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Abstract

We describe a new extension of the Todd–Coxeter algorithm adapted to computing left Kan
extensions. The algorithm is a much simplified version of that introduced by Carmody and Walters
(Category Theory, Proceedings of the International Conference Held in Como, Italy, 22–28 July
1990. Springer) in 1991. The simplification allows us to give a straightforward proof of its correctness
and termination when the extension is finite.c© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many algorithms have a natural description in the following form. The algorithm
concerns a finite presentation of a possibly-infinite algebraic structure. A finite number
of ways of modifying presentations are given, called theactions of the algorithm.
These actions leave invariant the algebra presented by the presentation. A run of the
algorithm consists in applying a sequence of these actions, in a particular order, to a
given presentation with the idea of simplifying it to the point that the answer to certain
questions about the presented algebra become apparent. The correctness of the algorithm
follows from the invariance of the presented algebra under the actions. Its termination is a
consequence of the particular sequence of actions chosen. Having algorithms in this form
separates the questions of correctness, termination, and efficiency. The crucial steps in
describing and proving algorithms in this way are finding the appropriate notion of finite
presentation, and finding the simplest possible actions which leave invariant the algebra
presented.

Two classical examples of algorithms which may be considered in this form are Euclid’s
algorithm (which concerns the presentation of an ideal inZ) and Gaussian elimination
(which concerns the presentation of a linear transformation between two vector spaces).
In this paper we describe another example, namely an algorithm for computing the left
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Kan extension of a functorX : A → Sets along a functorF : A → B. The state on
which the algorithm acts is a finite presentation of a functorL : B → Sets and a natural
transformationµ : X → L F .

The original Todd–Coxeter algorithm, on which the present algorithm is based,
concerned a finite presentation of the cosets of a subgroup H in a group G, in terms of
certain tables. Though this notion of finite generation has been clarified in subsequent
works (see, for example,Sims, 1994) the algorithm has never been described and proved
in the form outlined in the first paragraph. The reason is that the particular form of
presentation taken has always necessitated a recursive subprocedure calleddealing with
coincidenceswhich is perhaps the most obscure part of the algorithm. The essential novelty
of this paper, apart from its greater generality in dealing with left Kan extensions rather than
the enumeration of cosets, is that we introduce a new notion of finite presentation which
removes the need for the subprocedure for dealing with coincidences thus clarifying the
algorithm substantially.

The history of our algorithm is as follows. Todd and Coxeter described their
coset enumeration algorithm in 1936 (Todd and Coxeter, 1936; see alsoCoxeter and
Moser, 1957). It was perhaps the first abstract algebra algorithm actually implemented on
an electronic computer by Haselgrove in 1953 on EDSAC1 in Cambridge (Leech, 1963).
The most encyclopaedic reference to later developments in coset enumeration is
Sims (1994). The algorithm was extended to the computation of left Kan extension by
Carmody and Walters (1991)andWalters (1991). The paper (Carmody and Walters, 1991)
contains a proof of the “dealing with coincidences” subprocedure. The algorithm
was extended further to left Kan extensions of product-preserving functors in
Leeming and Walters (1995).

In trying to find a simple enough presentation of the last algorithm to give a
proof of completeness we were led to the flat version in this paper, avoiding the
“dealing with coincidences” subprocedure. We were strongly influenced by a conversation
with Rod Burstall about a concurrent garbage collection algorithm, and by ideas in
Chandy and Misra (1988).

2. Congruences and quotients

Throughout this section letB be an arbitrary category.

Definition 2.1. Given a functorL : B Sets, a family of relations on Lis a family
R = {RB ⊆ L B × L B}B∈B. A family E = {∼B}B∈B is called acongruence onL if it
satisfies

(i) ∼B is an equivalence relation for eachB ∈ B.

(ii) If g : B → B′ is a morphism inB thenx ∼B y ⇒ Lg(x) ∼B′ Lg(y).

Definition 2.2. If R= {RB}B∈B andS= {SB}B∈B are two families of relations onL then
we sayR⊆ S iff RB ⊆ SB for eachB ∈ B.
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Lemma 2.1. Let L : B Sets be a functor and{RB}B∈B a family of relations on L.
Suppose for each i∈ I that Ei = {∼i

B}B∈B is a congruence on L containing{RB}B∈B.
Define for each B∈ B

∼B=
⋂
i∈I

∼i
B .

Then E= {∼B}B∈B is a congruence on L containing{RB}B∈B.

Proof. GivenB ∈ B we have thatRB ⊆∼i
B for eachi ∈ I , and soRB ⊆∼B. Also,∼B is

the intersection of an indexed family of equivalence relations hence∼B is an equivalence
relation. Finally, ifg : B → B′ is a morphism inB then

x ∼B y⇒ x ∼i
B y for eachi ∈ I

⇒ Lg(x) ∼i
B′ Lg(y) for eachi ∈ I

⇒ Lg(x) ∼B′ Lg(y).

ThusE = {∼B}B∈B is a congruence containing{RB}B∈B. �

By Lemma 2.1we can now define theminimal congruence on L containing{RB}B∈B
as the familyE = {∼B}B∈B with ∼B defined as above whereI indexes the collection of
all congruences onL containing{RB}B∈B. We now give an alternative characterization of
this minimal congruence.

Proposition 2.1. Let {∼B}B∈B be the minimal congruence on L containing{RB}B∈B,
then m∼B n iff

1. m= n or.

2. There exist u1, . . . ,us ∈ L B with u1 = m and us = n such that for each
i = 1, . . . , s− 1 there exists a morphism hi : Bi → B in B with di RBi ei or ei RBi di

where Lhi (di ) = ui and Lhi (ei ) = ui+1.

Proof. Define a family of relations{TB}B∈B by mTBn if and only if condition 1 or 2 in
the statement of the proposition holds.

