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Partial and semipartial geometries: an update
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Abstract

The Handbook of Incidence Geometry (Handbook of Incidence Geometry, Buildings and Foun-
dations, North-Holland, Amsterdam, 1995) appeared in 1995. In Chapter 12, On some rank two
geometries, an almost complete overview was given on the status of the theory on partial and
semipartial geometries. Now, 5 years later, it is maybe a good time to give an update of this sta-
tus. Indeed a lot of things have happened during these years. Moreover we take the opportunity
to give complete parameter lists of all known examples of partial and semipartial geometries
known so far.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

An (�; �)-geometry S=(P;L; I) is a connected partial linear space of order (s; t)
(i.e. two points are incident with at most one line, each point is incident with t + 1
(t¿1) lines, and each line is incident with s + 1 (s¿1) points), with the property that
for every anti-=ag (x; L) there are either � or � lines through x intersecting L.

The point graph �(S) of an (�; �)-geometry is the graph with vertex set the set of
points of S; two vertices are adjacent if and only if they are di?erent and collinear in
S. The block graph (also called line graph by some authors) of an (�; �)-geometry
is the graph whose vertices are the lines, and vertices are adjacent if and only if the
corresponding lines are concurrent.
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If �= �; S is called a partial geometry with parameters s; t; �, which we denote by
pg(s; t; �) [1]. In this case the graph �(S) is a strongly regular graph srg(v; k; �; �);
more precisely it is a

srg
(
(s + 1)

st + �
�

; s(t + 1); s − 1 + t(� − 1); �(t + 1)
)

:

A strongly regular graph � with these parameters (which are satisfying t¿1; s¿1;
and 16�6min{s + 1; t + 1}) is called a pseudo-geometric (s; t; �)-graph. If the graph
� is indeed the point graph of at least one partial geometry then � is called geometric.
Note that a graph can be pseudo-geometric for at most one set of values s; t; � and

assuming � �= s + 1, the cliques of size s + 1 corresponding to potential lines must be
maximal. However, there can exist several non-isomorphic partial geometries with the
same graph as point or block graph. A pseudo-geometric graph is called faithfully
geometric if and only if there is up to isomorphism exactly one partial geometry with
this graph as point graph.
Another important family of (�; �)-geometries is given by the so-called (0; �)-geo-

metries (i.e. �=0). Here the point graph is not necessarily a strongly regular graph.
Those (0; �)-geometries which have a strongly regular point graph are called semipartial
geometries and are denoted by spg(s; t; �; �) and were introduced in [9]. Note that the
parameter � is the parameter of the strongly regular point graph, which counts
the number of vertices adjacent to two non-adjacent vertices. If �=1 these semi-
partial geometries are better known as partial quadrangles which are introduced by
Cameron [8].

Remarks. (1) Special classes of partial geometries are the generalized quadrangles
(�=1) introduced by Tits, see [28]; the 2-(v; s + 1; 1) designs (�= s + 1) and their
duals (�= t +1); the Bruck nets (�= t) and dual Bruck nets (�= s). In this overview
we will restrict ourselves to the so-called proper partial geometries, which are the
partial geometries with 1¡�¡min{s; t}.
(2) A proper semipartial geometry is a semipartial geometry which is not a partial

geometry.
(3) For the description of the examples of partial and semipartial geometries known

until 1995, we refer to [17]. In the sequel we will give an overview of some new
constructions of partial geometries having sometimes new parameters. In Section 4 we
will give complete parameter lists of the examples of the proper partial and semipartial
geometries known at present.

