, θ, z). The symmetry is with
respect to the z-axis. Therefore, the derivative of any quan-
tity, with respect to θ , would be zero. The application ex-
ample could be any type of body nose. Therefore, the energy
equation has actually been presented in the cylindrical coordi-
nate system, (r, z), as in Figure 1. As shown, a time-dependent
heat flux is applied to the outer surface, while the inner and side
surfaces have been insulated. We aim to obtain the unknown
heat flux q(t) on the outer surface for the time, 0 ≤ t ≤ tf , us-
ing the temperature field at a point. The input data could include
noise. In the numerical solution, the general coordinatemethod
is applied. The calculations have been done in the rectangular
coordinate system (ξ , η), initially, and the results are then
transferred to the physical coordinate system (r, z). The com-
putational plane and corresponding boundary conditions are
shown in Figure 2. The heat conduction equation in the cylindri-
cal coordinate system, in the axisymmetric case, with the initial
and boundary conditions are as follows:

1
r

∂

∂r


kr

∂T
∂r


+

∂

∂z


k
∂T
∂z


= ρCP

∂T
∂t

, (1)

Tz =
1
J
(rηTξ − rξTη), (2)

Tr =
1
J
(−zηTξ + zξTη), (3)

∇
2T =

1
J2

αTξξ − 2βTξη + γ Tηη


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(∇2ξ)Tξ + (∇2η)Tη


, (4)

α = z2η + r2η , (5)

β = zξ zη + rξ rη, (6)

γ = z2ξ + r2ξ , (7)

∇
2ξ =

k1(rξξ zη − zξξ rη) + k2(rξηzη − zξηrη)
J

+
k3(rηηzη − zηηrη)

J
, (8)

∇
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k1(zξξ rξ − rξξ zξ ) + k2(zξηrξ − rξηzξ )
J

+
k3(zηηrξ − rηηzξ )

J
, (9)

k1 =
1
J2

(z2η + r2η ), (10)

k2 =
−2
J2

(zξ zη + rξ rη), (11)

k3 =
1
J2

(z2ξ + r2ξ ), (12)

ξz =
1
J
rη, (13)

ξr = −
1
J
zη, (14)

ηz = −
1
J
rξ , (15)

ηr =
1
J
zξ , (16)

J = zξ rη − rξ zη, (17)
where the subscripts denote differentiation, with respect to the
variable considered:
∂T
∂z

= 0 ξ = 1, ξ = nz, t > 0, (18)

∂T
∂r

= 0 η = 1, t > 0, (19)

k
∂T
∂r

= q(t) η = nr, t > 0, (20)

T (ξ , η, 0) = 0 1 < ξ < nz, 1 < η < nr, t = 0. (21)
In the above relations T , t , q(t), ρ, k and Cp are temperature,

time, time-dependent heat flux, density, thermal conductivity
and specified thermal capacity, respectively. In the interface of
materials, the following relations are used:
qξ in + qηin = qξout + qηout, (22)
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Figure 1: Geometry of the problem and boundary condition.

Figure 2: Boundary condition in computational plane.

kA(Ti,j − Ti−1,j) +
2kAkB
kA + kB

(Ti,j + Ti−1,j)

= kB(Ti+1,j − Ti,j) +
2kAkB
kA + kB

(Ti,j+1 + Ti,j). (23)

As shown in Figure 3, by considering a boundary element in the
physical plane and applying the energy equation, the boundary
conditions are calculated as follows:

ki,jds1
T n−1
nz−1,j − T n−1

nz,j

ds2
+ ki,j

ds2
2

T n−1
nz,j−1 − T n−1

nz,j

ds1

+ ki,j
ds2
2

T n−1
nz,j+1 − T n−1

nz,j

ds1
+ qwds1

= ρi,jCi,jds1
ds2
2


T n
nz,j − T n−1
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∆t


, (24)

T n
nz,j =

1

F

T n−1
nz,j + A1 + A2 +


2qw∆t

ρi,jCi,jds2

 , (25)

where T n
nz,j in the above relation is:

F = 1 +
2αi,j∆t
ds21nz,j

+
2αi,j∆t
ds22nz,j

, (26)

A1 =
2αi,j∆tT n−1

nz−1,j

ds22nz,j
, (27)

A2 =
αi,j∆t


T n−1
nz,j+1 + T n−1

nz,j−1


ds21nz,j

, (28)
Figure 3: Boundary element in physical plane.

