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Abstract

For every cardinak we construct a universal ultrametric spdd&/; such that any ultrametric
space of weigh& r can be embedded isometricallyli#V; . The weight ofLW; is 80 and we show
that for all cardinalg < ¢ and for a wide class of cardinatsc the weight of a universal ultrametric
space can not be smaller2000 Elsevier Science B.V. All rights reserved.
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In the last 10-15 years a new area of research has evolved in mathematics. That is the
theory of ultrametric spaces, i.e., metric spaces in which the strong triangle axiom

d(x,z) <maxd(x,y),d(y,2)] (1)

holds. This condition means precisely that any three paingsz are vertices of an isosce-
les triangle with the base being no greater than the sides. In English and German literature
these spaces are usually called non-Archimedean [1,2], in French literature they are known
as ultrametric [3], the Russian synonym for them is isosceles spaces [5—-11]. The develop-
ment of this new branch of the general theory of metric spaces is due to the following.

First of all, a lot of metric spaces that play important roles in various realms of
mathematics turn out to be ultrametric. The most vivid examples are the Zings p-
adic Hensel integers and the fiel@s, of p-adic Henselian numbers in number theory, the
Baire spaceBy, and generalized Baire spacBs in general topology, non-Archimedean
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normed fields in algebra, a set of words of computer languageuipped with Baire
metric in computer science, ringg (U) of of meromorphic functions on an open region

U in complex analysis, etc. Finally, such an extensive and rapidly developing ayjea as
adic analysis is based on ultrametrics: the ground fi2lg ultrametric, and bothp-adic
integration and function spacespradic analysis are connected with ultrametrics, in view

of the theorems on the isosceles property (1) for a Hausdorff exponential of an isosceles
space [4,7] and for space of maps into an ultrametric space [7,8].

Second of all, it turns out that there are several deep specific properties of ultrametric
spaces that do not hold for general metric spaces. For example, any ultrametric space can
be isometrically (') embedded in Euclidean space (see Theorems 3-5 below); given a series
> a, in a complete ultrametric grou@, the requiremenia,| — 0 asn — oo is not only
necessary but also sufficient (!) for its convergence. These are the specific properties, which
form the subject of the theory of ultrametric spaces.

The first step toward a study of non-Archimedean spaces was done by de Groot in [1].
He gave a description of all these spaces up to homeomorphism. However, a study of
metric spaces to within a homeomorphismis too rough, homeomorphism preserves neither
completeness, nor boundedness, nor Cantor connectedness [6] of a space. That is why a
description of ultrametric spaces (and all their uniform one-to-one inverse images) was
given in [6] up to uniform homeomorphism. Later on a lot of proximate, uniform [6],
metric [5], geometric [9], and categorical [7,8,12,14] properties of these spaces and groups
[5,18] were found and applications of the theory to category theory [11], topos theory and
intuitionistic logic [10], theory of Boolean algebras [14,15], and computer science [13,17]
were described.

The purpose of the paper is to describe all ultrametric spaces up to isometry. Modifying
the construction of [5] by the method announced in [16] we construct here, for every
cardinalr, an ultrametric spadé/; which contains isometrically all ultrametric spaces of
weight< 7. Its weight ist™ and we show that for all cardinats< ¢ and for a wide class
of cardinalsr > ¢ the weight of a universal ultrametric space can not be smaller.

Main definition. Let M be a set with a base poiate M, Q. be the set of positive ratio-
nals, and_M be the set of all “eventually-valued” functionsf : Q.+ — M. (This means
that there exists a positive numhgx /) such thatf (x) = a, Vx > X (f). For simplicity
the reader can keep in mind the real liRenstead ofM and O instead of.) For any two
mapsf, g: Q4 — M let us define the distanc( f, g) by the equalitiesA(f, /) =0 and

A(f, g) =suplx | f(x) #g(x)}. (2)
It is easy to see thal is a metric satisfying the strong triangle axiom (1). @M, A)
is an ultrametric space. Without any difficulty the reader can describe spherical neighbor-
hoods, convergent sequences, compact subsets of theldeaed prove thatLM, A) is
a complete ultrametric space [5,7].

Theorem 1. Every ultrametric spacéM, d) can be isometrically embedded in the space
(LM, A) of all “eventuallya-valued” maps fronf).. to M for anya € M chosen as a base
point.
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Proof. Let us enumerate the elementsidfby ordinal numbers such thd = {a, | @ <
w(t),a0 = a}, wherew(t) is the initial ordinal of cardinalityr = |M| = |w(z)|. This
makesM a well-ordered set. We shall define an isometrgM, d) — (LM, A) inductively.
Denote the imagé(a,) of an element:, by f,. Define fo(x) = ag=a for all x € Q,
and f1(x) = a1 for x < d(ap, a1), f1(x) = fo(x) = agp for x > d(ao, a1). It is obvious that
d(ao, a1) = A(fo(x), f1(x)) evenifd(ao, a1) is irrational.
Lety < w(7). Assume by induction that al|, are already isometrically embedded into

the spacéM for all « < y in such a way that the range @ is a subset ofa, | o < B}.
We shall construat(a, ) and show that is isometry onfag, a1, . .., a, }. To do it compute

d, =infld(aq, ay) |a <y}

Consider two cases.