We check that{TB}B∈B is a congruence onL containing{RB}B∈B. If m RBn then
mTBn by condition 2 above, thusRB ⊆ TB. If m = n then mTBn by condition 1
above, thusTB is reflexive. It is also clear from the nature of condition 2 that eachTB

is symmetric and transitive, henceTB is an equivalence relation for eachB ∈ B. Next,
supposeg : B → B′ is a morphism inB with x = Lg(m) and y = Lg(n). If mTBn
then either condition 1 or 2 of the construction above must hold. In the first casem = n,
but thenx = Lg(m) = Lg(n) = y and soxTB′ y. In the second case we have elements
u1, . . . ,us ∈ L B with u1 = m andus = n such that for eachi = 1, . . . , s − 1 there
exists a morphismhi : Bi → B in B with di RBi ei or ei RBi di whereLhi (di ) = ui and
Lhi (ei ) = ui+1. Definewi = Lg(ui ) for eachi = 1, . . . , s− 1. It is clear that for eachi
we havedi RBei or ei RBi di whereL(ghi )(di ) = wi andL(ghi )(ei ) = wi+1, but then by
condition 2 we havexTB′ y. Thus{TB}B∈B is a congruence onL containing{RB}B∈B and
so by the minimality of{∼B}B∈B it follows that∼B⊆ TB for eachB ∈ B.
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Now we check thatTB ⊆∼B for eachB ∈ B. Suppose thatmTBn, if m = n then
m ∼B n since∼B is an equivalence relation. Ifm �= n then by definition there must exist
u1, . . . ,us ∈ L B with u1 = m andus = n satisfying condition 2 above. ButRB ⊆∼B

and{∼B}B∈B is a congruence thusu1 ∼B ui+1 for eachi , which impliesm ∼B n. Hence
TB ⊆∼B and soTB =∼B for eachB ∈ B. �

Remark 2.1. As a special case, ifB is a monoid with only one morphism (the identity)
then Proposition 2.1is the usual characterization of the minimal equivalence relation
containing a given relation.

Proposition 2.2. Given a functor L : B Sets and a congruence{∼B}B∈B, the
following defines a new functor̂L : B Sets. For each B∈ B

L̂ B = L B/ ∼B

and for each morphism g: B → B′ in B

(L̂g)[x] = [Lg(x)]
where[x] is the equivalence class with respect to∼B of x ∈ L B. The functorL̂ will be
called the quotient of L by{∼B}B∈B.

Proof. Straightforward. �

3. Presentations and functors

We consider two finitely presented categoriesA and B. Let B have a presentation
consisting of a finite graphGB and equationsUi = Vi for 1 ≤ i ≤ n where eachUi

andVi is a word in the morphisms ofGB. Let A have a presentation consisting of a finite
graphGA and equations which we do not specify. Suppose also that we are given two
functorsF : A B andX : A Sets. We next define the notion of apresentation P
of a functor fromB to Sets and a natural transformation from X to the composite of this
functor with F, which for brevity shall just be called apresentation P.

Definition 3.1. A presentation Pconsists of:

(i) A set P B for eachB ∈ GB.
(ii) A relation Pg : P B1 → P B2 for each morphismg : B1 → B2 in GB.
(iii) A symmetric relationSB ⊆ P B× P B for eachB ∈ GB. The elements of eachSB

will be calledcoincidences.
(iv) A functionµA : X A→ P FA for each objectA ∈ A.

P is said to be afinite presentationif the setsP B andX A are finite for all objectsA ∈ A
andB ∈ B.

Although Pg is defined for morphisms inGB, we will extend the notation and define
Pg = Pg1 . . . Pgn whereg is the morphismg1 . . . gn ∈ FGB (the free category on the
graphGB), and the relations are composed in the usual manner.
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Given a presentationP there is an associated functorP from B to Sets and a natural
transformation fromX to P F. To construct these first define a functorQ : B Sets on
eachB ∈ B by

QB =
∑
B′∈B

B(B′, B)× P B′

and on each morphismg : B1 → B2 in B by

Qg( f, x) = (g f, x).

It is straightforward to check thatQ is indeed a functor and we leave this to the reader.
Next define a relationRB for each objectB ∈ B by RB = KB ∪ L B ∪ NB whereKB, L B

andNB are relations onQB for eachB ∈ B defined as follows

(i) If x ∈ P B1 and g : B1 → B2 is a morphism inGB with y ∈ Pg(x) then
(g, x)KB2(1B2, y).

(ii) If m,n ∈ P B andm∼SB n then(1B,m)L B(1B,n).
(iii) If x ∈ X A1 and f : A1 → A2 is a morphism inGA then

(F f, µA1(x))NF A2(1F A2, µA2(X f (x))).

Let {∼B}B∈B be the minimal congruence onQ containing{RB}B∈B. UsingProposition 2.2
defineP to be the quotient functor̂Q of the functorQ by the congruence∼.

Proposition 3.1. DefineµA : X A→ P FA for each object A∈ A by

µA(x) = [1F A, µA(x)]
thenµ is a natural transformation from X toP F.

Proof. Observe that for any elementx ∈ X Ar and morphismf = f1 . . . fr in A where
each fi : Ai → Ai−1 is a morphism inGA, then

µA0
(X f (x))= [1F A0, µA0(X f1 . . . fr (x))]

= [F f1, µA1(X f2 . . . fr (x))]
...

= [F f1 . . . fr , µAr (x)]
= P F f (µAr

(x)).

The middle steps in the calculation above follow from repeated usage of condition
(iii) in the definition of the relations{RB}B∈B and also from the closure property of
congruences. �

Definition 3.2. A pair (L, φ) consisting of a functorL : B Sets and a natural
transformationφ : X ˙ L F is said to be finitely presented if there exists a finite
presentationP and isomorphismψ : P ˙ L such thatψF ◦ µ = φ.

Proposition 3.2. Let (P, µ) be a pair consisting of a functor P: B → Sets and a natural
transformationµ : X ˙ P F. Regard P as a presentation by restricting its domain to the
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graph GB, defining SB = ∅ for each B∈ B and leaving the mapsµA unchanged for each
A ∈ A. Then there exists a natural isomorphismψ : P ˙ P such thatψF ◦ µ = µ.

Proof. DefineψB : P B→ P B for eachB ∈ B by x �→ [1B, x]. Immediately it should be
clear thatψF ◦ µ = µ. We now show that given any morphismg = g1 . . . gr in B where
eachgi : Bi → Bi−1 is a morphism inGB, then[g, x] = [1B0, Pg(x)]. First, observe that
[gr , x] = [1Br−1, Pgr (x)]. Now suppose[gi . . . gr , x] = [1Bi−1, Pgi . . . gr (x)] then

[gi−1gi . . . gr , x] = [gi−1, Pgi . . . gr (x)]
= [1Bi−2, Pgi−1Pgi . . . gr (x)]
= [1Bi−2, Pgi−1gi . . . gr (x)]

and so by induction[g, x] = [1B0, Pg(x)]. From this result it is clear that the mapsψB are
natural and surjective.