αi,j =
ki,j
Ci,j

. (29)

With a similar method for other boundary conditions, we have:

T n
1,j =

1

F

T n−1
1,j + A1 + A2

 , (30)

F = 1 +
2αi,j∆t
ds211,j

+
2αi,j∆t
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, (31)
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ds221,j
, (32)
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
T n−1
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1,j−1


ds211,j

, (33)

αi,j =
ki,j
Ci,j

, (34)

T n
i,1 =

1

F

T n−1
i,1 + A1 + A2

 , (35)

F = 1 +
2αi,j∆t
ds21i,1

+
2αi,j∆t
ds22i,1

, (36)

A1 =
2αi,j∆tT n−1

i,2

ds21i,1
, (37)

A2 =
αi,j∆t


T n−1
i+1,1 + T n−1

i−1,1


ds22i,1

, (38)

αi,j =
ki,j
Ci,j

. (39)

2.2. Inverse problem

In inverse problems, the time-dependent heat flux, using
measured transient temperatures, is estimated with a sensor
positioned at a point. The inverse problem should be solved as
the following function is minimized [21]:

S[q(t)] =
1
2

∫ tf

t=0

NS−
m=1

[T (ξm, ηm, t; q) − Ym(t)]2 dt. (40)

In the above relation, T (ξm, ηm, t; q), and Ym(t) are estimated
temperatures and measured temperature, respectively. Also,
the number of sensors, Ns, is equal to 1.
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The above equation will be minimized by using the
conjugate gradient method, based on iterative processes. In the
conjugate algorithm, the direction of seeking the unknown heat
flux is dependent on the gradient of the error function, which
will be solved with adjoint equations [15,16,21]:

2.3. Adjoint problem

1
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∂

∂r


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∂r


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∂z


k
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
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= ρCP
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, (41)

∂λ

∂z
= 0 ξ = 1, ξ = nz, t > 0, (42)

∂λ

∂r
= 0 η = 1, η = nz, t > 0, (43)

λ(ξ, η, tf ) = 0, 1 < ξ < nz, 1 < η < nr, t = tf . (44)

In the interface of materials, the following relation is used:

kA(λi,j − λi−1,j) +
2kAkB
kA + kB

(λi,j + λi−1,j)

= kB(λi+1,j − λi,j) +
2kAkB
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(λi,j+1 + λi,j). (45)

By considering a boundary element in the physical plane and
applying the energy equation, the boundary conditions are
calculated as follows:
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
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where λn
nz,j in the above relation is as:
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. (56)

With a similar method for other boundary conditions, we have:
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i,1 =

1

F
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i,1 + A1 + A2

 , (57)

F = 1 +
2αi,j∆t
ds21i,1

+
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ki,j
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where parameter λ is the adjoint temperature and δ is the dirac
delta function. The optimum step size can be obtained based on
the sensitivity problem, which is defined as in [16,21].

2.4. Sensitivity problem

To obtain the sensitivity equation, it is assumed that
perturbing q(t) by∆q(t)would change T (r, z, t) by∆T (r, z, t).
Thus, in a direct problem, the quantities [T (r, z, t)+∆T (r, z, t)]
and [q(t) + ∆q(t)] are replaced by T (r, z, t) and q(t), and the
resulting expression is subtracted from the direct problem [21].
In this way, the sensitivity equation is obtained as:

1
r

∂

∂r


kr

∂∆T
∂r


+

∂

∂z


k
∂∆T
∂z


= ρCP

∂∆T
∂t

, (62)

∂∆T
∂z

= 0 ξ = 1, ξ = nz, t > 0, (63)

∂∆T
∂r

= 0 η = 1, t > 0, (64)

k
∂∆T
∂r

= ∆q η = nr, t > 0, (65)

∆T (ξ , η, 0) = 0, 1 < ξ < nz, 1 < η < nr, t = 0. (66)

In the interface of materials, below relation is used:

kA(∆Ti,j − ∆Ti−1,j) +
2kAkB
kA + kB

(∆Ti,j + ∆Ti−1,j)