Casel. There exist@ < y such that/(ag, a,) = d,,. Then let us defing, as follows:
fy(x)=a, forx <d,, f,(x) = fg(x) for x > d,. It follows directly from the definition
that f, (x) = fg(x) over(d,, o0), f,(x) =a, on(0,d,], and fg(x) equalsa, nowhere.
S0 A(fp, fy) =dy, =d(ag,ay).

We need to show thad (f,, f,) =d(aq, a,) for anye < y. Two other cases are to be
considered here.

(i) If d(aw,ap) < d(ag,a,) then in view of the isosceles propertifay,a,) =
d(ag, a,). By the inductive assumption we hax€ f,,, fg) = d(a«,ag) < d(ag, ay)
= A(fg, fy). Consequentlyfy (x) = fg(x) on (d(a«, ag), c0), and therefore on
(dy, 00). This implies thatf, (x) = f, (x) on (d,, c0). On the other handf, (x) =
a, on (0,d,] while f,(x) never equals,. HenceA(fy, f,) =d, =d(ag,a,) =
d(ay, ay).

(i) If d(aq,ag) > d(ag,a,) then by the same reasons we gét, ag) = d(aq, ay),
A(fa, f8) = d(au,ag) > d(ag,a,) = A(fp, f,). This means thatf,, coincides
with fg on (d(aq, ap), 00) C (d(ag, ay,), 00) where fg is equal tof, . Therefore
fa(x) = f,(x) on (d(aq,ag),o0) but not over any wider half-infinite interval.
HenceA(fy, fy) =d(aq, ag) =d(aq, ay).

Case2. Suppose there is n8 < y such thatd(ag,a,) =d,. If d, > 0 then set
fy(x) =a, on (0,d,]. In any case the problem is to defirfe(x) for x > d,,. To do
this let us choose a sequenfgg,} of elements ofM such thath, = a,,, oy < y and
d(by,ay) < d, + 1/n. Denotei (b,) by f,(x). Forx > d,, we definef, (x) as follows:
fy(x) = fux), wheren satisfies the inequality, + 1/n < x. Notice that for anym
satisfying the similar inequality,

A(fu, fm) =d(bn, bm) < ma){d(bna ay), d(bm, ay)]
< max{d,, +1/n,d, + l/m] < X.

This implies thatf, (x) = f,(x). Thusf, (x) is well-defined.

Let us now show thatf, (x) does not depend on the choice of the sequeige.
Consider another sequengs,} such thatc, = ag,, B, < y andd(cp,a,) <d, + 1/n.
Denotei(c,) by g,(x). We have that
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A(fn, gn) =d(by, cn) < ma){d(bn»ay)»d(cna ay)] < dy +1/n,

which implies thatf, (x) = g, (x) for all x > d,, + 1/n.

Finally we need to prove that(fs, f,) = d(a«,a,) for all « < y. For every
o < y there exists a poinb, such thatd(aq,a,) > dy, + 1/n > d(bs,ay) > d,.
Consequentlyd (aq, a,) = d(aq, by). The inductive assumption implied(fy, fn) =
d(aq, by) = d(aq, a,) > d, + 1/n. By the definition off, (x), f, (x) = f,(x) on(d), +
1/n,00). On the other handf, (x) = f,(x) on (d(a«,a,),o0) C (d, + 1/n,00). This
implies that f, (x) = f, (x) on (d(a«,ay),00) but not on any wider interval. Hence
A fu, fy) =d(aq, ay)- O

Let z be an arbitrary cardinal. Denote the set of all ordinals of cardinality lessrthan
W:. Viewed as a pointed set with a base poin¥iQ, gives us the spadan/; .