2. New constructions of partial geometries

2.1. The partial geometry constructed from the Hermitian two-graph

A two-graph [30] (�; �) is a pair of a vertex set � and a triple set �⊂�(3), such
that each 4-subset of � contains an even number of triples of �. A two-graph is called
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regular whenever each pair of elements of � is contained in the same number a of
triples of �.
Given any graph �=(X;∼), one can construct a new graph by using Seidel-

switching. For this, partition the vertex set X as X =X1∪X2, leave the adjacencies
inside X1 and X2 as they are and interchange edges and non-edges between vertices
of X1 and X2. Graphs which can be mapped to each other by Seidel-switching are
called switching equivalent. It is known [30] that, given v there is a one-to-one
correspondence between the two-graphs and the switching classes of graphs on the
set of v elements. If the two-graph (�; �) is regular and if (�;∼) is any graph in its
switching class which has an isolated vertex !∈�, then (�\{!};∼) is a strongly
regular graph.
Let H be the Hermitian curve in PG(2; q); q odd, deHned by the Hermitian bilinear

form H (x; y). The Hermitian two-graph (�; �) is deHned by taking as a vertex set � the
set of q3 + 1 points of H and a triple {x; y; z}∈�(3) is an element of � if and only if
H (x; y)H (y; z)H (z; x) is a square (if q≡−1 (mod 4)) or a non-square (if q≡ 1 (mod 4))
[34]. This two-graph appears to be regular with a=(q2+1)(q−1)=2 and in its switching
class there is indeed a graph which has an isolated vertex. This yields a strongly regular
graph H(q) which is an srg(q3; (q2 + 1)(q − 1)=2; (q − 1)3=4 − 1; (q2 + 1)(q − 1)=4)
and is pseudo-geometric with parameters s= q − 1; t =(q2 − 1)=2; �=(q − 1)=2.
If q=3 this graph is the point graph of the unique generalized quadrangle of order
(2; 4). Although it has been proved (computer search) by Spence [33] that H(q) is not
geometric for q=5 and 7 it is remarkable that the graph is indeed geometric if q=32m

which has been proved by Mathon; we refer to [25] for more details. In [24] Kuijken
gives a more geometric construction. Moreover, by making some slight changes in the
geometric construction she proves that the graph is also geometric in case q is an odd
power of 3.

2.2. Partial geometries from perp-systems

Mathon announced in June 1999 during the 2nd Pythagorean Conference (Samos,
Greece) the existence of a set R of 21 lines of PG(5; 3) that are pairwise skew (hence
form a partial line spread) with the property that every plane of PG(5; 3) through one
of the 21 lines of R intersects exactly two other lines of R. Actually it is an SPG
1-regulus in the sense of Thas [38] (a brief description can also be found in [17])
with no tangent planes. The construction by R. Mathon is a computer construction. It
yields a new partial geometry with parameters s=8; t =20; �=2. Embed PG(5; 3)
as a hyperplane � in PG(6; 3). The points of the partial geometry are the 36 points
of AG(6; 3)=PG(6; 3)\�, the lines of the partial geometry are the aKne planes of
AG(6; 3) having as line at inHnity one of the 21 elements of R. Although quite some
other nice properties of this SPG 1-regulus R in PG(5; 3) are known, there is so far
no computer free construction known. However, these properties have led to a new
concept, namely perp-systems which we shortly describe here. For more details we
refer to [16].
Consider a PG(N; q) equipped with a polarity �. DeHne a partial perp-system R(r)

to be any set {�1; : : : ; �k} of k(k¿1) mutually disjoint r-dimensional subspaces of
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PG(N; q) such that no ��
i meets an element of R(r). Hence, each �i is non-singular

with respect to �. Note that N¿2r + 1. One easily proves that

|R(r)|6q(N−2r−1)=2(q(N+1)=2 + 1)
q(N−2r−1)=2 + 1

: (1)

We will only deal with systems R(r) such that equality holds in (1), such a system
is called a perp-system.

Theorem 1. Let R(r) be a perp-system of PG(N; q) equipped with a polarity � and
let R(r) denote the union of the point sets of the elements of R(r). Then R(r) has
two intersection sizes with respect to hyperplanes.