Showing these maps are injective is equivalent to proving[1B, x] = [1B, y] ⇒ x = y.
Suppose[1B, x] = [1B, y], then byProposition 2.1eitherx = y or there existu1, . . . ,us ∈
QB with u1 = (1B, x) and us = (1B, y) such that for eachi = 1, . . . , s − 1 there
exists a morphismhi : Bi → B in B with di RBi ei or ei RBi di where Qhi (di ) = ui

and Qhi (ei ) = ui+1. Now let di = ( fi , zi ) and ei = (gi , wi ) for each i . Since
RBi = KBi ∪ L Bi ∪ NBi (note thatL Bi = ∅) it follows that if di RBi ei then we have
two cases to consider, eitherdi KBi ei or di NBi ei (similarly for ei RBi di ). In each of these
cases it is not hard to see thatP fi (zi ) = Pgi (wi ) and soPhi fi (zi ) = Phi gi (wi ). If we
also note that(hi−1gi−1, wi−1) = Qhi−1(ei−1) = ui = Qhi (di ) = (hi , fi , zi ) which
implies thatwi−1 = zi andhi−1gi−1 = hi fi for any i , then moving alongu1, . . . ,us we
have the chain of equalities.

x = P1B(x)= · · · = Phi−1gi−1(wi−1)

= Phi fi (zi ) = Phi gi (wi ) = · · · = P1B(y) = y. �

4. Modifying presentations

A presentationP can be pictured as a collection of sets with arrows between the
elements representing the relationsPg for each morphismg in GB. For example, ifB
is the category with finite presentation consisting of the graph

B1 B2

g2

g1

and with no equations, then the following is a typical presentation.

PB1

m3

m2

m1

g2
g1

g1

PB2

n3n2

n1
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The coincidences given by SA and SB on the sets P A and P B have been denoted
with pairs of parallel lines between the elements. Note also that by a slight abuse of
notation the arrows are labelled with g1 and g2 instead of Pg1 and Pg2. Notice that we
have not included the functions µA in the picture above. In general we shall omit these,
since they are only referred to infrequently. We now describe a list of permitted actions or
modifications of a presentation P . In each case we start with P and then construct a new
presentation P ′.

4.1. Action α: add an element

If x ∈ P B1 and g : B1 → B2 is a morphism in GB, then if there does not exist y ∈ P B2
with y ∈ Pg(x) we define a new presentation P ′ on the objects of GB

P ′B2 = P B2 ∪ {y}
P ′B = P B where B �= B2

and on the morphism of GB

P ′g = Pg ∪ {(x, y)}
P ′h = Ph where h �= g

and with the same coincidences S′B = SB and functions µ′A = µA for each B ∈ GB and
A ∈ GA.

PB2

PB1

α

y

g

x x

⇒

P′ B2

P′ B1

4.2. Action β: add a coincidence

(i) Suppose we have an equation bir . . . bi1 = b js . . . b j1 in the presentation of B.
Suppose also that x ∈ P B1 and y, z ∈ P B2 with y ∈ Pbir . . . Pbi1 (x) and z ∈
Pb js . . . Pb j1(x). Then if y �= z we can construct a new presentation P ′ which is identical
to P in relation to objects, morphisms and the functions µA, but whose coincidences are
defined as follows.

S′B2
= SB2 ∪ {(y, z), (z, y)}

S′B = SB where B �= B2

PB2

PB1

P′ B2

P′ B1

β

x

zy

bir
bjs

bil
bjl

⇒
x

zy

bir
bjs

bil
bjl

(ii) if m ∈ X A1 and f : A1 → A2 is a morphism in GA then if z �= y where
z ∈ P F f (µA1(m)) and y = µA2 (X f (m)), construct a new presentation P ′ which
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is identical to P in relation to objects, morphisms and the functions µA, but whose
coincidences are defined as follows

S′F A2
= SF A2 ∪ {(y, z), (z, y)}

S′B = SB where B �= F A2.

PF A2

PF A1

P′ F A2

P′ F A1

β

µA1
(m)

µA2
(Xf(m))

⇒

z

Ff

µA1
(m)

µA2
(Xf(m))z

Ff

4.3. Action γ : delete coincidences

Given a coincidence (x, y) ∈ SB1 we construct a new presentation P ′ without this
coincidence as follows. If y = x then we define P ′ identically to P on objects and
morphisms of GB. On coincidences we define

S′B1
= SB1\{(x, x)}

S′B = SB where B �= B1.

If y �= x then we define P ′ on the objects of GB by

P ′B1 = P B1\{y}
P ′B = P B where B �= B1.

Define P ′ on each morphism g of GB with the following list of conditions

1. if dom(g)= cod(g) = B1 and y ∈ Pg(y) then
P ′g = {Pg ∪ (x × Pg(y)) ∪ ((Pg)−1(y)× x) ∪ (x, x)} ∩ (P ′B1 × P ′B1)

2. if dom(g)= cod(g) = B1 and y /∈ Pg(y) then
P ′g = {Pg ∪ (x × Pg(y)) ∪ ((Pg)−1(y)× x)} ∩ (P ′B1 × P ′B1)

3. if dom(g)= B1 but cod(g) = B �= B1 then
P ′g = {Pg ∪ (x × Pg(y))} ∩ (P ′B1 × P ′B)

4. if cod(g)= B1 but dom(g) = B �= B1 then
P ′g = {Pg ∪ ((Pg)−1(y)× x)} ∩ (P ′B × P ′B1)

5. if dom(g) �= B1 and cod(g) �= B1 then P ′g = Pg.

Define the coincidences of P ′ by

S′B = SB where B �= B1
S′B1

= {SB1 ∪ (x × SB1(y)) ∪ (SB1(y)× x)} ∩ (P ′B1 × P ′B1).

Define the family of functions {µ′A}A∈A by

µ′A(m) = x where µA(m) = y
µ′A(n) = µA(n) where µA(m) �= y

where m, n ∈ X A.
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PB1
PB

PB2

γ

t

x

yz

⇒

P′ B

P′ B2

P′ B1

p

q

g

g

h h

t

x
z

p

q

g

g

4.4. Action δ: delete non-determinism

If x ∈ P B1 and y, z ∈ Pg(x) where g : B1 → B2 is in GB, then if y �= z define P ′
identically to P in relation to the objects of GB and the functions µA . On the morphisms
of GB define

P ′g = Pg\{(x, z)}
P ′h = Ph where h �= g.

Define coincidences

S′B2
= SB2 ∪ {(y, z), (z, y)}

S′B = SB where B �= B2.

PB1

PB2

δ

y

x

z

⇒

P′ B2

P′ B1

gg

y

x

z

g

Definition 4.1. Given a presentation P and an action we say that P is invariant under this
action if it is not applicable to P in any way.

Proposition 4.1. If P is a presentation invariant under the actions α, β, γ and δ, and the
definition of P is extended to the morphisms of B by defining Pg = Pg1 . . . Pgn where
g = g1 . . . gn in B and P1B = 1P B for each B ∈ B. Then P is a functor and µ is a natural
transformation from X to P F.

