-

View metadata, citation and similar papers at core.ac.uk brought to you byf’: CORE

provided by Elsevier - Publisher Connector

Journal of
Symbolic

Computation
Journal of Symbolic Computation 35 (2003) 107-126

www.elsevier.com/locate/jsc

Computing left Kan extensions

M.R. Bush, M. Leeming, R.F.C. Waltérs

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Received 9 September 1997; accepted 26 May 1999

Abstract

We describe a new extension of the Todd—Coxeter algorithm adapted to computing left Kan
extensions. The algorithm is a much simplified version of that introduced by Carmody and Walters
(Category Theory, Proceedings of the International Conference Held in Como, Italy, 22—-28 July
1990. Springer) in 1991. The simplification allows us to give a straightforward proof of its correctness
and termination when the extension is finit€&0) 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many algorithms have a natural description in the following form. The algorithm
concerns a finite presentation of a possibly-infinite algebraic structure. A finite number
of ways of modifying presentations are given, called #wtions of the algorithm.
These actions leave invariant the algebra presented by the presentation. A run of the
algorithm consists in applying a sequence of these actions, in a particular order, to a
given presentation with the idea of simplifying it to the point that the answer to certain
guestions about the presented algebra become apparent. The correctness of the algorithm
follows from the invariance of the presented algebra under the actions. Its termination is a
consequence of the particular sequence of actions chosen. Having algorithms in this form
separates the questions of correctness, termination, and efficiency. The crucial steps in
describing and proving algorithms in this way are finding the appropriate notion of finite
presentation, and finding the simplest possible actions which leave invariant the algebra
presented.

Two classical examples of algorithms which may be considered in this form are Euclid’s
algorithm (which concerns the presentation of an ideafjrand Gaussian elimination
(which concerns the presentation of a linear transformation between two vector spaces).
In this paper we describe another example, namely an algorithm for computing the left

* Corresponding author.
E-mail addressrobert.walters@uninsubria.it (R.F.C. Walters).

0014-5793/03/$ - see front matt@ 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0747-7171(02)00102-5

https://core.ac.uk/display/82054889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

108 M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126

Kan extension of a functoX : A — Setsalong a functor- : A — B. The state on
which the algorithm acts is a finite presentation of a funttarB — Sets and a natural
transformationt : X — LF.

The original Todd—Coxeter algorithm, on which the present algorithm is based,
concerned a finite presentation of the cosets of a subgroup H in a group G, in terms of
certaintables Though this notion of finite generation has been clarified in subsequent
works (see, for exampl&ims, 1993 the algorithm has never been described and proved
in the form outlined in the first paragraph. The reason is that the particular form of
presentation taken has always necessitated a recursive subprocedureealileg with
coincidencesvhich is perhaps the most obscure part of the algorithm. The essential novelty
of this paper, apart from its greater generality in dealing with left Kan extensions rather than
the enumeration of cosets, is that we introduce a new notion of finite presentation which
removes the need for the subprocedure for dealing with coincidences thus clarifying the
algorithm substantially.

The history of our algorithm is as follows. Todd and Coxeter described their
coset enumeration algorithm in 1938o¢d and Coxeter, 1936see alsoCoxeter and
Moser, 1957. It was perhaps the first abstract algebra algorithm actually implemented on
an electronic computer by Haselgrove in 1953 on EDSAC1 in Cambridgech, 196R
The most encyclopaedic reference to later developments in coset enumeration is
Sims (1994) The algorithm was extended to the computation of left Kan extension by
Carmody and Walters (199apdWalters (1991)The paperCarmody and Walters, 1991
contains a proof of the “dealing with coincidences” subprocedure. The algorithm
was extended further to left Kan extensions of product-preserving functors in
Leeming and Walters (1995)

In trying to find a simple enough presentation of the last algorithm to give a
proof of completeness we were led to the flat version in this paper, avoiding the
“dealing with coincidences” subprocedure. We were strongly influenced by a conversation
with Rod Burstall about a concurrent garbage collection algorithm, and by ideas in
Chandy and Misra (1988)

2. Congruencesand quotients

Throughout this section I& be an arbitrary category.

Definition 2.1. Given a functorL : B — Sets, afamily of relations on Lis a family
R = {Rg C LB x LB}gep. A family E = {~g}Bep is called acongruence om if it
satisfies

(i) ~p is an equivalence relation for eaéhe B.
(i) If g: B — B’isamorphismiBthenx ~g y = Lg(x) ~g Lg(y).

Definition 2.2. If R = {Rg}geg andS = {Sg}gcp are two families of relations oh then
we sayR C Siff Rg C Sg for eachB € B.

M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126 109

Lemma21. LetL: B — Setsbe a functor andRg}gcg a family of relations on L.
Suppose for each &€ | that E; = {~}g}BeB is @ congruence on L containindg}ges.
Define for each Be B

~g=(~k

iel

Then E= {~B}BeB iS @ congruence on L containindRs}pes.

Proof. GivenB € B we have thaRg C ~‘B foreachi € |, and soRg C ~p. Also,~gp is
the intersection of an indexed family of equivalence relations herngés an equivalence
relation. Finally, ifg : B — B’ is a morphism irB then

X~py=X~gy foreachi el
= Lg(x) ~ Lg(y) foreachi €|

= Lg(x) ~g La(y).
ThusE = {~B}Bep iS a congruence containii@Rg}geg. [

By Lemma 2.1we can now define thminimal congruence on L containifdRz}gep
as the familyE = {~g}Bep With ~p defined as above whelteindexes the collection of
all congruences oh containing{ Rg}s<s. We now give an alternative characterization of
this minimal congruence.

Proposition 2.1. Let {~g}Bep be the minimal congruence on L containifBg}gcs,
then m~g n iff

1. m=nor

2. There exist y,...,us € LB with iy = m and 4 = n such that for each
i =1,...,s— 1lthere exists a morphism h B; — B in B with d; Rg, & or e Rg; d;
where LR(di) = u; and Lh () = Uj41.

Proof. Define a family of relation$Tg}secg by mTgn if and only if condition 1 or 2 in
the statement of the proposition holds.