This implies that R(r) yields a two-weight code and a strongly regular graph
�∗(R(r)) [7]. The graph is constructed by embedding PG(N; q) as a hyperplane � in
PG(N + 1; q). The vertices of the graph are the qN+1 points of AG(N + 1; q)=PG(N;
q)\�, two vertices are adjacent whenever the line of PG(N + 1; q) joining them is
intersecting � in an element of R(r).
One easily checks that this graph is a pseudo-geometric

(
qr+1 − 1;

q(N−2r−1)=2(q(N+1)=2 + 1)
q(N−2r−1)=2 + 1

− 1;
qr+1 − 1

q(N−2r−1)=2 + 1

)
-graph:

One can prove some restrictions on the parameters. More precisely one can prove the
following theorem:

Theorem 2. Let R(r) be a perp-system of PG(N; q) equipped with a polarity �.
Then

• 2r + 16N63r + 2;
• if N =2r + 1 then q is odd and �∗(R(r)) is the point graph of a net with qr+1

points on a line and (qr+1 + 1)=2 lines through a point.
• assume that N �=2r +1 then (r +1)=(N − 2r − 1) is a positive integer; if N is even
then q has to be a square. The graph �∗(R(r)) is the point graph of a partial
geometry

pg
(

qr+1 − 1;
q(N−2r−1)=2(q(N+1)=2 + 1)

q(N−2r−1)=2 + 1
− 1;

qr+1 − 1
q(N−2r−1)=2 + 1

)
:

One can construct perp-systems from other perp-systems. More precisely the next
theorems are proved in [14].

Theorem 3. Let R(r) be a perp-system with respect to some polarity of PG(N; qn),
then there exists a perp-system R′((r + 1)n − 1) with respect to some polarity of
PG((N + 1)n − 1; q).
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Theorem 4. If the classical polar space P admits a perp-system R(r), then the polar
space Q admits a perp-system R(2r + 1), for

(P; Q) = (H(2n; q2);Q−(4n + 1; q))

(H(2n + 1; q2);Q+(4n + 3; q)),

(Q(2n; q2);Q+(4n + 1; q)) for q odd,

(Q(2n; q2);Q(4n; q)) for q even,

(Q−(2n + 1; q2);Q−(4n + 3; q)),

(H(2n; q2); W4n+1(q)).

Remarks. (1) A net with the parameters as in Theorem 2 and coming from a perp-
system does exist for every odd q.
(2) If N is maximal i.e. if N =3r + 2 then r is odd and the partial geometry is a

pg(qr+1 − 1; (qr+1 + 1)(q(r+1)=2 − 1); q(r+1)=2 − 1):

This partial geometry has the parameters of a partial geometry T ∗
2 (K), with K a

maximal arc of degree q(r+1)=2 in a PG(2; qr+1). A selfpolar maximal arc of degree
qn in a PG(2; q2n) is a maximal arc K such that each point p∈K is mapped by a
polarity � of the plane on an exterior line p� of K. If q is even, there exist selfpolar
maximal arcs of Denniston type; they yield a perp-system R(0). Applying Theorem
3 this gives a perp-system with r = n − 1 in PG(3n − 1; q2) and a perp-system with
r =2n − 1 in PG(6n − 1; q).
(3) The set of 21 lines in PG(5; 3) found by Mathon is a perp-system R(1) in

PG(5; 3). The polarity evolved can be either the symplectic polarity or the elliptic
orthogonal polarity. In this case N =5 and r =1, hence N is maximal and the partial
geometry has the parameters of a T ∗

2 (K), with K a maximal arc of degree 3 in
PG(2; 9); however, such a maximal arc does not exist.
(4) So far, there is no example known of a perp-system in PG(N; q) with 2r +

1¡N¡3r + 2.
(5) The results in Theorem 4 are results that are of the same type as known results

on m-systems, introduced by Thas and Shult [31,32]. There are indeed connections
with m-systems. For more details we refer to [14].