Proof. First observe that the invariance of P under α implies that given any morphism
g : B1 → B2 in GB then Pg(x) �= ∅ for all x ∈ P B1. The invariance of P under δ
implies that Pg is a function for each morphism g : B1 → B2 in GB. The invariance of
P under Action β(i) implies that given any equation Ui = Vi in the presentation of B then
PUi = PVi . Thus using the definition of the equivalence relation on the morphisms of
FGB (used to define morphisms of B) it follows that Pg is well defined for all morphisms
g in B. The invariance of P under γ implies that SA = ∅ for all A ∈ B. The functorial
properties of P follow directly from our definition of P on the morphisms of B. The
naturality of µ follows from the invariance of P under Action β(ii). �
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5. Invariance of P under modifications

Theorem 5.1. If P is a presentation and P ′ is the presentation obtained from P by
applying one of the actions α, β, γ or δ, then there exists a natural isomorphism ψ :
P → P ′ satisfying ψF ◦ µ = µ′.
Proof. In each case a map ψB : P B → P ′B for each B ∈ B is given. These maps are
then shown to be

1. Well defined.
2. Injective.
3. Surjective.
4. Natural.

This will show that P ′ is naturally isomorphic to P as required. The equationψF ◦ µ = µ′
will also follow in a straightforward manner from the definition. In the course of the
proofs [g, x] and [[g, x]] will denote the equivalence classes of (g, x) with respect to the
congruences associated with P and P ′, respectively. In constructing the functor P from
the presentation P we made use of a functor Q. We will let Q′ denote the corresponding
functor in the construction of P ′ from P ′. The proof of invariance for each of the actions
will now be discussed in turn.

5.1. Action α

For each B ∈ B define ψB : P B → P ′B by [ f, z] �→ [[ f, z]]. Showing this map
is well defined is equivalent to proving [ f1, z1] = [ f2, z2] ⇒ [[ f1, z1]] = [[ f2, z2]].
So suppose [ f1, z1] = [ f2, z2]. By Proposition 2.1 either f1 = f2 and z1 = z2 or
there exist u1, . . . , us ∈ QB with u1 = ( f1, z1) and us = ( f2, z2) such that for each
i = 1, . . . , s− 1 there exists a morphism hi : Bi → B in B with di RBi ei or ei RBi di where
Qhi (di ) = ui and Qhi (ei ) = ui+1. Now by definition RB = K B ∪ L B ∪ NB . Denote
the corresponding relations of P ′ by R′B , K ′

B , L ′B and N ′B . Observe from the definition of
P ′ that P B ⊆ P ′B (∀B), Pg ⊆ P ′g (∀g), S′B = SB (∀B) and µ′A = µA (∀A).
Thus K B ⊆ K ′

B , L B ⊆ L ′B and NF A ⊆ N ′F A , hence RB ⊆ R′B for each B ∈ B. From
this it is clear that di RBi ei or ei RBi di ⇒ di R′Bi

ei or ei R′Bi
di and so by Proposition 2.1

[[ f1, z1]] = [[ f2, z2]].
Proving the maps ψB are injective is equivalent to showing [[ f1, z1]] = [[ f2, z2]] ⇒

[ f1, z1] = [ f2, z2] where z1, z2 �= y. Suppose [[ f1, z1]] = [[ f2, z2]]. By Proposition 2.1
there exists B ∈ B and u′1, . . . , u′s ∈ Q′B with u′1 = ( f1, z1) and u′s = ( f2, z2) such that
for each i = 1, . . . , s − 1 there exists a morphism hi : Bi → B in B with d ′i R′Bi

e′i or
e′i R′Bi

d ′i where Q′hi (d ′i ) = u′i and Q′hi (e′i ) = u′i+1. Define a map νB : Q′B → QB by
ν( f, z) = ( f, z) if z �= y and ν( f, y) = ( f g, x). In general if c′i ∈ Q′B we will let ci

denote ν(c′i ). Observe that d ′i ∈ (Q′hi )
−1(u′i ) ⇒ di ∈ (Qhi )

−1(ui ) and similarly for e′i .
We will now show that d ′i R′Bi

e′i ⇒ di = ei or di RBi ei . So suppose d ′i R′Bi
e′i , there are three

cases to consider

1. If d ′i K ′
Bi

e′i and neither d ′i or e′i have y as their second component, then d ′i = di ,
e′i = ei and di K Bi ei . If either d ′i or e′i contains y then the relation must have the form
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(g, x)K ′
Bi
(1Bi , y) since this is the only relation involving y in K ′

Bi
. If d ′i = (1Bi , y)

then e′i = ei = (g, x) and so di = (g, x) = ei .
2. If d ′i L ′Bi

e′i then d ′i = di , e′i = ei and di L Bi ei since applying action α does not effect
coincidences.

3. If d ′i N ′Bi
e′i then d ′i = di and e′i = ei since y /∈ µA = µ′A for any A ∈ A, and so

di NBi ei .

Thus it can now be seen that u1 and us are equivalent with respect to the congruence on Q
(i.e. [ f1, z1] = [ f2, z2]).

It now remains to prove that the maps ψB for each B ∈ B are surjective and natural.
Suppose [[ f, z]] ∈ Q′B for some B ∈ B. If z �= y thenψB([ f, z]) = [[ f, z]]. If z = y then
we observe (g, x)K ′

B(1, y) and so ψB([ f g, x]) = [[ f g, x]] = [[ f, y]]. Thus the maps are
surjective. Naturality follows from the following calculation

(P ′[g] ◦ ψB1)[ f, z] = P ′[g][[ f, z]]
= [[Q′g( f, z)]]
= [[g f, z]]
=ψB2[g f, z]
=ψB2[Qg( f, z)]
= (ψB2 ◦ P[g])[ f, z].

5.2. Action β(i)

For each B ∈ B define ψB : P B → P ′B by [ f, z] �→ [[ f, z]]. Showing these maps
are well defined is equivalent to showing [ f1, z1] = [ f2, z2] ⇒ [[ f1, z1]] = [[ f2, z2]].
Applying the same reasoning as in the case for Action α, this amounts to showing
RB ⊆ R′B for each B ∈ B. From the definition of P ′ it follows that P ′B = P B (∀B),
P ′g = Pg (∀g), SB ⊆ S′B (∀B) and µ′A = µA (∀A). Thus K B = K ′

B , L B ⊆ L ′B
and NF A = N ′F A and hence RB ⊆ R′B for each B ∈ B.

Showing ψB is injective is equivalent to showing [[ f1, z1]] = [[ f2, z2]] ⇒ [ f1, z1] =
[ f2, z2]. We proceed as we did in the case for action α except that we do not need to define
the maps νB since QB = Q′B for each B ∈ B. We show that d ′i R′Bi

e′i ⇒ ∃c1, . . . , ct ∈
QBi with c1 = d ′i , ct = e′i and satisfying [c j ] = [c j+1] for each j = 1, . . . , t − 1. There
are three cases to consider

1. If d ′i K ′
Bi

e′i then di K Bi ei since K ′
Bi
= K Bi .

