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This paper presents a mathematical analysis of MHD flow and heat transfer to a laminar
liquid film from a horizontal stretching surface. The flow of a thin fluid film and subsequent
heat transfer from the stretching surface is investigated with the aid of similarity transfor-
mation. The transformation enables to reduce the unsteady boundary layer equations to a
system of non-linear ordinary differential equations. Numerical solution of resulting non-
linear differential equations is found by using efficient shooting technique. Boundary layer
thickness is explored numerically for some typical values of the unsteadiness parameter S
and Prandtl number Pr, Eckert number Ec and Magnetic parameter Mn. Present analysis
shows that the combined effect of magnetic field and viscous dissipation is to enhance
the thermal boundary layer thickness.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In recent years the analysis of flow of a thin liquid film have attracted the attention of number of researchers because of
its possible applications in many branches of science and technology. The knowledge of flow and heat transfer within a thin
liquid film is crucial in understanding the coating process and design of various heat exchangers and chemical processing
equipments. Other applications include wire and fiber coating, food stuff processing reactor fluidization, transpiration cool-
ing and so on. The prime aim in almost every extrusion application is to maintain the surface quality of the extrudate. All
coating processes demand a smooth glossy surface to meet the requirements for best appearance and optimum service prop-
erties such as low friction, transparency and strength. The problem of extrusion of thin surface layers needs special attention
to gain some knowledge for controlling the coating product efficiently.

A class of flow problems with obvious relevance to polymer extrusion is the flow induced by the stretching motion of a
flat elastic sheet. For example, in a melt spinning process, the extrudate from the die is generally drawn and simultaneously
stretched into a filament or sheet, which is thereafter solidified through rapid quenching or gradual cooling by direct contact
with water or the coolant liquid. The stretching provides a unidirectional orientation to the extrudate, thereby improving the
fluid mechanical properties. The quality of the final product greatly depends on the rate of cooling and the stretching rate.
The choice of an appropriate cooling liquid is crucial as it has a direct impact on rate of cooling and care must be taken to
exercise optimum stretching rate otherwise sudden stretching may spoil the properties desired for the final outcome. Some
industrially important liquids like synthetic oils, dilute polymeric solutions such as 5.4% of polyisobutylene in cetane can be
used as effective coolant liquids (see [1]). Since the quality of the final product in such extrusion processes depend
. All rights reserved.
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Nomenclature

b stretching rate [s�1]
U sheet velocity [m s�1]
x horizontal co-ordinate [m]
y vertical co-ordinate [m]
u horizontal velocity component [m s�1]
v vertical velocity component [m s�1]
T temperature [K]
t time [s]
h film thickness [m]
S Unsteadiness parameter, a

b
Cp specific heat [J kg�1K�1]
f dimensionless stream function, Eq. (10)
Pr Prandtl number, t

k
Ec Eckert number, U2

CpðTs�T0Þ

Mn Magnetic parameter, rB2
0

qb

q heat flux, �k oT
oy ½Js

�1m�2�
Rex local Reynolds number
Nux local Nusselt number, Eq. (23)

Greek symbols
a constant [s�1]
b dimensionless film thickness
g similarity variable, Eq. (12)
h dimensionless temperature, Eq. (11)
k thermal diffusivity [m2 s�1]
l dynamic viscosity [kg m�1 s�1]
t kinematic viscosity [m2 s�1]
q density [kg m�3]
s shear stress, lou/oy [kg m�1 s�2]
w stream function [m2 s�1]

Subscripts
o origin
ref reference value
s sheet
x local value
Superscripts
0 first derivative
00 second derivative
000 third derivative
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considerably on the flow and heat transfer characteristics of a thin liquid film over a stretching sheet, the analysis and fun-
damental understanding of the momentum and thermal transports for such processes are very important.