2.3. Partial geometries with t = s + 1

2.3.1. Derivation of partial geometries
Let ' be a pg-spread of a pg(s; t; �) S=(P;L; I), that is a (maximal) set of st=�+1

lines partitioning the point set. Assume t¿1 and let L be any line of L\'. Let 'L

be the set of s + 1 lines of ' intersecting L. Then L is called regular with respect
to ' if and only if there exists a set of s + 1 lines L(L)= {L0 =L; L1; : : : ; Ls} that
partitions the set P('L) of points covered by 'L, and each element of L\(L(L)∪')
is intersecting P('L) in at least one point and at most s points.
It is easy to prove (see [11]) that if a pg(s; t; �) S has a regular line L with respect

to a pg-spread ', then t¿s + 1. If t = s + 1 then every line M not being an element
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of the pg-spread ' neither of L(L) intersects P('L) in � points. Now assume that
' is a pg-spread of a pg(s; s + 1; �) such that every line is regular with respect to
'. Then L\' is partitioned in s(s + 1)=� + 1 sets Li (i=1; : : : ; s(s + 1)=� + 1) each
containing s + 1 mutually skew lines. The spread ' is called a replaceable spread
and can be used to construct the following incidence structure S' =(P';L'; I'). The
elements of P' are on the one hand the points of S and on the other hand the sets
Li (i=1; : : : ; s(s + 1)=� + 1); L' =L\'. Finally, p I' L is deHned by p I L if
p∈P and by L∈p if p∈{Li | i=1; : : : ; s(s + 1)=� + 1}. Generalizing a construction
of Mathon and Street [26], one can prove (see [11]) that S' is a pg(s + 1; s; �). The
partial geometry S' (and its dual) is called a partial geometry derived from S with
respect to '.
Note that the set )= {Li | i=1; : : : ; s(s + 1)=� + 1} is a replaceable spread of SD

'
and that the derived partial geometry (SD

' )) is isomorphic to the partial geometry
SD [12].

2.3.2. The derived partial geometries of PQ+(4n − 1; q) (q=2 or 3)
It has been checked by computer (see [26]) that the partial geometry PQ+(7; 2) con-

structed by De Clerck et al. [15] (but other constructions do exist, see [17] for details)
has exactly three replaceable spreads yielding (after dualizing) three non-isomorphic
partial geometries pg(7; 8; 4). De Clerck [11] proved this result geometrically for both
q=2 and 3. Actually, Mathon and Street [26] have constructed by computer seven
new partial geometries pg(7; 8; 4) by starting from the partial geometry PQ+(7; 2) and
by using derivation with respect to a suitable replaceable spread. They give in [26]
information on the order of the automorphism groups of the geometries as well as
information on the point and block graphs of these geometries. They remarked that the
point graphs of four of the geometries pg(7; 8; 4) constructed by them, are isomorphic
graphs while their block graphs all are di?erent. Actually that point graph was not a
new graph, it is the complement of the graph constructed in [3]. It is an element of the
class of graphs called the graphs on a quadric with a hole. Such a graph has vertex set
the points of a quadric Q+(2m − 1; q)\M; M a generator of the quadric and vertices
x and y are deHned to be adjacent whenever 〈x; y〉⊂Q+(2m − 1; q)\M . This graph is
strongly regular for general dimensions and general q.
Klin and Reichard [23,29] found, again by computer, but independently from Mathon

and Street, that the complement of the graph on Q+(7; 2) with a hole, is indeed the
point graph of exactly four partial geometries pg(7; 8; 4).
In [12] it has been proved that from the eight known partial geometries pg(7; 8; 4),

four of them are the smallest member of a class of pg(22n−1 − 1; 22n−1; 22n−2) and all
of them are constructed using derivation.