We check that{Tg}gep is a congruence oh containing{Rg}gecg. If mMRgn then
mTgn by condition 2 above, thu®s < Tg. If m = n thenmTgn by condition 1
above, thuslpg is reflexive. It is also clear from the nature of condition 2 that e&gh
is symmetric and transitive, hendg is an equivalence relation for ea& € B. Next,
supposegg : B — B’ is a morphism inB with x = Lg(m) andy = Lg(n). If mTgn
then either condition 1 or 2 of the construction above must hold. In the firstroasen,
but thenx = Lg(m) = Lg(n) = y and sox Tg'y. In the second case we have elements

Ui, ...,Us € LB with uy = m andus = n such that for each = 1,...,s — 1 there
exists a morphisnm; : B — B in B with diRg,;& or & Rg;di whereLh;(dj) = u; and
Lhi(g) = ujt1. Definew; = Lg(u;) foreachi = 1,...,s— 1. Itis clear that for each

we haved; Rge or g Rg, di whereL(ghj)(di) = wi andL(ghi)(&) = wi41, but then by
condition 2 we hava Tg'y. Thus{Tg}gep iS a congruence oh containing{ Rg}scp and
so by the minimality of ~g}gep it follows that~gC Tg for eachB < B.

110 M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126

Now we check thaffg € ~p for eachB € B. Suppose thatnTgn, if m = n then
m ~p h since~pg is an equivalence relation. i ## n then by definition there must exist
ug,...,Us € L with uy = m andus = n satisfying condition 2 above. BlRg C ~p
and{~g}gep iS a congruence thusg, ~p uj1 for eachi, which impliesm ~g n. Hence
Tg € ~p and solTg =~g foreachB e B. [

Remark 2.1. As a special case, B is a monoid with only one morphism (the identity)
then Proposition 2.1is the usual characterization of the minimal equivalence relation
containing a given relation.

Proposition 2.2. Given a funActor L: B — Sets and a congruencé~g}gep, the
following defines a new functdr : B — Sets. For each Be B

LB=LB/~g
and for each morphism gB — B’ in B
(Lo)Ix] = [Lgx)]

where[x] is the equivalence class with respectt@ of x € LB. The functorl will be
called the quotient of L bj~g}BcB.

Proof. Straightforward. O

3. Presentationsand functors

We consider two finitely presented categorifesand B. Let B have a presentation
consisting of a finite grapeg and equationd); = V; for 1 < i < n where eachy;
andV; is a word in the morphisms @g. Let A have a presentation consisting of a finite
graphGp and equations which we do not specify. Suppose also that we are given two
functorsF : A— B andX : A — Sets. We next define the notion of gresentation P
of a functor fromB to Sets and a natural transformation from X to the composite of this
functor with F, which for brevity shall just be called@esentation P

Definition 3.1. A presentation Rconsists of:

(i) AsetPBforeachB e Gg.
(i) Arelation Pg: PB; — P By for each morphisng : By — By in Gg.
(iii) A symmetric relationSg € PB x PB for eachB € Gg. The elements of eachs
will be calledcoincidences
(iv) Afunctionua : XA — PFAforeach objeciA € A.

P is said to be dinite presentatioiif the setsP B and X A are finite for all objectA € A
andB € B.

Although Pg is defined for morphisms iGg, we will extend the notation and define
Pg = Pg:...Pog, whereg is the morphisng; ...gn € FGg (the free category on the
graphGg), and the relations are composed in the usual manner.

M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126 111

Given a presentatioR there is an associated functBrfrom B to Sets and a natural
transformation fromX to P F. To construct these first define a func@r. B — Setson
eachB € B by

QB=) B(B.B)x PB
B'eB
and on each morphisign: B; — Bz in B by
Qg(f,x) = (gf, x).

It is straightforward to check thd is indeed a functor and we leave this to the reader.
Next define a relatioiiRg for each objecB € B by Rg = Kg U Lg U Ng whereKpg, Lp
andNg are relations o) B for eachB < B defined as follows

() If x € PBy andg : By — B is a morphism inGg with y € Pg(x) then
(9, X)KB,(1B,, ¥)-
(i) If m,n e PBandm ~g; nthen(lg, mLg(1g, n).
(i) If x e XArandf : Ay — Azis amorphisminGa then

(Ff, ma X))INEa, (LF Ay, pa, (XT(X))).

Let{~g}BeB be the minimal congruence @pcontaining{ Rg} geg. UsingProposition 2.2
defineP to be the quotient functd® of the functorQ by the congruence-.

Proposition 3.1. Definejz, : XA — P FA for each object A A by

waX) = [1ra, na(X)]
thenz is a natural transformation from X t® F.

Proof. Observe that for any elemerte X A and morphismf = f;... f, in A where
eachf; : Aj — Aj_1is amorphism irGa, then

Tne (X F00) = [Lr ags feap (X F1. .. fr (X))]
=[Ffy, ua,(Xf2... fr(x))]

= [Ff.. fr.ua (0]
= PF{(a X)).

The middle steps in the calculation above follow from repeated usage of condition
(iii) in the definition of the relationd Rg}ges and also from the closure property of
congruences. [J

Definition 3.2. A pair (L, ¢) consisting of a functo. : B — Sets and a natural
transformationp : X — LF is said to be finitely presented if there exists a finite
presentatiorP and isomorphisny : P — L suchthatyF o & = ¢.

Proposition 3.2. Let (P, n) be a pair consisting of a functor PB — Setsand a natural
transformationu : X — PF. Regard P as a presentation by restricting its domain to the

112 M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126

graph Gg, defining § = ¢ for each Be B and leaving the maps o unchanged for each
A € A. Then there exists a natural isomorphigm P — P suchthat/F o u = 1z.

Proof. Defineyg : PB — PBforeachB e B byx — [1g, x]. Inmediately it should be
clear thaty F o u = . We now show that given any morphigm= g ... gy in B where
eachg; : B — Bj_1 is a morphism irGg, then[g, x] = [1g,, Pg(X)]. First, observe that
[Or, X] =[1g,_;, P& (X)]. Now suppos€g; ... or, X] = [1g,_;. PG ... g (X)] then

[Gi-1Gi --- O, XI=1[Gi-1, PG ... gr (X)]
= [1Bi,21 nglpg oo gr(X)]
=[1g_,, PG-1Gi...9r(X¥)]

and so by inductiofig, X] = [1g,, Pg(x)]. From this resultit is clear that the mapg are
natural and surjective.