Crane [2] was the first among others to consider the steady two-dimensional flow of a Newtonian fluid driven by a
stretching elastic flat sheet which moves in its own plane with a velocity varying linearly with the distance from a fixed
point. The pioneering works of Crane [2] are subsequently extended by many authors to explore various aspects of the flow
and heat transfer occurring in an infinite domain of the fluid surrounding the stretching sheet (see [3–16]). Wang [17,18] has
studied the three dimensional flow due to a stretching surface and that due to a stretching surface in a rotating fluid. The
hydrodynamics of the finite fluid domain (thin liquid film), over a stretching sheet was first considered by Wang [19]
who reduced the unsteady Nervier–Stokes equations to a non-linear ordinary differential equations by means of similarity
transformation and solved the same using a kind of multiple shooting method (see Robert and Shipman [20]). However, Liao
[21] has used homotopy analysis method to deal with the non-linear problems of similar kind. Wang [22] himself has used
homotopy analysis method to reinvestigate the thin film flow over a stretching sheet. Of late the works of Wang [19] to the
case of finite fluid domain are extended by several authors [23–28] for fluids of both Newtonian and non-Newtonian kinds
using various velocity and thermal boundary conditions.

There are extensive works in literature concerning the production of thin fluid film either on a vertical wall achieved
through the action of gravity or that over a rotating disc achieved through the action of centrifugal forces. The problem of
laminar-film condensation on a vertical plate was first considered by Sparrow and Gregg [29] based on the boundary layer
theory and similarity transformation. They [30] have also considered the heat and mass transfer in a liquid film on a rotating
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disk. The melting from a horizontal rotating disk was investigated by Wang [31] where the non-linear governing equations
were solved by perturbation method and numerical integration. Dandapat and Ray [32,33] have studied the thin liquid film
flow over a rotating horizontal disk. Kumari and Nath [34] studied the unsteady MHD film over a rotating infinite disk.
Dandapat et al. [35] have investigated liquid film flow over an unsteady stretching sheet. Abbas et al. [36] have studied
the flow of a second grade fluid film over an unsteady stretching sheet.

Most of the aforementioned studies have neglected the combined effect of viscous dissipation and magnetic field on the
heat transfer which is important in view point of desired properties of the outcome. In the present study we include the same
for heat transfer analysis in a thin liquid film from an unsteady stretching sheet.

2. Mathematical formulation

2.1. Governing equations and Boundary conditions

Let us consider a thin elastic sheet which emerges from a narrow slit at the origin of a Cartesian co-ordinate system for
investigations as shown schematically in Fig. 1. The continuous sheet at y = 0 is parallel with the x-axis and moves in its own
plane with the velocity
Uðx; tÞ ¼ bx
ð1� atÞ ; ð1Þ
where b and a are both positive constants with dimension per time. The surface temperature Ts of the stretching sheet is
assumed to vary with the distance x from the slit as
Tsðx; tÞ ¼ T0 � Tref
bx2

2t

" #
ð1� atÞ�

3
2; ð2Þ
where T0 is the temperature at the slit and Tref can be taken as a constant reference temperature such that 0 6 Tref 6 T0. The
term bx2

tð1�atÞ can be recognized as the Local Reynolds number based on the surface velocity U. The expression (1) for the veloc-
ity of the sheet U(x,t) reflects that the elastic sheet which is fixed at the origin is stretched by applying a force in the positive
x-direction and the effective stretching rate b

ð1�atÞ increase with time as 0 6 a<1. With the same analogy the expression for the
surface temperature Ts(x,t) given by Eq. (2) represents a situation in which the sheet temperature decreases from T0 at the slit
in proportion to x2 and such that the amount of temperature reduction along the sheet increases with time. The applied
transverse magnetic field is assumed to be of variable kind and is chosen in its special form as
Bðx; tÞ ¼ B0ð1� atÞ�
1
2: ð3Þ
The particular form of the expressions for U(x, t), Ts(x,t) and B(x, t) are chosen so as to facilitate the construction of a new
similarity transformation which enables in transforming the governing partial differential equations of momentum and heat
transport into a set of non-linear ordinary differential equations.