= kB(∆Ti+1,j − ∆Ti,j) +
2kAkB
kA + kB

(∆Ti,j+1 + ∆Ti,j). (67)

As explained before, by considering a boundary element in
the physical plane and applying energy balance relations, the
boundary conditions are calculated as follows:

ki,jds1
∆T n−1

nz−1,j − ∆T n−1
nz,j

ds2

+ ki,j
ds2
2

∆T n−1
nz,j−1 − ∆T n−1
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ds1
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+ ki,j
ds2
2

∆T n−1
nz,j+1 − ∆T n−1

nz,j

ds1
+ ∆qds1

= ρi,jCi,jds1
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
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From which ∆T n
nz,j is calculated as below:
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1
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1
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F = 1 +
2αi,j∆t
ds211,j

+
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ds221,j

, (75)
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2,j
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
∆T n−1
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1,j−1


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Other boundary conditions are obtained in a similar manner as:
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Ci,j

, (78)
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i,1 =

1
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
∆T n−1

i,1 + A1 + A2
 , (79)

F = 1 +
2αi,j∆t
ds21i,1

+
2αi,j∆t
ds22i,1

, (80)

A1 =
2αi,j∆t∆T n−1

i,2

ds21i,1
, (81)

A2 =
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
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i+1,1 + ∆T n−1
i−1,1


ds22i,1

, (82)

αi,j =
ki,j
Ci,j

, (83)

where ∆T is the sensitivity temperature.
The transient heat flux, q(t), which is an unknown function,

can be estimated byminimizing the function, S[q(t)], in Eq. (40).
The iterative equation for estimating q(t) is as below [15,17,21]:

qk+1(t) = qk(t) − βkdk(t). (84)

In which k is the number of iterations. The direction of descent,
dk(t), is determined as in [15,17,21]:

dk(t) = ∇S[qk(t)] + γ kdk−1(t). (85)
Here, γ k is the conjugate coefficient, as in [16,18,21], which are
calculated by:

γ k
=

 tf
t=0


∇S


qk(t)

2 dt tf
t=0


∇S


qk−1(t)

2 dt , (86)

where γ 0 is assumed zero. To calculate∇S[qk(t)], the following
relation is used:

∇S[q(t)] = λ(ξ, nr, t). (87)

The above equality depends on the position of the unknown
function. The search step-size, βk, is obtained by minimizing
S[qk+1(t)], with respect to βk, as follows [16,18,21]:

βk
=

 tf
t=0

NS∑
m=1


T

ξm, ηm, t; qk


− YS(t)


∆T


ξm, ηm, t; dk


dt

 tf
t=0

NS∑
m=1


∆T


ξm, ηm, t; dk

2 dt , (88)

where ∆T (ξm, ηm, t; dk) is obtained from the sensitivity
problem by considering ∆qk(t) = dk(t).

By checking Eq. (87), it is determined that the gradient
equation in final time (tf ) is equal to zero. Therefore, the initial
guess used for q(t) in t = tf does not change with the iterative
process in the conjugate gradient method. When the initial
guess is very far from the exact solution, the estimated function
in the neighborhood of tf can deviate from the exact solution.
This solution can be eliminated easily by use of a larger value of
final time. Thus, the effect of an initial guess on the actual time
of the problem is not significant [21]. The iterative procedure
mentioned above continues until the stopping criterion is
satisfied. The stopping criterion is defined as follows:

S[q(t)] ≤ ε. (89)

In the above relation, S[q(t)] is obtained from Eq. (40). The
value of ε should be selected such that if there were errors
in the measured data, the accuracy of the results would be
satisfactory.

2.5. Computational algorithm

The computational procedure for obtaining the unknown
heat flux can be summarized as follows [21]:

1. Choose an initial guess, for example q0(t) for the function
q(t), and set k = 0.

2. Solve the direct problem to obtain T (z, r, t) based on qk(t)
(Eqs. (1)–(23)).

3. Check the stopping criterion and continue if not satisfied
(Eq. (89)).

4. Solve the adjoint equation, and compute λ(ξ, nr, t) by
knowing T (ξm, ηm, t) and the measured temperature, Ym(t)
(Eqs. (41)–(45)).