Remarks. (1) For quite a long time it was conjectured that there is only one pg(7; 8; 4)
up to isomorphism. This conjecture has turned out to be false. However, in [16] it
has been proved that the point graph of the partial geometry PQ+(7; 2) is faithfully
geometric. This does not guarantee that the block graph is also faithfully geometric.
But, in [27] Panigrahi proves, using combinatorial arguments, that the block graph
�′(7; 2) of the partial geometry PQ+(7; 2) is faithfully geometric indeed. Actually the
graph �′(7; q) is the graph �c(Q+(7; q)) with vertices the points on the hyperbolic
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quadric Q+(7; q), two vertices being adjacent if and only if they are on a secant of the
quadric (see [22]).
(2) Kantor [22] also proved that if n �=2, then the block graph of the partial geometry

PQ+(4n−1; q); (q=2 or 3) is not isomorphic to the graph �c(Q+(4n−1; q)). Note that
the graph �c(Q+(2m−1; q)) is pseudo-geometric with parameters s= qm−1; t = qm−1−
1; �= qm−2(q − 1), for any q. The graph �c(Q+(3; q)), is the complement of the
(q+1)× (q+1)-grid, hence is geometric if and only if there exists a projective plane
of order q + 1. It is not known whether �c(Q+(5; q)); q¿4, is geometric. The graph
�c(Q+(5; 2)) is a pseudo-geometric (4; 3; 2)-graph but a pg(4; 3; 2) does not exist (see
for instance [10]). As explained in [27], it can be read o? from the computer-aided
results of Hall and Roth in [20] that �c(Q+(5; 3)) is not geometric. As remarked in [27]
the graph �c(Q+(2m− 1; q)) with m¿5 is not geometric for q=2, but the question is
still open for q¿2. Hence, the fact that the graph �c(Q+(7; q)) is geometric for q=2
and 3 is quite remarkable indeed; see also Theorem 7.
(3) Brouwer et al. [2] have proved that the pg(7; 8; 4) PQ+(7; 2) is embeddable

into a Steiner system S(2; 8; 120). This result has been extended for the three partial
geometries directly derived from PQ+(7; 2) in [13].
(4) In some cases derivation of the partial geometry can be rephrased in terms of

Seidel switching of graphs. We refer to [13] for the technical details.

3. New constructions of semipartial geometries

3.1. The semipartial geometries spg(q − 1; q2; 2; 2q(q − 1))

A very interesting example of semipartial geometry is the semipartial geometry by
Metz (private communication). We recall his construction. Let Q(4; q) be a non-singular
quadric of the projective space PG(4; q). If we deHne P as the set of the elliptic
quadrics Q−(3; q) on Q(4; q); L as the set of all pencils of such elliptic quadrics
which are pairwise tangent in a common point, and I as the natural incidence relation
then S=(P;L; I) is an spg(q − 1; q2; 2; 2q(q − 1)).

Let Q−(5; q) be an elliptic quadric of PG(5; q) and p be a point of PG(5; q) not on
Q−(5; q). Let � be a hyperplane of PG(5; q) not containing p. Let OP1 be the projection
of the point set of Q−(5; q) from p on � and let OP2 be the set of points of � on
a tangent of Q−(5; q) through p. Let S be the geometry with point set P= OP1\ OP2,
whereas the line set L is the set of all projections on � of the lines of OS, excluding
the projections completely contained in OP2. The incidence is the one of the projective
space. Then Hirschfeld and Thas [21] have proved that this is a semipartial geometry
spg(q − 1; q2; 2; 2q(q − 1)) isomorphic to the one by Metz.
It has been observed by Brown [4] that one does not need necessarily the GQQ−(5; q)

for this construction. Indeed if a GQ S of order (s; s2) contains a subquadrangle S′