Consider a thin elastic liquid film of uniform thickness h(t) lying on the horizontal stretching sheet (Fig. 1). The x-axis is
chosen in the direction along which the sheet is set to motion and the y-axis is taken perpendicular to it. The fluid motion
within the film is primarily caused solely by stretching of the sheet. The sheet is stretched by the action of two equal and
Force 

Slit 
u

Ts 

h(t) 

y = 0 

y  = h

y

x

Fig. 1. Schematic representation of a liquid film on an elastic sheet.
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opposite forces along the x-axis. The sheet is assumed to have velocity U as defined in Eq. (1) and the flow field is exposed to
the influence of an external transverse magnetic field of strength B as defined in Eq. (3). We have neglected the effect of la-
tent heat due to evaporation by assuming the liquid to be nonvolatile. Further the buoyancy is neglected due to the relatively
thin liquid film, but it is not so thin that intermolecular forces come into play. The velocity and temperature fields of the
liquid film obey the following boundary layer equations
ou
ox
þ ov

oy
¼ 0; ð4Þ

ou
ot
þ u

ou
ox
þ v ou

oy
¼ t

o2u
oy2 �

rB2

q
u; ð5Þ

oT
ot
þ u

oT
ox
þ v oT

oy
¼ k

qCp

o2T
oy2 þ

l
qCp

ou
oy

� �2

: ð6Þ
The pressure in the surrounding gas phase is assumed to be uniform and the gravity force gives rise to a hydrostatic pres-
sure variation in the liquid film. In order to justify the boundary layer approximation, the length scale in the primary flow
direction must be significantly larger than the length scale in the cross stream direction. We choose the representative mea-
sure of the film thickness to be t

b

� �1
2 so that the scale ratio is large enough i.e., x

t
bð Þ

1
2
� 1. This choice of length scale enables us to

employ the boundary layer approximations. Further it is assumed that the induced magnetic field is negligibly small.
The associated boundary conditions are given by
u ¼ U; v ¼ 0; T ¼ Ts at y ¼ 0; ð7Þ
ou
oy
¼ oT

oy
¼ 0 at y ¼ h; ð8Þ

v ¼ dh
dt

at y ¼ h: ð9Þ
At this juncture we make a note that the mathematical problem is implicitly formulated only for x P 0. Further it is as-
sumed that the surface of the planar liquid film is smooth so as to avoid the complications due to surface waves. The influ-
ence of interfacial shear due to the quiescent atmosphere, in other words the effect of surface tension is assumed to be
negligible. The viscous shear stress s ¼ l ou

oy

� �
and the heat flux q ¼ �k oT

oy

� �
vanish at the adiabatic free surface (at y = h).

2.2. Similarity transformations

We now introduce dimensionless variables f and h and the similarity variable g as
f ðgÞ ¼ wðx; y; tÞ
tb

1�at

� �1
2x
; ð10Þ

hðgÞ ¼ T0 � Tðx; y; tÞ

Tref
bx2

2tð1�atÞ�
3
2

� � ; ð11Þ

g ¼ b
tð1� atÞ

� �1
2

y: ð12Þ
The physical stream function w(x, y, t) automatically assures mass conservation given in Eq. (4). The velocity components
are readily obtained as
u ¼ ow
oy
¼ bx

1� at

� �
f 0ðgÞ; ð13Þ

v ¼ � ow
ox
¼ � tb

1� at

� �1
2

f ðgÞ: ð14Þ
The mathematical problem defined through Eqs. (4)–(9) transforms exactly into a set of ordinary differential equations
and associated boundary conditions as follows
S f 0 þ g
2

f 00
� �

þ ðf 0Þ2 � ff 00 ¼ f 000 �Mnf 0; ð15Þ

Pr
S
2

3hþ gh0ð Þ þ 2hf 0 � h0f
� 	

¼ h00 þ EcPrf 002; ð16Þ

f 0ð0Þ ¼ 1; f ð0Þ ¼ 0; hð0Þ ¼ 1; ð17Þ
f 00ðbÞ ¼ 0; h0ðbÞ ¼ 0; ð18Þ

f ðbÞ ¼ Sb
2
: ð19Þ
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Here S � a
b is the dimensionless measure of the unsteadiness and the prime indicates differentiation with respect to g.

Further, b denotes the value of the similarity variable g at the free surface so that Eq. (12) gives
b ¼ b
tð1� atÞ

� �1
2

h: ð20Þ
Yet b is an unknown constant, which should be determined as an integral part of the boundary value problem. The rate at
which film thickness varies can be obtained by differentiating Eq. (20) with respect to t, in the form
dh
dt
¼ �ab

2
t

bð1� atÞ

� �1
2

: ð21Þ
Thus the kinematic constraint at y = h(t) given by Eq. (9) transforms into the free surface condition (21). It is noteworthy
that the momentum boundary layer equation defined by Eq. (15) subject to the relevant boundary conditions (17)–(19) is
decoupled from the thermal field; on the other hand the temperature field h(g) is coupled with the velocity field f(g). Since
the sheet is stretched horizontally the convection least affects the flow (i.e., buoyancy effect is negligibly small) and hence
there is a one-way coupling of velocity and thermal fields.