Main theorem. The space LWis a metrically universal space for all ultrametric spaces
of weight< 7, and|LW, | = w(LW;) = ™0,

Proof. Suppose(X, d) is an arbitrary ultrametric space of weightand Y is its dense
subset of potency. There is a one-to-one correspondence betweand W . It follows
from Theorem 1 that there exists an isometric embeddind,d) — (LW;, A). Since
(LW,, A) is complete one can exterido ix: (X, d) — LW;. By the definition ofLM-
space we havi W, | = ™. To prove thatw(LW,) = t™0 it is enough to find a discrete
subsetZ c LW, of potencyz™. For any f e LW, let us define the map : Q, — W, as
follows: F(x) =0forx <1, F(x) = f(x — 1) forx > 1. The setZ of all these maps is of
cardinalityz™0. By the definition of metricA, A(F,G) > 1foranyF,Ge Z. O

Note 1. If 2 < 7 < ¢ thent™ = ¢. The weight of a universal ultrametric space cannot be
smaller, even for = 2, as the following proposition shows.

Proposition. If an ultrametric spacg X, d) contains isometrically all two-point spaces
then its weight is not less than continuw(X, d) > c.

It follows directly from the next theorem [16,17].

Theorem 2. For any ultrametric spacéX, d) the set of values of its metri¢ = {d (x, y) |
x,y € X} has cardinality no greater than its weigh¥/ | < w(X).

The proof is based on the following lemma of some own interest.

Lemma. SupposéX, d) is an ultrametric spacey, is its dense subset, ang = {d(x, y) |
x,y €Y}, thenthe seV = {d(x, y) | x, y € X} coincides withVy.

Proof. Let(x,y)¢Y ®Y,d(x,y)=r > 0. Encloser andy in two balls of radius< r/2.
Take there pointsg andyo € Y. Since the spac¥ is ultrametric and the balls are disjoint
d(xo,yo) =d(x,y). O
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Proof of Theorem 2. For infinite t = w(X) we have|Vy| < [Y||Y| = |Y|, V = Vy.
Thereforg V| =inf{|Vy| | Y is dense inX} < inf{|Y|| Y isdense inX} = w(X). O

Corollary 1. For any separable ultrametric space the set of values of its metric is at most
countable.

Note 2. These values can be made rational by the mutually uniform, non-expanding,
inverse-Lipschitz remetrization which differs from identity by arbitrary smal 0 [17].

Note 3. Certainly if one does not require a universal space to be ultrametric its weight
can be made much smaller (for example, foe 2, R is universal and it follows from

the proposition above thai(LW,) = 2% = ¢). Moreover, Theorems 3-5 below show that
Euclidean space and its generalizations are metrically universal for the class of ultrametric
spaces. Perhaps it is the most wonderful property of these spaces [9].

Theorem 3 [9]. Every ultrametric space of weightcan be isometrically embedded in the
generalized Hilbert spac#&”.

Theorem 4 [9]. Every ultrametric space of cardinality can be isometrically embedded
as a closed subset in the algebraicathydimensional Euclidean spade’, but not in E?
foro <.

It is natural to compare these theorems with the well-known Nagata—Smirnov theorem
(on the homeomorphic embedding k") and Kuratowski’s (and Arens’) theorems (on
isometric (and closed) embeddings in Banach space (a normed vector space)). Theorems 3
and 4 are extremely nontrivial even for finite ultrametric spaces.

Theorem 5. Every ultrametric space consisting af+ 1 points can be isometrically
embedded in the-dimensional Euclidean spade’. No ultrametric space consisting of
n + 1 points can be isometrically embeddedsf for k < n [9].

In other words: + 1 points of an ultrametric space can be considered as vertices of an
n-dimensional simplexc E". This enables us to apply the theory of ultrametric spaces to
linear and convex programming [13].

Correcting the typographical mistake of the paper [9] we adduce the following corollary
giving another application of the theory of ultrametric spaces to number theory [13].

Corollary 2. Let Z, be the ring ofp-adic Hensel integerg? be the classic Hilbert space.
There exists an isometr{and closejlembedding: Z, — H under which the imag& Z )
is located on the sphet§; () of radius

asp — oo.

p 1
()= e
nr \/2(p2+p+1)_) V2
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Note 4. The assignment of the spakc®l to each pointed sei is a covariant functor from

the category SET* to the category ULTRAMETR* of all pointed ultrametric spaces and
non-expanding maps [7,8,11,12]. It is more interesting to consider it as a functor from the
category ORDER of ordered sets to ULTRAMETR* (using only monotone functions in
the modified definition oW, ). These functors will be described in another paper.

Problem 1. If a weight of a class of ultrametric spaces is a cardingt ¢ such that
80 = ¢ then a weight of the universal ultrametric spad¥, is the smallest of possible
onesw(LW;) = 80 = 7. However there exist infinite cardinats> ¢ such thatr™ > ¢
[19,20]. Let the weight of a considered class of ultrametric spaces be such cabdieal.
there exist a universal ultrametric spac¥, d) of the weight smaller than®o?

Problem 2. The proof of Theorem 1 depends on the Axiom of Choice essentialtie
theorem equivalent to the Axi@m
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