Showing these maps are injective is equivalent to profdgg x] = [1g, Y] = X = V.
Supposélg, X] = [1g, Y], then byProposition 2.kitherx = y or there existiy, ..., Us €
QB with u; = (1g,x) andus = (1, y) such that for eachh = 1,...,s — 1 there
exists a morphisnt; : Bi — B in B with diRg & or g Rg di where Qhi(di) = u;
and Qh;(g) = ujt+1. Now letd; = (fi,z) andg = (g, wi) for eachi. Since
Re. = Kg, U Lg U Np, (note thatLg, = #) it follows that if di Rg, & then we have
two cases to consider, eithdérK g & or d; Ng, & (similarly for & Rg, d;). In each of these
cases it is not hard to see thafi (z;)) = Pg (wj) and soPh; fi(z;)) = Phjgi(wj). If we
also note thath;_10i—1, wi-1) = Qhi_1(e-1) = Ui = Qhi(di) = (h;, fj, z)) which
implies thatwj_1 = z andhj_1gi_1 = h; fj for anyi, then moving alongy, ..., us we
have the chain of equalities.

X=Plg(X)=---=Phi_1gi—1(wi_1)
=Phi fi(z) = Phigi(wj) =---=Plg(y) =y. O

4. Modifying presentations

A presentationP can be pictured as a collection of sets with arrows between the
elements representing the relatioRg for each morphisng in Gg. For example, ifB
is the category with finite presentation consisting of the graph

92

01

Blé BZ

and with no equations, then the following is atypical presentation.

PB; PB,
91

M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126 113

The coincidences given by Sy and Sg on the sets PA and PB have been denoted
with pairs of parallel lines between the elements. Note also that by a dight abuse of
notation the arrows are labelled with g; and g, instead of Pg; and Pgy. Notice that we
have not included the functions w4 in the picture above. In general we shall omit these,
since they are only referred to infrequently. We now describe a list of permitted actions or
modifications of a presentation P. In each case we start with P and then construct a new
presentation P’.

4.1. Action «: add an element

If x e PBiandg: By — Bzisamorphismin Gg, thenif theredoesnot existy € PB;y
with y € Pg(x) we define anew presentation P’ on the objects of Gg

P'B, = PB, U {y}
P'B=PB where B # By

and on the morphism of Gg

P'g=Pg U {(x,y)}
P’h = Ph whereh £ g

and with the same coincidences S; = Sg and functions 1/, = . for each B € Gg and

Ace GA.
PBZ Q F’BZ
a
g
PB:L® |:| g pBl

4.2. Action 8: add a coincidence

(i) Suppose we have an equation bj, ...bj, = bj,...bj, in the presentation of B.
Suppose also that x € PBy and y,z € PB withy € Pbj ... Pbj,(x) and z €
Pbj, ... Pbj,(x). Thenif y # z we can construct a new presentation P’ which isidentical
to P in relation to objects, morphisms and the functions u A, but whose coincidences are
defined as follows.

S5, =S, Uiy, 2. (. Y)}
Ss=S whereB # B

QD e,
bi,, | bjS I_E] bir— b

E

b; by b; by
PB, ! 'PB,

(i) if m e XAz and f : A1 — Ay isamorphismin Gp then if z # y where
z € PFf(ua (M) and y = ua,(Xf(m)), construct a new presentation P’ which

114 M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126

is identical to P in relation to objects, morphisms and the functions wa, but whose
coincidences are defined as follows

Sep, = SFr U{(Y, 2, (z)}
=S8 where B # FA,.

’ AZ @ o

Ff |J_§| Ff

G

4.3. Action y: delete coincidences

Given a coincidence (x,y) € Sg, we construct a new presentation P’ without this
coincidence as follows. If y = x then we define P’ identically to P on objects and
morphisms of Gg. On coincidences we define

SlBl = 331\{(X, X)}
=S8 where B # Bs.

If y # x then we define P’ on the objects of Gg by

P'B1 = PBi1\{y}
P'B=PB where B # Bs.

Define P’ on each morphism g of Gg with the following list of conditions

1. if dom(g) =cod(g) = B1 and y € Pg(y) then
P'g={PguU (x x Pg(y)) U ((Pg)~(y) x x) U (x,x)} N (P'B1 x P'By)
2.if dom(g) = cod(g) = By and y ¢ Pg(y) then
P'g={PgU (x x Pg(y)) U ((Pg)~*(y) x x)} N (P'By x P'By)
3.if dom(g) = B1 but cod(g) = B # Bj then
P'g={PguU (x x Pg(y))} N (P'B1 x P'B)
4. if cod(g) = B1 but dom(g) = B # Bj then
P'g={Pg U ((Pg)~1(y) x x)} N (P'B x P'By)
5.if dom(g) # By and cod(g) # B then Py = Pg.

Define the coincidences of P’ by

S =S where B # B;

Sg, = {88, U (X x Sg,(¥) U (Sgy(y) x)} N (P'B1 x P'By).
Define the family of functions {1/} aca by

wa(m) =x where ua(m) =y

wWa(M) = ua(n) where pa(m) #y
wherem, n € XA,

M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126 115

4.4, Action §: delete non-determinism

If x e PBrandy, z € Pg(x) whereg : By — By isin Gg, thenif y # z define P’
identically to P in relation to the objects of Gg and the functions u . On the morphisms
of Gg define

P'g=Pg\{(x, 2)}
P’h=Ph whereh # g.

Define coincidences

S, =Se, U (Y2, @z)}
S =S Wwhere B # By

PB, @ P B,
5
g\ |9 L] g
PB; “ P B,

Definition 4.1. Given apresentation P and an action we say that P isinvariant under this
action if it is not applicableto P in any way.

Proposition 4.1. If P isa presentation invariant under the actions«, 8, y and §, and the
definition of P is extended to the morphisms of B by defining Pg = Pg; ... Pgy where
g=01...0ninBand P1g = 1pp for each B € B. Then P isafunctor and u isa natural
transformation from X to PF.