of order s, then every point x of S\S′ is collinear with the s2 +1 points of an ovoid,
denoted by Ox, of S′. The ovoid Ox is said to be subtended by x. If it happens to
be that every such subtended ovoid Ox is also a subtended ovoid Oy for another point
y∈S\S′, then the ovoid is called doubly subtended and is denoted by Ox; y. If every
subtended ovoid of S′ is doubly subtended, then the subGQ S′ is called doubly
subtended in the GQ S.
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Theorem 5 (Brown [4]). Assume S is a GQ of order (s; s2) containing a subGQ S′

that is doubly subtended in S; then the incidence structure with points the subtended
ovoids of S′, lines the rosettes of subtended ovoids (a rosette is a set of s subtended
ovoids containing a common point x and having two by two just x in common),
incidence the natural incidence, is a semipartial geometry spg(s − 1; s2; 2; 2s(s − 1)).

The generalized quadrangle Q(4; q) is indeed doubly subtended in Q−(5; q) and this
yields the construction of Metz. However, Brown, [4] remarks that Q(4; q) is also
doubly subtended in the GQ of order (q; q2) (q odd) related to the =ock K1 of Kantor,
and hence yields a semipartial geometry.
It is worthwhile to remark that the construction by Hirschfeld and Thas of the

semipartial geometry of Metz, implies that for q even, this semipartial geometry spg(s−
1; s2; 2; 2s(s − 1)) is embedded in AG(4; q). All semipartial geometries embedded in
an aKne space AG(n; q) for n=2; 3 are classiHed. For n¿3 the question is however
open. Assuming q¿2, then apart from the partial quadrangle T ∗

3 (O), two models of
semipartial geometries embeddable in AG(4; q) are known. On the one hand there is
the semipartial geometry T ∗

3 (B) with B a Baer subspace of PG(3; q); q a square. On
the other hand, there is the semipartial geometry spg(q − 1; q2; 2; 2q(q − 1)) of Metz,
q even. Recently, the following results on aKne embeddings have been proved. For
more details we refer to [5].

Theorem 6. Let S be a semipartial geometry spg(q − 1; q2; 2; 2q(q − 1)) embedded
in AG(4; q). Then q=2h, and S is the Hirschfeld–Thas model of the semipartial
geometry of Metz.

We will see in the next section that the semipartial geometry of Metz is part of
a bigger family, namely of the family of semipartial geometries constructed from an
SPG-system.

3.2. SPG-systems and semipartial geometries

Very recently Thas [39] has generalized the concept of SPG-regulus of a polar space
P to SPG-systems of P. Without any doubt this concept will open new perspectives in
the near future. We will restrict ourselves here to that part of the theory which yields
semipartial geometries with new parameters. It is however important to underline that
some of the examples (including the partial geometries PQ+(4n − 1; 2) and PQ+(4n −
1; 3)) can be constructed from SPG-systems.

3.2.1. De?nition of an SPG-system and construction of the semipartial geometry
Let Q(2n + 2; q); n¿1 be a non-singular quadric of PG(2n+2; q). An SPG-system of

Q(2n+2; q) is a set D of (n−1)-dimensional totally singular subspaces of Q(2n+2; q)
such that the elements of D on any non-singular elliptic quadric Q−(2n + 1; q)⊂
Q(2n + 2; q) constitute a spread of the quadric Q−(2n + 1; q).
Let Q+(2n + 1; q) be a non-singular hyperbolic quadric of PG(2n + 1; q); n¿1.

An SPG-system of Q+(2n + 1; q) is a set D of (n − 1)-dimensional totally singular
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subspaces of Q+(2n + 1; q) such that the elements of D on any non-singular quadric
Q(2n; q)⊂Q+(2n + 1; q) constitute a spread of Q(2n; q).
Let H(2n + 1; q) be a non-singular Hermitian variety of PG(2n + 1; q); n¿1; q

a square. An SPG-system of H(2n + 1; q) is a set D of (n − 1)-dimensional totally
singular subspaces of H(2n + 1; q) such that the elements of D on any non-singular
Hermitian variety H(2n; q)⊂H(2n + 1; q) constitute a spread of Q(2n; q).
One can prove that in each case the number of elements in D equals the number of