5. Knowing λ(ξ, nr, t), compute ∇S[qk(t)] from Eq. (87).
6. Knowing∇S[qk(t)], computeγ k fromEq. (86) and dk(t) from

Eq. (85).
7. Set ∆qk(t) = dk(t) and solve the sensitivity problem to

obtain ∆T (ξm, ηm, t; dk) (Eqs. (62)–(66)).
8. Knowing ∆T (ξm, ηm, t; dk), compute βk from Eq. (88).
9. Knowing βk and dk(t), compute qk+1(t) and return to step 2

(Eq. (84)).
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Figure 4: Using grid in solution of problem and sensor position.

3. Results and discussions

We aim to estimate the unknown heat flux in a two layer
system, using the conjugate gradient method, when there is no
information about the unknown function. It should be noted
that in the conjugated gradient method, the initial guess for
the unknown function is arbitrary; in other words, the method
is independent of an initial guess. Here, initial estimation of
the heat flux is assumed zero. The governing equations were
discredited by the finite-difference method and the mesh size
used in the numerical method is a uniform 35×35, 45×45 and
55×55. This all shows that the problem is independent ofmesh
size, but by noting the calculation time, we chose the 35 × 35
mesh size. The final time, tf = 10, and time step, ∆t = 0.01,
are considered. In this work, by measuring the temperature at
a point only in the inner layer, the heat flux on the outer layer
is estimated, and the sensitivity of the problem for noisy data is
investigated. In Figure 4, the mesh used and the position of the
sensor are shown.

To investigate the accuracy of the presented solution, a step-
function is considered as:

q(t) =


107 for 4 < t < 8
0 for t ≤ 4 and t ≥ 8.

One should note that the discontinuous and sharp corner
functions are well known for being highly ill-posed (see
Figure 5). Therefore, these functions can be used to evaluate the
accuracy of the solutions [21].

In the next example, a sinusoidal function is considered for
the heat flux as q(t) = 107 sin(π t), presented in Figure 6.

In the next example, a combination of sine and cosine
functions is considered for the heat flux as:

q(t) = 107 sin(0.1t) + 107 cos(2t),

with results depicted in Figure 7.
As the last example, a triangle function is considered for the

heat flux, with results shown in Figure 8.
In the next part, the inverse solution, with noisy data, is pre-

sented. In practice, there are errors in measured data; there-
fore, noisy data are used to simulate errors by using data with
6% noise. The effect of noisy data can be seen in Figures 9–12
in comparison to noiseless cases presented in Figures 5–8. It is
found that despite a noise in data, results have very good stabil-
ity.

The mesh study has been done for q(t) = 107 sin(0.1t) +

107 cos(2t), using three mesh sizes: 35 × 35, 45 × 45 and
Figure 5: Estimated heat flux in comparison with exact function for step-
function.

Figure 6: Estimated heat flux in comparison with exact function for sine
function.

Figure 7: Estimated heat flux in comparison with exact function for a
combination of sine and cosine functions.

55 × 55. As seen in Figure 13, the exact heat flux is recovered
by the inverse solution using all mesh sizes, thus the results are
independent of mesh size.

4. Conclusions

The conjugate gradient method with an adjoint problem
has been successfully applied for the solution of inverse
heat conduction to estimate the unknown time-dependent
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Figure 8: Estimated heat flux in comparison with exact function for triangle
function.

Figure 9: Estimated heat flux with noisy data in comparison with exact
function for step-function.

Figure 10: Estimated heat flux with noisy data in comparison with exact
function for sine function.

heat flux using temperature distribution at a point in a two
layer system, and the general coordinate method is used.
The present formulation is general and can be applied to the
solution of boundary inverse heat conduction problems over
any region that can be mapped into a rectangle. In this paper,
discontinuous and sharp corner functions that are well known
for being highly ill-posed were used for illustrating the good
accuracy of the presented method. The obtained results show
Figure 11: Estimated heat flux with noisy data in comparison with exact
function for a combination of sine and cosine functions.

Figure 12: Estimated heat flux with noisy data in comparison with exact
function for triangle function.

Figure 13: Mesh size study on obtained results.

that the presented solution has good stability when there is
noise in input data up to 6%. Therefore, the presented method
is good for estimating the time-dependent unknown heat flux
in multi layer systems.
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