Proof. First observe that the invariance of P under « implies that given any morphism
g : By — Bz in Gg then Pg(x) # ¢ for al x € PB;. The invariance of P under §
implies that Pg is afunction for each morphism g : By — By in Gg. The invariance of
P under Action (i) impliesthat given any equation U; = V; in the presentation of B then
PU; = PV,. Thus using the definition of the equivalence relation on the morphisms of
FGp (used to define morphisms of B) it followsthat Pg iswell defined for all morphisms
g in B. The invariance of P under y impliesthat S, = ¢ for @l A € B. The functorial
properties of P follow directly from our definition of P on the morphisms of B. The
naturality of u follows from theinvariance of P under Action g(ii). O

116 M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126

5. Invariance of P under modifications

Theorem 5.1. If P is a presentation and P’ is the presentation obtained from P by
applying one of the actions «, B, y or §, then there exists a natural isomorphism ¢ :
P — P’ satisfyingyF o w = u'.

Proof. Ineach caseamap g : PB — P’B for each B € B is given. These maps are
then shown to be

1. Well defined.
2. Injective.

3. Surjective.
4. Natural.

Thiswill show that P’ isnaturally isomorphicto P asrequired. Theequationy F o 77 = 11/
will also follow in a straightforward manner from the definition. In the course of the
proofs [g, x] and [[g, X]] will denote the equivalence classes of (g, x) with respect to the
congruences associated with P and P’, respectively. In constructing the functor P from
the presentation P we made use of afunctor Q. We will let Q" denote the corresponding
functor in the construction of P’ from P’. The proof of invariance for each of the actions
will now be discussed in turn.

5.1. Action «

For each B € B define g : PB — P/B by [f,z] — [[f, z]]. Showing this map
is well defined is equivalent to proving [f1, z1] = [f2, 2] = [[f1, z1]] = [l f2, z2]].
So suppose [f1,z1] = [f2, z2]. By Proposition 2.1 either f1 = f, and zz = z or
there exist ug, ..., Us € QB withu; = (f1,2z1) and us = (f2, 2») such that for each
i =1,...,s— lthereexisssamorphismh; : B — B inB withd; Rg & or & Rg, di where
Qhj(di) = u; and Qh;(g) = uj+1. Now by definition Rg = Kg U Lg U Ng. Denote
the corresponding relations of P’ by Ry, Kg, L'y and Ng. Observe from the definition of
P'that PB € P'B (VB), Pg C P'g (¥Q), S = S (YB)and u/y = ua (YA).
ThusKg € Kg, Lg € Lz and NFa S Ng,, hence Rg € Ry for each B € B. From
this it is clear that di Rg & or & Rg di = diRg & or & Ry di and so by Proposition 2.1
([f1, z2]] = [[2, 22]].

Proving the maps /g are injective is equivalent to showing [[f1, z11] = [[f2, 22]] =
[f1,z1] = [f2, z2] where z1, zo # y. Suppose [[f1, z1]] = [[f2, z2]]. By Proposition 2.1

thereexists B e Band uy, ..., us € Q'B withu} = (f1, 1) and ug = (f2, z2) such that
foreachi = 1,...,s — 1 there existsamorphism hj : B; — B in B with d/Rg € or
& Rg, 0/ where Q'hi (d) = uj and Q'hi(g]) = u;, ;. Defineamap vg : Q'B — QB by

v(f,z2) = (f,2)if z # yand v(f,y) = (fg,x). Ingeneral if ¢i € Q'B we will let ¢
denote v(c/). Observe that d (Q’hi)‘l(uf) = di € (Qh))~1(u;) and similarly for €.
We will now show that d R, € => di = & or di Rg; &. So suppose d/ Ry €/, there are three
cases to consider

1. If d'Ky € and neither df or € have y as their second component, then d = di,
€ =g anddiKp g. If either df or € containsy then the relation must have the form

M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126 117

(g, x)K’Bi (1g;, y) sincethisisthe only relation involving y in K{Bi. Ifd =g,y
theng =g = (g, x) andsodi = (9. X) = &.

2. IfdiLp € thend| = di, & = & and di L g & since applying action o does not effect
coincidences.

3. Ifd/Ng e thend =di ande = & sincey ¢ ua = p) forany A e A, and o
diNg&.

Thusit can now be seen that u; and us are equivalent with respect to the congruenceon Q
(i.e [fr, z1]1 = [f2, 22]).

It now remains to prove that the maps g for each B € B are surjective and natural.
Suppose[[f, z]] € Q'BforsomeB e B.Ifz # ythenyg([f, z]) = [[f, Z]]. If z= y then
we observe (g, Xx)Kg(1, y) andso e ([fg, x]) = [[fg, X]] = [[f, y]]. Thus the maps are
surjective. Naturality follows from the following calculation

(P'[g] o ¥)I T, z1 = P'[gI[T, Z]]
=[[Q'g(f, 2)]]
=[[gf, z]]
= ¥,[0f, Z]
= ¥8,[Qq(f, 2]
= (¥, o P[ODIT, z].

5.2. Action A(i)

For each B € B define g : PB — P'B by [f, z] — [[f, z]]. Showing these maps
are well defined is equivalent to showing [f1, z1] = [f2, z2] = [[f1, z1]] = [[f2, z2]].
Applying the same reasoning as in the case for Action «, this amounts to showing
Re € Ry for each B € B. From the definition of P’ it followsthat P'B = PB (VB),
Pg=Pg V@), S8 €S (¥YB)andu/y = ua (YA). ThusKg = Kg, Lg € Lj
and NFa = N, and hence Rg € Ry for each B € B.

Showing g isinjective is equivalent to showing [[f1, z1]] = [[f2, 22]] = [f1, z1] =
[f2, z2]. We proceed as we did in the case for action o except that we do not need to define
the maps vg since QB = Q’'B for each B € B. We show that di’Rgie{ = 3c1,...,G €
QB; withc; = df, ¢ = € and satisfying [cj] = [Cj1] foreach j =1,...,t — 1. There
are three cases to consider

1. If di’K’Bie{ then di K, g since K’Bi = Kgp;.

2. d{L/Bie{ then either d'L g € or the relation must have the form (1g,, y)L’Bz(lgz, Z)
or (1g,, z)L’BZ(lgz, y) where y and z are given in the definition of Action g(i).
Letyt € Pb...bjy(x)forl <t <randz e Pbj...bjx)forl <t <s
suchthat y¢ € Pbj, (yt-1), z € Pbj(z-1), yr = y and zs = z. Then we have the
chain of equalities

(1B, Y1 = [bi,, Yyr—1]l = --- = [y, - - - bj;, X]
and also

[bjs - - - bjy, X] = - -+ = [bjq, zs_1] = [1B,, ZI.