The local skin friction coefficient, which of practical importance, is given by
Cf �
�2l ou

oy

� �
y¼0

qU2 ¼ �2Re
�1

2
x f 00ð0Þ; ð22Þ
and the heat transfer between the surface and the fluid conventionally expressed in dimensionless form as a local Nusselt
number is given by
Nux � �
x

Tref

oT
oy

� �
y¼0
¼ 1

2
ð1� atÞ

�1
2 h0ð0ÞRe

3
2
x; ð23Þ
where Rex ¼ Ux
t the local Reynolds number and Tref denotes the same reference temperature (temperature difference) as in Eq.

(2).
We now march on to find the solution of the boundary value problem (15)–(19).

3. Numerical solution

The non-linear differential Eqs. (15) and (16) with appropriate boundary conditions given in (17)–(19) are solved numer-
ically, by the most efficient numerical shooting technique with fourth order Runge–Kutta algorithm (see Refs. [37,38]). The
non-linear differential Eqs. (15) and (16) are first decomposed to a system of first order differential equations in the form
df0

dg
¼ f1;

df1

dg
¼ f2;

df2

dg
¼ S f1 þ

g
2

f2

� �
þ ðf1Þ2 � f0f2 þMnf1;

dh0

dg
¼ h1;

dh1

dg
¼ Pr

S
2

3h0 þ gh1ð Þ þ 2h0f1 � h1f0

� 	
� EcPrf 2

2:

ð24Þ
Corresponding boundary conditions take the form,
f1ð0Þ ¼ 1; f 0ð0Þ ¼ 0; h0ð0Þ ¼ 1; ð25Þ
f2ðbÞ ¼ 0; h1ðbÞ ¼ 0; ð26Þ

f0ðbÞ ¼
Sb
2
: ð27Þ
Here f0(g) = f(g) and h0(g) = h(g). The above boundary value problem is first converted into an initial value problem by
appropriately guessing the missing slopes f2(0) and h1(0). The resulting IVP is solved by shooting method for a set of param-
eters appearing in the governing equations and a known value of S. The value of b is so adjusted that condition (27) holds.
This is done on the trial and error basis. The value for which condition (27) holds is taken as the appropriate film thickness
and the IVP is finally solved using this value of b. The step length of h = 0.01 is employed for the computation purpose. The
convergence criterion largely depends on fairly good guesses of the initial conditions in the shooting technique. The iterative
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process is terminated until the relative difference between the current and the previous iterative values of f(b) matches with
the value of Sb

2 up to a tolerance of 10�6. Once the convergence in achieved we integrate the resultant ordinary differential
equations using standard fourth order Runge–Kutta method with the given set of parameters to obtain the required solution.
Table 1
Comparison of values of skin friction coefficient f00 (0) with Mn = 0.0.

S Wang [22] Present results

b f00(0) f 00 ð0Þ
b b f00(0)

0.4 5.122490 �6.699120 �1.307785 4.981455 �1.134098
0.6 3.131250 �3.742330 �1.195155 3.131710 �1.195128
0.8 2.151990 �2.680940 �1.245795 2.151990 �1.245805
1.0 1.543620 �1.972380 �1.277762 1.543617 �1.277769
1.2 1.127780 �1.442631 �1.279177 1.127780 �1.279171
1.4 0.821032 �1.012784 �1.233549 0.821033 �1.233545
1.6 0.576173 �0.642397 �1.114937 0.576176 �1.114941
1.8 0.356389 �0.309137 �0.867414 0.356390 �0.867416

Note: Wang [22] has used different similarity transformation due to which the value of f 00 ð0Þ
b in his paper is the same as f00(0) of our results.
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Fig. 2. Variation of film thickness b with unsteadiness parameter S with Mn = 0.0.
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Fig. 3. Variation of film thickeness b with magnetic parameter Mn.
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0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-f 
'' (