points of the polar space.
The construction by Thas of the semipartial geometry is as follows. Let P be one of

the above polar spaces, i.e. Q(2n+2; q); Q+(2n+1; q); H(2n+1; q) (n¿1). Let PG(d; q)
be the ambient space of P. Hence, in the Hrst case d=2n + 2, in the other two cases
d=2n+1. Let D be an SPG-system of P and let P be embedded in a non-singular polar
space OP with ambient space PG(d + 1; q) of the same type as P and with projective
index n. Hence for P =Q(2n+2; q), we have OP =Q−(2n+3; q); for P =Q+(2n+1; q),
we have OP =Q(2n + 2; q) and for P =H(2n + 1; q), we have OP =H(2n + 2; q). If OP
is not symplectic and y∈ OP, then let 2y be the tangent hyperplane of OP at y; if OP
is symplectic and 3 is the corresponding symplectic polarity of PG(d + 1; q), then let
2y =y3 for any y∈PG(d + 1; q).
For y∈ OP\P let Oy be the set of all points z of OP\P for which 2z ∩P = 2y∩P. Note

that no two distinct points of Oy are collinear in OP. If P is orthogonal then | Oy|=2
except when P =Q+(2n + 1; q) and q even, in which case | Oy|=1. If P is Hermitian
then | Oy|=√

q + 1.
Let 4 be any maximal totally singular subspace of OP, not contained in P, such that

4∩P∈D and let y∈4\P. Further, let O4 be the set of all maximal totally singular
subspaces 5 of OP, not contained in P, for which 4∩P = 5∩P and 5∩ Oy �= ∅.

Let S=(P;L; I) be the incidence structure with P= { Oy‖y∈ OP\P}; L contains all
the sets O4 as deHned above; if Oy∈P and O4∈L then Oy I O4 if and only if for some
z∈ Oy and some 5∈ O4, one has that z∈5.

In [39] it is proved that this incidence structure is a (0; �)-geometry of order (s; t)
with s + 1= qn and t + 1 the number of elements in a spread of P. The parameter �
equals to qn−1 times the number of points of OP in any set Oy∈P.

Theorem 7. (1) If P is the polar space Q(2n+2; q) then S is a semipartial geometry
spg(qn − 1; qn+1; 2qn−1; 2qn(qn − 1)).

(2) If P is the polar space Q+(2n + 1; q) then the point graph �(S) is strongly
regular if and only if q=2 or q=3. In these cases S is a partial geometry.

(3) If P is the polar space H(2n + 1; q) then S is a semipartial geometry
spg(qn − 1; qn√q; qn−1(

√
q + 1); qn−1(qn − 1)

√
q(
√

q + 1)).

Corollary 1. Let P be the polar space Q(2n+2; q). The geometry will be denoted by
TQ(2n + 2; q).
If n=1 the SPG-system is the complete set of points of Q(4; q) and the semi-

partial geometry was known before, it is the semipartial geometry of Metz,
see [17].
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Assume n=2. The set of lines in all the planes of a spread R is an SPG-system of
Q(6; q). Note that spreads of Q(6; q) are known to exist when q=ph and p∈{2; 3}.
On the other hand, the line set of the classical generalized hexagon H (q) embedded
in Q(6; q), is an SPG-system of Q(6; q). It is proved in [39] that an SPG-system on
Q(6; q) is a member of one of these two classes.
For any n¿3, any spread of Q(2n + 2; q) deHnes an SPG-system. Such a spread is

known to exist if q is even.
In [18] Delanote gives a construction of a semipartial geometry with point graph the

graph on the internal points of a quadric Q(4m + 2; 3), (vertices are adjacent when non-
orthogonal) under the condition of existence of an orthogonal spread. His arguments can
easily be generalized for any odd q and in fact, his semipartial geometry is isomorphic
to TQ(2n + 2; q) with n=2m.