2. d ′i L ′Bi
e′i then either d ′i L Bi e

′
i or the relation must have the form (1B2, y)L ′B2

(1B2, z)
or (1B2, z)L ′B2

(1B2, y) where y and z are given in the definition of Action β(i).
Let yt ∈ Pbit . . . bi1 (x) for 1 ≤ t ≤ r and zt ∈ Pb jt . . . b j1(x) for 1 ≤ t ≤ s
such that yt ∈ Pbit (yt−1), zt ∈ Pb jt (zt−1), yr = y and zs = z. Then we have the
chain of equalities

[1B2, y] = [bir , yr−1] = · · · = [bir · · · bi1 , x]
and also

[b js · · · b j1, x] = · · · = [b js , zs−1] = [1B2, z].
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We note that [b js . . . b j1, x] = [bir . . . bi1 , x] since b js . . . b j1 = bir . . . bi1 is an
equation of B.

3. If d ′i N ′Bi
e′i then d ′i NBi e

′
i since µA = µ′A for any A ∈ A.

Thus it can now be seen that ( f1, z1) and ( f2, z2) are equivalent with respect to the
congruence on Q (i.e. [ f1, z1] = [ f2, z2]).

The proofs of surjectivity and naturality are straightforward and we leave them to the
reader.

5.3. Action β(ii)

For each B ∈ B define ψB : P B → P ′B by [ f, z] �→ [[ f, z]]. Showing these maps
are well defined is equivalent to showing [ f1, z1] = [ f2, z2] ⇒ [[ f1, z1]] = [[ f1, z1]].
Applying the same reasoning as in the case for Action β(i), this amounts to showing
RB ⊆ R′B for each B ∈ B. From the definition of P ′ it follows that P ′B = P B (∀B),
P ′g = Pg (∀g), SB ⊆ S′B (∀B) and µ′A = µA (∀A). Thus K B = K ′

B , L B ⊆ L ′B and
NF A = N ′F A and hence RB ⊆ R′B for each B ∈ B.

Showing ψB is injective is equivalent to showing [[ f1, z1]] = [[ f2, z2]] ⇒ [ f1, z1] =
[ f2, z2]. We proceed as we did in the case for action α except that we do not need to define
the maps νB since QB = Q′B for each B ∈ B. We show that d ′i R′Bi

e′i ⇒ ∃c1, . . . , ct ∈
QBi with c1 = d ′i , ct = e′i and satisfying [c j ] = [c j+1] for each j = 1, . . . , t − 1. There
are three cases to consider

1. If d ′i K ′
Bi

e′i then d ′i K Bi e
′
i since K ′

Bi
= K Bi .

2. If d ′i L ′Bi
e′i then either d ′i L Bi e

′
i or the relation must have the form (1F A2, y)L ′F A2

(1F A2 , z) or (1F A2 , z)L ′F A2
(1F A2 , y) where y and z are given in the definition of

Action β(ii). It then follows that (1F A2 , y)NF A2 (1F A2, z).

3. If d ′i N ′Bi
e′i then d ′i NBi e

′
i since µA = µ′A for any A ∈ A.

Thus it can now be see that ( f1, z1) and ( f2, z2) are equivalent with respect to the
congruence on Q (i.e. [ f1, z1] = [ f2, z2]).

The proofs of surjectivity and naturality are left to the reader.

5.4. Action γ

We consider the removal of a coincidence (x, y) where x �= y, the other case involving
removal of a coincidence of the form (x, x) is left to the reader. For each B ∈ B define
ψB : P ′B → P B by [[ f, z]] �→ [ f, z]. Showing this map is well defined is equivalent to
proving [[ f1, z1]] = [[ f2, z2]] ⇒ [ f1, z1] = [ f2, z2]. So suppose [[ f1, z1]] = [[ f2, z2]]
then by Proposition 2.1 either f1 = f2 and z1 = z2 or there exist u′1, . . . , u′s ∈ Q′B with
u′1 = ( f1, z1) and u′s = ( f2, z2) such that ∀i = 1, . . . , s − 1 there exists a morphism
hi : Bi → B with d ′i R′Bi

e′i or e′i R′Bi
d ′i where Q′hi (d ′i ) = u′i and Q′hi (e′i ) = u′i+1. We

will now show that d ′i R′Bi
e′i implies that either d ′i = e′i or that we can find c1, . . . , ct

with c1 = d ′i and ct = e′i such that [c j ] = [c j+1] for all j = 1, . . . , t − 1. Since
R′Bi

= K ′
Bi
∪ L ′Bi

∪ N ′Bi
we have three cases to consider
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1. If d ′i K ′
Bi

e′i where d ′i = (g, z), e′i = (1Bi , w) and w ∈ P ′g(z) then there are four
subcases to consider

(a) If z �= x and w �= x then w ∈ Pg(z) and so d ′i K Bi e
′
i .

(b) If z = x andw �= x then eitherw ∈ Pg(z) in which case d ′i K Bi e
′
i orw ∈ Pg(y).

But then we have (1B, x)L B(1B, y) and (g, y)K Bi (1Bi , w).
(c) If z �= x and w = x then either w ∈ Pg(z) in which case we have d ′i K Bi e

′
i or

z ∈ (Pg)−1(y). But then we have (g, z)K Bi (1Bi , y) and (1Bi , y)L Bi (1Bi , x).
(d) If z = x and w = x then either

w ∈ Pg(z) but then d ′i K Bi e
′
i .

y ∈ Pg(y) but then (1Bi , x)L Bi (1Bi , y) and (g, y)K Bi (1Bi , y).

x ∈ Pg(y) but then (1Bi , x)L Bi (1Bi , y) and (g, y)K Bi (1Bi , x).

y ∈ Pg(x) but then (1Bi , x)L Bi (1Bi , y) and (1Bi , y)K Bi (g, x).

2. If d ′i L ′Bi
e′i where d ′i = (1Bi , z) and e′i = (1Bi , w) then there are four subcases to

consider

(a) If z �= x and w �= x then d ′i L Bi e
′
i .

(b) If z �= x and w = x then either d ′i L Bi e
′
i or we have z ∈ SBi (y) and so

(1Bi , z)L Bi (1Bi , y) and (1Bi , y)L Bi (1Bi , x).
(c) If z = x and w �= x then d ′i L Bi e

′
i or we have w ∈ SB(y) and so

(1Bi , w)L Bi (1Bi , y) and (1Bi , y)L Bi (1Bi , x).
(d) If z = x and w = x then d ′i = e′i .