118 M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126

We note that [bj,...bj,,x] = [bj ...bj;, x] since bj,...bj; = bj ...bj, isan
equation of B.

3. If d/Ng € thend/Ng € since ua = p), forany A e A.

Thus it can now be seen that (f1,z1) and (f2, z2) are equivalent with respect to the
congruenceon Q (i.e. [f1, z1] = [f2, 22]).

The proofs of surjectivity and naturality are straightforward and we leave them to the
reader.

5.3. Action A(ii)

For each B € B define yg : PB — P’B by [f, z] — [[f, z]]. Showing these maps
are well defined is equivalent to showing [f1, z1] = [f2, z2] = [[f1, z1]] = [[f1, z1]].
Applying the same reasoning as in the case for Action §(i), this amounts to showing
Rs € Ry for each B € B. From the definition of P’ it follows that P'B = PB (VB),
P'g = Pg (V9), Ss € S5 (VB) and i/, = ua (YA). ThusKg = Kg, Lg € Lz and
NFa = Ng, and hence Rg € Rj for each B € B.

Showing g isinjective is equivalent to showing [[f1, z1]] = [[f2, z2]] = [f1, z1] =
[f2, z2]. We proceed as we did in the case for action o except that we do not need to define
the maps vg since QB = Q'B for each B € B. We show that di’Rgie{ = 3cy,...,6G €
QBj withcy = d/, ¢t = € and satisfying [cj] = [cj41] foreach j = 1,...,t — 1. There
are three cases to consider

1. If d/Kg € thend/Kg € since Ky = Kg;.

2. If d/Lp € then either d/Lg € or the relation must have the form (1ra,, Y)LEa,
(Ar Ay, 2) Or (Lpp,, z)L’FAz(lpAZ, y) where y and z are given in the definition of
Action g(ii). It then followsthat (1F a,, Y)Nra, (1F A, 2).

3. If d/Ng € thend/Npg; € since ua = s forany A e A.

Thus it can now be see that (f1,z1) and (fp, zp) are equivalent with respect to the
congruenceon Q (i.e. [f1, z1] = [f2, 22]).
The proofs of surjectivity and naturality areleft to the reader.

5.4. Actiony

We consider the removal of a coincidence (X, y) where x # vy, the other case involving
removal of a coincidence of the form (x, x) is |eft to the reader. For each B € B define
VB : P'B — PBby[[f,2z]] — [f,z]. Showing this map is well defined is equivalent to
proving [[f1, z1]] = [[f2, 22]] = [f1, z1] = [f2, z2]. So suppose [[f1, z1]] = [[f2, Z2]]

then by Proposition 2.1 either f; = f; and z; = z; or thereexist U’ ..., ug € Q'B with
u; = (f1,z1) and ug = (fz, zp) suchthat Vi = 1,...,s — 1 there exists a morphism
hi : Bi — B with d/Rg € or € Rg d where Q'hi(d)) = uj and Q'hi(g)) = uj, ;. We

will now show that dfRg € implies that either df = € or that we can find ¢y, ..., ¢
with c; = d/ and ¢ = € such that [cj] = [cj41] foral j = 1,...,t — 1 Since
Rg = Kp, U Lp U N wehavethree casesto consider

M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126 119

1. If di’K’Biei/ whered = (9,2), € = (1, w) and w € P’g(z) then there are four
subcases to consider

(@ Ifz# xand w # x then w € Pg(z) and so d/Kp, €.

(b) If z=xandw # x theneither w € Pg(z) inwhichcased/Kg & or w € Pg(y).
But then we have (1, X)L (18, ¥) and (g, Y)Kpg, (1g;, w).

(c) If z# x and w = x then either w € Pg(2) in which case we have d/K g € or
z e (Pg)~%(y). But then we have (g, 2)Kg, (1g,, ¥) and (1g,,)L g (15, X).

(d) If z=x and w = x then either

w € Pg(z) but thend'Kp, €

/.
y € Pg(y) butthen (1g;, X)L g, (1g;,) and (g, Y)Kg (1g;, ¥).
X € Pg(y) but then (1g,, X)Lg; (1g;, ¥) and (g, y)Kg, (1g;, X).
y € Pg(x) but then (1g,, X)L g; (15,) and (1g;, Y)Kp; (g, X).

2. If d/Lg € whered/ = (1g,,2) and € = (1g;, w) then there are four subcases to
consider

(@ Ifz# xandw # x thend/Lp, €.

(b) If z # x and w = X then either d/Lg € or we have z € Sg(y) and so
(1Bi s Z)I—Bi (1Bi s Y) and (1Bi s y)I—Bi (1Bi s X)-

(©If z = xand w # x then dLge or we have w € Sg(y) and so
(1Bi s w)LBi (1Bi s Y) and (1Bi s y)LBi (1Bi , X).

(d) fz=xandw = xthend/ = €.

3. If d/Ng € then either d/Nra, € or there are three subcases to consider

@ (1,:A2,X)N,’:A2(Ff, Z) where x = ;L’AZ(Xf(m)), Yy = pua,(Xf(m)) and z =
wa, (M) # y. Wethenhave (1 a,, X)LEa, (1F Ay, Y) @nd (1Fa,, Y)NFA, (F T, 2).

(b) (Lrp,, DN, (FF, X) Wherez = pa, (XF(M) # y, x = pjp (M andy =
wa, (M). We then have (1 a,, Z)NFa, (Ff, y) and (1ra;, Y)Lra (1Fa» X).

(©) (LFap, XINgp, (FF x) where x = pl (XF(M), y = na(Xf(m), x =
y/Az(m) and y = pua,(m). We then have (1ra,.Y)Nra,(Ff,y) and
(Ar Ay, YYLFA, (1Fa,, X).

Thisthen showsthat [d] = [€/] for all i, and hencethat [f1, z1] = [f2, z2].