Corollary 2. Let P be the polar space Q+(2n + 1; q); q=2 or 3.
If n=2m − 1 is odd and q=2 then Q+(2n + 1; 2) has a spread and

the partial geometry is isomorphic to the partial geometry PQ+(4m−1; 2) of
De Clerck et al. [15].
If n=2m−1 is odd and q=3 then the partial geometry is isomorphic to the partial

geometry PQ+(4m − 1; 3) of Thas, which only exists if Q+(4m − 1; 3) has a spread;
the existence of such a spread is open for m¿3.

Corollary 3. Let P be the polar space H(2n+1; q). The geometry will be denoted by
TH (2n + 1; q).
Unfortunately, if n¿2 then no SPG-system of H(2n+1; q) is known. If n=1, then

D is the set of points of H(3; q) and the semipartial geometry is the one of Thas as
described in [17].

4. Parameter lists

4.1. The known partial geometries (up to duality)

Notation s t � Remarks and references

S(K) 2h − 2m 2h − 2h−m (2m − 1)(2h−m − 1) 0¡m¡h; h �=2, [35,36]

T∗
2 (K) 2h − 1 (2h + 1)(2m − 1) 2m − 1 0¡m¡h, [35,36]

M3(h) 3h − 1 1
2 (3

2h − 1) 1
2 (3

h − 1) [24,25]

PQ+(4n − 1; 2) 22n−1 − 1 22n−1 22n−2 1¡n, [12,15]
+derivations

PQ+(7; 3) 26 27 18 [12,37]
+derivations

vL-S 5 5 2 [40]

Haemers 4 17 2 [19]

Mathon 8 20 2 [14]
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4.2. The known semipartial geometries

Notation s t � � Remarks and references

M (r) 1 r − 1 1 1 Moore graph r =2; 3; 7
M (r) r − 1 r − 1 r − 1 (r − 1)2 r =2; 3; 7, [9]
U2;3(n) 2 n − 3 2 4 n¿4 [9]

LP(n; q) q(q + 1) qn−1−1
q−1 − 1 q + 1 (q + 1)2 n¿4, [9]

W (2n + 1; q) q q2n − 1 q q2n(q − 1) n¿1, [9]
NQ+(2n − 1; 2) 2 22n−3 − 2n−2 − 1 2 22n−3 − 2n−1 n¿3, [17]
NQ−(2n − 1; 2) 2 22n−3 + 2n−2 − 1 2 22n−3 + 2n−1 n¿3, [17]
H (n+1)∗

q ∼= T∗
n−1(B) q2 − 1 qn−1

q−1 − 1 q q(q + 1) n¿3, [9]
T∗
3 (O) q − 1 q2 1 q(q − 1) [8]

T∗
2 (U) q2 − 1 q3 q q2(q2 − 1) [9]

TQ(2n + 2; q) qn − 1 qn+1 2qn−1 2qn(qn − 1) For n=1, see also [4] and
Section 3.1

If n¿3 then q=2h, [39]
TH (3; q2) q2 − 1 q3 q + 1 q(q + 1)(q2 − 1) [17]
RQ−(2n + 3; q) qn+1 − 1 qn+2 qn qn+1(qn+1 + 1) q Prime power for n=1,

q=2h for n¿2, [38]
Gew(56) 1 9 1 2 v=56, Gewirtz graph
HS(77) 1 15 1 4 v=77, Higman–Sims family
HS(100) 1 21 1 6 v=100, Higman–Sims family
T∗
4 (K(11)) 2 10 1 2 v=243; K(11) the 11-cap

in PG(4; 3)
T∗
5 (K(56)) 2 55 1 20 v=729; K(56) the 56-cap

in PG(5; 3)
T∗
5 (K(78)) 3 77 1 14 v=1024; K(78) the 78-cap

of Hill in PG(5; 4)
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