3. If d ′i N ′F A2
e′i then either d ′i NF A2 e′i or there are three subcases to consider

(a) (1F A2 , x)N ′F A2
(F f, z) where x = µ′A2

(X f (m)), y = µA2(X f (m)) and z =
µA1(m) �= y. We then have (1F A2, x)L F A2 (1F A2 , y) and (1F A2 , y)NF A2 (F f, z).

(b) (1F A2 , z)N ′F A2
(F f, x) where z = µA2 (X f (m)) �= y, x = µ′A1

(m) and y =
µA1(m). We then have (1F A2 , z)NF A2 (F f, y) and (1F A1 , y)L F A1 (1F A1 , x).

(c) (1F A2 , x)N ′F A2
(F f, x) where x = µ′A2

(X f (m)), y = µA2 (X f (m)), x =
µ′A2

(m) and y = µA2(m). We then have (1F A2 , y)NF A2 (F f, y) and
(1F A2 , y)L F A2 (1F A2 , x).

This then shows that [d ′i ] = [e′i ] for all i , and hence that [ f1, z1] = [ f2, z2].
Next we must show that the maps ψB for each B ∈ B are injective. This is equivalent to

showing that [ f1, z1] = [ f2, z2] ⇒ [[ f1, z1]] = [[ f2, z2]] where z1, z2 �= y. So suppose
[ f1, z1] = [ f2, z2] then either f1 = f2 and z1 = z2 or there exists u1, . . . , us−1 with
u1 = ( f1, z1) and us = ( f2, z2) such that ∀i = 1, . . . , s − 1 there exists a morphism
hi : Bi → B with di RBi ei or ei RBi di where Qhi (di ) = ui and Qhi (ei ) = ui+1. We
define the map νB : QB → Q′B by ( f, z) �→ ( f, z) when z �= y and ( f, y) �→ ( f, x).
Given c ∈ QB we denote νB(c) by c′. We now show that di RBi ei implies that either
di = ei or that we can find c′1, . . . , c′t with c′1 = d ′1 and c′t = e′i such that [[c′j ]] = [[c′j+1]]
for all j = 1, . . . , t − 1. Since RBi = K Bi ∪ L Bi ∪ NBi we have three cases to consider

1. If di K Bi ei with di = (g, w1), ei = (1Bi , w2) and w2 ∈ Pg(w1) then we have four
subcases
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(a) If w1 �= y and w2 �= y then d ′i = di , e′i = ei and d ′i K ′
Bi

e′i .
(b) If w1 = y and w2 �= y then d ′i = (g, x), e′i = ei and w2 ∈ P ′g(x) thus d ′i K ′

Bi
e′i .

(c) If w1 �= y and w2 = y then d ′i = di , e′i = (1Bi , x) and x ∈ P ′g(w1) thus
d ′i K ′

Bi
e′i .

(d) If w1 = y and w2 = y then d ′i = (g, x), e′i = (1, x) and x ∈ P ′g(x) (since
y ∈ Pg(y)) thus d ′i K ′

Bi
e′i .

2. If di L Bi ei with di = (1Bi , w1) and ei = (1Bi , w2) where (w1, w2) ∈ SBi then we
have four subcases to consider

(a) If w1 �= y and w2 �= y then d ′i = di , e′i = ei and d ′i L ′Bi
e′i .

(b) If w1 = y and w2 �= y then d ′i = (1Bi , x), e′i = ei and w2 ∈ SBi (y) ⇒ w2 ∈
S′Bi
(x) and thus d ′i L ′Bi

e′i .
(c) If w1 �= y and w2 = y then d ′i = di , e′i = (1Bi , x) and w1 ∈ SBi (y) ⇒ w2 ∈

S′Bi
(x) and thus d ′i L ′Bi

e′i .
(d) If w1 = y and w2 = y then d ′i = e′i .

3. If di NF A2 ei then there are four possibilities

(a) d ′i = di , e′i = ei and then d ′i N ′F A2
e′i .

(b) di = (1F A2 , y), ei = (F f, z) where y = µA2(X f (m)) and z = µA1(m) �= y.
We then have x = µ′A2

(X f (m)) and so [[1F A2, x]] = [[F f, z]].
(c) di = (1F A2 , z), ei = (F f, y) where z = µA2 (X f (m)) �= y and y = µA1(m).

We then have x = µ′A1
(m) and so [[1F A2, z]] = [[F f, x]].

(d) di = (1F A2 , y), ei = (F f, y) where y = µA2 (X f (m)) and y = µA2(m). We
then have x = µ′A2

(X f (m)) and x = µ′A2
(m) and so [[1F A2 , x]] = [[F f, x]].

The maps ψB will now be shown to be surjective. It should be clear that anything of
the form [ f, z] where z �= y lies in the image of these maps (i.e. [[ f, z]] ⇒ [ f, z])
so it is sufficient to show that we can find elements of Q′B for some B ∈ B which
map to elements of the form [ f, y]. This is easy though since (1B, y)L B(1B, x) and so
[[ f, x]] ⇒ [ f, x] = [ f, y]. Naturality is straightforward and can be proved in the same
manner as before.

5.5. Action δ

For each B ∈ B define ψB : P B → P ′B by [ f, z] �→ [[ f, z]]. Showing this map
is well defined is equivalent to showing [ f1, z1] = [ f2, z2] ⇒ [[ f1, z1]] = [[ f2, z2]].
So suppose [ f1, z1] = [ f2, z2] then by Proposition 2.1 either f1 = f2 and z1 = z2 or there
exist u1, . . . , us ∈ QB with u1 = ( f1, z1) and us = ( f2, z2) such that ∀i = 1, . . . , s − 1
there exists a morphism hi : Bi → B with di RBi ei or ei RBi di where Qhi (di ) = ui and
Qhi (ei ) = ui+1. We now show that di RBi ei implies that either di = ei or that we can find
c′1, . . . , c′t with c′1 = di and c′t = ei such that [[c′j ]] = [[c′j+1]] for all j = 1, . . . , t − 1.
Since RBi = K Bi ∪ L Bi ∪ NBi we have three cases to consider

1. If di K Bi ei then either di K ′
Bi

ei , or di K Bi ei has the form (g, x)K Bi (1Bi , z) but then
we have (g, x)K ′

Bi
(1Bi , y) and (1Bi , y)L ′Bi

(1Bi , z).
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2. If di L Bi ei then di L ′Bi
ei .