Next we must show that the maps yg for each B € B areinjective. Thisis equivalent to
showing that [f1, z1] = [f2, z2] = [[f1, z1]] = [[f2, z2]] where z, z2 # y. So suppose
[f1, z1] = [f2, 2] then either f; = f, and z; = 2z, or there exists uy, ..., Us_1 with
up = (f1,z1) andus = (fp,22) suchthat Vi = 1,...,s — 1 there exists a morphism
hi : Bi — B with diRg & or & Rg di where Qh;(di) = u; and Qhj(&) = uj+1. We
definethemap vg : QB — Q'B by (f,2) — (f,z) whenz # y and (f,y) — (f,X).
Given ¢ € QB we denote vg(c) by c¢’. We now show that d Rg,& implies that either
di = g orthatwecanfindcy, ..., ¢ withc) = d; and ¢ = € such that [[c/j]] = [[c}+l]]
foral j=1,...,t— 1. Since Rg, = Kg; U Lp, U Np, we havethree casesto consider

1. If diKg & withdi = (g, w1), & = (1B;, w2) and w2 € Pg(w1) then we have four
subcases

120 M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126

(@ Ifwi#yandwy # ythend, =di, ¢ = andd/Kpy €.

(b) If wi=yandwz # ythend/ = (g,x), ¢ =& andwz € P'g(x) thusd/Kp €.

(©) Ifwy # yandwz = ythend = di, € = (1g,x) and x € P'g(wy) thus
d/Kg €.

(d) f wy = yandwz = ythend/ = (g,x), & = (1,x) and x € P’'g(x) (since
y € Pg(y)) thusd{K/Biei/.

2. If diLg e withdi = (1g;, w1) and g = (1p,, w2) Where (w1, w2) € Sg, then we
have four subcases to consider

@ Ifwi#yandw # ythend =di, g =g anddiLy €.

(b) fwy =yandwz # ythend = (1g,X), € =& andwz € Sg(y) = w2 €
Sg, (X) and thus d/L €.

(©) Ifwy #yandwz = ythend =dj, € = (1g,x) and w1 € Sg;(y) = w2 €
S, (X) and thus diL €.

(d) f wy =yandwz = ythend =¢.

3. If di NF s, & then there are four possibilities

(@ d =di, e =g andthend/N¢, €.

(b) di = (Lra,.Y), & = (Ff,2) wherey = up,(Xf(m)) andz = pup, (M) # .
We then have x = M'AZ(Xf (m)) and so [[1Fa,, X1 = [[FT, z]].

(© d = (1ray, 2, & = (Ff,y) wherez = ppa, (Xf(mM)) # yandy = pa, (M),
We then have x = ;/Al(m) and so [[1Fa,, z]] = [[F T, x]].

(d) di = (1rpy, Y), & = (Ff,y) wherey = pa, (Xf(m)) andy = ua,(m). We
then have x = y/Az(Xf(m)) and X = y/Az(m) and so [[1Fa,, X1 = [[F T, X]].

The maps g will now be shown to be surjective. It should be clear that anything of
the form [f, z] where z # vy lies in the image of these maps (i.e. [[f,z]] = [T, z])
so it is sufficient to show that we can find elements of Q'B for some B € B which
map to elements of the form [f, y]. This is easy though since (1g, y)Lg(1g, X) and so
[[f,x]] = [f,x] = [f,y]. Naturadlity is straightforward and can be proved in the same
manner as before.

5.5. Action §

For each B € B defineyp : PB — P/B by [f,2z] — [[f, z]]. Showing this map
is well defined is equivalent to showing [f1, z1] = [f2, z2] = [[f1, z1]] = [[f2, z2]].
So suppose | f1, z1] = [f2, z2] then by Proposition 2.1 either f1 = f2 and z; = z, or there
existug,...,Us € QB withui = (f1,21) andus = (fp, z) suchthatvi =1,...,s—-1
there exists a morphism h; : B; — B with di Rg; & or & Rg, di where Qh;(di) = u; and
Qhij (&) = uj4+1. We now show that d; Rg; & impliesthat either di = g or that we can find
Cl,...,cwithc; =d andc; = g suchthat[[c]]] = [[c]+1]] foral j=1,...,t—1
Since Rg, = Kp; U Lg; U Np; we havethree cases to consider

1. If diKp g then either d; K{Biej, or diKp & hasthe form (g, x)Kpg, (1g;, 2) but then
we have (9, X)Kg (1g;, ¥) and (1g;, y) L (15, 2).

M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126 121

2. IfdiLgs thendiL’Bia.
3. If diNg & thendi Ny &.

Showing the maps are injective is equivalent to showing that [[f1, z1]] = [[f2, z2]] =
[f1,z2] = [f2, z2]. So suppose that [[f1, z1]] = [[f2, z2]] then by Proposition 2.1 either
fi = foandz; = zp orthereexistuy, ..., ug € Q'Bwithuj = (f1, z1) andug = (f2, z2)
suchthat Vi = 1,...,s — lthereexistsh; : B — B with d/Rg € or & Rg df where
Q'hi(d) = uj and Q'hi(e)) = uj, ;. We will now show that d Ry € implies that either
di = ¢ orthatwecanfindcy, ..., ¢ withcy = d and ¢; = € suchthat [cj] = [cj41] for
alj=1,....,t—1.SinceRy = Kg U L U Np wehavethree casesto consider

1. If d/Kg € thend/Kpg € since P'lg € Pg (V).

2. If di’L’Biei/ then either d/L g € or the relation has the form (1g;, y)L/Bi (1g;,2) in
which case we note that (g, X) Rg; (1g;, 2) and (g, X) Rg, (1g;, y¥) which implies that
[1g.2] = [1g, Y].

3. If di’N’Bie{ then d/Ng €

Surjectivity and naturality are straightforward and can be proved in the same manner as
before. O

6. An algorithm for computing P

The agorithm described in this section is non-deterministic in that at each step there
may be several courses of action.

Definition 6.1. A run of the algorithm consists of a sequence of the four actions «,
B, y and § applied to an initia (finite) presentation P thus generating a sequence of
presentations

P=Pt+> P> P> -

It is said to terminate if there existst > 0 such that the presentation P; is invariant under
all four actions.

By Proposition 4.1 the presentation P; reached upon termination must be the restriction
to Gg of some functor B — Sets. By Proposition 3.2 this functor is naturally isomorphic
to Py, then by Theorem 5.1 and induction we have P; naturally isomorphic to P. In each
case the isomorphism is compatible with the associated 1 natura transformations. So it
should be easy to see that by applying the algorithm and reaching the terminating state P;
we have effectively calculated P from P.

Itisnot clear that every run of this algorithm should terminate. Clearly if P isnot finite
then terminationisimpossible. What about when P isfinite? In order to ensure termination
in this case some conditions will be imposed on the sequence of actions. From now on all
presentations considered will be finite.