0)

Mn

S = 1.2

S = 0.8
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4. Results and discussion

The exact solution do not seem to be feasible for a complete set of Eqs. (15) and (16) because of the non-linear form of the
momentum and thermal boundary layer equations. This fact forces one to obtain the solution of the problem numerically.
Appropriate similarity transformation is adopted to transform the governing partial differential equations of flow and heat
transfer into a system of non-linear ordinary differential equations. The resultant boundary value problem is solved by the
efficient shooting method. It is note worthy to mention that the solution exists only for a small range of values of unstead-
iness parameter 0 6 S 6 2. Moreover, when S ? 0 the solution approaches to the analytical solution obtained by Crane [2]
with infinitely thick layer of fluid (b ?1). The other limiting solution corresponding to S ? 2 represents a liquid film of
infinitesimal thickness (b ? 0). The numerical results are obtained for 0 6 S 6 2. Present results are compared with some
of the earlier published results in some limiting cases which are tabulated in Tables 1 and 2. The effects of magnetic param-
eter on various fluid dynamic quantities are shown in Figs. 2–9 for different unsteadiness parameter.

Fig. 2 shows the variation of film thickness b with the unsteadiness parameter. It is evident from this plot that the film
thickness b decreases monotonically when S is increased from 0 to 2. This result concurs with that observed by Wang [22].
The variation of film thickness b with respect to the magnetic parameter Mn is projected in Fig. 3 for different values of
unsteadiness parameter. It is clear from this plot that the increasing values of magnetic parameter decreases the film thick-
ness. The result holds for different values of unsteadiness parameter S.

The variation of free surface velocity f0(b) with respect to Mn is shown in Fig. 4. The free surface velocity behaves almost as
a constant function of Mn as can be seen from Fig. 4. The effect of Mn on the wall shear stress parameter �f00(0) is illustrated
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Table 2
Comparison of values of surface temperature h(b) and wall temperature gradient �h0(0) with Mn = Ec = 0.0.

Pr Wang [22] Present results

h(b) �h0(0) �h0 ð0Þ
b h(b) �h0(0)

S = 0.8 and b = 2.15199
0.01 0.960480 0.090474 0.042042 0.960438 0.042120
0.1 0.692533 0.756162 0.351378 0.692296 0.351920
1 0.097884 3.595790 1.670913 0.097825 1.671919
2 0.024941 5.244150 2.436884 0.024869 2.443914
3 0.008785 6.514440 3.027170 0.008324 3.034915

S = 1.2 and b = 1.127780
0.01 0.982331 0.037734 0.033458 0.982312 0.033515
0.1 0.843622 0.343931 0.304962 0.843485 0.305409
1 0.286717 1.999590 1.773032 0.286634 1.773772
2 0.128124 2.975450 2.638324 0.128174 2.638431
3 0.067658 3.698830 3.279744 0.067737 3.280329

Note: Wang [22] has used different similarity transformation due to which the value of �h0 ð0Þ
b in his paper is the same as �h0(0) of our results.

Table 3
Values of b, f(b), f0(b), f00(b), f000(b) for various values of S, Mn.

S Mn b f(b) f0(b) f00(b) f000(b)

0.0 0.0 1 1.000000 0.000000 0.000000 0.000000
0.002 0.0 1001.066 1.001065 0.000024 0.000000 0.000000
0.1 0.0 20.123800 1.006196 0.000007 0.000000 0.000001
0.2 0.0 10.121550 1.012155 0.001566 0.000000 0.000316
0.4 0.0 4.981455 0.996291 0.029495 0.000000 0.012668
0.6 0.0 3.131710 0.939513 0.094580 0.000000 0.065693
0.8 0.0 2.151990 0.860797 0.187840 0.000000 0.185556
1.0 0.0 1.543617 0.771808 0.300925 0.000000 0.391481
1.2 0.0 1.127780 0.676668 0.427548 0.000000 0.695854
1.4 0.0 0.821033 0.574723 0.563274 0.000000 1.105860
1.6 0.0 0.576176 0.460940 0.705119 0.000000 1.625384
1.8 0.0 0.356390 0.320751 0.851124 0.000000 2.256437
1.9 0.0 0.237020 0.225167 0.925253 0.000000 2.614076
1.99 0.0 0.000010 0.000010 1.000000 0.000000 2.990000
2.00 0.0 0.000001 0.000000 1.000000 0.000000 3.000000