3. If di NBi ei then di N ′Bi
ei .

Showing the maps are injective is equivalent to showing that [[ f1, z1]] = [[ f2, z2]] ⇒
[ f1, z1] = [ f2, z2]. So suppose that [[ f1, z1]] = [[ f2, z2]] then by Proposition 2.1 either
f1 = f2 and z1 = z2 or there exist u′1, . . . , u′s ∈ Q′B with u′1 = ( f1, z1) and u′s = ( f2, z2)

such that ∀i = 1, . . . , s − 1 there exists hi : Bi → B with d ′i R′Bi
e′i or e′i R′Bi

d ′i where
Q′hi (d ′i ) = u′i and Q′hi (e′i ) = u′i+1. We will now show that d ′i R′Bi

e′i implies that either
d ′i = e′i or that we can find c1, . . . , ct with c1 = d ′i and ct = e′i such that [c j ] = [c j+1] for
all j = 1, . . . , t − 1. Since R′Bi

= K ′
Bi
∪ L ′Bi

∪ N ′Bi
we have three cases to consider

1. If d ′i K ′
Bi

e′i then d ′i K Bi e
′
i since P ′g ⊆ Pg (∀g).

2. If d ′i L ′Bi
e′i then either d ′i L Bi e

′
i or the relation has the form (1Bi , y)L ′Bi

(1Bi , z) in
which case we note that (g, x)RBi (1Bi , z) and (g, x)RBi (1Bi , y) which implies that
[1Bi , z] = [1Bi , y].

3. If d ′i N ′Bi
e′i then d ′i NBi e

′
i .

Surjectivity and naturality are straightforward and can be proved in the same manner as
before. �

6. An algorithm for computing P

The algorithm described in this section is non-deterministic in that at each step there
may be several courses of action.

Definition 6.1. A run of the algorithm consists of a sequence of the four actions α,
β, γ and δ applied to an initial (finite) presentation P thus generating a sequence of
presentations

P = P0 �→ P1 �→ P2 �→ · · · .
It is said to terminate if there exists t ≥ 0 such that the presentation Pt is invariant under
all four actions.

By Proposition 4.1 the presentation Pt reached upon termination must be the restriction
to GB of some functor B Sets. By Proposition 3.2 this functor is naturally isomorphic
to Pt , then by Theorem 5.1 and induction we have Pt naturally isomorphic to P . In each
case the isomorphism is compatible with the associated µ natural transformations. So it
should be easy to see that by applying the algorithm and reaching the terminating state Pt

we have effectively calculated P from P .
It is not clear that every run of this algorithm should terminate. Clearly if P is not finite

then termination is impossible. What about when P is finite? In order to ensure termination
in this case some conditions will be imposed on the sequence of actions. From now on all
presentations considered will be finite.

First we number of all the elements in the starting presentation with natural numbers
starting at 1. Then each time a new element is created by action α during a run of the
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algorithm it is labelled with the next largest number available, we call this number the rank
of the element. Elements in the starting presentation will be called initial elements.

Definition 6.2. A sequence η1, η2, . . . of the four actions α, β, γ and δ is said to be a fair
interleaving if it satisfies the following conditions

1. For each action η = α, β, γ or δ and each n ≥ 1, there exists m such that m > n and
ηm = η (i.e. no action is left out of the sequence indefinitely).

2. When applying action α the element involved is always chosen to have minimal rank.
3. When applying action γ the element of highest rank in the coincidence is deleted.
4. For all n ≥ 1 there exists m such that m > n and Pm is invariant under the actions β,
γ and δ.

The first three conditions are easy to implement. To see that the fourth is also
straightforward we prove the following proposition.

Proposition 6.1. Suppose η1, η2, . . . is a sequence of the three actions β, γ and δ such
that for each action η = β, γ or δ and each n ≥ 1 there exists m such that m > n and
ηm = η. Let P = P0 �→ P1 �→ P2 �→ · · · be the associated sequence of presentations then
there exists t such that Pt is invariant under the actions β, γ and δ.

Proof. Given a finite presentation P the total number of elements is finite. Thus the total
number of possible coincidences (pairings of elements) is also finite. To each coincidence
which is created during the course of the algorithm we assign a number. This number
will be the place in the sequence where that coincidence is first created. (Note: the same
coincidence may be added many times.) Choose the maximal such number (this is a
position in the sequence after which no new coincidences are created). Now because none
of the actions are indefinitely left out we continue to delete coincidences and we also know
that each coincidence deleted can never be added back, thus there must be a point in the
sequence (after a finite number of steps) where all the coincidences have been deleted
and after which no coincidences can be created. This then means that we have reached an
invariant presentation, since both action β and δ involve the addition of coincidences. �

It follows from Proposition 6.1 that if we ensure that during any run of the algorithm
we regularly stop applying action α and just allow actions β, γ and δ to operate then we
will always reach a presentation invariant under these three actions, thus implementing the
fourth condition in Definition 6.2.

Theorem 6.1. Given a presentation P where P is finite then any fair interleaving of the
four actions α, β, γ and δ applied to P must terminate.

Proof. Let η1, η2, . . . be any fair interleaving of the four actions. Let P = P0, P1, P2, . . .

be the corresponding sequence of presentations. Since P is finite, the collection of
elements in the set  B∈B P B is finite. We can thus write down a list of representatives
( f1, z1), . . . , ( fm , zm) where fi ∈ B for each i and zi is an initial element for each i . Since
P is a functor it follows that for each morphism g : B1 → B2 in GB and each [ fi , zi ]where
cod( fi ) = B1, then there exists j with Pg[ fi , zi ] = [ f j , z j ] (i.e. [g fi , zi ] = [ f j , z j ]).
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By Proposition 2.1 either g fi = f j and zi = z j or there exists u1, . . . , us ∈ QB with
u1 = (g fi , zi ) and us = ( f j , z j ) such that for each t = 1, . . . , s − 1 there exists
ht : Bt → B with dt RBi et or et RBi dt where Qht (dt) = ui and Qht (et ) = ui+1.
Similarly if zi ∈ P B then there exists j such that [1B, zi ] = [ f j , z j ] and we can apply
Proposition 2.1 again to conclude that either f j = 1B and zi = z j or that there exists
a sequence u1, . . . , us with the usual properties. Collect together all of the sequences of
elements ui that can be found in these two ways and observe that there are only finitely
many of them. Now define the length of any morphism in B to be the minimal length of all
the morphisms in FGB corresponding to it (take the length of identity arrows to be zero).
Let l be the maximum length of any morphism from B occurring in the first component of
a member of any of these sequences. We now study the properties of these sequences and
how they interact with the four actions α, β, γ and δ.

First we define some terminology. Given a presentation P (with associated functor Q)
and u1, . . . , us ∈ QB such that for each t = 1, . . . , s − 1 there exists ht : Bt → B
with dt RBi et or et RBi dt where Qht (dt ) = ui and Qht (et ) = ui+1. Then we call such a
collection {u1, . . . , us} ∈ QB a chain on Q.