First we number of al the elements in the starting presentation with natural numbers
starting at 1. Then each time a new element is created by action o during a run of the

122 M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126

algorithm it islabelled with the next largest number available, we call this number the rank
of the element. Elementsin the starting presentation will be called initial elements.

Definition 6.2. A sequencensi, 12, ... of thefour actions «, 8, y and § issaid to be afair
interleaving if it satisfies the following conditions

1. For each actionn = «, B, y or § and each n > 1, there exists m such that m > n and
nm = n (i.e. no action isleft out of the sequence indefinitely).

2. When applying action « the element involved is always chosen to have minimal rank.

3. When applying action y the element of highest rank in the coincidence is del eted.

4. For al n > 1there existsm such that m > n and Py, isinvariant under the actions 8,
y and$.

The first three conditions are easy to implement. To see that the fourth is also
straightforward we prove the following proposition.

Proposition 6.1. Suppose 11, 172, . . . IS & sequence of the three actions 8, y and § such
that for each actionn = B,y or § and each n > 1 there exists m such that m > n and
nm=n.Let P =Py~ Py — P>+ ... betheassociated sequence of presentationsthen
there existst such that P; isinvariant under the actions 8, y ands.

Proof. Given afinite presentation P the total number of elementsisfinite. Thusthe total
number of possible coincidences (pairings of elements) is aso finite. To each coincidence
which is created during the course of the algorithm we assign a number. This number
will be the place in the sequence where that coincidence is first created. (Note: the same
coincidence may be added many times.) Choose the maximal such number (this is a
position in the sequence after which no new coincidences are created). Now because none
of the actions areindefinitely left out we continue to delete coincidences and we also know
that each coincidence deleted can never be added back, thus there must be a point in the
sequence (after a finite number of steps) where all the coincidences have been deleted
and after which no coincidences can be created. This then means that we have reached an
invariant presentation, since both action 8 and § involve the addition of coincidences. O

It follows from Proposition 6.1 that if we ensure that during any run of the algorithm
we regularly stop applying action & and just allow actions 8, y and § to operate then we
will always reach a presentation invariant under these three actions, thus implementing the
fourth condition in Definition 6.2.

Theorem 6.1. Given a presentation P where P is finite then any fair interleaving of the
four actions«, B8, y and § applied to P must terminate.

Proof. Letn1, 2, ... beany fair interleaving of the four actions. Let P = Py, Py, Po, ...
be the corresponding sequence of presentations. Since P is finite, the collection of
elements in the set LIgcg P B is finite. We can thus write down a list of representatives
(f1,z0), ..., (fm, zm) where f; € B for eachi and z isaninitial element for eachi. Since
P isafunctor it followsthat for each morphisng : By — B, in Gg and each | fi, zj] where
cod(fij) = By, then there exists j with Pg[fi,z] = [fj,zj] (i.e [dfi,z] = [}, zj]).

M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126 123

By Proposition 2.1 either gfi = fj and zy = zj or there exists ug, ..., us € QB with
ur = (gfi,z) and us = (fj,zj) such that for eacht = 1,...,s — 1 there exists
hy : B — B with diRpg & or &Rpgdi where Qht(dy) = uj and Qht(&) = Ujy1.
Similarly if zi € PB then there exists j such that [1g, zi] = [fj, z;] and we can apply
Proposition 2.1 again to conclude that either fj = 1g and zi = z; or that there exists
a sequence uy, . . ., Us with the usual properties. Collect together al of the sequences of
elements u; that can be found in these two ways and observe that there are only finitely
many of them. Now define the length of any morphismin B to be the minimal length of al
the morphismsin FGg corresponding to it (take the length of identity arrows to be zero).
Let | be the maximum length of any morphism from B occurring in the first component of
amember of any of these sequences. We now study the properties of these sequences and
how they interact with the four actions«, 8, y and §.

First we define some terminology. Given a presentation P (with associated functor Q)
and uy,...,Us € QB such that foreacht = 1,...,s — 1l thereexistsh; : B — B
with d; Rg, & or & Rg, di where Qh;(di) = uj and Qht (&) = uj;+1. Then we call such a
collection {us, ..., us} € QB achainon Q.

Suppose we apply action o or 8 to P giving us a new presentation P’, then
{ug,...,us} € Q'Bisachainon Q. Thisfollows because Rg, < R’Bi foreachB € B
(see Section 5 for a more detailed discussion of this point). If we apply action y to P to
remove a coincidence (x, y) then {u, ..., ug} € Q'B isachain on Q" where we define
u =(9,2) ifui = (9,2 andz # y oru; = (g, x) if uj = (g, y). Thisfollows from the
fact that x inherits all of the propertiesthat the element y originally had, e.g. if z € Pg(y)
then z € P'g(x), if z € Sg(y) then z € S5(x) etc. Finaly if we apply action § to P
we may have to modify the chain dlightly. Suppose that di Kg & (where Qh;(di) = u;
and Qh; () = uj41 for some morphism h;) then either d; K/Bia or diKp, g hastheform
(9, X)Kpg; (1g;, 2) but then we have (g, X) Kgi (1g;, y) and (1g;, y)L’Bi (1g;, 2). So we can
replace u; and uj1 in the chain with (h; g, x), (h;, y) and (h;, z). The other relations are
notaproblemsinceLg U Mg © L U M.

The important thing to note in all four cases is that the maximal length of morphisms
occurring in the first components of any elements in a chain does not increase when the
action is applied, thus it is always bounded above by the quantity | that we defined earlier.

We now turn our attention back to the sequence of presentations. We call two elements x
and y path connectedif thereexist elementsus, . . ., us in the presentation with u; = x and
us = ysuchthatforeachi = 1, ..., s—1either thereexistsh; € Gg with Ph; (u;) = uj 41
or (U1, Uj+1) is a coincidence. The collection of morphisms involved in any connection
between x and y formsamorphismin F#Gg which we call a path fromx to y.

It is straightforward to prove by induction that given a presentation in the sequence
Po, P1, P2, ... then any element in this presentation is either initial or path connected to
an initial element. It follows that if the presentation is invariant under action y then any
element y is either initia or there exists a morphism g € FGg and an initial element x
suchthat y € Pg(x).