0.8 0.0 2.151990 0.860797 0.187840 0.000000 0.185556
0.8 1.0 1.616880 0.646752 0.179716 0.000000 0.355787
0.8 2.0 1.350880 0.540352 0.176488 0.000000 0.525313
0.8 3.0 1.184197 0.473679 0.174751 0.000000 0.694590
0.8 4.0 1.067175 0.426870 0.173665 0.000000 0.863753
0.8 5.0 0.979192 0.391677 0.172922 0.000000 1.032852
0.8 6.0 0.909925 0.363970 0.172381 0.000000 1.201908
0.8 7.0 0.853552 0.341421 0.171971 0.000000 1.370947
0.8 8.0 0.806512 0.322605 0.171648 0.000000 1.539967

1.2 0.0 1.127780 0.676668 0.427548 0.000000 0.695854
1.2 1.0 0.903878 0.542327 0.425050 0.000000 1.115778
1.2 2.0 0.775795 0.465478 0.423849 0.000000 1.535964
1.2 3.0 0.690238 0.414143 0.423142 0.000000 1.956246
1.2 4.0 0.627910 0.376746 0.422676 0.000000 2.376569
1.2 5.0 0.579900 0.347940 0.422346 0.000000 2.796919
1.2 6.0 0.541450 0.324870 0.422100 0.000000 3.217286
1.2 7.0 0.509757 0.305854 0.421909 0.000000 3.637665
1.2 8.0 0.483048 0.289829 0.421759 0.000000 4.058062
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in Fig. 5. Clearly, increasing values of Mn results in increasing the wall shear stress. Fig. 6 demonstrates the effect of Mn on
the free surface temperature h(b). From this plot it is evident that the free surface temperature increases monotonically with
Mn. Fig. 7 highlights the effect of Mn on the dimensionless wall heat flux �h0(0). It is found from this plot that the dimen-
sionless wall heat flux �h0(0) decreases with the increasing values of Mn. The effect of Mn on f0(b), �f00(0), h(b) and �h0(0) is
observed to be same for different values of unsteadiness parameter S.

The effect of Mn on the axial velocity is depicted in Figs. 8a and 8b for two different values of S. From these plots it is clear
that the increasing values of magnetic parameter decreases the axial velocity. This is due to the fact that applied transverse
magnetic field produces a drag in the form of Lorentz force thereby decreasing the magnitude of velocity. The drop in hor-
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izontal velocity as a consequence of increase in the strength of magnetic field is observed for both the values of S = 0.8 and
S = 1.2.

Figs. 9a and 9b depicts the effect of Mn on temperature profiles for two different values of S. The results show that the
thermal boundary layer thickness increases with the increasing values of Mn. The increasing frictional drag due to the Lor-
entz force is responsible for increasing the thermal boundary layer thickness.

Further, the effects of Prandtl number Pr and the Eckert number Ec are not affected by the magnetic parameter Mn. Hence
we omit the discussion on the results of Pr and Ec for reasons of space as they are extensively studied by Chen [39,40].

Tables 1 and 2 give the comparison of present results with that of Wang [22]. With out any doubt, from these tables, we
can claim that our results are in excellent agreement with that of Wang [22] under some limiting cases. The values of f(b),
f0(b), f00 (b), f000(b) at the free surface, obtained through the actual computation, are tabulated in Table 3. The values tabulated
in this table are very important as they serve the purpose of validating the momentum Eq. (15) in dimensionless form (there-
by Eq. (5)), at the free surface g = b.

5. Conclusions

A theoretical study of the boundary layer behavior in a liquid film over an unsteady stretching sheet is carried out includ-
ing the effects of variable transverse magnetic field. The results on viscous dissipation coincide with that of Chen [40].
Present investigation reveals that the magnetic field effect has a considerable impact in controlling the flow and heat trans-
fer. The effect of transverse magnetic field on a viscous incompressible conducting fluid is to suppress the velocity field
which in turn causes the enhancement of the temperature field.
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