Suppose we apply action α or β to P giving us a new presentation P ′, then
{u1, . . . , us} ∈ Q′B is a chain on Q′. This follows because RBi ⊆ R′Bi

for each B ∈ B
(see Section 5 for a more detailed discussion of this point). If we apply action γ to P to
remove a coincidence (x, y) then {u′1, . . . , u′s} ∈ Q′B is a chain on Q′ where we define
u′i = (g, z) if ui = (g, z) and z �= y or u′i = (g, x) if ui = (g, y). This follows from the
fact that x inherits all of the properties that the element y originally had, e.g. if z ∈ Pg(y)
then z ∈ P ′g(x), if z ∈ SB(y) then z ∈ S′B(x) etc. Finally if we apply action δ to P
we may have to modify the chain slightly. Suppose that di K Bi ei (where Qhi (di ) = ui

and Qhi (ei ) = ui+1 for some morphism hi ) then either di K ′
Bi

ei or di K Bi ei has the form
(g, x)K Bi (1Bi , z) but then we have (g, x)K ′

Bi
(1Bi , y) and (1Bi , y)L ′Bi

(1Bi , z). So we can
replace ui and ui+1 in the chain with (hi g, x), (hi , y) and (hi , z). The other relations are
not a problem since L Bi ∪ MBi ⊆ L ′Bi

∪ M ′
Bi

.
The important thing to note in all four cases is that the maximal length of morphisms

occurring in the first components of any elements in a chain does not increase when the
action is applied, thus it is always bounded above by the quantity l that we defined earlier.

We now turn our attention back to the sequence of presentations. We call two elements x
and y path connected if there exist elements u1, . . . , us in the presentation with u1 = x and
us = y such that for each i = 1, . . . , s−1 either there exists hi ∈ GB with Phi (ui ) = ui+1
or (u1, ui+1) is a coincidence. The collection of morphisms involved in any connection
between x and y forms a morphism in FGB which we call a path from x to y.

It is straightforward to prove by induction that given a presentation in the sequence
P0, P1, P2, . . . then any element in this presentation is either initial or path connected to
an initial element. It follows that if the presentation is invariant under action γ then any
element y is either initial or there exists a morphism g ∈ FGB and an initial element x
such that y ∈ Pg(x).

Observe that conditions 2 and 3 in Definition 6.2 ensure that given any morphism g in
FGB with domain A where P0(A) �= ∅ then there exists a presentation Pm in the sequence
and element x such that x is path connected to an initial element and the associated path
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is g. In particular if we let n be the number of elements in P0 and let m be the maximum
number of morphisms with a common domain that occur in GB then after applying action
α a total of nml times we can conclude that every path of length less than or equal to l
occurs as the path connection of some element in the presentation to an initial element. In
summary, if m is chosen large enough then Pm will satisfy

1. Invariance under actions β, γ and δ (apply condition 4 of Definition 6.2).
2. Every element y in the presentation Pm is either initial or there exists a morphism

g ∈ FGB and an initial element x such that y ∈ Pg(x).
3. Given a morphism g ∈ FGB with length less than or equal to l and x an initial

element then Pg(x) �= ∅.

It will now be shown that this presentation Pm is invariant under action α.
Recall from the start of the proof that ( f1, z1), . . . , ( fm , zm) are a list of representatives

of elements in the set  B∈B P B . It is easy to see that we can write down a list of
representatives for Pm of the form ( f1, z′1), . . . , ( fm , z′m) where each z′i is still an initial
element. This is because an initial element can only be replaced by another initial element
when a coincidence is removed, during the course of the algorithm. (See condition 3 of
Definition 6.2.) By definition the length of each fi is less that or equal to l, and so it
follows that Pm fi (z′i ) �= ∅. In fact since Pm is invariant under action δ there can be no
non-determinacy thus Pm fi (z′i ) defines exactly one element.

Earlier we noted that for each i and each applicable morphism g in GB there was a chain
connecting the elements (g fi , zi ) and ( f j , z j ) (for some j ). Using the properties of chains
in relation to the actions it follows that there is a chain connecting (g fi , z′i ) and ( f j , z′j ). It
was also proved that the length of the morphisms in the first components remained bounded
above by l. Hence if ui = (ki , wi ) is an element of the chain then Pmki (wi ) is a uniquely
defined element of the presentation Pm . Using the invariance of Pm under actions β, γ and
δ it can be shown that Pmki (wi ) = Pmki+1(wi+1) and thus Pm g fi (z′i ) = Pm f j (z′j ). It
follows that the set of elements

G = {Pm fi (z
′
i ) | 1 ≤ i ≤ m}

is closed under the action of the morphisms. Other chains were also considered between
elements (1B, zi ) and the representatives ( fi , zi ). Carrying everything through as before
we deduce that all of the initial elements z′i in Pm are included in the set G. But then from
the construction of Pm we know that all its elements are either initial or lie in the image
of an initial element. Thus the closure of G ensures that it contains all elements of Pm .
Therefore Pm is invariant under action α since Pm g(x) is defined for all elements x and
applicable morphisms g. �

7. Left Kan extensions

So far we have described an algorithm which starts with an arbitrary presentation P and
computes the associated functor P : B Sets and natural transformationµ : X ˙ P F ,
terminating exactly when the answer is finite. As will be shown, by choosing P carefully
we can ensure that (P, µ) is in fact the left Kan extension of X along F . First we state a
result concerning the structure of left Kan extensions.
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Proposition 7.1. Given functors F : A B and X : A Sets where A and B are
finitely generated categories, we define a functor L : B Sets as follows. For each
object B ∈ B

L B =

∑

A∈A
B(F A, B)× X A


/

∼

where ∼ is the smallest equivalence relation such that for all f : A → A′ in A,
g : F A′ → B in B and x ∈ X A

(gF f, x) ∼ (g, X f (x)).

For each morphism h : B → B ′ in B define

Lh : L B → L B ′ : [g, x] �→ [hg, x]
where the equivalence class of (g, x) with respect to∼ has been denoted [g, x]. Now define
the natural transformation µ : X ˙ L F by

µA : X A → L F A : x �→ [1F A, x].
Then L and µ form the left Kan extension of X along F.

Proof. The proof is a relatively straightforward exercise and can be found in
Walters (1991). �

Proposition 7.2. Define a presentation P as follows:

1. P B =∑
A∈F−1 B X A for each B ∈ B.

2. Pg = ∅ for all morphisms g ∈ GB.
3. SB = ∅ for each B ∈ B.
4. µA : X A → P F A is taken to be the inclusion mapping x �→ x for each A ∈ A.

Then (P, µ) satisfy the universal property that given any functor U : B Sets and
natural transformation η : X ˙ U F, there exists a unique natural transformation
ψ : P ˙ U such thatψF ◦ µ = η. (This is the defining property of a left Kan extension.)

Proof. From Proposition 7.1 above and the definition of P this follows immediately. �
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