Observe that conditions 2 and 3 in Definition 6.2 ensure that given any morphism g in
FGp with domain Awhere Py(A) # ¢ then there exists a presentation P, in the sequence
and element x such that x is path connected to an initial element and the associated path

124 M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126

is g. In particular if we let n be the number of elementsin Py and let m be the maximum
number of morphismswith a common domain that occur in Gg then after applying action
« atotal of nm' times we can conclude that every path of length less than or equal to |
occurs as the path connection of some element in the presentation to an initial element. In
summary, if mis chosen large enough then Py, will satisfy

1. Invariance under actions 8, y and § (apply condition 4 of Definition 6.2).

2. Every element y in the presentation Py, is either initial or there exists a morphism
g € FGg and aninitial element x suchthat y € Pg(x).

3. Given a morphism g € FGg with length less than or equal to | and x an initial
element then Pg(x) # #.

It will now be shown that this presentation Py, isinvariant under action «.

Recall from the start of the proof that (f1, z1), ..., (fm, zm) arealist of representatives
of elements in the set LigcgPB. It is easy to see that we can write down a list of
representatives for P, of the form (fy, Z)), ..., (fm, z;) where each 7 is dtill an initial
element. Thisis because an initial element can only be replaced by another initial element
when a coincidence is removed, during the course of the algorithm. (See condition 3 of
Definition 6.2.) By definition the length of each f; is less that or equal to I, and so it
follows that P fi(z)) # ¢. In fact since Py, is invariant under action § there can be no
non-determinacy thus Pn, fi (z) defines exactly one element.

Earlier we noted that for each i and each applicable morphism g in Gg therewasachain
connecting the elements (gfi, z) and (fj, zj) (for some j). Using the properties of chains
inrelation to the actionsiit follows that there is a chain connecting (gfj,) and (fj, z’j). It
was also proved that the length of the morphismsin the first componentsremained bounded
aboveby |. Hence if u; = (kj, wj) is an element of the chain then Pyk; (wj) isauniquely
defined element of the presentation Py,. Using theinvariance of Py, under actions g8, y and
8 it can be shown that Pmki (wi) = Pmkiy1(wit1) and thus Pngfi(z) = Pnfj (z’j). It
followsthat the set of elements

G={Pnfiz)|1<i<m

is closed under the action of the morphisms. Other chains were also considered between
elements (1g, z) and the representatives (f;, zj). Carrying everything through as before
we deduce that all of the initial elements z in Py areincluded in the set G. But then from
the construction of Py, we know that all its elements are either initial or lie in the image
of an initial element. Thus the closure of G ensures that it contains all e ements of Pp,.
Therefore Py, is invariant under action @ since Png(x) is defined for al elements x and
applicable morphismsg. O

7. Left Kan extensions

So far we have described an a gorithm which starts with an arbitrary presentation P and
computesthe associated functor P : B — Setsand natural transformationz : X — PF,
terminating exactly when the answer is finite. Aswill be shown, by choosing P carefully
we can ensure that (P, 7z) is in fact the left Kan extension of X along F. First we state a
result concerning the structure of left Kan extensions.

M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126 125

Proposition 7.1. Given functors F : A — B and X : A — Setswhere A and B are
finitely generated categories, we define a functor L : B — Sets as follows. For each
object B € B

LB = ZB(FA,B)XXA /~

AcA

where ~ is the smallest equivalence relation such that for all f : A — A’ in A,
g: FA'— BinBandx € XA

(gFf, %) ~ (g, Xf(x)).
For each morphismh : B — B’ in B define
Lh:LB — LB’:[g,x]+~ [hg, x]

wherethe equivalence class of (g, X) with respect to ~ hasbeen denoted [g, x]. Now define
the natural transformation . : X — LF by

ua: XA— LFA: X+ [1ga, X].
Then L and u formthe left Kan extension of X along F.

Proof. The proof is a relatively straightforward exercise and can be found in
Walters (1991). O

Proposition 7.2. Define a presentation P as follows:

1. PB=) pcp-1g XAfor each B € B.

2. Pg = ¢ for all morphismsg € Gg.

3. SB = ¢ for each B € B.

4. ua: XA — PFA istaken to betheinclusion mapping X — X for each A € A.

Then (P, 1) satisfy the universal property that given any functor U : B — Sets and
natural transformation n : X — UF, there exists a unique natural transformation
¥ : P— U suchthat ¥ F o u = 5. (Thisisthe defining property of aleft Kan extension.)

Proof. From Proposition 7.1 above and the definition of P thisfollowsimmediately. [

References

Carmody, S., Waters, R.F.C., 1991. Computing quotients of actions on a free category.
In: Carboni, A., Pedicchio, M.C., Rosolini, G. (Eds.), Category Theory, Proceedings of the
International Conference Held in Como, Italy, 22—28 July 1990. Springer.

Chandy, K., Misra, J., 1988. Parallel Program Design. Addison-Wesley, Reading, MA.

Coxeter, H.S.M., Moser, W.0.J., 1957. Generators and Relations for Discrete Groups. Springer.

Leech, J., 1963. Coset enumeration in digital computers. Proc. Camb. Phil. Soc. 59, 257-267.

Leeming, M., Walters, R.F.C., 1995. Computing left Kan extensions using the Todd-Coxeter
procedure. In: van der Poorten, Bosma (Eds.), Computational Algebra and Number Theory.
Kluwer, pp. 53-73.

126 M.R. Bush et al. / Journal of Symbolic Computation 35 (2003) 107-126

Sims, C., 1994. Computing with Finitely Presented Groups. Cambridge University Press, Cambridge.

Todd, J., Coxeter, H.S.M., 1936. A practical method for enumerating cosets of afinite abstract group.
Proc. Edinburgh Math. Soc. (2nd series) 5, 26-34.

Walters, R.F.C., 1991. Categories and Computer Science, Cambridge Computer Science Texts,
vol. 28, Carslaw Publications, Cambridge University Press, 1992.

	Computing left Kan extensions
	Introduction
	Congruences and quotients
	Presentations and functors
	Modifying presentations
	Action : add an element
	Action : add a coincidence
	Action : delete coincidences
	Action : delete non-determinism

	Invariance of P under modifications
	Action
	Action (i)
	Action (ii)
	Action
	Action

	An algorithm for computing P
	Left Kan extensions
	References

